1
|
Mackie ERR, McKay MV, Barrow AS, Soares da Costa TP. Inhibitors of lysine biosynthesis enzymes as potential new herbicides. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP25030. [PMID: 40354509 DOI: 10.1071/fp25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Lysine is an amino acid that is essential for the growth and development of all organisms owing to its role in a plethora of critical biological functions and reactions. In plants, lysine is synthesised via five sequential enzyme-catalysed reactions collectively known as the diaminopimelate (DAP) pathway, whereas animals are reliant on their plant dietary intake to obtain lysine. Given that lysine is one of the most nutritionally limiting amino acids, several studies have focused on developing strategies to modulate the activity of DAP pathway enzymes to improve the nutritional value of crops. More recently, research has emerged on the potential of inhibiting DAP pathway enzymes for the development of herbicides with a novel mode of action. Over reliance on a small number of modes of action has led to a herbicide resistance crisis, necessitating the development of new modes of action to which no resistance exists. As such, the first herbicidal inhibitors of the DAP pathway have been developed, which target the first three enzymes in lysine biosynthesis. This review explores the structure, function, and inhibition of these enzymes, as well as highlighting promising avenues for the future development of new plant lysine biosynthesis inhibitors.
Collapse
Affiliation(s)
- Emily R R Mackie
- School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Mirrin V McKay
- School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Andrew S Barrow
- School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Tatiana P Soares da Costa
- School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| |
Collapse
|
2
|
Gilkes JM, Frampton RA, Board AJ, Hudson AO, Price TG, Morris VK, Crittenden DL, Muscroft‐Taylor AC, Sheen CR, Smith GR, Dobson RCJ. A new lysine biosynthetic enzyme from a bacterial endosymbiont shaped by genetic drift and genome reduction. Protein Sci 2024; 33:e5083. [PMID: 38924211 PMCID: PMC11201819 DOI: 10.1002/pro.5083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.
Collapse
Affiliation(s)
- Jenna M. Gilkes
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Rebekah A. Frampton
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Amanda J. Board
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - André O. Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life SciencesRochesterNew YorkUSA
| | - Thomas G. Price
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | - Vanessa K. Morris
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Deborah L. Crittenden
- Biomolecular Interaction CentreSchool of Chemical and Physical Sciences, University of CanterburyChristchurchNew Zealand
| | | | - Campbell R. Sheen
- Callaghan Innovation, University of CanterburyChristchurchNew Zealand
| | - Grant R. Smith
- The New Zealand Institute for Plant and Food Research LimitedLincolnNew Zealand
| | - Renwick C. J. Dobson
- Biomolecular Interaction CentreSchool of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Naz S, Liu P, Farooq U, Ma H. Insight into de-regulation of amino acid feedback inhibition: a focus on structure analysis method. Microb Cell Fact 2023; 22:161. [PMID: 37612753 PMCID: PMC10464499 DOI: 10.1186/s12934-023-02178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023] Open
Abstract
Regulation of amino acid's biosynthetic pathway is of significant importance to maintain homeostasis and cell functions. Amino acids regulate their biosynthetic pathway by end-product feedback inhibition of enzymes catalyzing committed steps of a pathway. Discovery of new feedback resistant enzyme variants to enhance industrial production of amino acids is a key objective in industrial biotechnology. Deregulation of feedback inhibition has been achieved for various enzymes using in vitro and in silico mutagenesis techniques. As enzyme's function, its substrate binding capacity, catalysis activity, regulation and stability are dependent on its structural characteristics, here, we provide detailed structural analysis of all feedback sensitive enzyme targets in amino acid biosynthetic pathways. Current review summarizes information regarding structural characteristics of various enzyme targets and effect of mutations on their structures and functions especially in terms of deregulation of feedback inhibition. Furthermore, applicability of various experimental as well as computational mutagenesis techniques to accomplish feedback resistance has also been discussed in detail to have an insight into various aspects of research work reported in this particular field of study.
Collapse
Affiliation(s)
- Sadia Naz
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Pi Liu
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Islamabad, 22060, Pakistan
| | - Hongwu Ma
- Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
4
|
Kiekens R, de Koning R, Toili MEM, Angenon G. The Hidden Potential of High-Throughput RNA-Seq Re-Analysis, a Case Study for DHDPS, Key Enzyme of the Aspartate-Derived Lysine Biosynthesis Pathway and Its Role in Abiotic and Biotic Stress Responses in Soybean. PLANTS 2022; 11:plants11131762. [PMID: 35807714 PMCID: PMC9269547 DOI: 10.3390/plants11131762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
DHDPS is a key enzyme in the aspartate-derived lysine biosynthesis pathway and an evident object of study for biofortification strategies in plants. DHDPS isoforms with novel regulatory properties in Medicago truncatula were demonstrated earlier and hypothesized to be involved in abiotic and biotic stress responses. Here, we present a phylogenetic analysis of the DHPDS gene family in land plants which establishes the existence of a legume-specific class of DHDPS, termed DHDPS B-type, distinguishable from the DHDPS A-type commonly present in all land plants. The G. max genome comprises two A-type DHDPS genes (Gm.DHDPS-A1; Glyma.09G268200, Gm.DHDPS-A2; Glyma.18G221700) and one B-type (Gm.DHDPS-B; Glyma.03G022300). To further investigate the expression pattern of the G. max DHDPS isozymes in different plant tissues and under various stress conditions, 461 RNA-seq experiments were exploited and re-analyzed covering two expression atlases, 13 abiotic and 5 biotic stress studies. Gm.DHDPS-B is seen almost exclusively expressed in roots and nodules in addition to old cotyledons or senescent leaves while both DHDPS A-types are expressed constitutively in all tissues analyzed with the highest expression in mature seeds. Furthermore, Gm.DHDPS-B expression is significantly upregulated in some but not all stress responses including salt stress, flooding, ethylene or infection with Phytophthora sojae and coincides with downregulation of DHDPS A-types. In conclusion, we demonstrate the potential of an in-depth RNA-seq re-analysis for the guidance of future experiments and to expand on current knowledge.
Collapse
Affiliation(s)
- Raphaël Kiekens
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Ramon de Koning
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Department of Horticulture and Food Security, School of Agriculture and Environmental Sciences, College of Agriculture and Natural Resources, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (R.K.); (R.d.K.); (M.E.M.T.)
