1
|
Silaiyiman S, Liu J, Wu J, Ouyang L, Cao Z, Shen C. A Systematic Review of the Advances and New Insights into Copy Number Variations in Plant Genomes. PLANTS (BASEL, SWITZERLAND) 2025; 14:1399. [PMID: 40364428 PMCID: PMC12073271 DOI: 10.3390/plants14091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/27/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Copy number variations (CNVs), as an important structural variant in genomes, are widely present in plants, affecting their phenotype and adaptability. In recent years, CNV research has not only focused on changes in gene copy numbers but has also been linked to complex mechanisms such as genome rearrangements, transposon activity, and environmental adaptation. The advancement in sequencing technologies has made the detection and analysis of CNVs more efficient, not only revealing their crucial roles in plant disease resistance, adaptability, and growth development, but also demonstrating broad application potential in crop improvement, particularly in selective breeding and genomic selection. By studying CNV changes during the domestication process, researchers have gradually recognized the important role of CNVs in plant domestication and evolution. This article reviews the formation mechanisms of CNVs in plants, methods for their detection, their relationship with plant traits, and their applications in crop improvement. It emphasizes future research directions involving the integration of multi-omics to provide new perspectives on the structure and function of plant genomes.
Collapse
Affiliation(s)
- Saimire Silaiyiman
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Jiaxuan Liu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Jiaxin Wu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, Kashi 844000, China
| | - Lejun Ouyang
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
| | - Zheng Cao
- Maoming Agricultural Science and Technology Extension Center, Maoming 525000, China;
| | - Chao Shen
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (S.S.); (J.L.); (J.W.); (L.O.)
| |
Collapse
|
2
|
Klausegger A, Leditzky F, Krämer S, Palisson F, Yubero MJ, Véliz S, Koh MJA, Tan EC, Laimer M, Bauer JW, Fuentes I. A Novel Homozygous 9385 bp Deletion in the FERMT1 ( KIND1) Gene in a Malaysian Family with Kindler Epidermolysis bullosa and a Review of Large Deletions. Int J Mol Sci 2025; 26:4237. [PMID: 40362475 PMCID: PMC12072249 DOI: 10.3390/ijms26094237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Kindler Epidermolysis bullosa (KEB; OMIM 173650) is a rare autosomal recessive genodermatosis characterized by bullous poikiloderma and photosensitivity. Additional presentations include blistering, poor wound healing, skin atrophy, and increased risk of skin cancer. Most cases of KEB result from aberrations in the FERMT1 (Fermitin family member 1) gene encoding kindlin-1 and include nonsense, frameshift, splicing, and missense variants. Large deletion variants have been reported in nine cases to date. Most variants are predicted to lead to premature termination of translation and to loss of kindlin-1 function. In this study, we report on a 33-year-old male patient who presented with typical clinical manifestations of KEB. As routine molecular testing failed to obtain a diagnosis, Next Generation Sequencing (NGS) of an Epidermolysis Bullosa (EB)-specific panel was carried out followed by the determination of the deletion breakpoints and verification at the mRNA and protein levels. This approach revealed a new large homozygous deletion of ~9.4 kb in the FERMT1 gene involving exons 7 to 9. Finally, we performed a literature review on large FERMT1 deletions. The deletion is predicted to skip exons 7 to 9 within the mRNA, which results in a frameshift. The patient's phenotype is likely caused by the resulting truncated and non-functioning protein. Our report further enriches the spectrum of FERMT1 gene variants to improve genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alfred Klausegger
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (F.L.); (M.L.); (J.W.B.)
| | - Fabian Leditzky
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (F.L.); (M.L.); (J.W.B.)
| | - Susanne Krämer
- Special Care Clinic, Universidad de Chile, Olivos 943, Independencia, Santiago 8380544, Chile; (S.K.); (S.V.)
| | - Francis Palisson
- Servicio de Dermatología, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7591538, Chile;
- DEBRA Chile, Santiago 8580670, Chile;
| | - María Joao Yubero
- DEBRA Chile, Santiago 8580670, Chile;
- Pediatrics and Pediatric Infectious Diseases of Clínica Alemana, Facultad de Medicina Alemana, Universidad del Desarrollo, Santiago 7591538, Chile
| | - Sebastián Véliz
- Special Care Clinic, Universidad de Chile, Olivos 943, Independencia, Santiago 8380544, Chile; (S.K.); (S.V.)
| | - Mark Jean Aan Koh
- Department of Dermatology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Ene-Choo Tan
- Research Center, KK Women’s and Children’s Hospital, Singapore 229899, Singapore;
| | - Martin Laimer
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (F.L.); (M.L.); (J.W.B.)
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Johann Wolfgang Bauer
- EB House Austria, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (F.L.); (M.L.); (J.W.B.)
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ignacia Fuentes
- DEBRA Chile, Santiago 8580670, Chile;
- Centro de Genética Y Genómica, Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7610658, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile
| |
Collapse
|
3
|
Rossi R, Torelli S, Moore M, Ala P, Morgan J, Malhotra J, Muntoni F. Golodirsen restores DMD transcript imbalance in Duchenne Muscular Dystrophy patient muscle cells. Skelet Muscle 2024; 14:28. [PMID: 39614336 DOI: 10.1186/s13395-024-00360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Antisense oligonucleotides (AON) represent a promising treatment for Duchenne muscular dystrophy (DMD) carrying out-of-frame deletions, but also show limitations. In a completed clinical trial golodirsen, approved by FDA to induce skipping of DMD gene exon 53 in eligible patients, we demonstrated increase in DMD expression and protein production, albeit with inter-patient variability. METHODS Here, we investigate further the golodirsen mechanism of action using myotubes derived from MyoD transfected fibroblasts isolated from DMD patients at the baseline of the clinical trial SRP-4053. RESULTS We confirm golodirsen's selectivity and efficiency in removing only exon 53. For the first time in human cells, we revealed a significant reduction in the so called DMD "transcript imbalance", in golodirsen-treated DMD muscle cultures. The transcript imbalance is a unique DMD phenomenon characterized by non-homogeneous transcript expression along its entire length and responsible for the reduced stability of the transcript. Our in-vivo study also showed that the efficiency of exon skipping did not always correspond to a proportional restoration of the dystrophin protein. Predominant nuclear localization of the DMD transcript, observed in patients and animal models, persists even after exon skipping. CONCLUSION All these findings suggest challenges other than AON delivery for high level of protein restoration in DMD, highlighting the importance of investigating the biological mechanisms upstream of protein production to further enhance the efficiency of any AON treatment in this condition.
Collapse
Affiliation(s)
- Rachele Rossi
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Silvia Torelli
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Marc Moore
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK
| | | | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK.
- Great Ormond Street Institute of Child Health Biomedical Research Centre, National Institute for Health Research, University College London, London, UK.
| |
Collapse
|
4
|
Peripolli E, Stafuzza NB, Machado MA, do Carmo Panetto JC, do Egito AA, Baldi F, da Silva MVGB. Assessment of copy number variants in three Brazilian locally adapted cattle breeds using whole-genome re-sequencing data. Anim Genet 2023; 54:254-270. [PMID: 36740987 DOI: 10.1111/age.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/13/2021] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
Further characterization of genetic structural variations should strongly focus on small and endangered local breeds given their role in unraveling genes and structural variants underlying selective pressures and phenotype variation. A comprehensive genome-wide assessment of copy number variations (CNVs) based on whole-genome re-sequencing data was performed on three Brazilian locally adapted cattle breeds (Caracu Caldeano, Crioulo Lageano, and Pantaneiro) using the ARS-UCD1.2 genome assembly. Data from 36 individuals with an average coverage depth of 14.07× per individual was used. A total of 24 945 CNVs were identified distributed among the breeds (Caracu Caldeano = 7285, Crioulo Lageano = 7297, and Pantaneiro = 10 363). Deletion events were 1.75-2.07-fold higher than duplications, and the total length of CNVs is composed mostly of a high number of segments between 10 and 30 kb. CNV regions (CNVRs) are not uniformly scattered throughout the genomes (n = 463), and 105 CNVRs were found overlapping among the studied breeds. Functional annotation of the CNVRs revealed variants with high consequence on protein sequence harboring relevant genes, in which we highlighted the BOLA-DQB, BOLA-DQA5, CD1A, β-defensins, PRG3, and ULBP21 genes. Enrichment analysis based on the gene list retrieved from the CNVRs disclosed over-represented terms (p < 0.01) strongly associated with immunity and cattle resilience to harsh environments. Additionally, QTL associated with body conformation and dairy-related traits were also unveiled within the CNVRs. These results provide better understanding of the selective forces shaping the genome of such cattle breeds and identify traces of natural selection pressures by which these populations have been exposed to challenging environmental conditions.
