1
|
Leslie E, Miller M, Lafuze A, Svyatskaya S, Choi GS, Kennedy JL, Huang YA, Doherty TA, Broide DH. PGAP3 is expressed at increased levels in asthmatic ASM and is associated with increased ASM proliferation, contractility and expression of GATA3 and ALOX5. PLoS One 2025; 20:e0320427. [PMID: 40131902 PMCID: PMC11936287 DOI: 10.1371/journal.pone.0320427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Post-GPI Attachment to Proteins phospholipase 3 (PGAP3) is a glycosylphosphatidylinositol (GPI) anchor-remodeling gene found on chromosome 17q12-21, which is a locus highly linked to asthma. Genetic association studies have linked PGAP3 SNPs to increased PGAP3 expression as well as asthma exacerbations, severity, and susceptibility. This study compared the levels of PGAP3 mRNA expression quantitated by RT-qPCR in human bronchial airway smooth muscle cells derived from postmortem lungs of asthmatics (ASM-A) to that derived from control non-asthmatics (ASM-NA). ASM-A expressed significantly higher levels of PGAP3 mRNA compared to ASM-NA. As ASM-A expressed higher levels of PGAP3 mRNA we performed functional studies of ASM-NA transfected with PGAP3 to determine if increased PGAP3 expression in ASM influenced ASM function including proliferation and contractility. Functional studies of ASM transfected with PGAP3 demonstrated that increased PGAP3 expression in ASM resulted in increased ASM proliferation and contractility. RNA-seq studies of ASM transfected with PGAP3 demonstrated significantly increased levels of genes linked to asthma including GATA3 and ALOX5. Fifteen genes upregulated by PGAP3 in ASM-NA were detected in asthmatic ASM data sets, underscoring the ability of PGAP3 to induce genes of importance to asthma in ASM. In summary, this study made the novel observation that ASM derived from the lungs of asthmatics express higher levels of PGAP3 compared to non-asthmatics. In addition, when ASM from non-asthmatics are transfected with PGAP3, the increased levels of PGAP3 increase ASM proliferation and contractility, and increase levels of genes previously linked to asthma including GATA3 and ALOX5. Overall, these studies suggest that increased PGAP3 expression in ASM plays a functional role in contributing to the pathogenesis of asthma.
Collapse
Affiliation(s)
- Eric Leslie
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - Marina Miller
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - Allison Lafuze
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - Sofya Svyatskaya
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - Gil-Soon Choi
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Republic of Korea
| | - Joshua L. Kennedy
- Arkansas Children’s Research Institute, Little Rock, Arkansas, United States of America
| | - Yung-An Huang
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - Taylor A. Doherty
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| | - David H. Broide
- Division of Allergy and Immunology, Department of Medicine, University of California, San Diego, California, United States of America
| |
Collapse
|
2
|
Lei J, Chen J, Yu W, Wu Q, Jing S, Tang Y, Lin L, Hu M. Portrait of WWP1: the current state in human cancer. Front Cell Dev Biol 2025; 12:1516613. [PMID: 39949609 PMCID: PMC11821962 DOI: 10.3389/fcell.2024.1516613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
WWP1, a member of the C2-WW-HECT E3 ligase family, is an E3 ubiquitin-protein ligase containing WW domains. This enzyme plays a critical role in regulating diverse cellular processes. Its expression is modulated by various factors and non-coding RNAs, resulting in ubiquitination that affects substrate protein degradation. WWP1 demonstrates a dual function, acting predominantly as an oncogene in tumors but occasionally as a tumor suppressor. This review summarizes WWP1's biological roles, therapeutic potential in oncology, upstream regulatory factors, and downstream substrates. It aims to promote research on WWP1's antitumor effects, improve understanding of its role in tumorigenesis, and support the development of targeted therapies.
Collapse
Affiliation(s)
- Jiaming Lei
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Chen
- The Central Hospital of Ezhou, Affiliated Hospital of Hubei University of Science and Technology, Ezhou, Hubei, China
| | - Wenwen Yu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Qing Wu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shuang Jing
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanguang Tang
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Li Lin
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
3
|
Zhou W, Fang J, Jia Q, Meng H, Liu F, Mao J. Transcription factor specificity protein (SP) family in renal physiology and diseases. PeerJ 2025; 13:e18820. [PMID: 39850832 PMCID: PMC11756367 DOI: 10.7717/peerj.18820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/15/2024] [Indexed: 01/25/2025] Open
Abstract
Dysregulated specificity proteins (SPs), members of the C2H2 zinc-finger family, are crucial transcription factors (TFs) with implications for renal physiology and diseases. This comprehensive review focuses on the role of SP family members, particularly SP1 and SP3, in renal physiology and pathology. A detailed analysis of their expression and cellular localization in the healthy human kidney is presented, highlighting their involvement in fatty acid metabolism, electrolyte regulation, and the synthesis of important molecules. The review also delves into the diverse roles of SPs in various renal diseases, including renal ischemia/reperfusion injury, diabetic nephropathy, renal interstitial fibrosis, and lupus nephritis, elucidating their molecular mechanisms and potential as therapeutic targets. The review further discusses pharmacological modulation of SPs and its implications for treatment. Our findings provide a comprehensive understanding of SPs in renal health and disease, offering new avenues for targeted therapeutic interventions and precision medicine in nephrology.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiaxi Fang
- Department of Ultrasound, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Qingqing Jia
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Hanyan Meng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Vinci M, Greco D, Treccarichi S, Chiavetta V, Figura MG, Musumeci A, Greco V, Federico C, Calì F, Saccone S. Bioinformatic Evaluation of KLF13 Genetic Variant: Implications for Neurodevelopmental and Psychiatric Symptoms. Genes (Basel) 2024; 15:1056. [PMID: 39202416 PMCID: PMC11354057 DOI: 10.3390/genes15081056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
The Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 (KLF13) gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice. Moreover, in silico analyses pertaining to the likely pathogenic significance of the variant and the impact of the mutation on the KLF13 protein structure suggested a potential deleterious effect. In fact, the variant was localized in correspondence to the starting residue of the N-terminal domain of KLF13, essential for protein-protein interactions, DNA binding, and transcriptional activation or repression. This study aims to highlight the potential involvement of the KLF13 gene in neurodevelopmental and psychiatric disorders. Nevertheless, we cannot rule out that excluded variants, those undetectable by WES, or the polygenic risk may have contributed to the patient's phenotype given ADHD's high polygenic risk. However, further functional studies are required to validate its potential contribution to these disorders.
Collapse
Affiliation(s)
- Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Donatella Greco
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Valeria Chiavetta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Maria Grazia Figura
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Vittoria Greco
- Department of Biomedical Science, University of Messina, 98122 Messina, Italy;
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (M.V.); (D.G.); (S.T.); (V.C.); (M.G.F.); (A.M.)
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (S.S.)
| |
Collapse
|
5
|
Wang C, Ju H, Zhou L, Zhu Y, Wu L, Deng X, Jiang L, Sun L, Xu Y. TET3-mediated novel regulatory mechanism affecting trophoblast invasion and migration: Implications for preeclampsia development. Placenta 2024; 147:31-41. [PMID: 38295560 DOI: 10.1016/j.placenta.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Aberrant expression of genes has been demonstrated to be related to the abnormal function of trophoblasts and lead to the occurrence and progression of Preeclampsia (PE). However, the underlying mechanism of PE has not been elucidated. METHODS We performed PCR analysis to investigate TET3 expression in PE placental tissues. Cell assays were performed in HTR-8/SVneo and JAR. Cell invasion and migration events were investigated by transwell assays in vitro. ChIP-PCR and Targeted bisulfite sequencing were conducted to detect the demethylation of related CpG sites in the KLF13 promoter after inhibition of TET3. In conjunction with bioinformatics analysis, luciferase reporter assays were performed to elucidate the mechanism by which miR-544 binds to TET3/KLF13 mRNA. RESULTS In this study, we identified genes associated with human extravillous trophoblasts by conducting sc-seq analysis from the GEO. Then, we measured the expression of TET3 in a larger clinical sample. The results showed that TET3, a DNA demethylase, was found to be expressed at much higher levels in the preeclamptic placenta compared to the control. Then, the inhibition of TET3 significantly promoted trophoblast cell migration and invasion. Conversely, TET3 overexpression suppressed cell migration and invasion in vitro. Further RNA sequencing and mechanism analysis indicated that the inhibition of TET3 suppressed the activation of KLF13 by reducing the demethylation of related CpG sites in the KLF13 promoter, thereby transcriptionally inactivating KLF13 expression. Moreover, luciferase reporter assay indicate that TET3 and KLF13 were direct targets of miR-544. DISCUSSION This study uncovers a TET3-mediated regulatory mechanism in PE progression and suggests that targeting the placental miR-544-TET3-KLF13-axis might provide new diagnostic and therapeutic strategies for PE.
Collapse
Affiliation(s)
- Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Huihui Ju
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Obstetrics and Gynecology, Changzhou Maternal and Child Health Care Hospital Changzhou Medical Center of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Lihong Zhou
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xiaokang Deng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lingling Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
6
|
Mancera-Rincón P, Luna-España MC, Rincon O, Guzmán I, Alvarez M. Maturity-onset Diabetes of the Young Type 7 (MODY7) and the Krüppellike Factor 11 Mutation (KLF11). A Review. Curr Diabetes Rev 2024; 20:e210323214817. [PMID: 36944622 DOI: 10.2174/1573399819666230321114456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Maturity-onset diabetes of the young (MODY) is a rare disease due to a single gene mutation that affects several family members in most cases. The Krüppel-like factor 11 (KLF11) gene mutation is associated with decreased insulin sensitivity to high glucose levels. KLF 11 has been implicated in the pathogenesis of MODY type 7 but given its low prevalence, prolonged subclinical period, and the emergence of new information, doubts are raised about its association. METHODS A literature search of the PubMed, Scopus, and EBSCO databases was performed. The terms "Diabetes Mellitus, Type 2/genetics", "Mason-Type Diabetes" , "Maturity-Onset diabetes of the young", "KLF11 protein, human", and "Maturity-Onset Diabetes of the Young, Type 7" were used"., "Diagnosis" The search selection was not standardized. RESULTS The KLF1 mutation is rare and represents <1% of the mutations associated with monogenic diabetes. Its isolation in European family lines in the first studies and the emergence of new variants pose new diagnostic challenges. This article reviews the definition, epidemiology, pathophysiology, diagnosis, and treatment of MODY type 7. CONCLUSION MODY type 7 diabetes represents a rare form of monogenic diabetes with incomplete penetrance. Given its rarity, its association with impaired glucose metabolism has been questioned. Strict evaluation of glycemic control and the appearance of microvascular complications are key areas in the follow-up of patients diagnosed with MODY 7. More studies will be required to characterize the population with KLF11 mutation and clarify its correlation with MODY.
