1
|
Wiechert J, Badia Roigé B, Dohmen-Olma D, Hindra, Zhang X, Stella RG, Elliot MA, Frunzke J. CRISPR/dCas-mediated counter-silencing: reprogramming dCas proteins into antagonists of xenogeneic silencers. mBio 2025:e0038225. [PMID: 40434115 DOI: 10.1128/mbio.00382-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 05/29/2025] Open
Abstract
Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XSs) inhibiting expression of horizontally acquired, adenine-thymine-rich DNA in actinobacteria. Interference by transcription factors can lead to counter-silencing of XS target promoters, but relief of this repression typically requires promoter engineering. In this study, we developed a novel clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-mediated counter-silencing (CRISPRcosi) approach by using nuclease-deficient dCas enzymes to counteract the Lsr2-like XS protein CgpS in Corynebacterium glutamicum or Lsr2 in Streptomyces venezuelae. Systematic in vivo reporter studies with dCas9 and dCas12a and various guide RNAs revealed effective counter-silencing of different CgpS target promoters in response to guide RNA/dCas DNA binding, independent of promoter sequence modifications. The most prominent CRISPRcosi effect was observed when targeting the CgpS nucleation site, an effect that was also seen in S. venezuelae when targeting a known Lsr2 nucleation site within the chloramphenicol biosynthesis gene cluster. Analyzing the system in C. glutamicum strains lacking the XS protein CgpS revealed varying strengths of counteracting CRISPR interference effects based on the target position and strand. Genome-wide transcriptome profiling in single-guide RNA/dCas9 co-expressing C. glutamicum wild-type strains revealed high counter-silencing specificity with minimal off-target effects. Thus, CRISPRcosi provides a promising strategy for the precise upregulation of XS target genes with significant potential for studying gene networks as well as for developing applications in biotechnology and synthetic biology. IMPORTANCE Lsr2-like nucleoid-associated proteins act as xenogeneic silencers (XSs), repressing the expression of horizontally acquired, adenine-thymine-rich DNA in actinobacteria. The targets of Lsr2-like proteins are very diverse, including prophage elements, virulence gene clusters, and biosynthetic gene clusters. Consequently, the targeted activation of XS target genes is of interest for fundamental research and biotechnological applications. Traditional methods for counter-silencing typically require promoter modifications. In this study, we developed a novel clustered regularly interspaced short palindromic repeats (CRISPR)/dCas-mediated counter-silencing (CRISPRcosi) approach, utilizing nuclease-deficient dCas enzymes to counteract repression by Lsr2-like proteins in Corynebacterium glutamicum and Streptomyces venezuelae. The strongest effect was observed when targeting the Lsr2 nucleation site. Genome-wide transcriptome profiling revealed high specificity with minimal off-target effects. Overall, CRISPRcosi emerges as a powerful tool for the precise induction of genes silenced by xenogeneic silencers, offering new opportunities for exploring gene networks and advancing biotechnological applications.
Collapse
Affiliation(s)
- Johanna Wiechert
- Institute of Bio- and Geoscience-IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany
| | - Biel Badia Roigé
- Institute of Bio- and Geoscience-IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany
| | - Doris Dohmen-Olma
- Institute of Bio- and Geoscience-IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany
| | - Hindra
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiafei Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Roberto G Stella
- Institute of Bio- and Geoscience-IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Julia Frunzke
- Institute of Bio- and Geoscience-IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, North Rhine-Westphalia, Germany
| |
Collapse
|
2
|
Gao Y, Xie N, Ma T, Tan C, Wang Z, Zhang R, Ma S, Deng Z, Wang Y, Shen J. VirBR counter-silences HppX3 to promote conjugation of blaNDM-IncX3 plasmids. Nucleic Acids Res 2025; 53:gkaf182. [PMID: 40103225 PMCID: PMC11915502 DOI: 10.1093/nar/gkaf182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
New Delhi metallo-β-lactamases (NDM), encoded by the blaNDM gene, mediate carbapenem resistance, posing serious threats to public health due to their global presence across diverse hosts and environments. The blaNDM is prominently carried by the IncX3 plasmid, which encodes a Type IV secretion system (T4SS) responsible for plasmid conjugation. This T4SS has been shown to be phenotypically silenced by a plasmid-borne H-NS family protein; however, the underlying mechanisms of both silencing and silencing relief remain unclear. Herein, we identified HppX3, an H-NS family protein encoded by the IncX3 plasmid, as a transcription repressor. HppX3 binds to the T4SS promoter (PactX), downregulates T4SS expression, thereby inhibits plasmid conjugation. RNA-seq analysis revealed that T4SS genes are co-regulated by HppX3 and VirBR, a transcription activator encoded by the same plasmid. Mechanistically, VirBR acts as a counter-silencer by displacing HppX3 from PactX, restoring T4SS expression and promoting plasmid conjugation. A similar counter-silencing mechanism was identified in the T4SSs of IncX1 and IncX2 plasmids. These findings provide new insights into the regulatory mechanisms controlling T4SS expression on multiple IncX plasmids, including the IncX3, explaining the persistence and widespread of blaNDM-IncX3 plasmid, and highlight potential strategies to combat the spread of NDM-positive Enterobacterales by targeting plasmid-encoded regulators.