Collapse
Affiliation(s)
- Elisa Peripolli
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | | | | | | | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | |
Collapse
|
5
|
Burssed B, Zamariolli M, Bellucco FT, Melaragno MI. Mechanisms of structural chromosomal rearrangement formation. Mol Cytogenet 2022; 15:23. [PMID: 35701783 PMCID: PMC9199198 DOI: 10.1186/s13039-022-00600-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/31/2022] [Indexed: 12/31/2022] Open
Abstract
Structural chromosomal rearrangements result from different mechanisms of formation, usually related to certain genomic architectural features that may lead to genetic instability. Most of these rearrangements arise from recombination, repair, or replication mechanisms that occur after a double-strand break or the stalling/breakage of a replication fork. Here, we review the mechanisms of formation of structural rearrangements, highlighting their main features and differences. The most important mechanisms of constitutional chromosomal alterations are discussed, including Non-Allelic Homologous Recombination (NAHR), Non-Homologous End-Joining (NHEJ), Fork Stalling and Template Switching (FoSTeS), and Microhomology-Mediated Break-Induced Replication (MMBIR). Their involvement in chromoanagenesis and in the formation of complex chromosomal rearrangements, inverted duplications associated with terminal deletions, and ring chromosomes is also outlined. We reinforce the importance of high-resolution analysis to determine the DNA sequence at, and near, their breakpoints in order to infer the mechanisms of formation of structural rearrangements and to reveal how cells respond to DNA damage and repair broken ends.
Collapse
Affiliation(s)
- Bruna Burssed
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Malú Zamariolli
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Teixeira Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Isabel Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Geng C, Tong Y, Zhang S, Ling C, Wu X, Wang D, Dai Y. Sequence and Structure Characteristics of 22 Deletion Breakpoints in Intron 44 of the DMD Gene Based on Long-Read Sequencing. Front Genet 2021; 12:638220. [PMID: 34211494 PMCID: PMC8240811 DOI: 10.3389/fgene.2021.638220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Exon deletions make up to 80% of mutations in the DMD gene, which cause Duchenne and Becker muscular dystrophy. Exon 45-55 regions were reported as deletion hotspots and intron 44 harbored more than 25% of deletion start points. We aimed to investigate the fine structures of breakpoints in intron 44 to find potential mechanisms of large deletions in intron 44. Methods: Twenty-two dystrophinopathy patients whose deletion started in intron 44 were sequenced using long-read sequencing of a DMD gene capture panel. Sequence homology, palindromic sequences, and polypyrimidine sequences were searched at the breakpoint junctions. RepeatMasker was used to analyze repetitive elements and Mfold was applied to predict secondary DNA structure. Results: With a designed DMD capture panel, 22 samples achieved 2.25 gigabases and 1.28 million reads on average. Average depth was 308× and 99.98% bases were covered at least 1×. The deletion breakpoints in intron 44 were scattered and no breakpoints clustered in any region less than 500 bp. A total of 72.7% of breakpoints located in distal 100 kb of intron 44 and more repetitive elements were found in this region. Microhomologies of 0–1 bp were found in 36.4% (8/22) of patients, which corresponded with non-homologous end-joining. Microhomologies of 2–20 bp were found in 59.1% (13/22) of patients, which corresponded with microhomology-mediated end-joining. Moreover, a 7 bp insertion was found in one patient, which might be evidence of aberrant replication origin firing. Palindromic sequences, polypyrimidine sequences, and small hairpin loops were found near several breakpoint junctions. No evidence of large hairpin loop formation in deletion root sequences was observed. Conclusion: This study was the first to explore possible mechanisms underlying exon deletions starting from intron 44 of the DMD gene based on long-read sequencing. Diverse mechanisms might be associated with deletions in the DMD gene.
Collapse
Affiliation(s)
- Chang Geng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanren Tong
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Chao Ling
- Laboratory of Clinical Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Wu
- GrandOmics Biosciences, Beijing, China
| | | | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Seo SH, Bacolla A, Yoo D, Koo YJ, Cho SI, Kim MJ, Seong MW, Kim HJ, Kim JM, Tainer JA, Park SS, Kim JY, Jeon B. Replication-Based Rearrangements Are a Common Mechanism for SNCA Duplication in Parkinson's Disease. Mov Disord 2020; 35:868-876. [PMID: 32039503 DOI: 10.1002/mds.27998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND SNCA multiplication is a genomic cause of familial PD, showing dosage-dependent toxicity. Until now, nonallelic homologous recombination was suggested as the mechanism of SNCA duplication, based on various types of repetitive elements found in the spanning region of the breakpoints. However, the sequence at the breakpoint was analyzed only for 1 case. OBJECTIVES We have analyzed the breakpoint sequences of 6 patients with PD who had duplicated SNCA using whole-genome sequencing data to elucidate the mechanism of SNCA duplication. METHODS Six patient samples with SNCA duplication underwent whole-genome sequencing. The duplicated regions were defined with nucleotide-resolution breakpoints, which were confirmed by junction polymerase chain reaction and Sanger sequencing. The search for potential non-B DNA-forming sequences and stem-loop structure predictions was conducted. RESULTS Duplicated regions ranged from the smallest region of 718.3 kb to the largest one of 4,162 kb. Repetitive elements were found at 8 of the 12 breakpoint sequences on each side of the junction, but none of the pairs shared overt homologies. Five of these six junctions had microhomologies (2-4 bp) at the breakpoint, and a short stretch of sequences was inserted in 3 cases. All except one junction were located within or next to stem-loop structures. CONCLUSION Our study has determined that homologous recombination mechanisms involving repetitive elements are not the main cause of the duplication of SNCA. The presence of microhomology at the junctions and their position within stem-loop structures suggest that replication-based rearrangements may be a common mechanism for SNCA amplification. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Seoul National University College of Medicine, Seoul, Korea
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Yoon Jung Koo
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Im Cho
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Man Jin Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Min Kim
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sung Sup Park
- Seoul National University College of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ji Yeon Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Beomseok Jeon
- Seoul National University College of Medicine, Seoul, Korea.,Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Mates J, Mademont-Soler I, Del Olmo B, Ferrer-Costa C, Coll M, Pérez-Serra A, Picó F, Allegue C, Fernandez-Falgueras A, Álvarez P, Yotti R, Espinosa MA, Sarquella-Brugada G, Cesar S, Carro E, Brugada J, Arbelo E, Garcia-Pavia P, Borregan M, Tizzano E, López-Granados A, Mazuelos F, Díaz de Bustamante A, Darnaude MT, González-Hevia JI, Díaz-Flores F, Trujillo F, Iglesias A, Fernandez-Aviles F, Campuzano O, Brugada R. Role of copy number variants in sudden cardiac death and related diseases: genetic analysis and translation into clinical practice. Eur J Hum Genet 2018; 26:1014-1025. [PMID: 29511324 PMCID: PMC6018743 DOI: 10.1038/s41431-018-0119-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/22/2022] Open
Abstract
Several studies have identified copy number variants (CNVs) as responsible for cardiac diseases associated with sudden cardiac death (SCD), but very few exhaustive analyses in large cohorts of patients have been performed, and they have been generally focused on a specific SCD-related disease. The aim of the present study was to screen for CNVs the most prevalent genes associated with SCD in a large cohort of patients who suffered sudden unexplained death or had an inherited cardiac disease (cardiomyopathy or channelopathy). A total of 1765 European patients were analyzed with a homemade algorithm for the assessment of CNVs using high-throughput sequencing data. Thirty-six CNVs were identified (2%), and most of them appeared to have a pathogenic role. The frequency of CNVs among cases of sudden unexplained death, patients with a cardiomyopathy or a channelopathy was 1.4% (8/587), 2.3% (20/874), and 2.6% (8/304), respectively. Detection rates were particularly high for arrhythmogenic cardiomyopathy (5.1%), long QT syndrome (4.7%), and dilated cardiomyopathy (4.4%). As such large genomic rearrangements underlie a non-neglectable portion of cases, we consider that their analysis should be performed as part of the routine genetic testing of sudden unexpected death cases and patients with SCD-related diseases.
Collapse
Affiliation(s)
- Jesus Mates
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
| | - Irene Mademont-Soler
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Bernat Del Olmo
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
| | | | - Monica Coll
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alexandra Pérez-Serra
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ferran Picó
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
| | - Catarina Allegue
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
| | | | | | - Raquel Yotti
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria Angeles Espinosa
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Sergi Cesar
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Ester Carro
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Josep Brugada
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Unit, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Arrhythmia Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Arrhythmia Unit, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Pablo Garcia-Pavia
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Inherited Cardiac Diseases Unit. Department of Cardiology, Hospital Universitario Puerta de Hierro, Francisco de Vitoria University, Madrid, Spain
| | - Mar Borregan
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | | | | | | - Felícitas Díaz-Flores
- Molecular DX Unit, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Anna Iglesias
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Fernandez-Aviles
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Oscar Campuzano
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Medical Sciences Department, School of Medicine, University of Girona, Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-IdIBGi, Girona, Spain.
- Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Medical Sciences Department, School of Medicine, University of Girona, Girona, Spain.