- Correspondence: ; Tel.: +32-2-629-1935
| |
Collapse
|
5
|
Huang A, Coutu C, Harrington M, Rozwadowski K, Hegedus DD. Engineering a feedback inhibition-insensitive plant dihydrodipicolinate synthase to increase lysine content in Camelina sativa seeds. Transgenic Res 2021; 31:131-148. [PMID: 34802109 PMCID: PMC8821502 DOI: 10.1007/s11248-021-00291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Camelina sativa (camelina) is emerging as an alternative oilseed crop due to its short growing cycle, low input requirements, adaptability to less favorable growing environments and a seed oil profile suitable for biofuel and industrial applications. Camelina meal and oil are also registered for use in animal and fish feeds; however, like meals derived from most cereals and oilseeds, it is deficient in certain essential amino acids, such as lysine. In higher plants, the reaction catalyzed by dihydrodipicolinate synthase (DHDPS) is the first committed step in the biosynthesis of lysine and is subject to regulation by lysine through feedback inhibition. Here, we report enhancement of lysine content in C. sativa seed via expression of a feedback inhibition-insensitive form of DHDPS from Corynebacterium glutamicums (CgDHDPS). Two genes encoding C. sativa DHDPS were identified and the endogenous enzyme is partially insensitive to lysine inhibition. Site-directed mutagenesis was used to examine the impact of alterations, alone and in combination, present in lysine-desensitized DHDPS isoforms from Arabidopsis thaliana DHDPS (W53R), Nicotiana tabacum (N80I) and Zea mays (E84K) on C. sativa DHDPS lysine sensitivity. When introduced alone, each of the alterations decreased sensitivity to lysine; however, enzyme specific activity was also affected. There was evidence of molecular or structural interplay between residues within the C. sativa DHDPS allosteric site as coupling of the W53R mutation with the N80V mutation decreased lysine sensitivity of the latter, but not to the level with the W53R mutation alone. Furthermore, the activity and lysine sensitivity of the triple mutant (W53R/N80V/E84T) was similar to the W53R mutation alone or the C. glutamicum DHDPS. The most active and most lysine-insensitive C. sativa DHDPS variant (W53R) was not inhibited by free lysine up to 1 mM, comparable to the C. glutamicums enzyme. Seed lysine content increased 13.6 -22.6% in CgDHDPS transgenic lines and 7.6–13.2% in the mCsDHDPS lines. The high lysine-accumulating lines from this work may be used to produce superior quality animal feed with improved essential amino acid profile.
Collapse
Affiliation(s)
- Alex Huang
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Kevin Rozwadowski
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
6
|
Hall CJ, Lee M, Boarder MP, Mangion AM, Gendall AR, Panjikar S, Perugini MA, Soares da Costa TP. Differential lysine-mediated allosteric regulation of plant dihydrodipicolinate synthase isoforms. FEBS J 2021; 288:4973-4986. [PMID: 33586321 DOI: 10.1111/febs.15766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/16/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Lysine biosynthesis in plants occurs via the diaminopimelate pathway. The first committed and rate-limiting step of this pathway is catalysed by dihydrodipicolinate synthase (DHDPS), which is allosterically regulated by the end product, l-lysine (lysine). Given that lysine is a common nutritionally limiting amino acid in cereal crops, there has been much interest in probing the regulation of DHDPS. Interestingly, knockouts in Arabidopsis thaliana of each isoform (AtDHDPS1 and AtDHDPS2) result in different phenotypes, despite the enzymes sharing > 85% protein sequence identity. Accordingly, in this study, we compared the catalytic activity, lysine-mediated inhibition and structures of both A. thaliana DHDPS isoforms. We found that although the recombinantly produced enzymes have similar kinetic properties, AtDHDPS1 is 10-fold more sensitive to lysine. We subsequently used X-ray crystallography to probe for structural differences between the apo- and lysine-bound isoforms that could account for the differential allosteric inhibition. Despite no significant changes in the overall structures of the active or allosteric sites, we noted differences in the rotamer conformation of a key allosteric site residue (Trp116) and proposed that this could result in differences in lysine dissociation. Microscale thermophoresis studies supported our hypothesis, with AtDHDPS1 having a ~ 6-fold tighter lysine dissociation constant compared to AtDHDPS2, which agrees with the lower half minimal inhibitory concentration for lysine observed. Thus, we highlight that subtle differences in protein structures, which could not have been predicted from the primary sequences, can have profound effects on the allostery of a key enzyme involved in lysine biosynthesis in plants. DATABASES: Structures described are available in the Protein Data Bank under the accession numbers 6VVH and 6VVI.
Collapse
Affiliation(s)
- Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Mihwa Lee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Matthew P Boarder
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Alexandra M Mangion
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, Australia.,Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, Australia
| | - Santosh Panjikar
- Australian Synchrotron, ANSTO, Clayton, Australia.,Department of Molecular Biology and Biochemistry, Monash University, Melbourne, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| |
Collapse
|
7
|
Gupta R, Hogan CJ, Perugini MA, Soares da Costa TP. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum. PLANTA 2018; 248:381-391. [PMID: 29744651 DOI: 10.1007/s00425-018-2894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a KM (pyruvate) of 0.45 mM, KM (l-aspartate-4-semialdehyde) of 0.07 mM, kcat of 56 s-1, and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a Rg of 33 Å and Dmax of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Campbell J Hogan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Atkinson SC, Dogovski C, Wood K, Griffin MDW, Gorman MA, Hor L, Reboul CF, Buckle AM, Wuttke J, Parker MW, Dobson RCJ, Perugini MA. Substrate Locking Promotes Dimer-Dimer Docking of an Enzyme Antibiotic Target. Structure 2018; 26:948-959.e5. [PMID: 29804823 DOI: 10.1016/j.str.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 11/19/2022]
Abstract
Protein dynamics manifested through structural flexibility play a central role in the function of biological molecules. Here we explore the substrate-mediated change in protein flexibility of an antibiotic target enzyme, Clostridium botulinum dihydrodipicolinate synthase. We demonstrate that the substrate, pyruvate, stabilizes the more active dimer-of-dimers or tetrameric form. Surprisingly, there is little difference between the crystal structures of apo and substrate-bound enzyme, suggesting protein dynamics may be important. Neutron and small-angle X-ray scattering experiments were used to probe substrate-induced dynamics on the sub-second timescale, but no significant changes were observed. We therefore developed a simple technique, coined protein dynamics-mass spectrometry (ProD-MS), which enables measurement of time-dependent alkylation of cysteine residues. ProD-MS together with X-ray crystallography and analytical ultracentrifugation analyses indicates that pyruvate locks the conformation of the dimer that promotes docking to the more active tetrameric form, offering insight into ligand-mediated stabilization of multimeric enzymes.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathleen Wood
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Lilian Hor
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, La Trobe University, Melbourne, VIC 3086, Australia
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Joachim Wuttke
- Juelich Centre for Neutron Science (JCNS), at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Juelich GmbH, Lichtenstrasse 1, Garching 85 747, Germany
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag, Christchurch 4800, New Zealand
| | - Matthew A Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
9
|
Desbois S, John UP, Perugini MA. Dihydrodipicolinate synthase is absent in fungi. Biochimie 2018; 152:73-84. [PMID: 29959064 DOI: 10.1016/j.biochi.2018.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The class I aldolase dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the diaminopimelate (DAP) lysine biosynthesis pathway in bacteria, archaea and plants. Despite the existence, in databases, of numerous fungal sequences annotated as DHDPS, its presence in fungi has been the subject of contradictory claims. We report the characterization of DHDPS candidates from fungi. Firstly, the putative DHDPS from Coccidioides immitis (PDB ID: 3QFE) was shown to have negligible enzyme activity. Sequence analysis of 3QFE showed that three out of the seven amino acid residues critical for DHDPS activity are absent; however, exact matches to catalytic residues from two other class I aldolases, 2-keto-3-deoxygluconate aldolase (KDGA), and 4-hydroxy-2-oxoglutarate aldolase (HOGA), were identified. The presence of both KDGA and HOGA activity in 3QFE was confirmed in vitro using enzyme assays, the first report of such dual activity. Subsequent analyses of all publically available fungal sequences revealed that no entry contains all seven residues important for DHDPS function. The candidate with the highest number of identities (6 of 7), KIW77228 from Fonsecaea pedrosoi, was shown to have trace DHDPS activity in vitro, partially restored by substitution of the seventh critical residue, and to be incapable of complementing DHDPS-deficient E. coli cells. Combined with the presence of all seven sequences for the alternative α-aminoadipate (AAA) lysine biosynthesis pathway in C. immitis and F. pedrosoi, we believe that DHDPS and the DAP pathway are absent in fungi, and further, that robust informed methods for annotating genes need to be implemented.