Collapse
Affiliation(s)
- Yuan Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ning Xie
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Tengfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chun E Tan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhuo Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou 310009, China
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Large Animal Clinical Veterinary Research Center, College of Clinical Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
3
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
4
|
Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. METHODS IN MICROBIOLOGY 2022; 200:106555. [DOI: 10.1016/j.mimet.2022.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
5
|
Saran R, Wang Y, Li ITS. Mechanical Flexibility of DNA: A Quintessential Tool for DNA Nanotechnology. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7019. [PMID: 33302459 PMCID: PMC7764255 DOI: 10.3390/s20247019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
The mechanical properties of DNA have enabled it to be a structural and sensory element in many nanotechnology applications. While specific base-pairing interactions and secondary structure formation have been the most widely utilized mechanism in designing DNA nanodevices and biosensors, the intrinsic mechanical rigidity and flexibility are often overlooked. In this article, we will discuss the biochemical and biophysical origin of double-stranded DNA rigidity and how environmental and intrinsic factors such as salt, temperature, sequence, and small molecules influence it. We will then take a critical look at three areas of applications of DNA bending rigidity. First, we will discuss how DNA's bending rigidity has been utilized to create molecular springs that regulate the activities of biomolecules and cellular processes. Second, we will discuss how the nanomechanical response induced by DNA rigidity has been used to create conformational changes as sensors for molecular force, pH, metal ions, small molecules, and protein interactions. Lastly, we will discuss how DNA's rigidity enabled its application in creating DNA-based nanostructures from DNA origami to nanomachines.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| | - Yong Wang
- Department of Physics, Materials Science and Engineering Program, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Isaac T. S. Li
- Department of Chemistry, Biochemistry and Molecular Biology, Irving K. Barber Faculty of Science, The University of British Columbia, Kelowna, BC V1V1V7, Canada;
| |
Collapse
|
6
|
Dorman CJ, Schumacher MA, Bush MJ, Brennan RG, Buttner MJ. When is a transcription factor a NAP? Curr Opin Microbiol 2020; 55:26-33. [PMID: 32120333 DOI: 10.1016/j.mib.2020.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/03/2023]
Abstract
Proteins that regulate transcription often also play an architectural role in the genome. Thus, it has been difficult to define with precision the distinctions between transcription factors and nucleoid-associated proteins (NAPs). Anachronistic descriptions of NAPs as 'histone-like' implied an organizational function in a bacterial chromatin-like complex. Definitions based on protein abundance, regulatory mechanisms, target gene number, or the features of their DNA-binding sites are insufficient as marks of distinction, and trying to distinguish transcription factors and NAPs based on their ranking within regulatory hierarchies or positions in gene-control networks is also unsatisfactory. The terms 'transcription factor' and 'NAP' are ad hoc operational definitions with each protein lying along a spectrum of structural and functional features extending from highly specific actors with few gene targets to those with a pervasive influence on the transcriptome. The Streptomyces BldC protein is used to illustrate these issues.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model. mBio 2020; 11:mBio.02273-19. [PMID: 32019787 PMCID: PMC7002338 DOI: 10.1128/mbio.02273-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum.IMPORTANCE In actinobacteria, Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XS) of horizontally acquired genomic regions, including viral elements, virulence gene clusters in Mycobacterium tuberculosis, and genes involved in cryptic specialized metabolism in Streptomyces species. Consequently, a detailed mechanistic understanding of Lsr2 binding in vivo is relevant as a potential drug target and for the identification of novel bioactive compounds. Here, we followed an in vivo approach to investigate the rules underlying xenogeneic silencing and counter-silencing of the Lsr2-like XS CgpS from Corynebacterium glutamicum Our results demonstrated that CgpS distinguishes between self and foreign by recognizing a distinct drop in GC profile in combination with a short, sequence-specific motif at the nucleation site. Following a synthetic counter-silencer approach, we studied the potential and constraints of transcription factors to counteract CgpS silencing, thereby facilitating the integration of new genetic traits into host regulatory networks.
Collapse
|
8
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
9
|
Structure and function of bacterial H-NS protein. Biochem Soc Trans 2017; 44:1561-1569. [PMID: 27913665 DOI: 10.1042/bst20160190] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023]
Abstract
The histone-like nucleoid structuring (H-NS) protein is a major component of the folded chromosome in Escherichia coli and related bacteria. Functions attributed to H-NS include management of genome evolution, DNA condensation, and transcription. The wide-ranging influence of H-NS is remarkable given the simplicity of the protein, a small peptide, possessing rudimentary determinants for self-association, hetero-oligomerisation and DNA binding. In this review, I will discuss our understanding of H-NS with a focus on these structural elements. In particular, I will consider how these interaction surfaces allow H-NS to exert its different effects.
Collapse
|
10
|
Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain. Clin Sci (Lond) 2017; 130:1165-77. [PMID: 27252403 DOI: 10.1042/cs20160024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 02/03/2023]
Abstract
The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process.
Collapse
|
11
|
Dorman CJ, Dorman MJ. DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:89-100. [PMID: 28510216 DOI: 10.1007/s12551-016-0238-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 11/28/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Matthew J Dorman
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.,Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
12
|
DNA supercoiling is a fundamental regulatory principle in the control of bacterial gene expression. Biophys Rev 2016; 8:209-220. [PMID: 28510224 DOI: 10.1007/s12551-016-0205-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Although it has become routine to consider DNA in terms of its role as a carrier of genetic information, it is also an important contributor to the control of gene expression. This regulatory principle arises from its structural properties. DNA is maintained in an underwound state in most bacterial cells and this has important implications both for DNA storage in the nucleoid and for the expression of genetic information. Underwinding of the DNA through reduction in its linking number potentially imparts energy to the duplex that is available to drive DNA transactions, such as transcription, replication and recombination. The topological state of DNA also influences its affinity for some DNA binding proteins, especially in DNA sequences that have a high A + T base content. The underwinding of DNA by the ATP-dependent topoisomerase DNA gyrase creates a continuum between metabolic flux, DNA topology and gene expression that underpins the global response of the genome to changes in the intracellular and external environments. These connections describe a fundamental and generalised mechanism affecting global gene expression that underlies the specific control of transcription operating through conventional transcription factors. This mechanism also provides a basal level of control for genes acquired by horizontal DNA transfer, assisting microbial evolution, including the evolution of pathogenic bacteria.
Collapse
|
13
|
Will WR, Navarre WW, Fang FC. Integrated circuits: how transcriptional silencing and counter-silencing facilitate bacterial evolution. Curr Opin Microbiol 2014; 23:8-13. [PMID: 25461567 DOI: 10.1016/j.mib.2014.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer is a major contributor to bacterial evolution and diversity. For a bacterial cell to utilize newly-acquired traits such as virulence and antibiotic resistance, new genes must be integrated into the existing regulatory circuitry to allow appropriate expression. Xenogeneic silencing of horizontally-acquired genes by H-NS or other nucleoid-associated proteins avoids adventitious expression and can be relieved by other DNA-binding counter-silencing proteins in an environmentally-responsive and physiologically-responsive manner. Biochemical and genetic analyses have recently demonstrated that counter-silencing can occur at a variety of promoter architectures, in contrast to classical transcriptional activation. Disruption of H-NS nucleoprotein filaments by DNA bending is a suggested mechanism by which silencing can be relieved. This review discusses recent advances in our understanding of the mechanisms and importance of xenogeneic silencing and counter-silencing in the successful integration of horizontally-acquired genes into regulatory networks.