- Cardiovascular Genetics Unit, Hospital Universitari Dr. Josep Trueta, Girona, Spain.
| |
Collapse
|
9
|
Marey I, Ben Yaou R, Deburgrave N, Vasson A, Nectoux J, Leturcq F, Eymard B, Laforet P, Behin A, Stojkovic T, Mayer M, Tiffreau V, Desguerre I, Boyer FC, Nadaj-Pakleza A, Ferrer X, Wahbi K, Becane HM, Claustres M, Chelly J, Cossee M. Non Random Distribution of DMD Deletion Breakpoints and Implication of Double Strand Breaks Repair and Replication Error Repair Mechanisms. J Neuromuscul Dis 2018; 3:227-245. [PMID: 27854212 DOI: 10.3233/jnd-150134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dystrophinopathies are mostly caused by copy number variations, especially deletions, in the dystrophin gene (DMD). Despite the large size of the gene, deletions do not occur randomly but mainly in two hot spots, the main one involving exons 45 to 55. The underlying mechanisms are complex and implicate two main mechanisms: Non-homologous end joining (NHEJ) and micro-homology mediated replication-dependent recombination (MMRDR). OBJECTIVE Our goals were to assess the distribution of intronic breakpoints (BPs) in the genomic sequence of the main hot spot of deletions within DMD gene and to search for specific sequences at or near to BPs that might promote BP occurrence or be associated with DNA break repair. METHODS Using comparative genomic hybridization microarray, 57 deletions within the intron 44 to 55 region were mapped. Moreover, 21 junction fragments were sequenced to search for specific sequences. RESULTS Non-randomly distributed BPs were found in introns 44, 47, 48, 49 and 53 and 50% of BPs clustered within genomic regions of less than 700bp. Repeated elements (REs), known to promote gene rearrangement via several mechanisms, were present in the vicinity of 90% of clustered BPs and less frequently (72%) close to scattered BPs, illustrating the important role of such elements in the occurrence of DMD deletions. Palindromic and TTTAAA sequences, which also promote DNA instability, were identified at fragment junctions in 20% and 5% of cases, respectively. Micro-homologies (76%) and insertions or deletions of small sequences were frequently found at BP junctions. CONCLUSIONS Our results illustrate, in a large series of patients, the important role of RE and other genomic features in DNA breaks, and the involvement of different mechanisms in DMD gene deletions: Mainly replication error repair mechanisms, but also NHEJ and potentially aberrant firing of replication origins. A combination of these mechanisms may also be possible.
Collapse
Affiliation(s)
- Isabelle Marey
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Rabah Ben Yaou
- UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Nathalie Deburgrave
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Aurélie Vasson
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France
| | - Juliette Nectoux
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - France Leturcq
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,UPMC-Paris 6, UM 76, INSERM, U974, CNRS, UMR 7215, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Bruno Eymard
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Pascal Laforet
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Anthony Behin
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Tanya Stojkovic
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Michèle Mayer
- AP-HP, Hôpital Armand TROUSSEAU, Centre de référence de pathologie neuromusculaire Paris-Est, Paris, France
| | - Vincent Tiffreau
- Université de Lille 2, EA 4488, Centre de référence des maladies neuromusculaires du CHRU de Lille, Service de médecine physique et réadaptation, Hôpital Swynghedauw, Lille, France
| | - Isabelle Desguerre
- AP-HP, Hôpital Necker-Enfants Malades, Service de Neuropédiatrie, Centre de référence de pathologie neuromusculaires Garches-Necker-Mondor-Hendaye, Paris, France
| | - François Constant Boyer
- Service de Médecine Physique et Réadaptation, Centre de référence de pathologie neuromusculaires, Hôpital Sébastopol, CHU de Reims, Reims, France
| | - Aleksandra Nadaj-Pakleza
- Service de neurologie, Centre de référence de pathologie neuromusculaires Pays de Loire, Hôpital Larrey, CHU d'Angers, Angers, France
| | - Xavier Ferrer
- Service de neurologie, Centre de référence de pathologie neuromusculaires Aquitaine, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Karim Wahbi
- APHP, service de cardiologie, Hôpital Cochin, Paris, France
| | - Henri-Marc Becane
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Centre de Référence de Pathologie Neuromusculaire Paris-Est, Paris, France
| | - Mireille Claustres
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| | - Jamel Chelly
- Service de Biochimie et Génétique Moléculaire, HUPC Hôpital Cochin, Paris, France.,INSERM, U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, Paris, France
| | - Mireille Cossee
- CHRU Montpellier, Laboratoire de Génétique moléculaire, Montpellier, France.,Université de Montpellier, Laboratoire de Génétique de Maladies rares, EA 7402, Montpellier, France
| |
Collapse
|
10
|
Xu Y, Wang H, Xiao B, Wei W, Liu Y, Ye H, Ying X, Chen Y, Liu X, Ji X, Sun Y. Novel noncontiguous duplications identified with a comprehensive mutation analysis in the DMD gene by DMD gene-targeted sequencing. Gene 2017; 645:113-118. [PMID: 29273555 DOI: 10.1016/j.gene.2017.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/01/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
Genomic rearrangements, such as intragenic deletions and duplications, are the most prevalent types of mutation in the DMD gene, and DMD mutations underlie Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Using multiplex ligation dependent probe amplification (MLPA) and DMD gene-targeted sequencing, we performed a molecular characterization of two cases of complex noncontiguous duplication rearrangements that involved inverted duplications. The breakpoint sequences were analyzed to investigate the mechanisms of the rearrangement. The two cases shared the same duplication events (Dup-nml-Dup/inv), and both involved microhomology and small insertions at the breakpoints. Additionally, in case 1, SNP sequencing results indicated that the de novo duplication mutation arose in the allele that originated from the grandfather. This study has identified a novel type of DMD complex rearrangement and provides insight into the molecular basis of this genomic rearrangement.
Collapse
Affiliation(s)
- Yan Xu
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Huanhuan Wang
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Bing Xiao
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Wei
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yu Liu
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Hui Ye
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Xiaomin Ying
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yingwei Chen
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Liu
- Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China; Department of Pediatric Neurology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Ji
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China.
| | - Yu Sun
- Center for Clinical Genetics, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Genetics, Shanghai Institute of Pediatric Research, Shanghai, China.
| |
Collapse
|
11
|
Precise mapping of 17 deletion breakpoints within the central hotspot deletion region (introns 50 and 51) of the DMD gene. J Hum Genet 2017; 62:1057-1063. [PMID: 28878337 DOI: 10.1038/jhg.2017.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023]
Abstract
Exon deletions in the human DMD gene, which encodes the dystrophin protein, are the molecular defect in 50-70% of cases of Duchenne/Becker muscular dystrophies. Deletions are preferentially clustered in the 5' (exons 2-20) and the central (exons 45-53) region of DMD, likely because local DNA structure predisposes to specific breakage or recombination events. Notably, innovative therapeutic strategies may rescue dystrophin function by homology-based specific targeting of sequences within the central DMD hot spot deletion region. To further study molecular mechanisms that generate such frequent genome variations and to identify residual intronic sequences, we sequenced 17 deletion breakpoints within introns 50 and 51 of DMD and analyzed the surrounding genomic architecture. There was no breakpoint clustering within the introns nor extensive homology between sequences adjacent to each junction. However, at or near the breakpoint, we found microhomology, short tandem repeats, interspersed repeat elements and short sequence stretches that predispose to DNA deletion or bending. Identification of such structural elements contributes to elucidate general mechanisms generating deletion within the DMD gene. Moreover, precise mapping of deletion breakpoints and localization of repeated elements are of interest, because residual intronic sequences may be targeted by therapeutic strategies based on genome editing correction.
Collapse
|
12
|
Hsiao MC, Piotrowski A, Callens T, Fu C, Wimmer K, Claes KBM, Messiaen L. Decoding NF1 Intragenic Copy-Number Variations. Am J Hum Genet 2015; 97:238-49. [PMID: 26189818 DOI: 10.1016/j.ajhg.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022] Open
Abstract
Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.