Collapse
Affiliation(s)
| | | | - Oswaldo Rincon
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Issac Guzmán
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| | - Mauricio Alvarez
- Endocronology Department, Hospital Militar Central, Bogota, Colombia
| |
Collapse
|
7
|
Yu X, Li W, Sun S, Li J. Investigating the prognostic value of mTORC1 signaling in bladder cancer via bioinformatics evaluation. Sci Rep 2023; 13:22066. [PMID: 38086955 PMCID: PMC10716140 DOI: 10.1038/s41598-023-49366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Bladder cancer, a prevalent and heterogeneous malignancy, necessitates the discovery of pertinent biomarkers to enable personalized treatment. The mammalian target of rapamycin complex 1 (mTORC1), a pivotal regulator of cellular growth, metabolism, and immune response, exhibits activation in a subset of bladder cancer tumors. In this study, we explore the prognostic significance of mTORC1 signaling in bladder cancer through the utilization of bioinformatics analysis. Our investigation incorporates transcriptomic, somatic mutation, and clinical data, examining the mTORC1 score of each sample, as well as the enrichment of differentially expressed genes (DEGs), differentiation characteristics, immunological infiltration, and metabolic activity. Our findings reveal that elevated mTORC1 levels serve as an adverse prognostic indicator for bladder cancer patients, exhibiting a significant association with Basal-type bladder cancer. Patients with heightened mTORC1 activation display heightened levels of pro-carcinogenic metabolism. Additionally, these individuals demonstrate enhanced response to immunotherapy. Finally, we develop an mTORC1-related signature capable of predicting the prognosis of bladder cancer patients.The signature offers novel mTORC1-related biomarkers and provides fresh insights into the involvement of mTORC1 in the pathogenesis of bladder cancer.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, People's Republic of China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, 430060, Hubei Province, People's Republic of China.
- Department of General Surgery, Taikang Tongji (Wuhan) Hospital, 322 Sixin North Road, Wuhan, 430050, Hubei Province, People's Republic of China.
| |
Collapse
|
8
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
9
|
Liu Y, Song Y, He Y, Kong Z, Li H, Zhu Y, Liu S. Kruppel-like factor 13 acts as a tumor suppressor in thyroid carcinoma by downregulating IFIT1. Biol Direct 2023; 18:65. [PMID: 37817224 PMCID: PMC10565980 DOI: 10.1186/s13062-023-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Kruppel-like factor 13 (KLF13) is a transcription factor and plays an important role in carcinogenesis. However, the significance of KLF13 in thyroid carcinoma (THCA) is underdetermined. In this study, we aimed to explore the clinical relevance and function of KLF13 in the progress of THCA. METHODS The expression of KLF13 in thyroid carcinoma and normal tissue was investigated by qPCR and IHC assay. The expression of KLF13 and IFIT1 in cell samples was investigated with Western blot assay. Cell proliferation ability was detected with CCK8 and colony formation assay. Cell growth in vivo with or without KLF13 overexpression was evaluated on a xenograft model. Cell migration ability was measured with Transwell assay. Cell cycle was detected with flow cytometer. The downstream genes of KLF13 were screened using RNA-seq assay. Luciferase activity was employed to assess the transcriptional regulation of KLF13 on IFIT1 promoter. RESULTS KLF13 expression was downregulated in THCA samples. KLF13 knockdown and overexpression promoted and inhibited the proliferation and migration of THCA cells, respectively. The RNA-seq, RT-qPCR and immunoblotting data showed that KLF13 knockdown significantly potentiated IFIT1 expression at both mRNA and protein levels. Luciferase assays showed that KLF13 suppressed the transcription activity of IFIT1 promoter. Besides, IFIT1 upregulation was critical for the proliferation and migration of THCA cell lines. Lastly, silencing of IFIT1 greatly reversed the proliferation and migration induced by KLF13 knockdown. CONCLUSIONS In conclusion, KLF13 may function as an anti-tumor protein in THCA by regulating the expression of IFIT1 and offer a theoretical foundation for treating thyroid carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yixuan Song
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yuqin He
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Ziren Kong
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Han Li
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiming Zhu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
10
|
Alanazi AS, Rasheed S, Rehman K, Mallhi TH, Akash MSH, Alotaibi NH, Alzarea AI, Tanveer N, Khan YH. Biochemical association of regulatory variant of KLF14 genotype in the pathogenesis of cardiodiabetic patients. Front Endocrinol (Lausanne) 2023; 14:1176166. [PMID: 37351102 PMCID: PMC10282989 DOI: 10.3389/fendo.2023.1176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Background and purpose The study focuses on examining the relationship between a single nucleotide polymorphism (SNP) in KLF14 rs4731702 and risk of type 2 diabetes mellitus (T2DM) and dyslipidemia in different ethnic populations. The purpose of this study was to evaluate the association between KLF14 rs4731702 and serum lipid profile and to determine the frequency distribution of KLF14 rs4731702 among T2DM and cardiometabolic patients. Methods A total of 300 volunteers were recruited, consisting of three groups: 100 healthy individuals, 100 individuals diagnosed with T2DM, and 100 individuals diagnosed with cardiometabolic disorders. Biochemical analysis of blood samples was conducted to assess various biomarkers related to glycemic control and lipid profile. This involved measuring levels of glucose, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and ApoA1. Genotyping analysis was performed to investigate KLF14 rs4731702 polymorphism. The Tetra ARMS-PCR method was employed for genotyping analysis. Results The results of biochemical profiling revealed a significant association between altered glycemic biomarkers and lipid profile in diseased patients compared to healthy participants. The frequencies of KLF14 rs4731702 alleles and genotypes were compared between the control group and T2DM group. A statistically significant difference was observed, indicating a potential association between KLF14 rs4731702 and T2DM. In the dominant inheritance model of KLF14 rs4731702 SNP, a statistically significant difference [odds ratio (95% confidence interval)] of 0.56 (0.34 -0.96) was found between the control and T2DM subjects. This suggests that the presence of certain genotypes influences the risk of T2DM. In T2DM patients, individuals carrying the C allele exhibited compromised insulin sensitivity, decreased HDL-C and ApoA1 levels, and increased serum glucose, TG, and LDL-C concentrations. Conversely, TT genotype carriers demonstrated increased levels of HDL-C and ApoA1, lower insulin resistance, serum glucose, LDL-C, and TG levels. Conclusion The study's findings indicate that dyslipidemia in T2DM patients is associated with reduced KLF14 functionality due to CC and CT genotypes, leading to insulin resistance and an increased risk of cardiovascular diseases. Additionally, risk of KLF14 rs4731702 polymorphism was found to increase with age and was more prevalent in female than in male individuals. These insights contribute to understanding genetic factors influencing the development and progression of T2DM and dyslipidemia in different ethnic populations.
Collapse
Affiliation(s)
- Abdullah Salah Alanazi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abdulaziz Ibrahim Alzarea
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, United States
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| |
Collapse
|
11
|
Akash MSH, Rasheed S, Rehman K, Ibrahim M, Imran M, Assiri MA. Biochemical Activation and Regulatory Functions of Trans-Regulatory KLF14 and Its Association with Genetic Polymorphisms. Metabolites 2023; 13:metabo13020199. [PMID: 36837818 PMCID: PMC9962810 DOI: 10.3390/metabo13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Krüpple-Like family of transcription factor-14 (KLF14) is a master trans-regulatory gene that has multiple biological regulatory functions and is involved in many pathological mechanisms. It controls the expressions of several other genes which are involved in multiple regulatory functions. KLF14 plays a significant role in lipid metabolism, glucose regulation and insulin sensitivity. Cell apoptosis, proliferation, and differentiation are regulated by the KLF14 gene, and up-regulation of KLF14 prevents cancer progression. KLF14 has been used as an epigenetic biomarker for the estimation of chronological age due to the presence of different age-related CpG sites on genes that become methylated with age. Different genome-wide association studies have identified several KLF14 variants in adipose tissues. These single nucleotide polymorphisms in KLF14 have been associated with dyslipidemia, insulin resistance, and glucose intolerance. Moreover, the prevalence of genetic polymorphism is different in different populations due to ethnic differences and epigenetic modifications. In addition, environmental and physiological factors such as diet, age, gender, and obesity are also responsible for genetic mutations in KLF14.
Collapse
Affiliation(s)
- Muhammad Sajid Hamid Akash
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.S.H.A.); (K.R.)
| | - Sumbal Rasheed
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
- Correspondence: (M.S.H.A.); (K.R.)
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62413, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62413, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 62413, Saudi Arabia
| |
Collapse
|
12
|
Zhou H, Chen J, Fan M, Cai H, Dong Y, Qiu Y, Zhuang Q, Lei Z, Li M, Ding X, Yan P, Lin A, Zheng S, Yan Q. KLF14 regulates the growth of hepatocellular carcinoma cells via its modulation of iron homeostasis through the repression of iron-responsive element-binding protein 2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:5. [PMID: 36600258 DOI: 10.1186/s13046-022-02562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a multifactor-driven malignant tumor with rapid progression, which causes the difficulty to substantially improve the prognosis of HCC. Limited understanding of the mechanisms in HCC impedes the development of efficacious therapies. Despite Krüpple-Like factors (KLFs) were reported to be participated in HCC pathogenesis, the function of KLF14 in HCC remains largely unexplored. METHODS We generated KLF14 overexpressed and silenced liver cancer cells, and nude mouse xenograft models for the in vitro and in vivo study. Luciferase reporter assay, ChIP-qPCR, Co-IP, immunofluorescence were performed for mechanism research. The expression of KLF14 in HCC samples was analyzed by quantitative RT-PCR, Western blotting, and immunohistochemistry (IHC) analysis. RESULTS KLF14 was significantly downregulated in human HCC tissues, which was highly correlated with poor prognosis. Inhibition of KLF14 promoted liver cancer cells proliferation and overexpression of KLF14 suppressed cells growth. KLF14 exerts its anti-tumor function by inhibiting Iron-responsive element-binding protein 2 (IRP2), which then causes transferrin receptor-1(TfR1) downregulation and ferritin upregulation on the basis of IRP-IREs system. This then leading to cellular iron deficiency and HCC cells growth suppression in vitro and in vivo. Interestingly, KLF14 suppressed the transcription of IRP2 via recruiting SIRT1 to reduce the histone acetylation of the IRP2 promoter, resulting in iron depletion and cell growth suppression. More important, we found fluphenazine is an activator of KLF14, inhibiting HCC cells growth through inducing iron deficiency. CONCLUSION KLF14 acts as a tumor suppressor which inhibits the proliferation of HCC cells by modulating cellular iron metabolism via the repression of IRP2. We identified Fluphenazine, as an activator of KLF14, could be a potential compound for HCC therapy. Our findings therefore provide an innovative insight into the pathogenesis of HCC and a promising therapeutic target.