Collapse
Affiliation(s)
- W Ryan Will
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William W Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ferric C Fang
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Evolutionary expansion of a regulatory network by counter-silencing. Nat Commun 2014; 5:5270. [PMID: 25348042 PMCID: PMC4215172 DOI: 10.1038/ncomms6270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/15/2014] [Indexed: 11/09/2022] Open
Abstract
Horizontal gene transfer plays a major role in bacterial evolution. Successful acquisition of new genes requires their incorporation into existing regulatory networks. This study compares the regulation of conserved genes in the PhoPQ regulon of Salmonella enterica serovar Typhimurium with that of PhoPQ-regulated horizontally-acquired genes, which are silenced by the histone-like protein H-NS. We demonstrate that PhoP up-regulates conserved and horizontally-acquired genes by distinct mechanisms. Conserved genes are regulated by classical PhoP-mediated activation and are invariant in promoter architecture, whereas horizontally-acquired genes exhibit variable promoter architecture and are regulated by PhoP-mediated counter-silencing. Biochemical analyses show that a horizontally-acquired promoter adopts different structures in the silenced and counter-silenced states, implicating the remodeling of the H-NS nucleoprotein filament and the subsequent restoration of open complex formation as the central mechanism of counter-silencing. Our results indicate that counter-silencing is favored in the regulatory integration of newly-acquired genes because it is able to accommodate multiple promoter architectures.
Collapse
|
15
|
Levine JA, Hansen AM, Michalski JM, Hazen TH, Rasko DA, Kaper JB. H-NST induces LEE expression and the formation of attaching and effacing lesions in enterohemorrhagic Escherichia coli. PLoS One 2014; 9:e86618. [PMID: 24466172 PMCID: PMC3897749 DOI: 10.1371/journal.pone.0086618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 11/19/2022] Open
Abstract
Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli are important causes of morbidity and mortality worldwide. These enteric pathogens contain a type III secretion system (T3SS) responsible for the attaching and effacing (A/E) lesion phenotype. The T3SS is encoded by the locus of enterocyte effacement (LEE) pathogenicity island. The H-NS-mediated repression of LEE expression is counteracted by Ler, the major activator of virulence gene expression in A/E pathogens. A regulator present in EPEC, H-NST, positively affects expression of H-NS regulon members in E. coli K-12, although the effect of H-NST on LEE expression and virulence of A/E pathogens has yet-to-be determined. Results We examine the effect of H-NST on LEE expression and A/E lesion formation on intestinal epithelial cells. We find that H-NST positively affects the levels of LEE-encoded proteins independently of ler and induces A/E lesion formation. We demonstrate H-NST binding to regulatory regions of LEE1 and LEE3, the first report of DNA-binding by H-NST. We characterize H-NST mutants substituted at conserved residues including Ala16 and residues Arg60 and Arg63, which are part of a potential DNA-binding domain. The single mutants A16V, A16L, R60Q and the double mutant R60Q/R63Q exhibit a decreased effect on LEE expression and A/E lesion formation. DNA mobility shift assays reveal that these residues are important for H-NST to bind regulatory LEE DNA targets. H-NST positively affects Ler binding to LEE DNA in the presence of H-NS, and thereby potentially helps Ler displace H-NS bound to DNA. Conclusions H-NST induces LEE expression and A/E lesion formation likely by counteracting H-NS-mediated repression. We demonstrate that H-NST binds to DNA and identify arginine residues that are functionally important for DNA-binding. Our study suggests that H-NST provides an additional means for A/E pathogens to alleviate repression of virulence gene expression by H-NS to promote virulence capabilities.
Collapse
Affiliation(s)
- Jonathan A. Levine
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Graduate Program in Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, United States of America
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jane M. Michalski
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - David A. Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lüttmann D, Göpel Y, Görke B. The phosphotransferase protein EIIA(Ntr) modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol 2012; 86:96-110. [PMID: 22812494 DOI: 10.1111/j.1365-2958.2012.08176.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many Proteobacteria possess the paralogous PTS(Ntr), in addition to the sugar transport phosphotransferase system (PTS). In the PTS(Ntr) phosphoryl-groups are transferred from phosphoenolpyruvate to protein EIIA(Ntr) via the phosphotransferases EI(Ntr) and NPr. The PTS(Ntr) has been implicated in regulation of diverse physiological processes. In Escherichia coli, the PTS(Ntr) plays a role in potassium homeostasis. In particular, EIIA(Ntr) binds to and stimulates activity of a two-component histidine kinase (KdpD) resulting in increased expression of the genes encoding the high-affinity K(+) transporter KdpFABC. Here, we show that the phosphate (pho) regulon is likewise modulated by PTS(Ntr). The pho regulon, which comprises more than 30 genes, is activated by the two-component system PhoR/PhoB under conditions of phosphate starvation. Mutants lacking EIIA(Ntr) are unable to fully activate the pho genes and exhibit a growth delay upon adaptation to phosphate limitation. In contrast, pho expression is increased above the wild-type level in mutants deficient for EIIA(Ntr) phosphorylation suggesting that non-phosphorylated EIIA(Ntr) modulates pho. Protein interaction analyses reveal binding of EIIA(Ntr) to histidine kinase PhoR. This interaction increases the amount of phosphorylated response regulator PhoB. Thus, EIIA(Ntr) is an accessory protein that modulates the activities of two distinct sensor kinases, KdpD and PhoR, in E. coli.
Collapse
Affiliation(s)
- Denise Lüttmann
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
17
|
Abstract
Bacteria use a variety of mechanisms to direct RNA polymerase to specific promoters in order to activate transcription in response to growth signals or environmental cues. Activation can be due to factors that interact at specific promoters, thereby increasing transcription directed by these promoters. We examine the range of architectures found at activator-dependent promoters and outline the mechanisms by which input from different factors is integrated. Alternatively, activation can be due to factors that interact with RNA polymerase and change its preferences for target promoters. We summarize the different mechanistic options for activation that are focused directly on RNA polymerase.