Collapse
Affiliation(s)
- Meng-Chang Hsiao
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arkadiusz Piotrowski
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Tom Callens
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chuanhua Fu
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Peter-Mayr-Straße 1, 6020 Innsbruck, Austria
| | - Kathleen B M Claes
- Center for Medical Genetics, Ghent University Hospital, De Pintelaan, 185 9000 Gent, Belgium
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
13
|
Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, Westernströer B, Sanfilippo J, Kurpisz M, Rajkovic A, Yatsenko SA, Kliesch S, Schlatt S, Tüttelmann F. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med 2015; 372:2097-107. [PMID: 25970010 PMCID: PMC4470617 DOI: 10.1056/nejmoa1406192] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The genetic basis of nonobstructive azoospermia is unknown in the majority of infertile men. METHODS We performed array comparative genomic hybridization testing in blood samples obtained from 15 patients with azoospermia, and we performed mutation screening by means of direct Sanger sequencing of the testis-expressed 11 gene (TEX11) open reading frame in blood and semen samples obtained from 289 patients with azoospermia and 384 controls. RESULTS We identified a 99-kb hemizygous loss on chromosome Xq13.2 that involved three TEX11 exons. This loss, which was identical in 2 patients with azoospermia, predicts a deletion of 79 amino acids within the meiosis-specific sporulation domain SPO22. Our subsequent mutation screening showed five novel TEX11 mutations: three splicing mutations and two missense mutations. These mutations, which occurred in 7 of 289 men with azoospermia (2.4%), were absent in 384 controls with normal sperm concentrations (P=0.003). Notably, five of those TEX11 mutations were detected in 33 patients (15%) with azoospermia who received a diagnosis of azoospermia with meiotic arrest. Meiotic arrest in these patients resembled the phenotype of Tex11-deficient male mice. Immunohistochemical analysis showed specific cytoplasmic TEX11 expression in late spermatocytes, as well as in round and elongated spermatids, in normal human testes. In contrast, testes of patients who had azoospermia with TEX11 mutations had meiotic arrest and lacked TEX11 expression. CONCLUSIONS In our study, hemizygous TEX11 mutations were a common cause of meiotic arrest and azoospermia in infertile men. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Alexander N Yatsenko
- From the Departments of Obstetrics, Gynecology, and Reproductive Sciences (A.N.Y., A.P.G., J.S., A. Rajkovic, S.A.Y.) and Urology (T.J.), University of Pittsburgh School of Medicine, and the Department of Biological Sciences, University of Pittsburgh, Kenneth P. Dietrich School of Arts and Sciences (A.J.B.) - all in Pittsburgh; the Institute of Human Genetics (A. Röpke, F.T.) and Center of Reproductive Medicine and Andrology (B.W., S.K., S.S.), University of Münster, Münster, Germany; and the Department of Reproductive Biology and Stem Cells, Institute of Human Genetics, Polish Academy of Sciences, Poznań (M.O., M.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chen C, Ma H, Zhang F, Chen L, Xing X, Wang S, Zhang X, Luo Y. Screening of Duchenne muscular dystrophy (DMD) mutations and investigating its mutational mechanism in Chinese patients. PLoS One 2014; 9:e108038. [PMID: 25244321 PMCID: PMC4171529 DOI: 10.1371/journal.pone.0108038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked recessive disease of muscle degeneration and death. In order to provide accurate and reliable genetic counseling and prenatal diagnosis, we screened DMD mutations in a cohort of 119 Chinese patients using multiplex ligation-dependent probe amplification (MLPA) and denaturing high performance liquid chromatography (DHPLC) followed by Sanger sequencing. In these unrelated DMD patients, we identified 11 patients with DMD small mutations (9.2%) and 81 patients with DMD deletions/duplications (del/dup) (68.1%), of which 64 (79.0%) were deletions, 16 (19.8%) were duplications, and one (1.2%) was both deletion and duplication. Furthermore, we analyzed the frequency of DMD breakpoint in the 64 deletion cases by calculating exon-deletion events of certain exon interval that revealed a novel mutation hotspot boundary. To explore why DMD rearrangement breakpoints were predisposed to specific regions (hotspot), we precisely characterized junction sequences of breakpoints at the nucleotide level in 21 patients with exon deleted/duplicated in DMD with a high-resolution SNP microarray assay. There were no exactly recurrent breakpoints and there was also no significant difference between single-exon del/dup and multiple-exon del/dup cases. The data from the current study provided a comprehensive strategy to detect DMD mutations for clinical practice, and identified two deletion hotspots at exon 43–55 and exon 10–23 by calculating exon-deletion events of certain exon interval. Furthermore, this is the first study to characterize DMD breakpoint at the nucleotide level in a Chinese population. Our observations provide better understanding of the mechanism for DMD gene rearrangements.
Collapse
Affiliation(s)
- Chen Chen
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongwei Ma
- Department of Developing Pediatrics, Shengjing Hospital, China Medical University, Shenyang, China
| | - Feng Zhang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Chen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xuesha Xing
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Medical Cell Biology, Chinese Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
15
|
A novel splicing silencer generated by DMD exon 45 deletion junction could explain upstream exon 44 skipping that modifies dystrophinopathy. J Hum Genet 2014; 59:423-9. [PMID: 24871807 DOI: 10.1038/jhg.2014.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/30/2014] [Accepted: 04/18/2014] [Indexed: 12/22/2022]
Abstract
Duchenne muscular dystrophy (DMD), a progressive muscle-wasting disease, is mostly caused by exon deletion mutations in the DMD gene. The reading frame rule explains that out-of-frame deletions lead to muscle dystrophin deficiency in DMD. In outliers to this rule, deletion junction sequences have never previously been explored as splicing modulators. In a Japanese case, we identified a single exon 45 deletion in the patient's DMD gene, indicating out-of-frame mutation. However, immunohistochemical examination disclosed weak dystrophin signals in his muscle. Reverse transcription-PCR amplification of DMD exons 42 to 47 revealed a major normally spliced product with exon 45 deletion and an additional in-frame product with deletion of both exons 44 and 45, indicating upstream exon 44 skipping. We considered the latter to underlie the observed dystrophin expression. Remarkably, the junction sequence cloned by PCR walking abolished the splicing enhancer activity of the upstream intron in a chimeric doublesex gene pre-mRNA in vitro splicing. Furthermore, antisense oligonucleotides directed against the junction site counteracted this effect. These indicated that the junction sequence was a splicing silencer that induced upstream exon 44 skipping. It was strongly suggested that creation of splicing regulator is a modifier of dystrophinopathy.
Collapse
|
16
|
Enggaard Hoeffding LK, Hansen T, Ingason A, Doung L, Thygesen JH, Møller RS, Tommerup N, Kirov G, Rujescu D, Larsen LA, Werge T. Sequence analysis of 17 NRXN1 deletions. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:52-61. [PMID: 24339137 DOI: 10.1002/ajmg.b.32204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND Genome instability plays fundamental roles in human evolution and phenotypic variation within our population. This instability leads to genomic rearrangements that are involved in a wide variety of human disorders, including congenital and neurodevelopmental disorders, and cancers. Insight into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism and epilepsies. METHODS 17 non-recurrent NRXN1 deletions identified by GWA were sequenced to map the breakpoints of each. Meme … etc. was used to identify shared patterns between the deletions and compare these were previously studies on non-recurrent deletions. RESULTS We discovered two novel sequence motifs shared between all 17 NRXN1 deletions and a significantly higher AT nucleotide content at the breakpoints, compared to the overall nucleotide content on chromosome 2. We found different alteration of sequence at the breakpoint; small insertions and duplications giving rise to short microhomology sequences. CONCLUSIONS No single mechanism seems to be implicated in the deletion events, but the results suggest that NHEJ, FoSTeS or MMBIR is implicated. The two novel sequence motifs together with a high AT content in all in NRXN1 deletions may lead to increased instability leading to a increase susceptibility to a single stranded structures. This favours potentially repaired by NHEJ mechanism of double strand breaks or may leading to replication errors. © 2013 Wiley Periodicals, Inc.
Collapse
|
17
|
Gamage TH, Misceo D, Fannemel M, Frengen E. A balanced de novo inv(7)(p14.3q22.3) disrupting PDE1C and ATXN7L1 in a 14-year old developmentally delayed boy. Eur J Med Genet 2013; 56:361-4. [DOI: 10.1016/j.ejmg.2013.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/22/2013] [Indexed: 10/26/2022]
|
18
|
Verdin H, D'haene B, Beysen D, Novikova Y, Menten B, Sante T, Lapunzina P, Nevado J, Carvalho CMB, Lupski JR, De Baere E. Microhomology-mediated mechanisms underlie non-recurrent disease-causing microdeletions of the FOXL2 gene or its regulatory domain. PLoS Genet 2013; 9:e1003358. [PMID: 23516377 PMCID: PMC3597517 DOI: 10.1371/journal.pgen.1003358] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
Genomic disorders are often caused by recurrent copy number variations (CNVs), with nonallelic homologous recombination (NAHR) as the underlying mechanism. Recently, several microhomology-mediated repair mechanisms—such as microhomology-mediated end-joining (MMEJ), fork stalling and template switching (FoSTeS), microhomology-mediated break-induced replication (MMBIR), serial replication slippage (SRS), and break-induced SRS (BISRS)—were described in the etiology of non-recurrent CNVs in human disease. In addition, their formation may be stimulated by genomic architectural features. It is, however, largely unexplored to what extent these mechanisms contribute to rare, locus-specific pathogenic CNVs. Here, fine-mapping of 42 microdeletions of the FOXL2 locus, encompassing FOXL2 (32) or its regulatory domain (10), serves as a model for rare, locus-specific CNVs implicated in genetic disease. These deletions lead to blepharophimosis syndrome (BPES), a developmental condition affecting the eyelids and the ovary. For breakpoint mapping we used targeted array-based comparative genomic hybridization (aCGH), quantitative PCR (qPCR), long-range PCR, and Sanger sequencing of the junction products. Microhomology, ranging from 1 bp to 66 bp, was found in 91.7% of 24 characterized breakpoint junctions, being significantly enriched in comparison with a random control sample. Our results show that microhomology-mediated repair mechanisms underlie at least 50% of these microdeletions. Moreover, genomic architectural features, like sequence motifs, non-B DNA conformations, and repetitive elements, were found in all breakpoint regions. In conclusion, the majority of these microdeletions result from microhomology-mediated mechanisms like MMEJ, FoSTeS, MMBIR, SRS, or BISRS. Moreover, we hypothesize that the genomic architecture might drive their formation by increasing the susceptibility for DNA breakage or promote replication fork stalling. Finally, our locus-centered study, elucidating the etiology of a large set of rare microdeletions involved in a monogenic disorder, can serve as a model for other clustered, non-recurrent microdeletions in genetic disease. Genomic disorder is a general term describing conditions caused by genomic aberrations leading to a copy number change of one or more genes. Copy number changes with the same length and clustered breakpoints for a group of patients with the same disorder are named recurrent rearrangements. These originate mostly from a well-studied mechanism, namely nonallelic homologous recombination (NAHR). In contrast, non-recurrent rearrangements vary in size, have scattered breakpoints, and can originate from several different mechanisms that are not fully understood. Here we tried to gain further insight into the extent to which these mechanisms contribute to non-recurrent rearrangements and into the possible role of the surrounding genomic architecture. To this end, we investigated a unique group of patients with non-recurrent deletions of the FOXL2 region causing blepharophimosis syndrome. We observed that the majority of these deletions can result from several mechanisms mediated by microhomology. Furthermore, our data suggest that rare pathogenic microdeletions do not occur at random genome sequences, but are possibly guided by the surrounding genomic architecture. Finally, our study, elucidating the etiology of a unique cohort of locus-specific microdeletions implicated in genetic disease, can serve as a model for the formation of genomic aberrations in other genetic disorders.