Collapse
Affiliation(s)
- Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia
| | - Ulrik P John
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia; Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, VIC, 3086, Australia.
| |
Collapse
|
10
|
Soares da Costa TP, Abbott BM, Gendall AR, Panjikar S, Perugini MA. Molecular evolution of an oligomeric biocatalyst functioning in lysine biosynthesis. Biophys Rev 2018; 10:153-162. [PMID: 29204887 PMCID: PMC5899710 DOI: 10.1007/s12551-017-0350-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/28/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is critical to the production of lysine through the diaminopimelate (DAP) pathway. Elucidation of the function, regulation and structure of this key class I aldolase has been the focus of considerable study in recent years, given that the dapA gene encoding DHDPS has been found to be essential to bacteria and plants. Allosteric inhibition by lysine is observed for DHDPS from plants and some bacterial species, the latter requiring a histidine or glutamate at position 56 (Escherichia coli numbering) over a basic amino acid. Structurally, two DHDPS monomers form the active site, which binds pyruvate and (S)-aspartate β-semialdehyde, with most dimers further dimerising to form a tetrameric arrangement around a solvent-filled centre cavity. The architecture and behaviour of these dimer-of-dimers is explored in detail, including biophysical studies utilising analytical ultracentrifugation, small-angle X-ray scattering and macromolecular crystallography that show bacterial DHDPS tetramers adopt a head-to-head quaternary structure, compared to the back-to-back arrangement observed for plant DHDPS enzymes. Finally, the potential role of pyruvate in providing substrate-mediated stabilisation of DHDPS is considered.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Melbourne, VIC, 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC, 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
12
|
Grant Pearce F, Hudson AO, Loomes K, Dobson RCJ. Dihydrodipicolinate Synthase: Structure, Dynamics, Function, and Evolution. Subcell Biochem 2017; 83:271-289. [PMID: 28271480 DOI: 10.1007/978-3-319-46503-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Enzymes are usually comprised of multiple subunits and more often than not they are made up of identical subunits. In this review we examine lysine biosynthesis and focus on the enzyme dihydrodipicolinate synthase in terms of its structure, function and the evolution of its varied number of subunits (quaternary structure). Dihydrodipicolinate synthase is the first committed step in the biosynthesis of lysine, which occurs naturally in plants, bacteria, archaea and fungi, but is not synthesized in mammals. In bacteria, there have been four separate pathways identified from tetrahydrodipicolinate to meso-diaminopimelate, which is the immediate precursor to lysine. Dihydrodipicolinate synthases from many bacterial and plant species have been structurally characterised and the results show considerable variability with respect to their quaternary structure, hinting at their evolution. The oligomeric state of the enzyme plays a key role, both in catalysis and in the allosteric regulation of the enzyme by lysine. While most bacteria and plants have tetrameric enzymes, where the structure of the dimeric building blocks is conserved, the arrangement of the dimers differs. We also review a key development in the field, namely the discovery of a human dihydrodipicolinate synthase-like enzyme, now known as 4-hydroxy-2-oxoglutarate aldolase . This discovery complicates the rationale underpinning drug development against bacterial dihydrodipicolinate synthases, since genetic errors in 4-hydroxy-2-oxoglutarate aldolase cause the disease Primary Hyperoxaluria Type 3 and therefore compounds that are geared towards the inhibition of bacterial dihydrodipicolinate synthase may be toxic to mammalian cells.
Collapse
Affiliation(s)
- F Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3010, Australia.
| |
Collapse
|
13
|
Christensen JB, Soares da Costa TP, Faou P, Pearce FG, Panjikar S, Perugini MA. Structure and Function of Cyanobacterial DHDPS and DHDPR. Sci Rep 2016; 6:37111. [PMID: 27845445 PMCID: PMC5109050 DOI: 10.1038/srep37111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.
Collapse
Affiliation(s)
- Janni B. Christensen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - T. P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
14
|
Shrivastava P, Navratna V, Silla Y, Dewangan RP, Pramanik A, Chaudhary S, Rayasam G, Kumar A, Gopal B, Ramachandran S. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues. Sci Rep 2016; 6:30827. [PMID: 27501775 PMCID: PMC4977564 DOI: 10.1038/srep30827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA.
Collapse
Affiliation(s)
- Priyanka Shrivastava
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi 110025, India
| | - Vikas Navratna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Yumnam Silla
- Biotechnology Group (BIF center), Biological Science & Technology Division (BSTD), CSIR-North-East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Rikeshwer P. Dewangan
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Atreyi Pramanik
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - Sarika Chaudhary
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
| | - GeethaVani Rayasam
- Open Source Drug Discovery Unit (OSDD), CSIR-IGIB, New Delhi, 110001, India
| | - Anuradha Kumar
- Open Source Drug Discovery Unit (OSDD), CSIR-IGIB, New Delhi, 110001, India
| | | | - Srinivasan Ramachandran
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi 110025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi 110025, India
| |
Collapse
|
15
|
Soares da Costa TP, Desbois S, Dogovski C, Gorman MA, Ketaren NE, Paxman JJ, Siddiqui T, Zammit LM, Abbott BM, Robins-Browne RM, Parker MW, Jameson GB, Hall NE, Panjikar S, Perugini MA. Structural Determinants Defining the Allosteric Inhibition of an Essential Antibiotic Target. Structure 2016; 24:1282-1291. [PMID: 27427481 DOI: 10.1016/j.str.2016.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the lysine biosynthesis pathway of bacteria. The pathway can be regulated by feedback inhibition of DHDPS through the allosteric binding of the end product, lysine. The current dogma states that DHDPS from Gram-negative bacteria are inhibited by lysine but orthologs from Gram-positive species are not. The 1.65-Å resolution structure of the Gram-negative Legionella pneumophila DHDPS and the 1.88-Å resolution structure of the Gram-positive Streptococcus pneumoniae DHDPS bound to lysine, together with comprehensive functional analyses, show that this dogma is incorrect. We subsequently employed our crystallographic data with bioinformatics, mutagenesis, enzyme kinetics, and microscale thermophoresis to reveal that lysine-mediated inhibition is not defined by Gram staining, but by the presence of a His or Glu at position 56 (Escherichia coli numbering). This study has unveiled the molecular determinants defining lysine-mediated allosteric inhibition of bacterial DHDPS.