Collapse
Affiliation(s)
- David J Lee
- School of Biosciences, University of Birmingham, United Kingdom.
| | | | | |
Collapse
|
18
|
Shimada T, Bridier A, Briandet R, Ishihama A. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 2011; 82:378-97. [DOI: 10.1111/j.1365-2958.2011.07818.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Rational design of an artificial genetic switch: Co-option of the H-NS-repressed proU operon by the VirB virulence master regulator. J Bacteriol 2011; 193:5950-60. [PMID: 21873493 DOI: 10.1128/jb.05557-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein represses the transcription of hundreds of genes in Gram-negative bacteria. Derepression is achieved by a multitude of mechanisms, many of which involve the binding of a protein to DNA at the repressed promoter in a manner that compromises the maintenance of the H-NS-DNA nucleoprotein repression complex. The principal virulence gene promoters in Shigella flexneri, the cause of bacillary dysentery, are repressed by H-NS. VirB, a protein that closely resembles members of the ParB family of plasmid-partitioning proteins, derepresses the operons that encode the main structural components and the effector proteins of the S. flexneri type III secretion system. Bioinformatic analysis suggests that VirB has been co-opted into its current role as an H-NS antagonist in S. flexneri. To test this hypothesis, the potential for VirB to act as a positive regulator of proU, an operon that is repressed by H-NS, was assessed. Although VirB has no known relationship with the osmoregulated proU operon, it could relieve H-NS-mediated repression when the parS-like VirB binding site was placed appropriately upstream of the RpoD-dependent proU promoter. These results reveal the remarkable facility with which novel regulatory circuits can evolve, at least among those promoters that are repressed by H-NS.
Collapse
|
20
|
Folded DNA in action: hairpin formation and biological functions in prokaryotes. Microbiol Mol Biol Rev 2011; 74:570-88. [PMID: 21119018 DOI: 10.1128/mmbr.00026-10] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Structured forms of DNA with intrastrand pairing are generated in several cellular processes and are involved in biological functions. These structures may arise on single-stranded DNA (ssDNA) produced during replication, bacterial conjugation, natural transformation, or viral infections. Furthermore, negatively supercoiled DNA can extrude inverted repeats as hairpins in structures called cruciforms. Whether they are on ssDNA or as cruciforms, hairpins can modify the access of proteins to DNA, and in some cases, they can be directly recognized by proteins. Folded DNAs have been found to play an important role in replication, transcription regulation, and recognition of the origins of transfer in conjugative elements. More recently, they were shown to be used as recombination sites. Many of these functions are found on mobile genetic elements likely to be single stranded, including viruses, plasmids, transposons, and integrons, thus giving some clues as to the manner in which they might have evolved. We review here, with special focus on prokaryotes, the functions in which DNA secondary structures play a role and the cellular processes giving rise to them. Finally, we attempt to shed light on the selective pressures leading to the acquisition of functions for DNA secondary structures.
Collapse
|
21
|
BglJ-RcsB heterodimers relieve repression of the Escherichia coli bgl operon by H-NS. J Bacteriol 2010; 192:6456-64. [PMID: 20952573 DOI: 10.1128/jb.00807-10] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RcsB is the response regulator of the complex Rcs two-component system, which senses perturbations in the outer membrane and peptidoglycan layer. BglJ is a transcriptional regulator whose constitutive expression causes activation of the H-NS- and StpA-repressed bgl (aryl-β,D-glucoside) operon in Escherichia coli. RcsB and BglJ both belong to the LuxR-type family of transcriptional regulators with a characteristic C-terminal DNA-binding domain. Here, we show that BglJ and RcsB interact and form heterodimers that presumably bind upstream of the bgl promoter, as suggested by mutation of a sequence motif related to the consensus sequence for RcsA-RcsB heterodimers. Heterodimerization of BglJ-RcsB and relief of H-NS-mediated repression of bgl by BglJ-RcsB are apparently independent of RcsB phosphorylation. In addition, we show that LeuO, a pleiotropic LysR-type transcriptional regulator, likewise binds to the bgl upstream regulatory region and relieves repression of bgl independently of BglJ-RcsB. Thus, LeuO can affect bgl directly, as shown here, and indirectly by activating the H-NS-repressed yjjQ-bglJ operon, as shown previously. Taken together, heterodimer formation of RcsB and BglJ expands the role of the Rcs two-component system and the network of regulators affecting the bgl promoter.
Collapse
|
22
|
Nandal A, Huggins CCO, Woodhall MR, McHugh J, Rodríguez-Quiñones F, Quail MA, Guest JR, Andrews SC. Induction of the ferritin gene (ftnA) of Escherichia coli by Fe(2+)-Fur is mediated by reversal of H-NS silencing and is RyhB independent. Mol Microbiol 2009; 75:637-57. [PMID: 20015147 DOI: 10.1111/j.1365-2958.2009.06977.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
FtnA is the major iron-storage protein of Escherichia coli accounting for < or = 50% of total cellular iron. The FtnA gene (ftnA) is induced by iron in an Fe(2+)-Fur-dependent fashion. This effect is reportedly mediated by RyhB, the Fe(2+)-Fur-repressed, small, regulatory RNA. However, results presented here show that ftnA iron induction is independent of RyhB and instead involves direct interaction of Fe(2+)-Fur with an 'extended' Fur binding site (containing five tandem Fur boxes) located upstream (-83) of the ftnA promoter. In addition, H-NS acts as a direct repressor of ftnA transcription by binding at multiple sites (I-VI) within, and upstream of, the ftnA promoter. Fur directly competes with H-NS binding at upstream sites (II-IV) and consequently displaces H-NS from the ftnA promoter (sites V-VI) which in turn leads to derepression of ftnA transcription. It is proposed that H-NS binding within the ftnA promoter is facilitated by H-NS occupation of the upstream sites through H-NS oligomerization-induced DNA looping. Consequently, Fur displacement of H-NS from the upstream sites prevents cooperative H-NS binding at the downstream sites within the promoter, thus allowing access to RNA polymerase. This direct activation of ftnA transcription by Fe(2+)-Fur through H-NS antisilencing represents a new mechanism for iron-induced gene expression.