Collapse
Affiliation(s)
- Hannah Verdin
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rios JJ, Shastry S, Jasso J, Hauser N, Garg A, Bensadoun A, Cohen JC, Hobbs HH. Deletion of GPIHBP1 causing severe chylomicronemia. J Inherit Metab Dis 2012; 35:531-40. [PMID: 22008945 PMCID: PMC3319888 DOI: 10.1007/s10545-011-9406-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 12/19/2022]
Abstract
Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1.
Collapse
Affiliation(s)
- Jonathan J. Rios
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Savitha Shastry
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Juan Jasso
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Natalie Hauser
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Abhimanyu Garg
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - André Bensadoun
- Division of Nutritional Sciences, Cornell University, Ithaca, NY USA
| | - Jonathan C. Cohen
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Division of Nutrition and Metabolic Diseases, Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Helen H. Hobbs
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
20
|
Ishmukhametova A, Khau Van Kien P, Méchin D, Thorel D, Vincent MC, Rivier F, Coubes C, Humbertclaude V, Claustres M, Tuffery-Giraud S. Comprehensive oligonucleotide array-comparative genomic hybridization analysis: new insights into the molecular pathology of the DMD gene. Eur J Hum Genet 2012; 20:1096-100. [PMID: 22510846 DOI: 10.1038/ejhg.2012.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report on the effectiveness of a custom-designed oligonucleotide-based comparative genomic hybridization microarray (array-CGH) to interrogate copy number across the entire 2.2-Mb genomic region of the DMD gene and its applicability in diagnosis. The high-resolution array-CGH, we developed, successfully detected a series of 42 previously characterized large rearrangements of various size, localization and type (simple or complex deletions, duplications, triplications) and known intronic CNVs/Indels. Moreover, the technique succeeded in identifying a small duplication of only 191 bp in one patient previously negative for DMD mutation. Accurate intronic breakpoints localization by the technique enabled subsequent junction fragments identification by sequencing in 86% of cases (all deletion cases and 62.5% of duplication cases). Sequence examination of the junctions supports a role of microhomology-mediated processes in the occurrence of DMD large rearrangements. In addition, the precise knowledge of the sequence context at the breakpoints and analysis of the resulting consequences on maturation of pre-mRNA contribute to elucidating the cause of discrepancies in phenotype/genotype correlations in some patients. Thereby, the array-CGH proved to be a highly efficient and reliable diagnostic tool, and the new data it provides will have many potential implications in both, clinics and research.
Collapse
|
21
|
Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 2012; 148:1223-41. [PMID: 22424231 PMCID: PMC3351385 DOI: 10.1016/j.cell.2012.02.039] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Indexed: 12/21/2022]
Abstract
The genetic bases of neuropsychiatric disorders are beginning to yield to scientific inquiry. Genome-wide studies of copy number variation (CNV) have given rise to a new understanding of disease etiology, bringing rare variants to the forefront. A proportion of risk for schizophrenia, bipolar disorder, and autism can be explained by rare mutations. Such alleles arise by de novo mutation in the individual or in recent ancestry. Alleles can have specific effects on behavioral and neuroanatomical traits; however, expressivity is variable, particularly for neuropsychiatric phenotypes. Knowledge from CNV studies reflects the nature of rare alleles in general and will serve as a guide as we move forward into a new era of whole-genome sequencing.
Collapse
Affiliation(s)
- Dheeraj Malhotra
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
| | - Jonathan Sebat
- Beyster Center for Genomics of Psychiatric Diseases, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 1020103, USA
- Department of Cellular Molecular and Molecular Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 1020103, USA
| |
Collapse
|
22
|
Flanigan KM, Dunn D, Larsen CA, Medne L, Bönnemann CB, Weiss RB. Becker muscular dystrophy due to an inversion of exons 23 and 24 of the DMD gene. Muscle Nerve 2011; 44:822-5. [PMID: 22006698 DOI: 10.1002/mus.22226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of hybridization-based methods for Duchenne muscular dystrophy (DMD) mutation analysis is increasingly common. We report a case of Becker muscular dystrophy in which discrepant results between a polymerase chain reaction (PCR)-based single-condition amplification/internal primer (SCAIP) and a comparative genomic hybridization assay incompletely characterized the mutation (an inversion of exons 23 and 24). These results demonstrate the limits of sensitivity and specificity of both tests, and highlight the need for more detailed analysis when intronic deletions are detected by comparative genome hybridization methods.
Collapse
Affiliation(s)
- Kevin M Flanigan
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | | | | | | | | |
Collapse
|
23
|
Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. Hum Mutat 2011; 32:1075-99. [PMID: 21853507 PMCID: PMC3177966 DOI: 10.1002/humu.21557] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 06/17/2011] [Indexed: 12/21/2022]
Abstract
Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | |
Collapse
|
24
|
Guella I, Paraboschi EM, van Schalkwyk WA, Asselta R, Duga S. Identification of the first Alu-mediated large deletion involving the F5 gene in a compound heterozygous patient with severe factor V deficiency. Thromb Haemost 2011; 106:296-303. [PMID: 21614419 DOI: 10.1160/th11-03-0149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/11/2011] [Indexed: 11/05/2022]
Abstract
Factor V (FV) deficiency is a rare autosomal recessive haemorrhagic disorder associated with moderate to severe bleeding symptoms. Conventional mutational screening leads to a complete molecular genetic diagnosis only in about 80-90% of cases. Large gene rearrangements, which could explain at least part of the "missing alleles" have not been reported so far in FV-deficient patients. In this work, we investigated a family with hereditary FV deficiency, in which the proband is compound heterozygous for a 205-Kb deletion, involving the first seven exons of F5 , and the entire selectin P, L, and E genes, and for a novel splicing mutation (IVS12+5G>A). The deletion breakpoints, determined by using a combination of semi-quantitative real-time PCR and long PCR assays, occurred within AluY repeat sequences, suggesting an Alu-mediated unequal homologous recombination as the mechanism responsible for the deletion. The in vitro characterisation of the IVS12+5G>A mutation demonstrated that this mutation causes the skipping of exon 12 and the activation of a cryptic splice site. Low levels of residual wild-type splicing were also detectable, in agreement with the notion that the complete absence of FV may be not compatible with life.
Collapse
Affiliation(s)
- Ilaria Guella
- Dipartimento di Biologia e Genetica per Scienze Mediche, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
25
|
Baskin B, Gibson WT, Ray PN. Duchenne muscular dystrophy caused by a complex rearrangement between intron 43 of the DMD gene and chromosome 4. Neuromuscul Disord 2011; 21:178-82. [DOI: 10.1016/j.nmd.2010.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
|
26
|
Bedoyan JK, Lesperance MM, Ackley T, Iyer RK, Innis JW, Misra VK. A complex 6p25 rearrangement in a child with multiple epiphyseal dysplasia. Am J Med Genet A 2010; 155A:154-63. [PMID: 21204225 DOI: 10.1002/ajmg.a.33751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 09/12/2010] [Indexed: 11/08/2022]
Abstract
Genomic rearrangements are increasingly recognized as important contributors to human disease. Here we report on an 11½-year-old child with myopia, Duane retraction syndrome, bilateral mixed hearing loss, skeletal anomalies including multiple epiphyseal dysplasia, and global developmental delay, and a complex 6p25 genomic rearrangement. We have employed oligonucleotide-based comparative genomic hybridization arrays (aCGH) of different resolutions (44 and 244K) as well as a 1 M single nucleotide polymorphism (SNP) array to analyze this complex rearrangement. Our analyses reveal a complex rearrangement involving a ∼2.21 Mb interstitial deletion, a ∼240 kb terminal deletion, and a 70-80 kb region in between these two deletions that shows maintenance of genomic copy number. The interstitial deletion contains eight known genes, including three Forkhead box containing (FOX) transcription factors (FOXQ1, FOXF2, and FOXC1). The region maintaining genomic copy number partly overlaps the dual specificity protein phosphatase 22 (DUSP22) gene. Array analyses suggest a homozygous loss of genomic material at the 5' end of DUSP22, which was corroborated using TaqMan® copy number analysis. It is possible that this homozygous genomic loss may render both copies of DUSP22 or its products non-functional. Our analysis suggests a rearrangement mechanism distinct from a previously reported replication-based error-prone mechanism without template switching for a specific 6p25 rearrangement with a 1.22 Mb interstitial deletion. Our study demonstrates the utility and limitations of using oligonucleotide-based aCGH and SNP array technologies of increasing resolutions in order to identify complex DNA rearrangements and gene disruptions.