Collapse
Affiliation(s)
- Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sebastien Desbois
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael A Gorman
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Natalia E Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Tanzeela Siddiqui
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leanne M Zammit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Belinda M Abbott
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Roy M Robins-Browne
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia; Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Geoffrey B Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Nathan E Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
16
|
Gordon SE, Weber DK, Downton MT, Wagner J, Perugini MA. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation. PLoS Comput Biol 2016; 12:e1004811. [PMID: 26967332 PMCID: PMC4788353 DOI: 10.1371/journal.pcbi.1004811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions. Interactions between proteins and ligands underpin many important biological processes, such as binding of substrates to their cognate enzymes in the process of catalysis. These interactions are complex, often requiring several intermediate steps to fully transition into the bound state. Here, we have used computational simulation to study binding of pyruvate to Dihydrodipicolinate synthase (DHDPS), an enzyme in the bacterial diaminopimelate pathway. In bacteria, such as the human pathogen S. aureus, DHDPS functions to make building blocks necessary for protein and bacterial cell wall biosyntheses. As the enzyme is absent in humans, yet essential for bacterial growth, DHDPS is a valid target for broad-range antibiotics. However, known DHDPS inhibitors show poor potency. One avenue that has not yet been taken into consideration for inhibitor design is the dynamics of DHDPS’s interaction with its reaction substrates (e.g. pyruvate). Using molecular dynamics simulation, we find that pyruvate binding to DHDPS must pass through a transition intermediate ‘hotspot’ in which the substrate is held in place by a dense network of noncovalent bonds. Given that many of the protein residues involved in this interaction are also shared by DHDPS from many pathogenic bacteria, this binding intermediate ‘hotspot’ may help in development of better broad-range DHDPS inhibitors.
Collapse
Affiliation(s)
- Shane E. Gordon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Daniel K. Weber
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew T. Downton
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - John Wagner
- Computational Biophysics, IBM Research - Australia, Carlton, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Naqvi KF, Staker BL, Dobson RCJ, Serbzhinskiy D, Sankaran B, Myler PJ, Hudson AO. Cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the human pathogenic bacterium Bartonella henselae strain Houston-1 at 2.1 Å resolution. Acta Crystallogr F Struct Biol Commun 2016; 72:2-9. [PMID: 26750477 PMCID: PMC4708043 DOI: 10.1107/s2053230x15023213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
The enzyme dihydrodipicolinate synthase catalyzes the committed step in the synthesis of diaminopimelate and lysine to facilitate peptidoglycan and protein synthesis. Dihydrodipicolinate synthase catalyzes the condensation of L-aspartate 4-semialdehyde and pyruvate to synthesize L-2,3-dihydrodipicolinate. Here, the cloning, expression, purification, crystallization and X-ray diffraction analysis of dihydrodipicolinate synthase from the pathogenic bacterium Bartonella henselae, the causative bacterium of cat-scratch disease, are presented. Protein crystals were grown in conditions consisting of 20%(w/v) PEG 4000, 100 mM sodium citrate tribasic pH 5.5 and were shown to diffract to ∼2.10 Å resolution. They belonged to space group P212121, with unit-cell parameters a = 79.96, b = 106.33, c = 136.25 Å. The final R values were Rr.i.m. = 0.098, Rwork = 0.183, Rfree = 0.233.
Collapse
Affiliation(s)
- Kubra F. Naqvi
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Renwick C. J. Dobson
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Dmitry Serbzhinskiy
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Ernest Orlando Lawrence Berkeley National Laboratory, USA
| | - Peter J. Myler
- Seattle Structural Genomics Center for Infectious Disease, USA
- Center for Infectious Disease Research, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, USA
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603, USA
| |
Collapse
|
18
|
Abstract
Here, we review recent studies aimed at defining the importance of quaternary structure to a model oligomeric enzyme, dihydrodipicolinate synthase. This will illustrate the complementary and synergistic outcomes of coupling the techniques of analytical ultracentrifugation with enzyme kinetics, in vitro mutagenesis, macromolecular crystallography, small angle X-ray scattering, and molecular dynamics simulations, to demonstrate the role of subunit self-association in facilitating protein dynamics and enzyme function. This multitechnique approach has yielded new insights into the molecular evolution of protein quaternary structure.
Collapse
|
19
|
Crystal structure and in silico studies of dihydrodipicolinate synthase (DHDPS) from Aquifex aeolicus. Extremophiles 2014; 18:973-85. [PMID: 24996798 DOI: 10.1007/s00792-014-0667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS, E.C.4.2.1.52) catalyzes the first committed step in the lysine biosynthetic pathway: the condensation of (S)-aspartate semialdehyde and pyruvate to form (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, we report the crystal structure of DHDPS from a hyperthermophilic bacterium Aquifex aeolicus (AqDHDPS). L-Lysine is used as an important animal feed additive where the production is at the level of 1.5 million tons per year. The biotechnological manufacture of lysine has been going for more than 50 years which includes over synthesis and reverse engineering of DHDPS. AqDHDPS revealed a unique disulfide linkage which is not conserved in the homologues of AqDHDPS. In silico mutation of C139A and intermolecular ion-pair residues and the subsequent molecular dynamics simulation of the mutants showed that these residues are critical for the stability of AqDHDPS tetramer. MD simulations of AqDHDPS at three different temperatures (303, 363 and 393 K) revealed that the molecule is stable at 363 K. Thus, this structural and in silico study of AqDHDPS likely provides additional details towards the rational and structure-based design of hyper-L-lysine producing bacterial strains.
Collapse
|
20
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
21
|
Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MDW, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA. From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 2013; 8:e83419. [PMID: 24349508 PMCID: PMC3862839 DOI: 10.1371/journal.pone.0083419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
Collapse
Affiliation(s)
- Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Michael A. Gorman
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalia E. Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Judy Praszkier
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Leanne M. Zammit
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Molecular docking and in silico studies on analogues of 2-methylheptyl isonicotinate with DHDPS enzyme of Mycobacterium tuberculosis. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0488-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Siddiqui T, Paxman JJ, Dogovski C, Panjikar S, Perugini MA. Cloning to crystallization of dihydrodipicolinate synthase from the intracellular pathogen Legionella pneumophila. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1177-81. [PMID: 24100576 PMCID: PMC3792684 DOI: 10.1107/s1744309113024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/03/2013] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the rate-limiting step in the biosynthesis of meso-diaminopimelate and lysine. Here, the cloning, expression, purification and crystallization of DHDPS from the intracellular pathogen Legionella pneumophila are described. Crystals grown in the presence of high-molecular-weight PEG precipitant and magnesium chloride were found to diffract beyond 1.65 Å resolution. The crystal lattice belonged to the hexagonal space group P6₁22, with unit-cell parameters a=b=89.31, c=290.18 Å, and contained two molecules in the asymmetric unit. The crystal structure was determined by molecular replacement using a single chain of Pseudomonas aeruginosa DHDPS as the search model.