Collapse
Affiliation(s)
- Anjali Nandal
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Characterization of a beta-glucoside operon (bgc) prevalent in septicemic and uropathogenic Escherichia coli strains. Appl Environ Microbiol 2009; 75:2284-93. [PMID: 19233952 DOI: 10.1128/aem.02621-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strains, in general, do not ferment cellobiose and aryl-beta-D-glucosidic sugars, although "cryptic" beta-d-glucoside systems have been characterized. Here we describe an additional cryptic operon (bgc) for the utilization of cellobiose and the aryl-beta-d-glucosides arbutin and salicin at low temperature. The bgc operon was identified by the characterization of beta-glucoside-positive mutants of an E. coli septicemia strain (i484) in which the well-studied bgl (aryl-beta-d-glucoside) operon was deleted. These bgc* mutants appeared after 5 days of incubation on salicin indicator plates at 28 degrees C. The bgc operon codes for proteins homologous to beta-glucoside/cellobiose-specific phosphoenolpyruvate-dependent phosphotransfer system permease subunits IIB (BgcE), IIC (BgcF), and IIA (BgcI); a porin (BgcH); and a phospho-beta-D-glucosidase (BgcA). Next to the bgc operon maps the divergent bgcR gene, which encodes a GntR-type transcriptional regulator. Expression of the bgc operon is dependent on the cyclic-AMP-dependent regulator protein CRP and positively controlled by BgcR. In the bgc* mutants, a single nucleotide exchange enhances the activity of the bgc promoter, rendering it BgcR independent. Typing of a representative collection of E. coli demonstrated the prevalence of bgc in strains of phylogenetic group B2, representing mainly extraintestinal pathogens, while it is rare among commensal E. coli strains. The bgc locus is also present in the closely related species Escherichia albertii. Further, bioinformatic analyses demonstrated that homologs of the bgc genes exist in the enterobacterial Klebsiella, Enterobacter, and Citrobacter spp. and also in gram-positive bacteria, indicative of horizontal gene transfer events.
Collapse
|
24
|
Mellies JL, Barron AMS, Carmona AM. Enteropathogenic and enterohemorrhagic Escherichia coli virulence gene regulation. Infect Immun 2007; 75:4199-210. [PMID: 17576759 PMCID: PMC1951183 DOI: 10.1128/iai.01927-06] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jay L Mellies
- Biology Department, Reed College, 3203 S.E. Woodstock Boulevard, Portland, OR 97202, USA.
| | | | | |
Collapse
|
25
|
Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS--facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 2007; 21:1456-71. [PMID: 17575047 DOI: 10.1101/gad.1543107] [Citation(s) in RCA: 233] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lateral gene transfer has played a prominent role in bacterial evolution, but the mechanisms allowing bacteria to tolerate the acquisition of foreign DNA have been incompletely defined. Recent studies show that H-NS, an abundant nucleoid-associated protein in enteric bacteria and related species, can recognize and selectively silence the expression of foreign DNA with higher adenine and thymine content relative to the resident genome, a property that has made this molecule an almost universal regulator of virulence determinants in enteric bacteria. These and other recent findings challenge the ideas that curvature is the primary determinant recognized by H-NS and that activation of H-NS-silenced genes in response to environmental conditions occurs through a change in the structure of H-NS itself. Derepression of H-NS-silenced genes can occur at specific promoters by several mechanisms including competition with sequence-specific DNA-binding proteins, thereby enabling the regulated expression of foreign genes. The possibility that microorganisms maintain and exploit their characteristic genomic GC ratios for the purpose of self/non-self-discrimination is discussed.
Collapse
Affiliation(s)
- William Wiley Navarre
- Department of Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Bacteria, like eukaryotic organisms, must compact the DNA molecule comprising their genome and form a functional chromosome. Yet, bacteria do it differently. A number of factors contribute to genome compaction and organization in bacteria, including entropic effects, supercoiling and DNA-protein interactions. A gamut of new experimental techniques have allowed new advances in the investigation of these factors, and spurred much interest in the dynamic response of the chromosome to environmental cues, segregation, and architecture, during both exponential and stationary phases. We review these recent developments with emphasis on the multifaceted roles that DNA-protein interactions play.
Collapse
Affiliation(s)
- Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
27
|
Ono S, Goldberg M, Olsson T, Esposito D, Hinton J, Ladbury J. H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 2005; 391:203-13. [PMID: 15966862 PMCID: PMC1276917 DOI: 10.1042/bj20050453] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 01/03/2023]
Abstract
Temperature is a primary environmental stress to which micro-organisms must be able to adapt and respond rapidly. Whereas some bacteria are restricted to specific niches and have limited abilities to survive changes in their environment, others, such as members of the Enterobacteriaceae, can withstand wide fluctuations in temperature. In addition to regulating cellular physiology, pathogenic bacteria use temperature as a cue for activating virulence gene expression. This work confirms that the nucleoid-associated protein H-NS (histone-like nucleoid structuring protein) is an essential component in thermoregulation of Salmonella. On increasing the temperature from 25 to 37 degrees C, more than 200 genes from Salmonella enterica serovar Typhimurium showed H-NS-dependent up-regulation. The thermal activation of gene expression is extremely rapid and change in temperature affects the DNA-binding properties of H-NS. The reduction in gene repression brought about by the increase in temperature is concomitant with a conformational change in the protein, resulting in the decrease in size of high-order oligomers and the appearance of increasing concentrations of discrete dimers of H-NS. The present study addresses one of the key complex mechanisms by which H-NS regulates gene expression.