Collapse
Affiliation(s)
- Hui Zhou
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junru Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Mingjie Fan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Huajian Cai
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yufei Dong
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yue Qiu
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qianqian Zhuang
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhaoying Lei
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Mengyao Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xue Ding
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Peng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifu Lin
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
| | - Qingfeng Yan
- College of Life Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China. .,Department of Pediatrics, The First Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, 310003, Zhejiang, China. .,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
13
|
Guo Y, Wang J, Guo X, Gao R, Yang C, Li L, Sun Y, Qiu X, Xu Y, Yang Y. KLF13 Loss‐of‐Function Mutations Underlying Familial Dilated Cardiomyopathy. J Am Heart Assoc 2022; 11:e027578. [DOI: 10.1161/jaha.122.027578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background
Dilated cardiomyopathy (DCM), characterized by progressive left ventricular enlargement and systolic dysfunction, is the most common type of cardiomyopathy and a leading cause of heart failure and cardiac death. Accumulating evidence underscores the critical role of genetic defects in the pathogenesis of DCM, and >250 genes have been implicated in DCM to date. However, DCM is of substantial genetic heterogeneity, and the genetic basis underpinning DCM remains elusive in most cases.
Methods and Results
By genome‐wide scan with microsatellite markers and genetic linkage analysis in a 4‐generation family inflicted with autosomal‐dominant DCM, a new locus for DCM was mapped on chromosome 15q13.1–q13.3, a 4.77‐cM (≈3.43 Mbp) interval between markers D15S1019 and D15S1010, with the largest 2‐point logarithm of odds score of 5.1175 for the marker D15S165 at recombination fraction (θ)=0.00. Whole‐exome sequencing analyses revealed that within the mapping chromosomal region, only the mutation in the
KLF13
gene, c.430G>T (p.E144X), cosegregated with DCM in the family. In addition, sequencing analyses of
KLF13
in another cohort of 266 unrelated patients with DCM and their available family members unveiled 2 new mutations, c.580G>T (p.E194X) and c.595T>C (p.C199R), which cosegregated with DCM in 2 families, respectively. The 3 mutations were absent from 418 healthy subjects. Functional assays demonstrated that the 3 mutants had no transactivation on the target genes
ACTC1
and
MYH7
(2 genes causally linked to DCM), alone or together with GATA4 (another gene contributing to DCM), and a diminished ability to bind the promoters of
ACTC1
and
MYH7
. Add, the E144X‐mutant KLF13 showed a defect in intracellular distribution.
Conclusions
This investigation indicates
KLF13
as a new gene predisposing to DCM, which adds novel insight to the molecular pathogenesis underlying DCM, implying potential implications for prenatal prevention and precision treatment of DCM in a subset of patients.
Collapse
Affiliation(s)
- Yu‐Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Jun Wang
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xiao‐Juan Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Ri‐Feng Gao
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Chen‐Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital Tongji University School of Medicine Shanghai China
- Institute of Medical Genetics Tongji University Shanghai China
| | - Yu‐Min Sun
- Department of Cardiology, Shanghai Jing’an District Central Hospital Fudan University Shanghai China
| | - Xing‐Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital Shanghai Jiao Tong University Shanghai China
| | - Ying‐Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| | - Yi‐Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital Fudan University Shanghai China
- Cardiovascular Research Laboratory and Central Laboratory, Shanghai Fifth People’s Hospital Fudan University Shanghai China
| |
Collapse
|
14
|
Wu S, Hsu LA, Teng MS, Chou HH, Ko YL. Differential Genetic and Epigenetic Effects of the KLF14 Gene on Body Shape Indices and Metabolic Traits. Int J Mol Sci 2022; 23:ijms23084165. [PMID: 35456983 PMCID: PMC9032945 DOI: 10.3390/ijms23084165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023] Open
Abstract
The KLF14 gene is a key metabolic transcriptional transregulator with monoallelic maternal expression. KLF14 variants are only associated with adipose tissue gene expression, and KLF14 promoter methylation is strongly associated with age. This study investigated whether age, sex, and obesity mediate the effects of KLF14 variants and DNA methylation status on body shape indices and metabolic traits. In total, the data of 78,742 and 1636 participants from the Taiwan Biobank were included in the regional plot association analysis for KLF14 variants and KLF14 methylation, respectively. Regional plot association studies revealed that the KLF14 rs4731702 variant and the nearby strong linkage disequilibrium polymorphisms were the lead variants for lipid profiles, blood pressure status, insulin resistance surrogate markers, and metabolic syndrome mainly in female participants and for body shape indices mainly in obese women. Significant age-dependent associations between KLF14 promoter methylation levels and body shape indices, and metabolic traits were also noted predominantly in female participants. KLF14 variants and KLF14 hypermethylation status were associated with metabolically healthy and unhealthy phenotypes, respectively, in obese individuals, and only the KLF14 variants demonstrated a significant association with both higher adiposity and lower cardiometabolic risk in the same allele, revealing uncoupled excessive adiposity from its cardiometabolic comorbidities, especially in obese women. Variations of KLF14 are associated with body shape indices, metabolic traits, insulin resistance, and metabolically healthy status. Differential genetic and epigenetic effects of KLF14 are age-, sex- and obesity-dependent. These results provided a personalized reference for the management of cardiometabolic diseases in precision medicine.
Collapse
Affiliation(s)
- Semon Wu
- Department of Life Science, Chinese Culture University, Taipei 11114, Taiwan;
| | - Lung-An Hsu
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Hsin-Hua Chou
- The Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- The Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-2-6628-9779 (ext. 5355); Fax: +886-2-6628-9009
| |
Collapse
|
15
|
Sipeky C, Tammela TLJ, Auvinen A, Schleutker J. Novel prostate cancer susceptibility gene SP6 predisposes patients to aggressive disease. Prostate Cancer Prostatic Dis 2021; 24:1158-1166. [PMID: 34012061 PMCID: PMC8616752 DOI: 10.1038/s41391-021-00378-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Prostate cancer (PrCa) is one of the most common cancers in men, but little is known about factors affecting its clinical outcomes. Genome-wide association studies have identified more than 170 germline susceptibility loci, but most of them are not associated with aggressive disease. We performed a genome-wide analysis of 185,478 SNPs in Finnish samples (2738 cases, 2400 controls) from the international Collaborative Oncological Gene-Environment Study (iCOGS) to find underlying PrCa risk variants. We identified a total of 21 common, low-penetrance susceptibility loci, including 10 novel variants independently associated with PrCa risk. Novel risk loci were located in the 8q24 (CASC8 rs16902147, OR 1.86, padj = 3.53 × 10-8 and rs58809953, OR 1.71, padj = 4.00 × 10-6; intergenic rs79012498, OR 1.81, padj = 4.26 × 10-8), 17q21 (SP6 rs2074187, OR 1.66, padj = 3.75 × 10-5), 11q13 (rs12795301, OR 1.42, padj = 2.89 × 10-5) and 8p21 (rs995432, OR 1.38, padj = 3.00 × 10-11) regions. Here, we describe SP6, a transcription factor gene, as a new, potentially high-risk gene for PrCa. The intronic variant rs2074187 in SP6 was associated not only with overall susceptibility to PrCa (OR 1.66) but also with a higher odds ratio for aggressive PrCa (OR 1.89) and lower odds for non-aggressive PrCa (OR 1.43). Furthermore, the new intergenic variant rs79012498 at 8q24 conferred risk for aggressive PrCa. Our findings highlighted the power of a population-stratified approach to identify novel, clinically actionable germline PrCa risk loci and strongly suggested SP6 as a new PrCa candidate gene that may be involved in the pathogenesis of PrCa.
Collapse
Affiliation(s)
- Csilla Sipeky
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- UCB Pharma, Data & Translational Sciences, Braine l'Alleud, Belgium
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Auvinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Johanna Schleutker
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland.
| |
Collapse
|
16
|
Zhou L, Chen Z, Wu Y, Lu H, Xin L. Prognostic signature composed of transcription factors accurately predicts the prognosis of gastric cancer patients. Cancer Cell Int 2021; 21:357. [PMID: 34233659 PMCID: PMC8261954 DOI: 10.1186/s12935-021-02008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors (TFs) are involved in important molecular biological processes of tumor cells and play an essential role in the occurrence and development of gastric cancer (GC). METHODS Combined The Cancer Genome Atlas Program and Genotype-Tissue Expression database to extract the expression of TFs in GC, analyzed the differences, and weighted gene co-expression network analysis to extract TFs related to GC. The cohort including the training and validation cohort. Univariate Cox, least absolute contraction and selection operator (LASSO) regression, and multivariate Cox analysis was used for screening hub TFs to construct the prognostic signature in the training cohort. The Kaplan-Meier (K-M) and the receiver operating characteristic curve (ROC) was drawn to evaluate the predictive ability of the prognostic signature. A nomogram combining clinical information and prognostic signatures of TFs was constructed and its prediction accuracy was evaluated through various methods. The target genes of the hub TFs was predicted and enrichment analysis was performed to understand its molecular biological mechanism. Clinical samples and public data of GC was collected to verify its expression and prognosis. 5-Ethynyl-2'-deoxyuridine and Acridine Orange/Ethidium Bromide staining, flow cytometry and Western-Blot detection were used to analyze the effects of hub-TF ELK3 on the proliferation and apoptosis of gastric cancer in vitro. RESULTS A total of 511 misaligned TFs were obtained and 200 GC-related TFs were exposed from them. After systematic analysis, a prognostic signature composed of 4 TFs (ZNF300, ELK3, SP6, MEF2B) were constructed. The KM and ROC curves demonstrated the good predictive ability in training, verification, and complete cohort. The areas under the ROC curve are respectively 0.737, 0.705, 0.700. The calibration chart verified that the predictive ability of the nomogram constructed by combining the prognostic signature of TFs and clinical information was accurate, with a C-index of 0.714. Enriching the target genes of hub TFs showed that it plays an vital role in tumor progression, and its expression and prognostic verification were consistent with the previous analysis. Among them, ELK3 was proved in vitro, and downregulation of its expression inhibited the proliferation of gastric cancer cells, induced proliferation, and exerted anti-tumor effects. CONCLUSIONS The 4-TFs prognostic signature accurately predicted the overall survival of GC, and ELK3 may be potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Zhiqing Chen
- Molecular Medicine Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Hao Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep 2021; 11:1779. [PMID: 33469169 PMCID: PMC7815752 DOI: 10.1038/s41598-021-81074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pannexin 3 (Panx3), a member of the gap junction pannexin family is required for the development of hard tissues including bone, cartilage and teeth. However, the role of Panx3 in skin development remains unclear. Here, we demonstrate that Panx3 regulates skin development by modulating the transcription factor, Epiprofin (Epfn). Panx3-/- mice have impaired skin development and delayed hair follicle regeneration. Loss of Panx3 in knockout mice and suppression by shRNA both elicited a reduction of Epfn expression in the epidermis. In cell culture, Panx3 overexpression promoted HaCaT cell differentiation, cell cycle exit and enhanced Epfn expression. Epfn-/- mice and inhibition of Epfn by siRNA showed no obvious differences of Panx3 expression. Furthermore, Panx3 promotes Akt/NFAT signaling pathway in keratinocyte differentiation by both Panx3 ATP releasing channel and ER Ca2+ channel functions. Our results reveal that Panx3 has a key role factor for the skin development by regulating Epfn.