Collapse
Affiliation(s)
- Tanzeela Siddiqui
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | | | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, VIC 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Erzeel E, Van Bochaute P, Thu TT, Angenon G. Medicago truncatula dihydrodipicolinate synthase (DHDPS) enzymes display novel regulatory properties. PLANT MOLECULAR BIOLOGY 2013; 81:401-415. [PMID: 23329373 DOI: 10.1007/s11103-013-0008-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 01/04/2013] [Indexed: 06/01/2023]
Abstract
Lysine biosynthesis in plants is tightly regulated by feedback inhibition of the end product on the first enzyme of the lysine-specific branch, dihydrodipicolinate synthase (DHDPS). Three complete DHDPS coding sequences and one partial sequence were obtained in Medicago truncatula via inverse PCR. Analysis of the MtDHDPS sequences indicated the presence of isozymes (MtDHDPS2 and MtDHDPS3) with multiple amino acid substitutions on positions previously shown to be involved in feedback inhibition and of residues important for catalytic activity, possibly affecting the enzymatic properties of these isoforms. Sequences similar to MtDHDPS2 and 3 are present in Lotus japonicus and Glycine max, suggesting the existence of a specific conserved class of DHDPS genes within the Fabaceae family. The MtDHDPS genes were found by quantitative RT-PCR analysis to be expressed in an organ-specific manner in M. truncatula. All four MtDHDPS enzymes were expressed separately in Escherichia coli, revealing a strongly reduced sensitivity of the MtDHDPS2 protein to lysine feedback inhibition and a severely reduced activity of the MtDHDPS3 protein. Remarkably, MtDHDPS3 expression in Arabidopsis thaliana produced transgenic plants with a significantly increased threonine level, suggesting a dominant DHDPS inhibiting role of this isoform. This is supported by co-expression experiments in E. coli which indicate that AtDHDPS and MtDHDPS3 interact and may form hetero-oligomers with strongly reduced enzymatic activity. In conclusion, analysis of DHDPS in M. truncatula revealed the presence of unique isozymes displaying novel regulatory properties.
Collapse
Affiliation(s)
- Ellen Erzeel
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | |
Collapse
|
26
|
Atkinson SC, Dogovski C, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from Agrobacterium tumefaciens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1040-7. [PMID: 22949190 PMCID: PMC3433193 DOI: 10.1107/s1744309112033052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS (NP_354047.1) from the plant pathogen Agrobacterium tumefaciens (AgT-DHDPS). Enzyme-kinetics studies demonstrate that AgT-DHDPS possesses DHDPS activity in vitro. Crystals of AgT-DHDPS were grown in the unliganded form and in forms with substrate bound and with substrate plus allosteric inhibitor (lysine) bound. X-ray diffraction data sets were subsequently collected to a maximum resolution of 1.40 Å. Determination of the structure with and without substrate and inhibitor will offer insight into the design of novel pesticide agents.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Melbourne, Victoria 3010, Australia
| |
Collapse
|
27
|
Singh SP, Bora TC, Bezbaruah RL. Molecular Interaction of Novel Compound 2-Methylheptyl Isonicotinate Produced by Streptomyces sp. 201 with Dihydrodipicolinate Synthase (DHDPS) Enzyme of Mycobacterium tuberculosis for its Antibacterial Activity. Indian J Microbiol 2012; 52:427-32. [PMID: 23997335 PMCID: PMC3460125 DOI: 10.1007/s12088-012-0252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/12/2012] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is a growing problem in multi-drug-resistant tuberculosis which is caused by Mycobacterium tuberculosis (MTB). Hence there is an urgent need for designing or developing a novel or potent anti-tubercular agent. The Lysine/DAP biosynthetic pathway is a promising target because of its role in cell wall and amino acid biosynthesis. In our study we performed a molecular docking analysis of a novel antibacterial isolated from Streptomyces sp. 201 at three different binding site of dihydrodipicolinate synthase (DHDPS) enzyme of MTB. The molecular docking studies suggest that the novel molecule shows favourable interaction at the three different binding sites as compared to five experimentally known inhibitors of DHDPS.
Collapse
Affiliation(s)
- Salam Pradeep Singh
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - T. C. Bora
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| | - R. L. Bezbaruah
- Bioinformatics Infrastructure Facility, Biotechnology Division, North-East Institute of Science & Technology (CSIR), Jorhat, 785006 Assam India
| |
Collapse
|
28
|
Griffin MDW, Billakanti JM, Wason A, Keller S, Mertens HDT, Atkinson SC, Dobson RCJ, Perugini MA, Gerrard JA, Pearce FG. Characterisation of the first enzymes committed to lysine biosynthesis in Arabidopsis thaliana. PLoS One 2012; 7:e40318. [PMID: 22792278 PMCID: PMC3390394 DOI: 10.1371/journal.pone.0040318] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
In plants, the lysine biosynthetic pathway is an attractive target for both the development of herbicides and increasing the nutritional value of crops given that lysine is a limiting amino acid in cereals. Dihydrodipicolinate synthase (DHDPS) and dihydrodipicolinate reductase (DHDPR) catalyse the first two committed steps of lysine biosynthesis. Here, we carry out for the first time a comprehensive characterisation of the structure and activity of both DHDPS and DHDPR from Arabidopsis thaliana. The A. thaliana DHDPS enzyme (At-DHDPS2) has similar activity to the bacterial form of the enzyme, but is more strongly allosterically inhibited by (S)-lysine. Structural studies of At-DHDPS2 show (S)-lysine bound at a cleft between two monomers, highlighting the allosteric site; however, unlike previous studies, binding is not accompanied by conformational changes, suggesting that binding may cause changes in protein dynamics rather than large conformation changes. DHDPR from A. thaliana (At-DHDPR2) has similar specificity for both NADH and NADPH during catalysis, and has tighter binding of substrate than has previously been reported. While all known bacterial DHDPR enzymes have a tetrameric structure, analytical ultracentrifugation, and scattering data unequivocally show that At-DHDPR2 exists as a dimer in solution. The exact arrangement of the dimeric protein is as yet unknown, but ab initio modelling of x-ray scattering data is consistent with an elongated structure in solution, which does not correspond to any of the possible dimeric pairings observed in the X-ray crystal structure of DHDPR from other organisms. This increased knowledge of the structure and function of plant lysine biosynthetic enzymes will aid future work aimed at improving primary production.
Collapse
Affiliation(s)
- Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Jagan M. Billakanti
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Industrial Research Limited, Lower Hutt, New Zealand
| | - Akshita Wason
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sabrina Keller
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | | - Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Juliet A. Gerrard
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Industrial Research Limited, Lower Hutt, New Zealand
| | - Frederick Grant Pearce
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
29
|
Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA. Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 2012; 7:e38318. [PMID: 22761676 PMCID: PMC3382604 DOI: 10.1371/journal.pone.0038318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Matthew T. Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Cyril F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Reboul CF, Porebski BT, Griffin MDW, Dobson RCJ, Perugini MA, Gerrard JA, Buckle AM. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase. PLoS Comput Biol 2012; 8:e1002537. [PMID: 22685390 PMCID: PMC3369909 DOI: 10.1371/journal.pcbi.1002537] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/16/2012] [Indexed: 11/18/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) is an essential enzyme involved in the lysine biosynthesis pathway. DHDPS from E. coli is a homotetramer consisting of a 'dimer of dimers', with the catalytic residues found at the tight-dimer interface. Crystallographic and biophysical evidence suggest that the dimers associate to stabilise the active site configuration, and mutation of a central dimer-dimer interface residue destabilises the tetramer, thus increasing the flexibility and reducing catalytic efficiency and substrate specificity. This has led to the hypothesis that the tetramer evolved to optimise the dynamics within the tight-dimer. In order to gain insights into DHDPS flexibility and its relationship to quaternary structure and function, we performed comparative Molecular Dynamics simulation studies of native tetrameric and dimeric forms of DHDPS from E. coli and also the native dimeric form from methicillin-resistant Staphylococcus aureus (MRSA). These reveal a striking contrast between the dynamics of tetrameric and dimeric forms. Whereas the E. coli DHDPS tetramer is relatively rigid, both the E. coli and MRSA DHDPS dimers display high flexibility, resulting in monomer reorientation within the dimer and increased flexibility at the tight-dimer interface. The mutant E. coli DHDPS dimer exhibits disorder within its active site with deformation of critical catalytic residues and removal of key hydrogen bonds that render it inactive, whereas the similarly flexible MRSA DHDPS dimer maintains its catalytic geometry and is thus fully functional. Our data support the hypothesis that in both bacterial species optimal activity is achieved by fine tuning protein dynamics in different ways: E. coli DHDPS buttresses together two dimers, whereas MRSA dampens the motion using an extended tight-dimer interface.