Collapse
Affiliation(s)
- Shusuke Ono
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Martin D. Goldberg
- †Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - Tjelvar Olsson
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Diego Esposito
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Jay C. D. Hinton
- †Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, U.K
| | - John E. Ladbury
- *Department of Biochemistry and Molecular Biology, and Institute of Structural Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
28
|
Rodríguez S, Nieto JM, Madrid C, Juárez A. Functional Replacement of the Oligomerization Domain of H-NS by the Hha Protein of
Escherichia coli. J Bacteriol 2005; 187:5452-9. [PMID: 16030239 PMCID: PMC1196020 DOI: 10.1128/jb.187.15.5452-5459.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Members of the H-NS family of proteins play a relevant role as modulators of gene expression in gram-negative bacteria. Interaction of these proteins with members of the Hha/YmoA family of proteins has been previously reported. It has been hypothesized that the latter proteins are functionally equivalent to the N-terminal domain of H-NS-like proteins. In this report we test this assumption by replacing the N-terminal domain of
Escherichia coli
H-NS by Hha. It has been possible to obtain a functional protein that can compensate for some of the
hns-
induced phenotypes. These results highlight the relevance of H-NS-Hha interactions to generate heterooligomeric complexes that modulate gene expression in gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Rodríguez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Bingle LEH, Macartney DP, Fantozzi A, Manzoor SE, Thomas CM. Flexibility in repression and cooperativity by KorB of broad host range IncP-1 plasmid RK2. J Mol Biol 2005; 349:302-16. [PMID: 15890197 DOI: 10.1016/j.jmb.2005.03.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/16/2022]
Abstract
KorB, encoded by plasmid RK2, belongs to the ParB family of active partitioning proteins. It binds to 12 operators on the RK2 genome and was previously known to repress promoters immediately adjacent to operators O(B)1, O(B)10 and O(B)12 (proximal) or up to 154 bp away (distal) from O(B)2, O(B)9 and O(B)11. To achieve strong repression, KorB requires a cooperative interaction with one of two other plasmid-encoded repressors, KorA or TrbA. Reporter gene assays were used in this study to test whether the additional KorB operators may influence transcription and to test how KorB acts at a distance. The distance between O(B)9 and trbBp could be increased to 1.6kb with little reduction in repression or cooperativity with TrbA. KorB was also able to repress the promoter and cooperate with TrbA when the O(B) site was placed downstream of trbBp. This suggested a potential regulatory role for O(B) sites located a long way from any known promoter on RK2. O(B)4, 1.9kb upstream of traGp, was shown to mediate TrbA-potentiated KorB repression of this promoter, but no effect on traJp upstream of O(B)4 was observed, which may be due to the roadblocking or topological influence of the nucleoprotein complex formed at the adjacent transfer origin, oriT. Repression and cooperativity were alleviated significantly when a lac operator was inserted between O(B)9 and trbBp in the context of a LacI+ host, a standard test for spreading of a DNA-binding protein. On the other hand, a standard test for DNA looping, movement of the operator to the opposite face of the DNA helix from the natural binding site, did not significantly affect KorB repression or cooperativity with TrbA and KorA over relatively short distances. While these results are more consistent with spreading as the mechanism by which KorB reaches its target, previous estimates of KorB molecules per cell are not consistent with there being enough to spread up to 1kb from each O(B). A plausible model is therefore that KorB can do both, spreading over relatively short distances and looping over longer distances.
Collapse
Affiliation(s)
- Lewis E H Bingle
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
30
|
Chen CC, Wu HY. LeuO protein delimits the transcriptionally active and repressive domains on the bacterial chromosome. J Biol Chem 2005; 280:15111-21. [PMID: 15711009 DOI: 10.1074/jbc.m414544200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LeuO protein relieves bacterial gene silencer AT8-mediated transcriptional repression as part of a promoter relay mechanism found in the ilvIH-leuO-leuABCD gene cluster. The gene silencing activity has recently been characterized as a nucleoprotein filament initiated at the gene silencer. In this gene locus, the nucleoprotein filament cis-spreads toward the target leuO promoter and results in the repression of the leuO gene. Although the cis-spreading nature of the transcriptionally repressive nucleoprotein filament has been revealed, the mechanism underlying LeuO-mediated gene silencing relief remains unknown. We have demonstrated here that LeuO functions analogously to the eukaryotic boundary element that delimits the transcriptionally active and repressive domains on the chromosome by blocking the cis-spreading pathway of the transcriptionally repressive heterochromatin. Given that one LeuO-binding site is positioned between the gene silencer and the target promoter, the simultaneous presence of a second LeuO-binding site synergistically enhances the blockade, resulting in a cooperative increase in LeuO-mediated gene silencing relief. A known DNA loop-forming protein, the lac repressor (LacI), was used to confirm that cooperative protein binding via DNA looping is responsible for the blocking synergy. Indeed, a distal LeuO site located downstream cooperates with the LeuO sites located upstream of the leuO gene, resulting in synergistic relief for the repressed leuO gene via looping out the intervening DNA between LeuO sites in the ilvIH-leuO-leuABCD gene cluster.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
31
|
Barker CS, Prüss BM, Matsumura P. Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 2004; 186:7529-37. [PMID: 15516564 PMCID: PMC524886 DOI: 10.1128/jb.186.22.7529-7537.2004] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flhD operon is the master operon of the flagellar regulon and a global regulator of metabolism. The genome sequence of the Escherichia coli K-12 strain MG1655 contained an IS1 insertion sequence element in the regulatory region of the flhD promoter. Another stock of MG1655 was obtained from the E. coli Genetic Stock Center. This stock contained isolates which were poorly motile and had no IS1 element upstream of the flhD promoter. From these isolates, motile subpopulations were identified after extended incubation in motility agar. Purified motile derivatives contained an IS5 element insertion upstream of the flhD promoter, and swarm rates were sevenfold higher than that of the original isolate. For a motile derivative, levels of flhD transcript had increased 2.7-fold, leading to a 32-fold increase in fliA transcript and a 65-fold increase in flhB::luxCDABE expression from a promoter probe vector. A collection of commonly used lab strains was screened for IS element insertion and motility. Five strains (RP437, YK410, MC1000, W3110, and W2637) contained IS5 elements upstream of the flhD promoter at either of two locations. This correlated with high swarm rates. Four other strains (W1485, FB8, MM294, and RB791) did not contain IS elements in the flhD regulatory region and were poorly motile. Primer extension determined that the transcriptional start site of flhD was unaltered by the IS element insertions. We suggest that IS element insertion may activate transcription of the flhD operon by reducing transcriptional repression.
Collapse
Affiliation(s)
- Clive S Barker
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| | | | | |
Collapse
|
32
|
Chen CC, Chou MY, Huang CH, Majumder A, Wu HY. A cis-spreading nucleoprotein filament is responsible for the gene silencing activity found in the promoter relay mechanism. J Biol Chem 2004; 280:5101-12. [PMID: 15582999 DOI: 10.1074/jbc.m411840200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-generated DNA supercoiling plays a decisive role in a promoter relay mechanism for the coordinated expression of genes in the Salmonella typhimurium ilvIH-leuO-leuABCD gene cluster. A similar mechanism also operates to control expression of the genes in the Escherichia coli ilvIH-leuO-leuABCD gene cluster. However, the mechanism underlying the DNA supercoiling effect remained elusive. A bacterial gene silencer AT8 was found to be important for the repression state of the leuO gene as part of the promoter relay mechanism. In this communication, we demonstrated that the gene silencer AT8 is a nucleation site for recruiting histone-like nucleoid structuring protein to form a cis-spreading nucleoprotein filament that is responsible for silencing of the leuO gene. With a DNA geometric similarity rather than a DNA sequence specificity, the E. coli gene silencer EAT6 was capable of replacing the histone-like nucleoid structuring protein nucleation function of the S. typhimurium gene silencer AT8 for the leuO gene silencing. The interchangeability between DNA geometrical elements for supporting the silencing activity in the region is consistent with a previous finding that a neighboring transcription activity determines the outcome of the gene silencing activity. The geometric requirement, which was revealed for this silencing activity, explains the decisive role of transcription-generated DNA supercoiling found in the promoter relay mechanism.