Collapse
Affiliation(s)
- Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University, Graduate School of Dentistry 4-1, Seiryo chou, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Andrew Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
18
|
Smith CEL, Whitehouse LLE, Poulter JA, Wilkinson Hewitt L, Nadat F, Jackson BR, Manfield IW, Edwards TA, Rodd HD, Inglehearn CF, Mighell AJ. A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum Mol Genet 2020; 29:1417-1425. [PMID: 32167558 PMCID: PMC7268548 DOI: 10.1093/hmg/ddaa041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Laura L E Whitehouse
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Laura Wilkinson Hewitt
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Fatima Nadat
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Brian R Jackson
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- Centre for Biomolecular Interactions Technology Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds LS2 9JT, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Helen D Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
19
|
Yang Q, Civelek M. Transcription Factor KLF14 and Metabolic Syndrome. Front Cardiovasc Med 2020; 7:91. [PMID: 32548128 PMCID: PMC7274157 DOI: 10.3389/fcvm.2020.00091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetSyn) is a combination of metabolic abnormalities that lead to the development of cardiovascular disease (CVD) and Type 2 Diabetes (T2D). Although various criteria for defining MetSyn exist, common abnormalities include abdominal obesity, elevated serum triglyceride, insulin resistance, and blood glucose, decreased high-density lipoprotein cholesterol (HDL-C), and hypertension. MetSyn prevalence has been increasing with the rise of obesity worldwide, with significantly higher prevalence in women compared with men and in Hispanics compared with Whites. Affected individuals are at a higher risk of developing T2D (5-fold) and CVD (2-fold). Heritability estimates for individual components of MetSyn vary between 40 and 70%, suggesting a strong contribution of an individual's genetic makeup to disease pathology. The advent of next-generation sequencing technologies has enabled large-scale genome-wide association studies (GWAS) into the genetics underlying MetSyn pathogenesis. Several such studies have implicated the transcription factor KLF14, a member of the Krüpple-like factor family (KLF), in the development of metabolic diseases, including obesity, insulin resistance, and T2D. How KLF14 regulates these metabolic traits and increases the risk of developing T2D, atherosclerosis, and liver dysfunction is still unknown. There have been some debate and controversial results with regards to its expression profile and functionality in various tissues, and a systematic review of current knowledge on KLF14 is lacking. Here, we summarize the research progress made in understanding the function of KLF14 and describe common attributes of its biochemical, physiological, and pathophysiological roles. We also discuss the current challenges in understanding the role of KLF14 in metabolism and provide suggestions for future directions.
Collapse
Affiliation(s)
- Qianyi Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
20
|
Hu Y, Zhang M, Tian N, Li D, Wu F, Hu P, Wang Z, Wang L, Hao W, Kang J, Yin B, Zheng Z, Jiang T, Yuan J, Qiang B, Han W, Peng X. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest 2019; 129:3072-3085. [PMID: 31112526 DOI: 10.1172/jci124979] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells (GSCs) which considered as the potential target of therapy for their crucial role in therapeutic resistance and tumor recurrence, are believed to be key factors for the disappointing outcome. Here, we took advantage of GSCs as the cell model to perform high-throughput drug screening and the old antibiotic, clofoctol, was identified as the most effective compound, showing reduction of colony-formation and induction of apoptosis of GSCs. Moreover, growth of tumors was inhibited obviously in vivo after clofoctol treatment especially in primary patient-derived xenografts (PDXs) and transgenic xenografts. The anticancer mechanisms demonstrated by analyzing related downstream genes and discovering the targeted binding protein revealed that clofoctol exhibited the inhibition of GSCs by upregulation of Kruppel-like factor 13 (KLF13), a tumor suppressor gene, through clofoctol's targeted binding protein, Upstream of N-ras (UNR). Collectively, these data demonstrated that induction of KLF13 expression suppressed growth of gliomas and provided a potential therapy for gliomas targeting GSCs. Importantly, our results also identified the RNA-binding protein UNR as a drug target.
Collapse
Affiliation(s)
- Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Meilian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dengke Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingting Kang
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
21
|
Overexpression of KLF14 protects against immune-mediated hepatic injury in mice. J Transl Med 2019; 99:37-47. [PMID: 30254317 DOI: 10.1038/s41374-018-0134-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
The underlying immunopathogenic mechanisms of autoimmune hepatitis (AIH) have not yet been well elucidated. An impairment in regulatory T cells (Tregs) is key to the development of AIH. Krüppel-like factors (KLFs) regulate a broad of cellular processes including immunocyte maturation. KLF14 may regulate Treg differentiation, but the biological functions remain far from elucidated. In this study, we identified the hepatic expression of KLF14 in human and murine liver diseases. Immune-mediated hepatitis was induced by concanavalin A (Con A). A KLF14 recombinant adenoviruses plasmid (Ad-KLF14) was constructed and injected into mice. Tregs were assessed by flow cytometry analysis; inflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), were tested by enzyme-linked immunosorbent assay (ELISA). The expression of KLF14 was suppressed in a time-and dose-dependent manner. Changes in cytokine levels were consistent with the degree of hepatic injury. Overexpression of KLF14 protected the liver from immune-mediated damage in vivo. Ad-KLF14 transfection before Con A challenge increased the frequency of Tregs in liver mononuclear cells (MNCs), and suppressed the expression of cytokines. All of these improvements were completely abrogated after Treg deletion in vivo by intraperitoneal injection of a CD25 antibody. In conclusion, these data suggest that KLF14 plays an as-yet unrecognized role in immune-mediated hepatitis mainly via induced Treg differentiation. Our findings extend the knowledge of the biological function of KLF14 to the autoimmune disease field, and indicate the possibility of KLF14 as a therapeutic target in AIH patients.
Collapse
|
22
|
Hu W, Lu H, Zhang J, Fan Y, Chang Z, Liang W, Wang H, Zhu T, Garcia-Barrio MT, Peng D, Chen YE, Guo Y. Krüppel-like factor 14, a coronary artery disease associated transcription factor, inhibits endothelial inflammation via NF-κB signaling pathway. Atherosclerosis 2018; 278:39-48. [PMID: 30248551 PMCID: PMC6441279 DOI: 10.1016/j.atherosclerosis.2018.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/19/2018] [Accepted: 09/14/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Human genetic studies indicated that variations near the transcription factor Krüppel-like factor 14 (KLF14) gene locus are highly associated with coronary artery disease. Activation of endothelial cells (ECs) by pro-inflammatory molecules and pathways is a primary step in atherosclerosis development. We aimed to investigate the effects and mechanism of KLF14 on inflammatory responses in ECs. METHODS Adenovirus-mediated overexpression of human KLF14 and EC specific Klf14 knockout mice were applied to study the role of KLF14 in EC inflammation. Intravital microscopy was used to examine leukocyte-endothelial cell interactions in vivo. RESULTS The expression of Klf14 was markedly decreased in mouse aortic ECs in both acute and chronic inflammatory conditions. Overexpression of KLF14 inhibited inflammatory activation of human ECs stimulated by interleukin 1β and tumor necrosis factor α. Primary pulmonary ECs from Klf14 knockout mice showed increased expression of adhesion molecules under IL-1β stimuli. Mechanistically, KLF14 inhibited NF-κB signaling pathway by transcriptionally suppressing the expression of p65, resulting in significantly decreased leukocyte adhesion to activated ECs. Using intravital microscopy, an increased leukocyte-endothelial cell interaction was observed in endothelial specific Klf14 knockout mice compared to wild type control mice. Additionally, perhexiline, a KLF14 activator, induces KLF14 expression in ECs and reduced leukocyte-endothelial cell interactions in vitro and in vivo. CONCLUSIONS The data revealed that KLF14 inhibited the inflammatory response in ECs and the protective effects were mediated by transcriptional inhibition of NF-κB signaling pathway. Endothelial KLF14 could be a potential therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenting Hu
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Haocheng Lu
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Jifeng Zhang
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanbo Fan
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Ziyi Chang
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Huilun Wang
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Daoquan Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Y Eugene Chen
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Yanhong Guo
- From Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
23
|
Ovchinnikova E, Hoes M, Ustyantsev K, Bomer N, de Jong TV, van der Mei H, Berezikov E, van der Meer P. Modeling Human Cardiac Hypertrophy in Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:794-807. [PMID: 29456183 PMCID: PMC5918264 DOI: 10.1016/j.stemcr.2018.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy accompanies many forms of cardiovascular diseases. The mechanisms behind the development and regulation of cardiac hypertrophy in the human setting are poorly understood, which can be partially attributed to the lack of a human cardiomyocyte-based preclinical test system recapitulating features of diseased myocardium. The objective of our study is to determine whether human embryonic stem cell-derived cardiomyocytes (hESC-CMs) subjected to mechanical stretch can be used as an adequate in vitro model for studying molecular mechanisms of cardiac hypertrophy. We show that hESC-CMs subjected to cyclic stretch, which mimics mechanical overload, exhibit essential features of a hypertrophic state on structural, functional, and gene expression levels. The presented hESC-CM stretch approach provides insight into molecular mechanisms behind mechanotransduction and cardiac hypertrophy and lays groundwork for the development of pharmacological approaches as well as for discovering potential circulating biomarkers of cardiac dysfunction.
Collapse
Affiliation(s)
- Ekaterina Ovchinnikova
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands; European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Martijn Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Kirill Ustyantsev
- Laboratory of Molecular Genetic Systems, Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands
| | - Tristan V de Jong
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands
| | - Henny van der Mei
- University of Groningen, University Medical Center Groningen, Biomedical Engineering Department, Groningen, 9713AV, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan, 1, PO Box 196, Groningen, the Netherlands.