Collapse
Affiliation(s)
- Jirair K Bedoyan
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Esposito G, Imperato MR, Ieno L, Sorvillo R, Benigno V, Parenti G, Parini R, Vitagliano L, Zagari A, Salvatore F. Hereditary fructose intolerance: functional study of two novel ALDOB natural variants and characterization of a partial gene deletion. Hum Mutat 2010; 31:1294-303. [DOI: 10.1002/humu.21359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/19/2010] [Indexed: 11/08/2022]
|
28
|
Sankaranarayanan K, Nikjoo H. Ionising radiation and genetic risks. XVI. A genome-based framework for risk estimation in the light of recent advances in genome research. Int J Radiat Biol 2010; 87:161-78. [DOI: 10.3109/09553002.2010.518214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Mitsui J, Takahashi Y, Goto J, Tomiyama H, Ishikawa S, Yoshino H, Minami N, Smith DI, Lesage S, Aburatani H, Nishino I, Brice A, Hattori N, Tsuji S. Mechanisms of genomic instabilities underlying two common fragile-site-associated loci, PARK2 and DMD, in germ cell and cancer cell lines. Am J Hum Genet 2010; 87:75-89. [PMID: 20598272 DOI: 10.1016/j.ajhg.2010.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/05/2010] [Accepted: 06/13/2010] [Indexed: 11/17/2022] Open
Abstract
Common fragile sites (CFSs) are specific chromosome regions that exhibit an increased frequency of breaks when cells are exposed to a DNA-replication inhibitor such as aphidicolin. PARK2 and DMD, the causative genes for autosomal-recessive juvenile Parkinsonism and Duchenne and Becker muscular dystrophy, respectively, are two very large genes that are located within aphidicolin-induced CFSs. Gross rearrangements within these two genes are frequently observed as the causative mutations for these diseases, and similar alterations within the large fragile sites that surround these genes are frequently observed in cancer cells. To elucidate the molecular mechanisms underlying this fragility, we performed a custom-designed high-density comparative genomic hybridization analysis to determine the junction sequences of approximately 500 breakpoints in germ cell lines and cancer cell lines involving PARK2 or DMD. The sequence signatures where these breakpoints occur share some similar features both in germ cell lines and in cancer cell lines. Detailed analyses of these structures revealed that microhomologies are predominantly involved in rearrangement processes. Furthermore, breakpoint-clustering regions coincide with the latest-replicating region and with large nuclear-lamina-associated domains and are flanked by the highest-flexibility peaks and R/G band boundaries, suggesting that factors affecting replication timing collectively contribute to the vulnerability for rearrangement in both germ cell and somatic cell lines.
Collapse
Affiliation(s)
- Jun Mitsui
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Asakawa S, Hattori N, Shimizu A, Shimizu Y, Minoshima S, Mizuno Y, Shimizu N. Analysis of eighteen deletion breakpoints in the parkin gene. Biochem Biophys Res Commun 2009; 389:181-6. [PMID: 19715670 DOI: 10.1016/j.bbrc.2009.08.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 02/01/2023]
|
31
|
Fenollar-Cortés M, Gallego-Merlo J, Trujillo-Tiebas M, Lorda-Sánchez I, Ayuso C. Two Non-Contiguous Duplications in theDMDGene in a Spanish Family. J Neurogenet 2009; 22:93-101. [DOI: 10.1080/01677060701686184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Carvalho CM, Zhang F, Liu P, Patel A, Sahoo T, Bacino CA, Shaw C, Peacock S, Pursley A, Tavyev YJ, Ramocki MB, Nawara M, Obersztyn E, Vianna-Morgante AM, Stankiewicz P, Zoghbi HY, Cheung SW, Lupski JR. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet 2009; 18:2188-203. [PMID: 19324899 PMCID: PMC2685756 DOI: 10.1093/hmg/ddp151] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 03/24/2009] [Indexed: 11/13/2022] Open
Abstract
Duplication at the Xq28 band including the MECP2 gene is one of the most common genomic rearrangements identified in neurodevelopmentally delayed males. Such duplications are non-recurrent and can be generated by a non-homologous end joining (NHEJ) mechanism. We investigated the potential mechanisms for MECP2 duplication and examined whether genomic architectural features may play a role in their origin using a custom designed 4-Mb tiling-path oligonucleotide array CGH assay. Each of the 30 patients analyzed showed a unique duplication varying in size from approximately 250 kb to approximately 2.6 Mb. Interestingly, in 77% of these non-recurrent duplications, the distal breakpoints grouped within a 215 kb genomic interval, located 47 kb telomeric to the MECP2 gene. The genomic architecture of this region contains both direct and inverted low-copy repeat (LCR) sequences; this same region undergoes polymorphic structural variation in the general population. Array CGH revealed complex rearrangements in eight patients; in six patients the duplication contained an embedded triplicated segment, and in the other two, stretches of non-duplicated sequences occurred within the duplicated region. Breakpoint junction sequencing was achieved in four duplications and identified an inversion in one patient, demonstrating further complexity. We propose that the presence of LCRs in the vicinity of the MECP2 gene may generate an unstable DNA structure that can induce DNA strand lesions, such as a collapsed fork, and facilitate a Fork Stalling and Template Switching event producing the complex rearrangements involving MECP2.
Collapse
Affiliation(s)
- Claudia M.B. Carvalho
- Department of Molecular and Human Genetics
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Feng Zhang
- Department of Molecular and Human Genetics
| | | | | | | | | | - Chad Shaw
- Department of Molecular and Human Genetics
| | | | | | - Y. Jane Tavyev
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melissa B. Ramocki
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Magdalena Nawara
- Department of Medical Genetics, Institute of Mother and Child, Warsaw 01-211, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw 01-211, Poland
| | - Angela M. Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | - Huda Y. Zoghbi
- Department of Molecular and Human Genetics
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - James R. Lupski
- Department of Molecular and Human Genetics
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
33
|
Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum Genet 2009; 126:411-23. [PMID: 19449031 DOI: 10.1007/s00439-009-0679-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the dystrophin gene (DMD) cause Duchenne and Becker muscular dystrophies and the majority of cases are due to DMD gene rearrangements. Despite the high incidence of these aberrations, little is known about their causative molecular mechanism(s). We examined 792 DMD/BMD clinical samples by oligonucleotide array-CGH and report on the junction sequence analysis of 15 unique deletion cases and three complex intragenic rearrangements to elucidate potential underlying mechanism(s). Furthermore, we present three cases with intergenic rearrangements involving DMD and neighboring loci. The cases with intragenic rearrangements include an inversion with flanking deleted sequences; a duplicated segment inserted in direct orientation into a deleted region; and a splicing mutation adjacent to a deletion. Bioinformatic analysis demonstrated that 7 of 12 breakpoints combined among 3 complex cases aligned with repetitive sequences, as compared to 4 of 30 breakpoints for the 15 deletion cases. Moreover, the inversion/deletion case may involve a stem-loop structure that has contributed to the initiation of this rearrangement. For the duplication/deletion and splicing mutation/deletion cases, the presence of the first mutation, either a duplication or point mutation, may have elicited the deletion events in an attempt to correct preexisting mutations. While NHEJ is one potential mechanism for these complex rearrangements, the highly complex junction sequence of the inversion/deletion case suggests the involvement of a replication-based mechanism. Our results support the notion that regional genomic instability, aided by the presence of repetitive elements, a stem-loop structure, and possibly preexisting mutations, may elicit complex rearrangements of the DMD gene.
Collapse
|
34
|
Zhou C, Song S, Zhang J. A novel 3017-bp deletion mutation in the FERMT1 (KIND1) gene in a Chinese family with Kindler syndrome. Br J Dermatol 2009; 160:1119-22. [PMID: 19292718 DOI: 10.1111/j.1365-2133.2009.09052.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
35
|
Miyazaki D, Yoshida K, Fukushima K, Nakamura A, Suzuki K, Sato T, Takeda S, Ikeda SI. Characterization of deletion breakpoints in patients with dystrophinopathy carrying a deletion of exons 45-55 of the Duchenne muscular dystrophy (DMD) gene. J Hum Genet 2009; 54:127-30. [PMID: 19158820 DOI: 10.1038/jhg.2008.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion of exons 45-55 (del45-55) in the Duchenne muscular dystrophy gene (DMD) has gained particular interest in the field of molecular therapy, because it causes a milder phenotype than DMD, and therefore, may represent a good candidate for the goal of a multiple exon-skipping strategy. We have precisely characterized deletion breakpoints in three patients with del45-55 in DMD. Two of them were young adult males of the X-linked dilated cardiomyopathy phenotype, and the third patient revealed the mild Becker muscular dystrophy phenotype of late onset. The deletion breakpoints differed among patients. The deletion started at nt 226 604, 231 518, 117 284 in intron 44, and ended at nt 64 994, 59 314, 71 806 in intron 55, respectively. Deletion junctions showed no significant homology between the sequences adjacent to the distal and proximal end joints in these patients. Deletion breakpoints were not primarily associated with any particular sequence element, or with a matrix attachment region. However, there were several palindromic sequences and short tandem repeats at or near the breakpoints. These sequences, with a marked propensity to form secondary DNA structure intermediates, may predispose local DNA to breakage and intragenic recombination in these patients.