Collapse
Affiliation(s)
- C. F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - B. T. Porebski
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - M. D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - R. C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - M. A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - J. A. Gerrard
- Biomolecular Interaction Centre, and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - A. M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Geng F, Chen Z, Zheng P, Sun J, Zeng AP. Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. Appl Microbiol Biotechnol 2012; 97:1963-71. [PMID: 22644522 DOI: 10.1007/s00253-012-4062-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS, EC 4.2.1.52) catalyzes the first committed reaction of L-lysine biosynthesis in bacteria and plants and is allosterically regulated by L-lysine. In previous studies, DHDPSs from different species were proved to have different sensitivity to L-lysine inhibition. In this study, we investigated the key determinants of feedback regulation between two industrially important DHDPSs, the L-lysine-sensitive DHDPS from Escherichia coli and L-lysine-insensitive DHDPS from Corynebacterium glutamicum, by sequence and structure comparisons and site-directed mutation. Feedback inhibition of E. coli DHDPS was successfully alleviated after substitution of the residues around the inhibitor's binding sites with those of C. glutamicum DHDPS. Interestingly, mutagenesis of the lysine binding sites of C. glutamicum DHDPS according to E. coli DHDPS did not recover the expected feedback inhibition but an activation of DHDPS by L-lysine, probably due to differences in the allosteic signal transduction in the DHDPS of these two organisms. Overexpression of L-lysine-insensitive E. coli DHDPS mutants in E. coli MG1655 resulted in an improvement of L-lysine production yield by 46 %.
Collapse
Affiliation(s)
- Feng Geng
- Department of Biopharmaceutic Engineering, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | | | | | | | | |
Collapse
|
32
|
Atkinson SC, Dogovski C, Newman J, Dobson RCJ, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the grapevine Vitis vinifera. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1537-41. [PMID: 22139160 PMCID: PMC3232133 DOI: 10.1107/s1744309111038395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 11/11/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step of the lysine-biosynthesis pathway in bacteria, plants and some fungi. This study describes the cloning, expression, purification and crystallization of DHDPS from the grapevine Vitis vinifera (Vv-DHDPS). Following in-drop cleavage of the hexahistidine tag, cocrystals of Vv-DHDPS with the substrate pyruvate were grown in 0.1 M Bis-Tris propane pH 8.2, 0.2 M sodium bromide, 20%(w/v) PEG 3350. X-ray diffraction data in space group P1 at a resolution of 2.2 Å are presented. Preliminary diffraction data analysis indicated the presence of eight molecules per asymmetric unit (V(M) = 2.55 Å(3) Da(-1), 52% solvent content). The pending crystal structure of Vv-DHDPS will provide insight into the molecular evolution in quaternary structure of DHDPS enzymes.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Janet Newman
- CSIRO Division of Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
33
|
Griffin MDW, Billakanti JM, Gerrard JA, Dobson RCJ, Pearce FG. Crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase 2 from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1386-90. [PMID: 22102238 PMCID: PMC3212457 DOI: 10.1107/s1744309111033276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/16/2011] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the first committed step of the lysine-biosynthetic pathway in plants and bacteria. Since (S)-lysine biosynthesis does not occur in animals, DHDPS is an attractive target for rational antibiotic and herbicide design. Here, the cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of DHDPS2 from Arabidopsis thaliana are reported. Diffraction-quality protein crystals belonged to space group P2(1)2(1)2.
Collapse
Affiliation(s)
- Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
34
|
Wubben JM, Dogovski C, Dobson RCJ, Codd R, Gerrard JA, Parker MW, Perugini MA. Cloning, expression, purification and crystallization of dihydrodipicolinate synthase from the psychrophile Shewanella benthica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1511-6. [PMID: 21045309 PMCID: PMC3001662 DOI: 10.1107/s1744309110036791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/14/2010] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is an oligomeric enzyme that catalyzes the first committed step of the lysine-biosynthesis pathway in plants and bacteria, which yields essential building blocks for cell-wall and protein synthesis. DHDPS is therefore of interest to drug-discovery research as well as to studies that probe the importance of quaternary structure to protein function, stability and dynamics. Accordingly, DHDPS from the psychrophilic (cold-dwelling) organism Shewanella benthica (Sb-DHDPS) was cloned, expressed, purified and crystallized. The best crystals of Sb-DHDPS were grown in 200 mM ammonium sulfate, 100 mM bis-tris pH 5.0-6.0, 23-26%(w/v) PEG 3350, 0.02%(w/v) sodium azide and diffracted to beyond 2.5 Å resolution. Processing of diffraction data to 2.5 Å resolution resulted in a unit cell with space group P2(1)2(1)2(1) and dimensions a = 73.1, b = 84.0, c = 143.7 Å. These studies of the first DHDPS enzyme to be characterized from a bacterial psychrophile will provide insight into the molecular evolution of enzyme structure and dynamics.
Collapse
Affiliation(s)
- Jacinta M. Wubben
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Con Dogovski
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Rachel Codd
- School of Medical Sciences (Pharmacology) and Bosch Institute, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
- St Vincents Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Disruption of quaternary structure in Escherichia coli dihydrodipicolinate synthase (DHDPS) generates a functional monomer that is no longer inhibited by lysine. Arch Biochem Biophys 2010; 503:202-6. [PMID: 20709017 DOI: 10.1016/j.abb.2010.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 08/07/2010] [Accepted: 08/10/2010] [Indexed: 11/22/2022]
Abstract
Escherichia coli dihydrodipicolinate synthase (DHDPS, E.C. 4.2.1.52), a natively homotetrameric enzyme was converted to a monomeric species through the introduction of destabilising interactions at two different subunit interfaces allowing exploration of the roles of the quaternary structure in affecting catalytic competency. The double mutant DHDPS-L197D/Y107W displays gel filtration characteristics consistent with a single non-interacting monomeric species, which was confirmed by sedimentary velocity experiments. This monomer was shown to be catalytically active, but with reduced catalytic efficiency (k(cat)=9.8±0.5s(-1)), displaying 8% of the specific activity of the wild-type enzyme. The Michaelis constants for the substrates pyruvate and for (S)-aspartate semialdehyde increased by an order of magnitude, indicating that quaternary structure plays a significant role in substrate specificity. This monomeric species exhibited an enhanced propensity for aggregation and inactivation, indicating that whilst the oligomerization is not an intrinsic criterion for catalysis, higher oligomeric forms may benefit from both increased catalytic efficiency and diminished aggregation propensity. Furthermore, allosteric inhibition by (S)-lysine was abolished for DHDPS-L197D/Y107W, confirming the importance of the dimeric unit as the minimal functional assembly for efficient (S)-lysine binding.