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, Groningen, the Netherlands.
| |
Collapse
|
24
|
Zhou J, Benito-Martin A, Mighty J, Chang L, Ghoroghi S, Wu H, Wong M, Guariglia S, Baranov P, Young M, Gharbaran R, Emerson M, Mark MT, Molina H, Canto-Soler MV, Selgas HP, Redenti S. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Sci Rep 2018; 8:2823. [PMID: 29434302 PMCID: PMC5809580 DOI: 10.1038/s41598-018-20421-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic growth factors and morphogen proteins. mRPC EVs were shown to transfer GFP mRNA between cell populations. Finally, analysis of EV mediated functional cargo delivery, using the Cre-loxP recombination system, revealed transfer and uptake of Cre+ EVs, which were then internalized by target mRPCs activating responder loxP GFP expression. In summary, the data supports a paradigm of EV genetic material encapsulation and transfer within RPC populations. RPC EV transfer may influence recipient RPC transcriptional and post-transcriptional regulation, representing a novel mechanism of differentiation and fate determination during retinal development.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Jason Mighty
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Lynne Chang
- Nikon Instruments Inc, 1300 Walt Whitman Road, Melville, NY, 11747, USA
| | - Shima Ghoroghi
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Hao Wu
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Madeline Wong
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Sara Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - Petr Baranov
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Rajendra Gharbaran
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Mark Emerson
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.,Department of Biology, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - M Valeria Canto-Soler
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hector Peinado Selgas
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, Madrid, E28029, Spain
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA. .,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA. .,Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
25
|
Integrated analysis of gene expression signatures associated with colon cancer from three datasets. Gene 2018; 654:95-102. [PMID: 29408621 DOI: 10.1016/j.gene.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/20/2018] [Accepted: 02/02/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE The present study aimed to elucidate the pathogenesis of colon cancer and identify genes associated with tumor development. METHODS Three datasets, two (GSE74602 and GSE44861) from the Gene Expression Omnibus database and RNA-Seq colon cancer data from The Cancer Genome Atlas data portal, were downloaded. These three datasets were grouped using a meta-analysis approach, and differentially expressed genes (DEGs) were identified between colon tumor samples and adjacent normal samples. Functional enrichment analysis and regulatory factor predication were performed for significant genes. Additionally, small-molecule drugs associated with colon cancer were predicted, and a prognostic risk model was constructed. RESULTS There were 251 overlapping DEGs (135 up- and 116 downregulated) between cancer samples and control samples in the three datasets. The DEGs were mainly involved in protein transport and apoptotic and neurotrophin signaling pathways. A total of 70 small-molecule drugs were predicated to be associated with colon cancer. Additionally, in the miRNA-target regulatory network, we found that SLC44A1 can be targeted by hsa-miR-183, hsa-miR-206, and hsa-miR-147, while KLF13 can be regulated by hsa-miR-182, hsa-miR-206, and hsa-miR-153. Moreover, the results of the prognostic risk model showed that four genes (VAMP1, P2RX5, CACNB1, and CRY2) could divide the samples into high and low risk groups. CONCLUSION SLC44A1 and KLF13 may be involved in tumorigenesis and the metastasis of colon cancer by miRNA regulation. In addition, a four-gene (VAMP1, P2RX5, CACNB1, and CRY2) expression signature may have prognostic and predictive value in colon cancer.
Collapse
|
26
|
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, Masoodi SR. Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Front Endocrinol (Lausanne) 2018; 9:253. [PMID: 29867778 PMCID: PMC5966560 DOI: 10.3389/fendo.2018.00253] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to β cell dysfunction. Genetic defects in the pancreatic β-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1-5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective.
Collapse
Affiliation(s)
- Parveena Firdous
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Kamran Nissar
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sajad Ali
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
- *Correspondence: Bashir Ahmad Ganai,
| | - Uzma Shabir
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Toyeeba Hassan
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, India
| | - Shariq Rashid Masoodi
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| |
Collapse
|
27
|
Walton E, Cecil CA, Suderman M, Liu J, Turner JA, Calhoun V, Ehrlich S, Relton CL, Barker ED. Longitudinal epigenetic predictors of amygdala:hippocampus volume ratio. J Child Psychol Psychiatry 2017; 58:1341-1350. [PMID: 28480579 PMCID: PMC5677591 DOI: 10.1111/jcpp.12740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ratio between amygdala:hippocampal (AH) volume has been associated with multiple psychiatric problems, including anxiety and aggression. Yet, little is known about its biological underpinnings. Here, we used a methylome-wide approach to test (a) whether DNA methylation in early life (birth, age 7) prospectively associates with total AH volume ratio in early adulthood, and (b) whether significant DNA methylation markers are influenced by prenatal risk factors. METHODS Analyses were based on a subsample (n = 109 males) from the Avon Longitudinal Study of Parents and Children, which included measures of prenatal risk, DNA methylation (Infinium Illumina 450k), T1-weighted brain scans and psychopathology in early adulthood (age 18-21). Amygdala and hippocampus measures were derived using Freesurfer 5.3.0. Methylation markers related to AH volume ratio across time were identified using longitudinal multilevel modeling. RESULTS Amygdala:hippocampal volume ratio correlated positively with age 18 psychosis-like symptoms (p = .007). Methylation of a probe in the gene SP6 associated longitudinally with (a) higher AH volume ratio (FDR q-value = .01) and (b) higher stressful life events during pregnancy (p = .046). SP6 is expressed in the hippocampus and amygdala and has been implicated in cognitive decline in Alzheimer's disease. The association between SP6 DNA methylation, AH volume ratio and psychopathology was replicated in an independent dataset of 101 patients with schizophrenia and 111 healthy controls. CONCLUSIONS Our findings suggest that epigenetic alterations in genes implicated in neurodevelopment may contribute to a brain-based biomarker of psychopathology.
Collapse
Affiliation(s)
- Esther Walton
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- Department of PsychologyGeorgia State UniversityAtlantaGAUSA
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Charlotte A.M. Cecil
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Jingyu Liu
- The Mind Research NetworkAlbuquerqueNMUSA
- Department of Electrical EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | | | - Vince Calhoun
- The Mind Research NetworkAlbuquerqueNMUSA
- Department of Electrical EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of MedicineTU DresdenDresdenGermany
| | - Caroline L. Relton
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Edward D. Barker
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
28
|
Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development 2017; 144:737-754. [PMID: 28246209 DOI: 10.1242/dev.145441] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors that are found in many species. Recent studies have shown that KLFs play a fundamental role in regulating diverse biological processes such as cell proliferation, differentiation, development and regeneration. Of note, several KLFs are also crucial for maintaining pluripotency and, hence, have been linked to reprogramming and regenerative medicine approaches. Here, we review the crucial functions of KLFs in mammalian embryogenesis, stem cell biology and regeneration, as revealed by studies of animal models. We also highlight how KLFs have been implicated in human diseases and outline potential avenues for future research.
Collapse
Affiliation(s)
- Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA.,Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY 11794-8176, USA
| |
Collapse
|
29
|
|
30
|
Tremblay MA, Mendoza-Villarroel RE, Robert NM, Bergeron F, Tremblay JJ. KLF6 cooperates with NUR77 and SF1 to activate the human INSL3 promoter in mouse MA-10 leydig cells. J Mol Endocrinol 2016; 56:163-73. [PMID: 26874000 DOI: 10.1530/jme-15-0139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
Abstract
Insulin-like 3 (INSL3), a Leydig cell-specific hormone, is essential for testis descent during foetal life and bone metabolism in adults. Despite its essential roles in male reproductive and bone health, very little is known regarding its transcriptional regulation in Leydig cells. To date, few transcription factors have been shown to activate INSL3 promoter activity: the nuclear receptors AR, NUR77, COUP-TFII and SF1. To identify additional regulators, we have isolated and performed a detailed analysis of a 1.1 kb human INSL3 promoter fragment. Through 5' progressive deletions and site-directed mutagenesis, we have mapped a 10 bp element responsible for about 80% of INSL3 promoter activity in Leydig cells. This element is identical to the CPE element of the placental-specific glycoprotein-5 (PSG5) promoter that is recognized by the developmental regulator Krüppel-like factor 6 (KLF6). Using PCR and western blotting, we found that KLF6 is expressed in several Leydig and Sertoli cell lines. Furthermore, immunohistochemistry on adult mouse testis revealed the presence of KLF6 in the nuclei of both Leydig and Sertoli cells. KLF6 binds to the 10 bp KLF element at -108 bp and activates the -1.1 kb human, but not the mouse, INSL3 promoter. KLF6-mediated activation of the human INSL3 promoter required an intact KLF element as well as Leydig/Sertoli-enriched factors because KLF6 did not stimulate the human INSL3 promoter activity in CV-1 fibroblast cells. Consistent with this, we found that KLF6 transcriptionally cooperates with NUR77 and SF1. Collectively, our results identify KLF6 as a regulator of human INSL3 transcription.
Collapse
Affiliation(s)
- Maxime A Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Raifish E Mendoza-Villarroel
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Nicholas M Robert
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Francis Bergeron
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- ReproductionMother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada Centre for Research in ReproductionDevelopment and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
31
|
Li J, Lu HP, Mo WJ, Li HR, Feng ZB. RNAi-mediated silencing of Sp3 expression reduces invasion of HepG2 cells in a xenogeneic graft mouse model. Shijie Huaren Xiaohua Zazhi 2014; 22:813-818. [DOI: 10.11569/wcjd.v22.i6.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the influence of specificity protein 3 (Sp3) silencing on invasion of HepG2 cells in a xenogeneic graft mouse model, and to explore the possible mechanisms involved.
METHODS: A shRNA-Sp3 or non-relevant shRNA was transfected into HepG2 cells using a lentiviral vector. Non-transfected HepG2 cells were used as controls. The three groups of cells were injected into nude mice. Tumor formation rate was determined, and the pathological morphology of cells in three groups was observed. The mRNA and protein expression of Sp3, β-catenin, E-cadherin and matrix metallopeptidase 9 (MMP-9) was detected by real-time PCR and immunohistochemistry.