Collapse
Affiliation(s)
- Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Nagano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gaudio DD, Yang Y, Boggs BA, Schmitt ES, Lee JA, Sahoo T, Pham HT, Wiszniewska J, Craig Chinault A, Beaudet AL, Eng CM. Molecular diagnosis of Duchenne/Becker muscular dystrophy: enhanced detection of dystrophin gene rearrangements by oligonucleotide array-comparative genomic hybridization. Hum Mutat 2008; 29:1100-7. [DOI: 10.1002/humu.20841] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
37
|
Vazna A, Havlovicova M, Sedlacek Z. Molecular cloning and analysis of breakpoints on ring chromosome 17 in a patient with autism. Gene 2008; 407:186-92. [DOI: 10.1016/j.gene.2007.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
|
38
|
Dopman EB, Hartl DL. A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007; 104:19920-5. [PMID: 18056801 PMCID: PMC2148398 DOI: 10.1073/pnas.0709888104] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Indexed: 11/18/2022] Open
Abstract
Thomas Hunt Morgan and colleagues identified variation in gene copy number in Drosophila in the 1920s and 1930s and linked such variation to phenotypic differences [Bridges CB (1936) Science 83:210]. Yet the extent of variation in the number of chromosomes, chromosomal regions, or gene copies, and the importance of this variation within species, remain poorly understood. Here, we focus on copy-number variation in Drosophila melanogaster. We characterize copy-number polymorphism (CNP) across genomic regions, and we contrast patterns to infer the evolutionary processes acting on this variation. Copy-number variation in D. melanogaster is nonrandomly distributed, presumably because of a mutational bias produced by tandem repeats or other mechanisms. Comparisons of coding and noncoding CNPs, however, reveal a strong effect of purifying selection in the removal of structural variation from functionally constrained regions. Most patterns of CNP in D. melanogaster suggest that negative selection and mutational biases are the primary agents responsible for shaping structural variation.
Collapse
Affiliation(s)
- Erik B. Dopman
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| | - Daniel L. Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138
| |
Collapse
|
39
|
A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders. Cell 2007; 131:1235-47. [DOI: 10.1016/j.cell.2007.11.037] [Citation(s) in RCA: 655] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/10/2007] [Accepted: 11/14/2007] [Indexed: 01/17/2023]
|
40
|
Zarrin AA, Del Vecchio C, Tseng E, Gleason M, Zarin P, Tian M, Alt FW. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science 2006; 315:377-81. [PMID: 17170253 DOI: 10.1126/science.1136386] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.
Collapse
Affiliation(s)
- Ali A Zarrin
- Howard Hughes Medical Institute, Children's Hospital, CBR Institute for Biomedical Research, and Department of Genetics, Harvard University Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Sironi M, Pozzoli U, Comi GP, Riva S, Bordoni A, Bresolin N, Nag DK. A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast. FASEB J 2006; 20:1910-2. [PMID: 16891620 DOI: 10.1096/fj.05-5635fje] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deletions within the dystrophin gene (DMD) account for >70% of mutations leading to Duchenne and Becker muscular dystrophies (DMD and BMD). Deletion breakpoints were reported to be scattered within regions that also represent meiotic recombination hot spots. Recent studies indicates that deletion junctions arise from nonhomologous end joining (NHEJ), a major pathway for repairing DNA double-strand breaks (DSBs) in mammals. Here we show that a region in intron 47 (i.e., a major deletion hot spot in the DMD gene) generates DSBs during meiosis in yeast and harbors a cluster of previously sequenced deletion breaks. Mapping of breakpoints in 26 BMD/DMD patients indicated that the frequency of breakpoint occurrence around this region is 3-fold higher than expected by chance. These findings suggest that DSBs mediate deletion formation in intron 47 and possibly account for the high frequency of meiotic recombination in the region. Statistical analysis indicated the presence of at least one other breakpoint cluster in intron 47. Taken together, these results suggest that the primary events in deletion formation occur within discrete regions and that the scattered breakpoint distribution reflects both a variable degree of DSB end processing and the availability of a small (compared to the huge regions involved) deletion junction sample.
Collapse
Affiliation(s)
- Manuela Sironi
- Scientific Institute IRCCS E. Medea, Bosisio Parini (LC), Italy.
| | | | | | | | | | | | | |
Collapse
|
42
|
Férec C, Casals T, Chuzhanova N, Macek M, Bienvenu T, Holubova A, King C, McDevitt T, Castellani C, Farrell PM, Sheridan M, Pantaleo SJ, Loumi O, Messaoud T, Cuppens H, Torricelli F, Cutting GR, Williamson R, Ramos MJA, Pignatti PF, Raguénès O, Cooper DN, Audrézet MP, Chen JM. Gross genomic rearrangements involving deletions in the CFTR gene: characterization of six new events from a large cohort of hitherto unidentified cystic fibrosis chromosomes and meta-analysis of the underlying mechanisms. Eur J Hum Genet 2006; 14:567-76. [PMID: 16493442 DOI: 10.1038/sj.ejhg.5201590] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gross genomic rearrangements involving deletions in the CFTR gene have recently been found to account for approximately 20% of unidentified cystic fibrosis (CF) chromosomes in both French and Italian patients. Using QMPSF and walking quantitative DHPLC, six novel mutations (three simple deletions, two complex deletions with short insertions of 3-6 bp, and a complex deletion with a 182 bp inverted downstream sequence) were characterized by screening 274 unidentified CF chromosomes from 10 different countries. These lesions increase the total number of fully characterized large CFTR genomic rearrangements involving deletions to 21. Systematic analysis of the 42 associated breakpoints indicated that all 21 events were caused by nonhomologous recombination. Whole gene complexity analysis revealed a significant correlation between regions of low sequence complexity and the locations of the deletion breakpoints. Known recombination-promoting motifs were noted in the vicinity of the breakpoints. A total of 11 simple deletions were potentially explicable in terms of the classical model of replication slippage. However, the complex deletions appear to have arisen via multiple mechanisms; three of the five complex deletions with short insertions and both examples of large inverted insertions (299 and 182 bp, respectively) can be explained by either a model of serial replication slippage in cis (SRScis) or SRS in trans (SRStrans). Finally, the nature and distribution of large genomic rearrangements in the CFTR gene were compared and contrasted with those of two other genes, DMD and MSH2, with a view to gaining a broader understanding of DNA sequence context in mediating the diverse underlying mutational mechanisms.
Collapse
Affiliation(s)
- Claude Férec
- INSERM, U613 (Génétique Moléculaire et Génétique Epidémiologique), Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Woodward KJ, Cundall M, Sperle K, Sistermans EA, Ross M, Howell G, Gribble SM, Burford DC, Carter NP, Hobson DL, Garbern JY, Kamholz J, Heng H, Hodes ME, Malcolm S, Hobson GM. Heterogeneous duplications in patients with Pelizaeus-Merzbacher disease suggest a mechanism of coupled homologous and nonhomologous recombination. Am J Hum Genet 2005; 77:966-87. [PMID: 16380909 PMCID: PMC1285180 DOI: 10.1086/498048] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 09/12/2005] [Indexed: 11/04/2022] Open
Abstract
We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.6 Mb in size). Sequence analysis of the junctions revealed no large homologous regions between proximal and distal breakpoints. Most junctions had microhomology of 1-6 bases, and one had a 2-base insertion. Boundaries between single-copy and duplicated DNA were identical to the reference genomic sequence in all patients investigated. Taken together, these data suggest that the tandem duplications are formed by a coupled homologous and nonhomologous recombination mechanism. We suggest repair of a double-stranded break (DSB) by one-sided homologous strand invasion of a sister chromatid, followed by DNA synthesis and nonhomologous end joining with the other end of the break. This is in contrast to other genomic disorders that have recurrent rearrangements formed by nonallelic homologous recombination between LCRs. Interspersed repetitive elements (Alu elements, long interspersed nuclear elements, and long terminal repeats) were found at 18 of the 26 breakpoint sequences studied. No specific motif that may predispose to DSBs was revealed, but single or alternating tracts of purines and pyrimidines that may cause secondary structures were common. Analysis of the 2-Mb region susceptible to duplications identified proximal-specific repeats and distal LCRs in addition to the previously reported ones, suggesting that the unique genomic architecture may have a role in nonrecurrent rearrangements by promoting instability.
Collapse
Affiliation(s)
- Karen J. Woodward
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Maria Cundall
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Karen Sperle
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Erik A. Sistermans
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Mark Ross
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Gareth Howell
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Susan M. Gribble
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Deborah C. Burford
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Nigel P. Carter
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Donald L. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - James Y. Garbern
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - John Kamholz
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Henry Heng
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - M. E. Hodes
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Sue Malcolm
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| | - Grace M. Hobson
- Clinical and Molecular Genetics, Institute of Child Health, London; Western Diagnostic Pathology, Perth, Australia; Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Nemours Children’s Clinic, Wilmington, DE; Department of Human Genetics, Radboud University, Nijmegen, The Netherlands; The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom; Department of Neurology and Center for Molecular Medicine and Genetics, Wayne State University, Detroit; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis; and Department of Pediatrics, Thomas Jefferson University, Philadelphia
| |
Collapse
|
44
|
Browning CA, Grewal PK, Moore CJ, Hewitt JE. A rapid PCR method for genotyping the Large(myd) mouse, a model of glycosylation-deficient congenital muscular dystrophy. Neuromuscul Disord 2005; 15:331-5. [PMID: 15833424 DOI: 10.1016/j.nmd.2005.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
The myodystrophy (Large(myd)) mouse has a spontaneous loss of function mutation in a putative glycosyltransferase gene (Large). Mutations in the human gene (LARGE) have been described in congenital muscular dystrophy type 1D (MDC1D). Mutations in four other genes that encode known or putative glycosylation enzymes (POMT1, POMGnT1, fukutin and FKRP) are also associated with muscular dystrophy. In all these diseases hypoglycosylation of alpha-dystroglycan, and consequent loss of ligand binding, is a common pathomechanism. Currently, the Large(myd) mouse is the principal animal model for studying the underlying molecular mechanisms of this group of disorders. Over-expression of LARGE in cells from patients with mutations in POMT1 or POMGnT1 results in hyperglycosylation of alpha-dystroglycan and restoration of laminin binding. Thus, LARGE is a potential therapeutic target. Here, we define the intronic deletion breakpoints of the Large(myd) mutation and describe a simple, PCR-based diagnostic assay, facilitating the study of this important animal model.