Collapse
Affiliation(s)
- Chien-Chung Chen
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
33
|
Dole S, Nagarajavel V, Schnetz K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 2004; 52:589-600. [PMID: 15066043 DOI: 10.1111/j.1365-2958.2004.04001.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specificity of repression by the histone-like nucleoid structuring protein and pleiotropic regulator, H-NS, is exceptionally high in case of the Escherichia coli bgl (beta-glucoside) operon. Here we present evidence that H-NS represses the operon at two levels. The binding of H-NS to an upstream silencer results in an approximately threefold repression of the catabolite gene regulator protein (CRP) dependent bgl promoter. In addition, H-NS binds to a silencer region located approximately 600-700 base pairs downstream of the promoter, within the coding region of first gene, bglG, resulting in a approximately sevenfold further decrease of expression. Repression by H-NS at the downstream silencer requires termination factor Rho and is reduced by translation of the bglG mRNA, but is independent of the promoter. This suggests that H-NS induces polarity of transcription by acting as a roadblock to the elongating RNA polymerase. The control of the bgl operon by H-NS at two levels results in a highly specific repression.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institute for Genetics, University Cologne,Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
35
|
Wu HY, Fang M. DNA supercoiling and transcription control: a model from the study of suppression of the leu-500 mutation in Salmonella typhimurium topA- strains. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 73:43-68. [PMID: 12882514 DOI: 10.1016/s0079-6603(03)01002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
DNA supercoiling is known to modulate gene expression. The functional relationship between DNA supercoiling and transcription initiation has been established genetically and biochemically. The molecular mechanism whereby DNA supercoiling regulates gene expression remains unclear however. Quite commonly, the same gene responds to the same DNA supercoiling change differently when the gene is positioned at different locations. Such strong positional effects on gene expression suggest that rather than the overall DNA supercoiling change, the variation of DNA supercoiling at a local site might be important for transcription control. We have started to understand the local DNA supercoiling dynamic on the chromosome. As a primary source of local DNA supercoiling fluctuation, transcription-driven DNA supercoiling is important in determining the chromosome supercoiling dynamic and theoretically, therefore, for transcription control as well. Indeed, by studying the coordinated expression of genes in the ilvIH-leuO-leuABCD gene cluster, we found that transcription-driven DNA supercoiling governs the expression of a group of functionally related genes in a sequential manner. Based on the findings in this model system, we put forward the possible mechanisms whereby DNA supercoiling plays its role in transcription control.
Collapse
Affiliation(s)
- Hai-Young Wu
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
36
|
Schechter LM, Jain S, Akbar S, Lee CA. The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect Immun 2003; 71:5432-5. [PMID: 12933899 PMCID: PMC187364 DOI: 10.1128/iai.71.9.5432-5435.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
hilA encodes an activator of Salmonella enterica serovar Typhimurium virulence genes and is transcriptionally modulated by environmental conditions. We show that H-NS represses hilA under low-osmolarity conditions. H-NS, HU, and Fis also appear to affect the derepression of hilA by HilD. Modulation of hilA by counteracting repressing and derepressing mechanisms may allow Salmonella serovar Typhimurium to regulate its virulence genes in response to different situations in vivo.
Collapse
Affiliation(s)
- Lisa M Schechter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
37
|
Raghunand TR, Mahadevan S. The beta-glucoside genes of Klebsiella aerogenes: conservation and divergence in relation to the cryptic bgl genes of Escherichia coli. FEMS Microbiol Lett 2003; 223:267-74. [PMID: 12829297 DOI: 10.1016/s0378-1097(03)00393-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.
Collapse
Affiliation(s)
- Tirumalai R Raghunand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
38
|
Amit R, Oppenheim AB, Stavans J. Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 2003; 84:2467-73. [PMID: 12668454 PMCID: PMC1302812 DOI: 10.1016/s0006-3495(03)75051-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histonelike nucleoid structuring protein (H-NS) is an abundant prokaryotic protein participating in nucleoid structure, gene regulation, and silencing. It plays a key role in cell response to changes in temperature and osmolarity. Force-extension measurements of single, twist-relaxed lambda-DNA-H-NS complexes show that these adopt more extended configurations compared to the naked DNA substrates. Crosslinking indicates that H-NS can decorate DNA molecules at one H-NS dimer per 15-20 bp. These results suggest that H-NS polymerizes along DNA, forming a complex of higher bending rigidity. These effects are not observed above 32 degrees C or at high osmolarity, supporting the hypothesis that a direct H-NS-DNA interaction plays a key role in gene silencing. Thus, we propose that H-NS plays a unique structural role, different from that of HU and IHF, and functions as one of the environmental sensors of the cell.
Collapse
Affiliation(s)
- Roee Amit
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
39
|
Petersen C, Møller LB, Valentin-Hansen P. The cryptic adenine deaminase gene of Escherichia coli. Silencing by the nucleoid-associated DNA-binding protein, H-NS, and activation by insertion elements. J Biol Chem 2002; 277:31373-80. [PMID: 12077137 DOI: 10.1074/jbc.m204268200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli there are two pathways for conversion of adenine into guanine nucleotides, both involving the intermediary formation of IMP. The major pathway involves conversion of adenine into hypoxanthine in three steps via adenosine and inosine, with subsequent phosphoribosylation of hypoxanthine to IMP. The minor pathway involves formation of ATP, which is converted via the histidine pathway to the purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide and, subsequently, to IMP. Here we describe E. coli mutants, in which a third pathway for conversion of adenine to IMP has been activated. This pathway was shown to involve direct deamination of adenine to hypoxanthine by a manganese-dependent adenine deaminase encoded by a cryptic gene, yicP, which we propose be renamed ade. Insertion elements, located from -145 to +13 bp relative to the transcription start site, activated the ade gene as did unlinked mutations in the hns gene, encoding the histone-like protein H-NS. Gene fusion analysis indicated that ade transcription is repressed more than 10-fold by H-NS and that a region of 231 bp including the ade promoter is sufficient for this regulation. The activating insertion elements essentially eliminated the H-NS-mediated silencing, and stimulated ade gene expression 2-3-fold independently of the H-NS protein.