Collapse
|
36
|
Griffin MD, Dobson RC, Gerrard JA, Perugini MA. Exploring the dihydrodipicolinate synthase tetramer: How resilient is the dimer–dimer interface? Arch Biochem Biophys 2010; 494:58-63. [DOI: 10.1016/j.abb.2009.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/10/2009] [Accepted: 11/10/2009] [Indexed: 11/15/2022]
|
37
|
Garg A, Tewari R, Raghava GPS. Virtual Screening of potential drug-like inhibitors against Lysine/DAP pathway of Mycobacterium tuberculosis. BMC Bioinformatics 2010; 11 Suppl 1:S53. [PMID: 20122228 PMCID: PMC3009526 DOI: 10.1186/1471-2105-11-s1-s53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND An explosive global spreading of multidrug resistant Mycobacterium tuberculosis (Mtb) is a catastrophe, which demands an urgent need to design or develop novel/potent antitubercular agents. The Lysine/DAP biosynthetic pathway is a promising target due its specific role in cell wall and amino acid biosynthesis. Here, we report identification of potential antitubercular candidates targeting Mtb dihydrodipicolinate synthase (DHDPS) enzyme of the pathway using virtual screening protocols. RESULTS In the present study, we generated three sets of drug-like molecules in order to screen potential inhibitors against Mtb drug target DHDPS. The first set of compounds was a combinatorial library, which comprised analogues of pyruvate (substrate of DHDPS). The second set of compounds consisted of pyruvate-like molecules i.e. structurally similar to pyruvate, obtained using 3D flexible similarity search against NCI and PubChem database. The third set constituted 3847 anti-infective molecules obtained from PubChem. These compounds were subjected to Lipinski's rule of drug-like five filters. Finally, three sets of drug-like compounds i.e. 4088 pyruvate analogues, 2640 pyruvate-like molecules and 1750 anti-infective molecules were docked at the active site of Mtb DHDPS (PDB code: 1XXX used in the molecular docking calculations) to select inhibitors establishing favorable interactions. CONCLUSION The above-mentioned virtual screening procedures helped in the identification of several potent candidates that possess inhibitory activity against Mtb DHDPS. Therefore, these novel scaffolds/candidates which could have the potential to inhibit Mtb DHDPS enzyme would represent promising starting points as lead compounds and certainly aid the experimental designing of antituberculars in lesser time.
Collapse
Affiliation(s)
- Aarti Garg
- Bioinformatics Centre, Institute of Microbial Technology, Sector-39A, Chandigarh, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rupinder Tewari
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gajendra PS Raghava
- Bioinformatics Centre, Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
38
|
Sibarani NE, Gorman MA, Dogovski C, Parker MW, Perugini MA. Crystallization of dihydrodipicolinate synthase from a clinical isolate of Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 66:32-6. [PMID: 20057065 DOI: 10.1107/s174430910904771x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/11/2009] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS; EC 4.2.1.52) catalyzes the rate-limiting step in the (S)-lysine biosynthesis pathway of bacteria and plants. Here, the cloning of the DHDPS gene from a clinical isolate of Streptococcus pneumoniae (OXC141 strain) and the strategy used to express, purify and crystallize the recombinant enzyme are described. Diffracting crystals were grown in high-molecular-weight PEG precipitants using the hanging-drop vapour-diffusion method. The best crystal, from which data were collected, diffracted to beyond 2.0 A resolution. Initially, the crystals were thought to belong to space group P4(2)2(1)2, with unit-cell parameters a = 105.5, b = 105.5, c = 62.4 A. However, the R factors remained high following initial processing of the data. It was subsequently shown that the data set was twinned and it was thus reprocessed in space group P2, resulting in a significant reduction in the R factors. Determination of the structure will provide insight into the design of novel antimicrobial agents targeting this important enzyme from S. pneumoniae.
Collapse
Affiliation(s)
- Natalia E Sibarani
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
39
|
Voss JE, Scally SW, Taylor NL, Atkinson SC, Griffin MDW, Hutton CA, Parker MW, Alderton MR, Gerrard JA, Dobson RCJ, Dogovski C, Perugini MA. Substrate-mediated stabilization of a tetrameric drug target reveals Achilles heel in anthrax. J Biol Chem 2009; 285:5188-95. [PMID: 19948665 DOI: 10.1074/jbc.m109.038166] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacillus anthracis is a gram-positive spore-forming bacterium that causes anthrax. With the increased threat of anthrax in biowarfare, there is an urgent need to characterize new antimicrobial targets from B. anthracis. One such target is dihydrodipicolinate synthase (DHDPS), which catalyzes the committed step in the pathway yielding meso-diaminopimelate and lysine. In this study, we employed CD spectroscopy to demonstrate that the thermostability of DHDPS from B. anthracis (Ba-DHDPS) is significantly enhanced in the presence of the substrate, pyruvate. Analytical ultracentrifugation studies show that the tetramer-dimer dissociation constant of the enzyme is 3-fold tighter in the presence of pyruvate compared with the apo form. To examine the significance of this substrate-mediated stabilization phenomenon, a dimeric mutant of Ba-DHDPS (L170E/G191E) was generated and shown to have markedly reduced activity compared with the wild-type tetramer. This demonstrates that the substrate, pyruvate, stabilizes the active form of the enzyme. We next determined the high resolution (2.15 A) crystal structure of Ba-DHDPS in complex with pyruvate (3HIJ) and compared this to the apo structure (1XL9). Structural analyses show that there is a significant (91 A(2)) increase in buried surface area at the tetramerization interface of the pyruvate-bound structure. This study describes a new mechanism for stabilization of the active oligomeric form of an antibiotic target from B. anthracis and reveals an "Achilles heel" that can be exploited in structure-based drug design.
Collapse
Affiliation(s)
- Jarrod E Voss
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1510-6. [DOI: 10.1016/j.bbapap.2009.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 06/05/2009] [Accepted: 06/25/2009] [Indexed: 11/20/2022]
|
41
|
Laskowski RA, Gerick F, Thornton JM. The structural basis of allosteric regulation in proteins. FEBS Lett 2009; 583:1692-8. [PMID: 19303011 DOI: 10.1016/j.febslet.2009.03.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/25/2022]
Abstract
Allosteric regulation of protein function occurs when the regulatory trigger, such as the binding of a small-molecule effector or inhibitor, takes place some distance from the protein's, or protein complex's, active site. This distance can be a few A, or tens of A. Many proteins are regulated in this way and exhibit a variety of allosteric mechanisms. Here we review how analyses of experimentally determined models of protein 3D structures, using either X-ray crystallography or NMR spectroscopy, have revealed some of the mechanisms involved.