Collapse
Affiliation(s)
- Claudia A Browning
- Institute of Genetics, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | |
Collapse
|
45
|
Dvorak J, Yang ZL, You FM, Luo MC. Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 2004; 168:1665-75. [PMID: 15579715 PMCID: PMC1448774 DOI: 10.1534/genetics.103.024927] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 07/28/2004] [Indexed: 11/18/2022] Open
Abstract
Polymorphism for deletions was investigated in 1027 lines of tetraploid and hexaploid wheat and 420 lines of wheat diploid ancestors. A total of 26 deletions originating during the evolution of polyploid wheat were discovered among 155 investigated loci. Wheat chromosomes were divided into a proximal, low-recombination interval containing 69 loci and a distal, high-recombination interval containing 86 loci. A total of 23 deletions involved loci in the distal, high-recombination interval and only 3 involved loci in the proximal, low-recombination interval. The rates of DNA loss differed by several orders of magnitude in the two intervals. The rate of diploidization of polyploid wheat by deletions was estimated and was shown to have proceeded faster in the distal, high-recombination interval than in the proximal, low-recombination interval.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
46
|
Shaw CJ, Lupski JR. Non-recurrent 17p11.2 deletions are generated by homologous and non-homologous mechanisms. Hum Genet 2004; 116:1-7. [PMID: 15526218 DOI: 10.1007/s00439-004-1204-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/21/2004] [Indexed: 10/26/2022]
Abstract
Several recurrent common chromosomal deletion and duplication breakpoints have been localized to large, highly homologous, low-copy repeats (LCRs). The mechanism responsible for these rearrangements, viz., non-allelic homologous recombination between LCR copies, has been well established. However, fewer studies have examined the mechanisms responsible for non-recurrent rearrangements with non-homologous breakpoint regions. Here, we have analyzed four uncommon deletions of 17p11.2, involving the Smith-Magenis syndrome region. Using somatic cell hybrid lines created from patient lymphoblasts, we have utilized a strategy based on the polymerase chain reaction to refine the deletion breakpoints and to obtain sequence data at the deletion junction. Our analyses have revealed that two of the four deletions are a product of Alu/Alu recombination, whereas the remaining two deletions result from a non-homologous end-joining mechanism. Of the breakpoints studied, three of eight are located in LCRs, and five of eight are within repetitive elements, including Alu and MER5B sequences. These findings suggest that higher-order genomic architecture, such as LCRs, and smaller repetitive sequences, such as Alu elements, can mediate chromosomal deletions via homologous and non-homologous mechanisms. These data further implicate homologous recombination as the predominant mechanism of deletion formation in this genomic interval.
Collapse
Affiliation(s)
- Christine J Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX 77030, USA
| | | |
Collapse
|
47
|
Spena S, Duga S, Asselta R, Peyvandi F, Mahasandana C, Malcovati M, Tenchini ML. Congenital afibrinogenaemia caused by uniparental isodisomy of chromosome 4 containing a novel 15-kb deletion involving fibrinogen Aα-chain gene. Eur J Hum Genet 2004; 12:891-8. [PMID: 15489905 DOI: 10.1038/sj.ejhg.5201207] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Among rare inherited deficiencies of coagulation factors, congenital afibrinogenaemia is characterised by the lack of fibrinogen in plasma. In the last few years, several genetic defects underlying afibrinogenaemia (mostly point mutations) have been described in the fibrinogen gene cluster. In this study, the molecular basis responsible for afibrinogenaemia in a Thai proband was defined. Point mutation screening was accomplished by directly sequencing the three fibrinogen genes. The impossibility to amplify fibrinogen Aalpha-chain gene (FGA) exons 5 and 6 suggested the presence of a homozygous deletion. A specific long-range PCR assay enabled the identification of a novel 15-kb deletion, representing the largest afibrinogenaemia-causing deletion described so far. Direct sequencing of the deletion junction allowed mapping of the breakpoints in FGA intron 4 and in the intergenic region between Aalpha- and Bbeta-chain genes. Since the mutation was inherited only from the mother and nonpaternity was ruled out, a maternal uniparental disomy (UPD) was hypothesised. UPD test, carried out with markers covering the whole chromosome 4, revealed that maternal isodisomy was responsible for homozygosity of the 15-kb deletion in the proband. The apparently normal phenotype of the proband, except for afibrinogenaemia, suggests that UPD for chromosome 4 is clinically silent. This represents the first case of a documented complete isodisomy of chromosome 4 causing the phenotypic expression of a recessive disorder. In silico analyses of the regions surrounding the breakpoints suggested that the 15-kb deletion might have originated from an inappropriate repair of a double-strand break by the nonhomologous end joining mechanism.
Collapse
Affiliation(s)
- Silvia Spena
- Department of Biology and Genetics for Medical Sciences, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003; 2:731-40. [PMID: 14636778 DOI: 10.1016/s1474-4422(03)00585-4] [Citation(s) in RCA: 760] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A large and complex gene on the X chromosome encodes dystrophin. Many mutations have been described in this gene, most of which affect the expression of the muscle isoform, the best-known protein product of this locus. These mutations result in the Duchenne and Becker muscular dystrophies (DMD and BMD). However, there are several other tissue specific isoforms of dystrophin, some exclusively or predominantly expressed in the brain or the retina. Mutations affecting the correct expression of these tissue-specific isoforms have been associated with the CNS involvement common in DMD. Rare mutations also account for the allelic disorder X-linked dilated cardiomyopathy, in which dystrophin expression or function is affected mostly or exclusively in the heart. Genotype definition of the dystrophin gene in patients with dystrophinopathies has taught us much about functionally important domains of the protein itself and has provided insights into several regulatory mechanisms governing the gene expression profile. Here, we focus on current understanding of the genotype-phenotype relation for mutations in the dystrophin gene and their implications for gene functions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | |
Collapse
|
49
|
Cruciani F, Bernardini L, Santolamazza P, Modiano D, Torroni A, Scozzari R. Linkage disequilibrium analysis of the human adenosine deaminase (ada) gene provides evidence for a lack of correlation between hot spots of equal and unequal homologous recombination. Genomics 2003; 82:20-33. [PMID: 12809673 DOI: 10.1016/s0888-7543(03)00096-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linkage disequilibrium (LD) pattern within the adenosine deaminase (ADA) gene was analyzed by studying 13 polymorphic loci in 137 families from two European and three African populations. Evidence for the presence of a 12-kb meiotic crossover hot spot, spanning part of the first and the second intron and flanked by regions of reduced recombination activity, was obtained. Moreover, segregation analysis of 113 informative meioses revealed two recombination events that are internal or overlap the 12-kb region, thus suggesting a recombination rate for the hot-spot region about 50-fold higher than the mean rate across the human genome. Within the hot spot, a 144-bp palindromic sequence was also identified and its possible involvement in the recombination process is discussed. The 12-kb region characterized by the low degree of LD does not include the 3.2-kb region that is deleted, as a result of recurrent unequal homologous recombination between two Alu elements, in patients affected by autosomal severe combined immunodeficiency. This observation provides the first evidence for an absence of correlation between hot spots of equal and unequal homologous recombination.
Collapse
Affiliation(s)
- Fulvio Cruciani
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Gualandi F, Rimessi P, Cardazzo B, Toffolatti L, Dunckley MG, Calzolari E, Patarnello T, Muntoni F, Ferlini A. Genomic definition of a pure intronic dystrophin deletion responsible for an XLDC splicing mutation: in vitro mimicking and antisense modulation of the splicing abnormality. Gene 2003; 311:25-33. [PMID: 12853135 DOI: 10.1016/s0378-1119(03)00527-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We characterised a dystrophin gene rearrangement in a previously described family with X-linked dilated cardiomyopathy and we demonstrated that it represents an 11 kb deletion occurring within intron 11. This unique deletion joined two physiologically distant intronic regions and brought adjacent two cryptic splice sites, generating a 159 bp sequence recognised as a novel alternative exon and spliced into the dystrophin transcript. Comparative analysis of the intronic region involved in the breakpoint revealed the presence of a LINE1 element (L1P_MA2), containing a 5' unconventional region (L1M1_5). This region provides the 5' cryptic splice site utilised by the novel exon, includes part of the region spliced into the dystrophin transcript and contains two short GA rich regions compatible with splicing motifs. We performed an in vitro splicing assay by using a minigene containing the patient minimal genomic rearrangement and we reproduced the inclusion of the novel alternative exon seen in the patient tissues. Antisense splicing modulation targeting the 3' cryptic splice site succeeded in restoring the canonical splicing. This represents a novel intronic mutational mechanism affecting the dystrophin gene and generating a splicing pathology. The definition of this mechanism might open perspectives in unravelling splicing regulatory motifs and their involvement in human genetic diseases.
Collapse
Affiliation(s)
- Francesca Gualandi
- Sezione di Genetica Medica, Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Via L. Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|