RESULTS: The tumor formation rate was lower in the shRNA-Sp3 group than in the non-relevant group and control group (60% vs 100%, 100%). The ability of invasion was weaker in the shRNA-Sp3 group. The expression of Sp3, β-catenin and MMP-9 mRNAs in the shRNA-Sp3 group was significantly lower than that in the non-relevant group and control group (F = 29.692, 21.894, 109.414; P = 0.001, 0.002, < 0.001). The expression of E-cadherin mRNA was significantly higher in the shRNA-Sp3 group than in the other two groups (F = 66.983, P < 0.001). The expression levels of Sp3 (30 ± 5.69), β-catenin (28 ± 5.13) and MMP-9 proteins (97 ± 10.41) were significantly lower than those in the non-relevant group and control group (P = 0.000 for all). The expression of E-cadherin protein (132 ± 4.36) was significantly higher in the shRNA-Sp3 group than in the other two groups (P = 0.000).
CONCLUSION: Sp3 may influence the invasion of HepG2 cells in vivo by up-regulating the expression of β-catenin and MMP-9 and down-regulating the expression of E-cadherin.
Collapse
|
32
|
Liggett JL, Zhang X, Eling TE, Baek SJ. Anti-tumor activity of non-steroidal anti-inflammatory drugs: cyclooxygenase-independent targets. Cancer Lett 2014; 346:217-24. [PMID: 24486220 DOI: 10.1016/j.canlet.2014.01.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used extensively for analgesic and antipyretic treatments. In addition, NSAIDs reduce the risk and mortality to several cancers. Their mechanisms in anti-tumorigenesis are not fully understood, but both cyclooxygenase (COX)-dependent and -independent pathways play a role. We and others have been interested in elucidating molecular targets of NSAID-induced apoptosis. In this review, we summarize updated literature regarding cellular and molecular targets modulated by NSAIDs. Among those NSAIDs, sulindac sulfide and tolfenamic acid are emphasized in this review because these two drugs have been well investigated for their anti-tumorigenic activity in many different types of cancer.
Collapse
Affiliation(s)
- Jason L Liggett
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA
| | - Xiaobo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thomas E Eling
- Laboratory of Molecular Carcinogenesis, National Institutes of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 USA.
| |
Collapse
|
33
|
Stephens SH, Franks A, Berger R, Palionyte M, Fingerlin TE, Wagner B, Logel J, Olincy A, Ross RG, Freedman R, Leonard S. Multiple genes in the 15q13-q14 chromosomal region are associated with schizophrenia. Psychiatr Genet 2012; 22:1-14. [PMID: 21970977 PMCID: PMC3878876 DOI: 10.1097/ypg.0b013e32834c0c33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The chromosomal region, 15q13-q14, including the α7 nicotinic acetylcholine receptor gene, CHRNA7, is a replicated region for schizophrenia. This study fine-mapped genes at 15q13-q14 to determine whether the association is unique to CHRNA7. METHODS Family-based and case-control association studies were performed on Caucasian-non-Hispanic and African-American individuals from 120 families as well as 468 individual patients with schizophrenia and 144 well-characterized controls. Single-nucleotide polymorphism (SNP) markers were genotyped, and association analyses carried out for the outcomes of schizophrenia, smoking, and smoking in schizophrenia. RESULTS Three genes were associated with schizophrenia in both ethnic populations: TRPM1, KLF13, and RYR3. Two SNPs in CHRNA7 were associated with schizophrenia in African-Americans, and a second SNP in CHRNA7 was significant for an association with smoking and smoking in schizophrenia in Caucasians. CONCLUSION Results of these studies support association of the 15q13-q14 region with schizophrenia. The broad positive association suggests that more than one 15q gene may be contributing to the disorder, either in combination or through a regulatory mechanism.
Collapse
Affiliation(s)
- Sarah H. Stephens
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Alexis Franks
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Ralph Berger
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Milda Palionyte
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Tasha E. Fingerlin
- Preventive Medicine and Biometrics, University of Colorado Denver, Denver, Colorado, USA
| | - Brandie Wagner
- Preventive Medicine and Biometrics, University of Colorado Denver, Denver, Colorado, USA
| | - Judith Logel
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Ann Olincy
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Randal G. Ross
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
- Veterans Affairs Medical Research Center, Denver, Colorado, USA
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Denver, Colorado, USA
- Veterans Affairs Medical Research Center, Denver, Colorado, USA
| |
Collapse
|
34
|
Possible linkage of SP6 transcriptional activity with amelogenesis by protein stabilization. J Biomed Biotechnol 2011; 2011:320987. [PMID: 22046099 PMCID: PMC3199210 DOI: 10.1155/2011/320987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022] Open
Abstract
Ameloblasts produce enamel matrix proteins such as amelogenin, ameloblastin, and amelotin during tooth development. The molecular mechanisms of ameloblast differentiation (amelogenesis) are currently not well understood. SP6 is a transcription factor of the Sp/KLF family that was recently found to regulate cell proliferation in a cell-type-specific manner. Sp6-deficient mice demonstrate characteristic tooth anomalies such as delayed eruption of the incisors and supernumerary teeth with disorganized amelogenesis. However, it remains unclear how Sp6 controls amelogenesis. In this study, we used SP6 high producer cells to identify SP6 target genes. Based on the observations that long-term culture of SP6 high producer cells reduced SP6 protein expression but not Sp6 mRNA expression, we found that SP6 is short lived and specifically degraded through a proteasome pathway. We established an in vitro inducible SP6 expression system coupled with siRNA knockdown and found a possible linkage between SP6 and amelogenesis through the regulation of amelotin and Rock1 gene expression by microarray analysis. Our findings suggest that the regulation of SP6 protein stability is one of the crucial steps in amelogenesis.
Collapse
|
35
|
Zhao X, Tang Y, Qu B, Cui H, Wang S, Wang L, Luo X, Huang X, Li J, Chen S, Shen N. MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. ACTA ACUST UNITED AC 2010; 62:3425-35. [PMID: 20589685 DOI: 10.1002/art.27632] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MicroRNA (miRNA) have received increasing attention as posttranscriptional regulators that fine-tune the homeostasis of the inflammatory response. This study aimed to clarify whether miR-125a, which was identified in a pilot expression profiling step, is involved in the inflammatory chemokine pathway in systemic lupus erythematosus (SLE). METHODS Independent verification of miR-125a expression in amplified samples from SLE patients and normal controls was performed by TaqMan quantitative polymerase chain reaction (PCR) analysis. A combination of 3 bioinformatic prediction techniques and reporter gene assays was used to identify miR-125a targets. In vitro systems of overexpression by transfection and inducible expression by stimulation were performed to investigate the function of miR-125a, which was followed by real-time quantitative PCR and enzyme-linked immunosorbent assay. RESULTS In SLE patients, the expression of miR-125a was reduced and the expression of its predicted target gene, KLF13, was increased. Bioinformatics predicted that miR-125a base-paired with sequences in the 3'-untranslated region of KLF13. Overexpression of miR-125a led to a significant reduction in the expression of RANTES and KLF13. MicroRNA-125a inhibited endogenous KLF13 expression in a dose-dependent manner, as determined using gain- and loss-of-function methods. A luciferase reporter system confirmed the miR-125a binding sites. Notably, miR-125a expression was induced in T cells in a dose- and time-dependent manner. Finally, the introduction of miR-125a into T cells from SLE patients alleviated the elevated RANTES expression. CONCLUSION MicroRNA-125a negatively regulates RANTES expression by targeting KLF13 in activated T cells. The underexpression of miR-125a contributes to the elevated expression of RANTES in SLE. Our findings extend the role of miRNA in the pathogenesis of lupus and provide potential strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Xia Zhao
- Joint Molecular Rheumatology Laboratory of Institute of Health Sciences and Shanghai Renji Hospital, Shanghai JiaoTong University School of Medicine, Shanghai Institutes for Biological Sciences, and Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes that include proliferation, differentiation, growth, development, survival, and responses to external stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published that describe their basic biology and contribution to human diseases. KLF proteins have received much attention because of their involvement in the development and homeostasis of numerous organ systems. KLFs are critical regulators of physiological systems that include the cardiovascular, digestive, respiratory, hematological, and immune systems and are involved in disorders such as obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses, additional KLF functions and associations with disease are likely to be discovered. Here, we review the current knowledge of KLF proteins and describe common attributes of their biochemical and physiological functions and their pathophysiological roles.
Collapse
Affiliation(s)
- Beth B McConnell
- Departments of Medicine and of Hematology and Medical Oncology, Emory University School of Medicine,Atlanta, Georgia 30322, USA
| | | |
Collapse
|
37
|
Schaeper ND, Prpic NM, Wimmer EA. A clustered set of three Sp-family genes is ancestral in the Metazoa: evidence from sequence analysis, protein domain structure, developmental expression patterns and chromosomal location. BMC Evol Biol 2010; 10:88. [PMID: 20353601 PMCID: PMC3087555 DOI: 10.1186/1471-2148-10-88] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 03/30/2010] [Indexed: 12/28/2022] Open
Abstract
Background The Sp-family of transcription factors are evolutionarily conserved zinc finger proteins present in many animal species. The orthology of the Sp genes in different animals is unclear and their evolutionary history is therefore controversially discussed. This is especially the case for the Sp gene buttonhead (btd) which plays a key role in head development in Drosophila melanogaster, and has been proposed to have originated by a recent gene duplication. The purpose of the presented study was to trace orthologs of btd in other insects and reconstruct the evolutionary history of the Sp genes within the metazoa. Results We isolated Sp genes from representatives of a holometabolous insect (Tribolium castaneum), a hemimetabolous insect (Oncopeltus fasciatus), primitively wingless hexapods (Folsomia candida and Thermobia domestica), and an amphipod crustacean (Parhyale hawaienis). We supplemented this data set with data from fully sequenced animal genomes. We performed phylogenetic sequence analysis with the result that all Sp factors fall into three monophyletic clades. These clades are also supported by protein domain structure, gene expression, and chromosomal location. We show that clear orthologs of the D. melanogaster btd gene are present even in the basal insects, and that the Sp5-related genes in the genome sequence of several deuterostomes and the basal metazoans Trichoplax adhaerens and Nematostella vectensis are also orthologs of btd. Conclusions All available data provide strong evidence for an ancestral cluster of three Sp-family genes as well as synteny of this Sp cluster and the Hox cluster. The ancestral Sp gene cluster already contained a Sp5/btd ortholog, which strongly suggests that btd is not the result of a recent gene duplication, but directly traces back to an ancestral gene already present in the metazoan ancestor.