Collapse
Affiliation(s)
- Roman A Laskowski
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom.
| | | | | |
Collapse
|
42
|
Devenish SRA, Gerrard JA, Jameson GB, Dobson RCJ. The high-resolution structure of dihydrodipicolinate synthase from Escherichia coli bound to its first substrate, pyruvate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1092-5. [PMID: 19052357 PMCID: PMC2593713 DOI: 10.1107/s1744309108033654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 10/15/2008] [Indexed: 11/10/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) mediates the key first reaction common to the biosynthesis of (S)-lysine and meso-diaminopimelate, molecules which play a crucial cross-linking role in bacterial cell walls. An effective inhibitor of DHDPS would represent a useful antibacterial agent; despite extensive effort, a suitable inhibitor has yet to be found. In an attempt to examine the specificity of the active site of DHDPS, the enzyme was cocrystallized with the substrate analogue oxaloacetate. The resulting crystals diffracted to 2.0 A resolution, but solution of the protein structure revealed that pyruvate was bound in the active site rather than oxaloacetic acid. Kinetic analysis confirmed that the decarboxylation of oxaloacetate was not catalysed by DHDPS and was instead a slow spontaneous chemical process.
Collapse
Affiliation(s)
- Sean R. A. Devenish
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Juliet A. Gerrard
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
43
|
Pearce FG, Dobson RCJ, Weber A, Lane LA, McCammon MG, Squire MA, Perugini MA, Jameson GB, Robinson CV, Gerrard JA. Mutating the tight-dimer interface of dihydrodipicolinate synthase disrupts the enzyme quaternary structure: toward a monomeric enzyme. Biochemistry 2008; 47:12108-17. [PMID: 18937497 DOI: 10.1021/bi801094t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dihydrodipicolinate synthase (DHDPS) is a tetrameric enzyme that is the first enzyme unique to the ( S)-lysine biosynthetic pathway in plants and bacteria. Previous studies have looked at the important role of Tyr107, an amino acid residue located at the tight-dimer interface between two monomers, in participating in a catalytic triad of residues during catalysis. In this study, we examine the importance of this residue in determining the quaternary structure of the DHDPS enzyme. The Tyr107 residue was mutated to tryptophan, and structural, biophysical, and kinetic studies were carried out on the mutant enzyme. These revealed that while the solid-state structure of the mutant enzyme was largely unchanged, as judged by X-ray crystallography, it exists as a mixture of primarily monomer and tetramer in solution, as determined by analytical ultracentrifugation, size-exclusion chromatography, and mass spectrometry. The catalytic ability of the DHDPS enzyme was reduced by the mutation, which also allowed the adventitious binding of alpha-ketoglutarate to the active site. A reduction in the apparent melting temperature of the mutant enzyme was observed. Thus, the tetrameric quaternary structure of DHDPS is critical to controlling specificity, heat stability, and intrinsic activity.
Collapse
Affiliation(s)
- F Grant Pearce
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rice EA, Bannon GA, Glenn KC, Jeong SS, Sturman EJ, Rydel TJ. Characterization and crystal structure of lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase (cDHDPS) protein. Arch Biochem Biophys 2008; 480:111-21. [PMID: 18930704 DOI: 10.1016/j.abb.2008.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 11/27/2022]
Abstract
The lysine insensitive Corynebacterium glutamicum dihydrodipicolinate synthase enzyme (cDHDPS) was recently successfully introduced into maize plants to enhance the level of lysine in the grain. To better understand lysine insensitivity of the cDHDPS, we expressed, purified, kinetically characterized the protein, and solved its X-ray crystal structure. The cDHDPS enzyme has a fold and overall structure that is highly similar to other DHDPS proteins. A noteworthy feature of the active site is the evidence that the catalytic lysine residue forms a Schiff base adduct with pyruvate. Analyses of the cDHDPS structure in the vicinity of the putative binding site for S-lysine revealed that the allosteric binding site in the Escherichia coli DHDPS protein does not exist in cDHDPS due to three non-conservative amino acids substitutions, and this is likely why cDHDPS is not feedback inhibited by lysine.
Collapse
Affiliation(s)
- Elena A Rice
- Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Burgess BR, Dobson RC, Bailey MF, Atkinson SC, Griffin MD, Jameson GB, Parker MW, Gerrard JA, Perugini MA. Structure and Evolution of a Novel Dimeric Enzyme from a Clinically Important Bacterial Pathogen. J Biol Chem 2008; 283:27598-27603. [DOI: 10.1074/jbc.m804231200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Girish TS, Sharma E, Gopal B. Structural and functional characterization ofStaphylococcus aureusdihydrodipicolinate synthase. FEBS Lett 2008; 582:2923-30. [DOI: 10.1016/j.febslet.2008.07.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 11/16/2022]
|
47
|
Griffin MD, Dobson RC, Pearce FG, Antonio L, Whitten AE, Liew CK, Mackay JP, Trewhella J, Jameson GB, Perugini MA, Gerrard JA. Evolution of Quaternary Structure in a Homotetrameric Enzyme. J Mol Biol 2008; 380:691-703. [DOI: 10.1016/j.jmb.2008.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/08/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
48
|
Crystal structure and kinetic study of dihydrodipicolinate synthase from Mycobacterium tuberculosis. Biochem J 2008; 411:351-60. [PMID: 18062777 DOI: 10.1042/bj20071360] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The three-dimensional structure of the enzyme dihydrodipicolinate synthase (KEGG entry Rv2753c, EC 4.2.1.52) from Mycobacterium tuberculosis (Mtb-DHDPS) was determined and refined at 2.28 A (1 A=0.1 nm) resolution. The asymmetric unit of the crystal contains two tetramers, each of which we propose to be the functional enzyme unit. This is supported by analytical ultracentrifugation studies, which show the enzyme to be tetrameric in solution. The structure of each subunit consists of an N-terminal (beta/alpha)(8)-barrel followed by a C-terminal alpha-helical domain. The active site comprises residues from two adjacent subunits, across an interface, and is located at the C-terminal side of the (beta/alpha)(8)-barrel domain. A comparison with the other known DHDPS structures shows that the overall architecture of the active site is largely conserved, albeit the proton relay motif comprising Tyr(143), Thr(54) and Tyr(117) appears to be disrupted. The kinetic parameters of the enzyme are reported: K(M)(ASA)=0.43+/-0.02 mM, K(M)(pyruvate)=0.17+/-0.01 mM and V(max)=4.42+/-0.08 micromol x s(-1) x mg(-1). Interestingly, the V(max) of Mtb-DHDPS is 6-fold higher than the corresponding value for Escherichia coli DHDPS, and the enzyme is insensitive to feedback inhibition by (S)-lysine. This can be explained by the three-dimensional structure, which shows that the (S)-lysine-binding site is not conserved in Mtb-DHDPS, when compared with DHDPS enzymes that are known to be inhibited by (S)-lysine. A selection of metabolites from the aspartate family of amino acids do not inhibit this enzyme. A comprehensive understanding of the structure and function of this important enzyme from the (S)-lysine biosynthesis pathway may provide the key for the design of new antibiotics to combat tuberculosis.
Collapse
|
49
|
Manicka S, Peleg Y, Unger T, Albeck S, Dym O, Greenblatt HM, Bourenkov G, Lamzin V, Krishnaswamy S, Sussman JL. Crystal structure of YagE, a putative DHDPS-like protein from Escherichia coli K12. Proteins 2008; 71:2102-8. [DOI: 10.1002/prot.22023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Wolterink-van Loo S, Levisson M, Cabrières MC, Franssen MCR, van der Oost J. Characterization of a thermostable dihydrodipicolinate synthase from Thermoanaerobacter tengcongensis. Extremophiles 2008; 12:461-9. [DOI: 10.1007/s00792-008-0152-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 02/12/2008] [Indexed: 10/22/2022]
|