Collapse
Affiliation(s)
- Nina D Schaeper
- Georg-August-Universität, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Entwicklungsbiologie, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | |
Collapse
|
38
|
Kuroda E, Horikawa Y, Enya M, Oda N, Suzuki E, Iizuka K, Takeda J. Identification of minimal promoter and genetic variants of Kruppel-like factor 11 gene and association analysis with type 2 diabetes in Japanese. Endocr J 2009; 56:275-86. [PMID: 19122346 DOI: 10.1507/endocrj.k08e-302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Genetic analysis of the KLF11 gene revealed two rare variants, A347S and T220M, segregating in families with early-onset type 2 diabetes, and one frequent polymorphic Q62R variant significantly associated with type 2 diabetes in Northern Europeans. Furthermore, it has been reported that over-expression of KLF11 has a deleterious effect on insulin promoter activity. Thus, an altered expression level of KLF11 may contribute to the occurrence of type 2 diabetes. To investigate the contribution of KLF11 to type 2 diabetes in Japanese, we surveyed the 5' flanking region of KLF11 by reporter assay and identified the minimal promoter region of the gene. The promoter region from -250 to +162 bp including five Sp1 binding sites showed basal promoter activity both in MIN6-m9 and HepG2 cells. We also examined the entire region of KLF11 to detect genetic variants. A total of 19 polymorphisms, six of which are novel, were identified, but none of them showed association with the occurrence of type 2 diabetes. Two of the identified polymorphisms, R29Q and S124F, are novel coding variants. Functional analyses of these variants were performed, and similarly reduced effects on transcriptional activities of insulin, catalase1, and the Smad7 gene were found. We conclude that variants of KLF11 are not a major factor in the occurrence of type 2 diabetes in Japanese. The promoter region of KLF11 identified in the present study should be useful in further elucidation of the transcriptional regulation mechanism of the gene and genetic analyses of type 2 diabetes.
Collapse
Affiliation(s)
- Eiji Kuroda
- Department of Diabetes and Endocrinology, Division of Molecule and Structure, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Hertveldt V, Louryan S, van Reeth T, Drèze P, van Vooren P, Szpirer J, Szpirer C. The development of several organs and appendages is impaired in mice lacking Sp6. Dev Dyn 2008; 237:883-92. [PMID: 18297738 DOI: 10.1002/dvdy.21355] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SP6 belongs to the SP/KLF family of transcription factors, characterized by a DNA-binding domain composed of three zinc fingers of the C(2)H(2) type. The Sp6 gene generates two different transcripts, termed Sp6 and epiprofin, which differ in the first exon and encode the same SP6 protein. These transcripts are mainly expressed in the skin, the teeth, and the limb buds of embryos and also in the adult lungs. To gain insight into the biological function of the SP6 protein, we knocked out the gene by eliminating the full coding region. The resulting Sp6 null mice are nude, lack functional teeth, and present limb and lung malformations. We also showed that the identified abnormalities are associated with apoptotic misregulations. In conclusion, this work indicates that Sp6 plays a critical role in the development of several epithelium-containing organs or appendages, possibly by regulating apoptosis.
Collapse
Affiliation(s)
- Valérie Hertveldt
- Université libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12, B-6041 Gosselies (Charleroi), Belgium
| | | | | | | | | | | | | |
Collapse
|
40
|
Ruspita I, Miyoshi K, Muto T, Abe K, Horiguchi T, Noma T. Sp6 downregulation of follistatin gene expression in ameloblasts. THE JOURNAL OF MEDICAL INVESTIGATION 2008; 55:87-98. [PMID: 18319550 DOI: 10.2152/jmi.55.87] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sp6 is a member of the Sp family of transcription factors that regulate a wide range of cellular functions, such as cell growth and differentiation. Sp6, also called epiprofin, is specifically expressed in tooth germ, limb bud, and hair follicle, but there is little information on its function.To investigate the possible role of Sp6 in tooth development, first we established an Sp6-overproducing clone, CHA9, and analyzed the features of the cell, including cell proliferation and gene expression. The parental cells of CHA9 are the ameloblast-lineage G5 cells that we previously established from rat dental epithelia of lower incisor. Sp6 overproduction accelerated cell proliferation and induced the expression of ameloblastin mRNA, a marker of ameloblast differentiation. Second, we performed genome-wide screening of Sp6 target genes by microarray analysis. Out of a total 20,450 genes, 448 genes were up-regulated and 500 genes were down-regulated by Sp6. We found the expression of follistatin, a BMP antagonist, to be 22.4-fold lower in CHA9 than in control cells. Transfection of the Sp6-antisense construct into CHA9 cells restored follistatin expression back to equivalent levels seen in control cells, indicating that Sp6 regulates follistatin gene expression in ameloblasts. Our findings demonstrate that the follistatin gene is one of the Sp6 target genes in ameloblasts and suggest that Sp6 promotes amelogenesis through inhibition of follistatin gene expression.
Collapse
Affiliation(s)
- Intan Ruspita
- Department of Molecular Biology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Cullingford TE, Butler MJ, Marshall AK, Tham EL, Sugden PH, Clerk A. Differential regulation of Krüppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: effects of endothelin-1, oxidative stress and cytokines. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1229-36. [PMID: 18406357 PMCID: PMC2396231 DOI: 10.1016/j.bbamcr.2008.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 02/03/2023]
Abstract
Krüppel-like transcription factors (Klfs) modulate fundamental cell processes. Cardiac myocytes are terminally-differentiated, but hypertrophy in response to stimuli such as endothelin-1. H2O2 or cytokines promote myocyte apoptosis. Microarray studies of neonatal rat myocytes identified several Klfs as endothelin-1-responsive genes. We used quantitative PCR for further analysis of Klf expression in neonatal rat myocytes. In response to endothelin-1, Klf2 mRNA expression was rapidly increased (∼ 9-fold; 15–30 min) with later increases in expression of Klf4 and Klf6 (∼ 5-fold; 30–60 min). All were regulated as immediate early genes (cycloheximide did not inhibit the increases in expression). Klf5 expression was increased at 1–2 h (∼ 13-fold) as a second phase response (cycloheximide inhibited the increase). These increases were transient and attenuated by U0126. H2O2 increased expression of Klf2, Klf4 and Klf6, but interleukin-1β or tumor necrosis factor α downregulated Klf2 expression with no effect on Klf4 or Klf6. Of the Klfs which repress transcription, endothelin-1 rapidly downregulated expression of Klf3, Klf11 and Klf15. The dynamic regulation of expression of multiple Klf family members in cardiac myocytes suggests that, as a family, they are actively involved in regulating phenotypic responses (hypertrophy and apoptosis) to extracellular stimuli.
Collapse
Affiliation(s)
- Timothy E Cullingford
- National Heart and Lung Institute (NHLI) Division, Faculty of Medicine, Imperial College London, Flowers Building (4th Floor), Armstrong Road, London SW7 2AZ, UK
| | | | | | | | | | | |
Collapse
|
42
|
Natesampillai S, Kerkvliet J, Leung PCK, Veldhuis JD. Regulation of Kruppel-like factor 4, 9, and 13 genes and the steroidogenic genes LDLR, StAR, and CYP11A in ovarian granulosa cells. Am J Physiol Endocrinol Metab 2008; 294:E385-91. [PMID: 18056793 PMCID: PMC2747322 DOI: 10.1152/ajpendo.00480.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kruppel-like factors (KLFs) are important Sp1-like eukaryotic transcriptional proteins. The LDLR, StAR, and CYP11A genes exhibit GC-rich Sp1-like sites, which have the potential to bind KLFs in multiprotein complexes. We now report that KLF4, KLF9, and KLF13 transcripts are expressed in and regulate ovarian cells. KLF4 and 13, but not KLF9, mRNA expression was induced and then repressed over time (P < 0.001). Combined LH and IGF-I stimulation increased KLF4 mRNA at 2 h (P < 0.01), whereas LH decreased KLF13 mRNA at 6 h (P < 0.05), and IGF-I reduced KLF13 at 24 h (P < 0.01) compared with untreated control. KLF9 was not regulated by either hormone. Transient transfection of KLF4, KLF9, and KLF13 suppressed LDLR/luc, StAR/luc, and CYP11A/luc by 80-90% (P < 0.001). Histone-deacetylase (HDAC) inhibitors stimulated LDLR/luc five- to sixfold and StAR/luc and CYP11A/luc activity twofold (P < 0.001) and partially reversed suppression by all three KLFs (P < 0.001). Deletion of the zinc finger domain of KLF13 abrogated repression of LDLR/luc. Lentiviral overexpression of the KLF13 gene suppressed LDLR mRNA (P < 0.001) and CYP11A mRNA (P = 0.003) but increased StAR mRNA (P = 0.007). Collectively, these data suggest that KLFs may recruit inhibitory complexes containing HDAC corepressors, thereby repressing LDLR and CYP11A transcription. Conversely, KLF13 may recruit unknown coactivators or stabilize StAR mRNA, thereby explaining enhancement of in situ StAR gene expression. These data introduce new potent gonadal transregulators of genes encoding proteins that mediate sterol uptake and steroid biosynthesis.
Collapse
Affiliation(s)
- Sekar Natesampillai
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
| | - Jason Kerkvliet
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
| | - Peter C. K. Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Johannes D. Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic School of Medicine, Rochester, MN, United States, 55901
- Corresponding author: Tel: (507) 255-0906, Fax: (507) 255-0901,
| |
Collapse
|
43
|
Pemberton TJ, Li FY, Oka S, Mendoza-Fandino GA, Hsu YH, Bringas P, Chai Y, Snead ML, Mehrian-Shai R, Patel PI. Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis. Dev Dyn 2007; 236:2245-57. [PMID: 17626284 PMCID: PMC4457363 DOI: 10.1002/dvdy.21226] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between postnatal day (P) 1 and P10 to identify genes differentially expressed when compared with 16 control tissues. Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by quantitative reverse transcription-polymerase chain reaction analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm).
Collapse
Affiliation(s)
- Trevor J. Pemberton
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California
| | - Fang-Yuan Li
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California
| | - Shoji Oka
- The Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | | | - Ya-Hsuan Hsu
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California
| | - Pablo Bringas
- The Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Yang Chai
- The Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Malcolm L. Snead
- The Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Ruty Mehrian-Shai
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California
| | - Pragna I. Patel
- Institute for Genetic Medicine, University of Southern California, Los Angeles, California
- The Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
- Correspondence to: Pragna I. Patel, USC Institute for Genetic Medicine, 2250 Alcazar Street (CSC-240), Los Angeles, CA 90033.
| |
Collapse
|
44
|
Collins JF, Hu Z. Promoter analysis of intestinal genes induced during iron-deprivation reveals enrichment of conserved SP1-like binding sites. BMC Genomics 2007; 8:420. [PMID: 18005439 PMCID: PMC2220005 DOI: 10.1186/1471-2164-8-420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 11/15/2007] [Indexed: 12/24/2022] Open
Abstract
Background Iron-deficiency leads to the induction of genes related to intestinal iron absorption and homeostasis. By analyzing a large GeneChip® dataset from the rat intestine, we identified a large cluster of 228 genes that was induced by iron-deprivation. Only 2 of these genes contained 3' iron-response elements, suggesting that other regulation including transcriptional may be involved. We therefore utilized computational methods to test the hypothesis that some of the genes within this large up-regulated cluster are co-ordinately regulated by common transcriptional mechanisms. We thus identified promoters from the up-regulated gene cluster from rat, mouse and human, and performed enrichment analyses with the Clover program and the TRANSFAC database. Results Surprisingly, we found a strong statistical enrichment for SP1 binding sites in our experimental promoters as compared to background sequences. As the TRANSFAC database cannot distinguish among SP/KLF family members, many of which bind similar GC-rich DNA sequences, we surmise that SP1 or an SP1-like factor could be involved in this response. In fact, we detected induction of SP6/KLF14 in the GeneChip® studies, and confirmed it by real-time PCR. Additional computational analyses suggested that an SP1-like factor may function synergistically with a FOX TF to regulate a subset of these genes. Furthermore, analysis of promoter sequences identified many genes with multiple, conserved SP1 and FOX binding sites, the relative location of which within orthologous promoters was highly conserved. Conclusion SP1 or a closely related factor may play a primary role in the genetic response to iron-deficiency in the mammalian intestine.
Collapse
Affiliation(s)
- James F Collins
- Department of Exercise and Nutrition Sciences, University at Buffalo, the State University of New York, Buffalo, NY, USA.
| | | |
Collapse
|
45
|
Zhou M, McPherson L, Feng D, Song A, Dong C, Lyu SC, Zhou L, Shi X, Ahn YT, Wang D, Clayberger C, Krensky AM. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:5496-504. [PMID: 17442931 PMCID: PMC2664650 DOI: 10.4049/jimmunol.178.9.5496] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Krüppel-like transcription factor (KLF)13, previously shown to regulate RANTES expression in vitro, is a member of the Krüppel- like family of transcription factors that controls many growth and developmental processes. To ascertain the function of KLF13 in vivo, Klf13-deficient mice were generated by gene targeting. As expected, activated T lymphocytes from Klf13(-/-) mice show decreased RANTES expression. However, these mice also exhibit enlarged thymi and spleens. TUNEL, as well as spontaneous and activation-induced death assays, demonstrated that prolonged survival of Klf13(-/-) thymocytes was due to decreased apoptosis. Microarray analysis suggests that protection from apoptosis-inducing stimuli in Klf13(-/-) thymocytes is due in part to increased expression of BCL-X(L), a potent antiapoptotic factor. This finding was confirmed in splenocytes and total thymocytes by real-time quantitative PCR and Western blot as well as in CD4+CD8- single-positive thymocytes by real-time quantitative PCR. Furthermore, EMSA and luciferase reporter assays demonstrated that KLF13 binds to multiple sites within the Bcl-X(L) promoter and results in decreased Bcl-X(L) promoter activity, making KLF13 a negative regulator of BCL-X(L).
Collapse
Affiliation(s)
- Meixia Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lisa McPherson
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Dongdong Feng
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - An Song
- Genentech, South San Francisco, CA 94080
| | - Chen Dong
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Shu-Chen Lyu
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Lu Zhou
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Xiaoyan Shi
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Yong-Tae Ahn
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Demin Wang
- Blood Research Institute, Blood Center of Wisconsin and Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Carol Clayberger
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
| | - Alan M. Krensky
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305
- Address correspondence and reprint requests to Dr. Alan M. Krensky, Department of Pediatrics, Stanford University, 300 Pasteur Drive, Stanford, CA 94305. E-mail address:
| |
Collapse
|
46
|
Hertveldt V, De Mees C, Scohy S, Van Vooren P, Szpirer J, Szpirer C. The Sp6 locus uses several promoters and generates sense and antisense transcripts. Biochimie 2007; 89:1381-7. [PMID: 17624655 DOI: 10.1016/j.biochi.2007.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 05/29/2007] [Indexed: 11/22/2022]
Abstract
The SP/KLF transcription factor family contains over 25 members sharing a DNA-binding domain composed of three zinc fingers of the C(2)H(2) type. We previously identified the sixth member of the SP subfamily (Sp6). The 5' end of the Sp6 transcript was not cloned and was predicted bioinformatically. A mouse molar tooth cDNA was then isolated differing from the Sp6 sequence by its 5' end, and was named epiprofin. Sp6 and epiprofin are currently used as synonyms. Here, we show that the Sp6 transcript possesses a first exon distinct from the epiprofin one: the Sp6 gene thus uses two promoters, generating two transcript variants which differ in their first exon. Furthermore, we identified an Sp6 opposite strand transcript (Sp6os) and examined, by quantitative RT-PCR experiments, the presence and the abundance of these two transcripts in mouse tissues. We also mapped the mouse locus by FISH to chromosome 11D.
Collapse
Affiliation(s)
- V Hertveldt
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Rue Profs Jeener & Brachet, 12, B-6041, Gosselies (Charleroi), Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Haldar SM, Ibrahim OA, Jain MK. Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 2007; 43:1-10. [PMID: 17531262 PMCID: PMC2743293 DOI: 10.1016/j.yjmcc.2007.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
The Kruppel-like Factor (KLF) family of zinc-finger transcription factors are critical regulators of cell differentiation, phenotypic modulation and physiologic function. An emerging body of evidence implicates an important role for these factors in cardiovascular biology, however, the role of KLFs in muscle biology is only beginning to be understood. This article reviews the published data describing the role of KLFs in the heart, smooth muscle, and skeletal muscle and highlights the importance of these factors in cardiovascular development, physiology and disease pathobiology.
Collapse
Affiliation(s)
| | | | - Mukesh K. Jain
- Address correspondence to: Mukesh K. Jain M.D., Case Cardiovascular Research Institute, Case Medical School and Cardiovascular Division, University Hospitals of Cleveland, 2103 Cornell Road, Room 4-522, Cleveland, OH 44106. ; Tel: (216) 368-3609, Fax: (216) 368-0556
| |
Collapse
|
48
|
Muñoz-Descalzo S, Belacortu Y, Paricio N. Identification and analysis of cabut orthologs in invertebrates and vertebrates. Dev Genes Evol 2007; 217:289-98. [PMID: 17333257 DOI: 10.1007/s00427-007-0144-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 02/16/2007] [Indexed: 01/02/2023]
Abstract
Cabut (cbt) is a Drosophila melanogaster gene involved in epidermal dorsal closure (DC). Its expression is dependent on the Jun N-terminal kinase (JNK) cascade, and it functions downstream of Jun regulating dpp expression in the leading edge cells. The Cbt protein contains three C(2)H(2)-type zinc fingers and a serine-rich domain, suggesting that it functions as a transcription factor. We have identified single cbt orthologs in other Drosophila species, as well as in other insects and invertebrate organisms like ascidians and echinoderms, but not in nematodes. Gene structure and protein sequence are highly conserved among Drosophilidae, but are more diverged in the other species of invertebrates analyzed. According to this, we demonstrate that cbt expression is detected in the embryonic lateral epidermis in several Drosophila species, as it occurs in D. melanogaster, thus suggesting that the cbt orthologs may have a conserved role in these species during DC. We have also analyzed the genomes of several vertebrate species, finding that the cbt orthologous genes in these organisms encode proteins that belong to the TIEG family of Sp1-like/Krüppel-like transcription factors. Phylogenetic analysis of the invertebrate and vertebrate proteins identified indicates that they mainly follow the expected phylogeny of the species, and that the cbt gene was duplicated during vertebrate evolution. Because we were not able to identify cbt orthologous genes neither in yeast nor in plants, our results suggest that this gene has been probably conserved throughout metazoans and that it may play a fundamental role in animal biology.
Collapse
Affiliation(s)
- Silvia Muñoz-Descalzo
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, Dr. Moliner 50, 46100 Burjasot, Spain
| | | | | |
Collapse
|
49
|
Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M. The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. EMBO J 2006; 25:5201-13. [PMID: 17053787 PMCID: PMC1630408 DOI: 10.1038/sj.emboj.7601379] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 09/06/2006] [Indexed: 11/09/2022] Open
Abstract
In humans, congenital heart defects occur in 1-2% of live birth, but the molecular mechanisms and causative genes remain unidentified in the majority of cases. We have uncovered a novel transcription pathway important for heart morphogenesis. We report that KLF13, a member of the Krüppel-like family of zinc-finger proteins, is expressed predominantly in the heart, binds evolutionarily conserved regulatory elements on cardiac promoters and activates cardiac transcription. KLF13 is conserved across species and knockdown of KLF13 in Xenopus embryos leads to atrial septal defects and hypotrabeculation similar to those observed in humans or mice with hypomorphic GATA-4 alleles. Physical and functional interaction with GATA-4, a dosage-sensitive cardiac regulator, provides a mechanistic explanation for KLF13 action in the heart. The data demonstrate that KLF13 is an important component of the transcription network required for heart development and suggest that KLF13 is a GATA-4 modifier; by analogy to other GATA-4 collaborators, mutations in KLF13 may be causative for congenital human heart disease.
Collapse
Affiliation(s)
- Geneviève Lavallée
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Mathieu Nadeau
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Chantal Lefebvre
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Georges Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
| | - Marko E Horb
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| | - Mona Nemer
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Quebec, Canada
- Université de Montréal, Montréal, Quebec, Canada
- Cardiac Growth and Differentiation Unit, Institut de recherches cliniques de Montréal (IRCM), 110, avenue des Pins Ouest, Montréal, Quebec, Canada H2W 1R7. Tel.: +1 514 987 5680; Fax: +1 514 987 5575; E-mail:
| |
Collapse
|
50
|
Abstract
Sp1 is one of the best characterized transcriptional activators. The biological importance of Sp1 is underscored by the fact that several hundreds of genes are thought to be regulated by this protein. However, during the last 5 years, a more extended family of Sp1-like transcription factors has been identified and characterized by the presence of a conserved DNA-binding domain comprising three Krüppel-like zinc fingers. Each distinct family member differs in its ability to regulate transcription, and, as a consequence, to influence cellular processes. Specific activation and repression domains located within the N-terminal regions of these proteins are responsible for these differences by facilitating interactions with various co-activators and co-repressors. The present review primarily focuses on discussing the structural, biochemical and biological functions of the repressor members of this family of transcription factors. The existence of these transcriptional repressors provides a tightly regulated mechanism for silencing a large number of genes that are already known to be activated by Sp1.
Collapse
Affiliation(s)
- Gwen Lomberk
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
| | - Raul Urrutia
- *Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55901, U.S.A
- †Tumor Biology Program, Mayo Clinic, Rochester, MN 55901, U.S.A
- ‡Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|