Collapse
Affiliation(s)
- Carsten Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Sølvgade 83H, DK1307 Copenhagen K, Denmark.
| | | | | |
Collapse
|
40
|
Schnetz K. Silencing of the Escherichia coli bgl operon by RpoS requires Crl. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2573-2578. [PMID: 12177351 DOI: 10.1099/00221287-148-8-2573] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Silencing of the Escherichia coli bgl operon is mediated by histone-like protein H-NS and affected by other pleiotropic regulators, including sigma factor RpoS. Silencing is relieved and the bgl operon is activated in hns mutants and by mutations that map in the vicinity of the bgl promoter. However, the expression level of activated bgl operon derivatives varies with the strain background. Here it is shown that the repression of the bgl operon by RpoS requires Crl. Crl is a protein that is necessary for the RpoS-dependent expression of the csgBA operon and that enhances the expression of other RpoS-dependent genes. In a Crl-negative strain RpoS had no effect on the bgl operon. The crl gene maps close to the proBA locus in the lac operon region and is deleted in many commonly used E. coli strains. Crl may therefore account for some of the observed strain-dependent variations of bgl operon expression levels and effects of pleiotropic regulators on bgl operon regulation.
Collapse
Affiliation(s)
- Karin Schnetz
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany1
| |
Collapse
|
41
|
Moorthy S, Mahadevan S. Differential spectrum of mutations that activate the Escherichia coli bgl operon in an rpoS genetic background. J Bacteriol 2002; 184:4033-8. [PMID: 12081976 PMCID: PMC135163 DOI: 10.1128/jb.184.14.4033-4038.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bgl promoter is silent in wild-type Escherichia coli under standard laboratory conditions, and as a result, cells exhibit a beta-glucoside-negative (Bgl-) phenotype. Silencing is brought about by negative elements that flank the promoter and include DNA structural elements and sequences that interact with the nucleoid-associated protein H-NS. Mutations that confer a Bgl+ phenotype arise spontaneously at a detectable frequency. Transposition of DNA insertion elements within the regulatory locus, bglR, constitutes the major class of activating mutations identified in laboratory cultures. The rpoS-encoded sigmaS, the stationary-phase sigma factor, is involved in both physiological as well as genetic changes that occur in the cell under stationary-state conditions. In an attempt to see if the rpoS status of the cell influences the nature of the mutations that activate the bgl promoter, we analyzed spontaneously arising Bgl+ mutants in rpoS+ and rpoS genetic backgrounds. We show that the spectrum of activating mutations in rpoS cells is different from that in rpoS+ cells. Unlike rpoS+ cells, where insertions in bglR are the predominant activating mutations, mutations in hns make up the majority in rpoS cells. The physiological significance of these differences is discussed in the context of survival of natural populations of E. coli.
Collapse
Affiliation(s)
- Sudha Moorthy
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
42
|
Schröder O, Wagner R. The bacterial regulatory protein H-NS--a versatile modulator of nucleic acid structures. Biol Chem 2002; 383:945-60. [PMID: 12222684 DOI: 10.1515/bc.2002.101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The small DNA binding protein H-NS is attracting broad interest for its profound involvement in the regulation of bacterial physiology. It is involved in the regulation of many genes in response to a changing environment and functions in the adaptation to many different kinds of stress. Many H-NS-controlled genes, including the hns gene itself, are further linked to global regulatory networks. H-NS thus plays a key role in maintaining bacterial homeostasis under conditions of a rapidly changing environment. In this review we summarize recent results from combined biochemical and biophysical efforts which have yielded new insights into the three-dimensional structure and function of H-NS. The protein consists of two distinct domains separated by an unstructured linker region, and the structural details available today have helped to understand how these domains may interact with each other or with ligand molecules. Functional studies have, in addition, revealed mechanistic clues for the various H-NS activities, like temperature- or growth phase-dependent regulation. Important elements for the specific regulatory activities of H-NS comprise different modes of DNA binding, protein oligomerization, the competition with other regulators and the fact that the topology of the target DNA is modulated during complex formation. The distinctive ability to recognize nucleic acid structures in combination with other proteins also explains H-NS-dependent post-transcriptional activities where the interaction with defined RNA structures and the interference with RNA/protein complexes during mRNA translation are crucial for regulation. Thus, protein/protein interactions, in combination with the recognition and modulation of nucleic acid structures, are key elements of the different mechanisms which make H-NS such a versatile regulator.
Collapse
Affiliation(s)
- Oliver Schröder
- Division of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla 92093-0634, USA
| | | |
Collapse
|
43
|
Nieto JM, Madrid C, Miquelay E, Parra JL, Rodríguez S, Juárez A. Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J Bacteriol 2002; 184:629-35. [PMID: 11790731 PMCID: PMC139531 DOI: 10.1128/jb.184.3.629-635.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli nucleoid-associated H-NS protein interacts with the Hha protein, a member of a new family of global modulators that also includes the YmoA protein from Yersinia enterocolitica. This interaction has been found to be involved in the regulation of the expression of the toxin alpha-hemolysin. In this study, we further characterize the interaction between H-NS and Hha. We show that the presence of DNA in preparations of copurified His-Hha and H-NS is not directly implicated in the interaction between the proteins. The precise molecular mass of the H-NS protein retained by Hha, obtained by mass spectrometry analysis, does not show any posttranslational modification other than removal of the N-terminal Met residue. We constructed an H-NS-His recombinant protein and found that, as expected, it interacts with Hha. We used a Ni(2+)-nitrilotriacetic acid agarose method for affinity chromatography copurification of proteins to identify the H-NS protein of Y. enterocolitica. We constructed a six-His-YmoA recombinant protein derived from YmoA, the homologue of Hha in Y. enterocolitica, and found that it interacts with Y. enterocolitica H-NS. We also cloned and sequenced the hns gene of this microorganism. In the course of these experiments we found that His-YmoA can also retain H-NS from E. coli. We also found that the hns gene of Y. enterocolitica can complement an hns mutation of E. coli. Finally, we describe for the first time systematic characterization of missense mutant alleles of hha and truncated Hha' proteins, and we report a striking and previously unnoticed similarity of the Hha family of proteins to the oligomerization domain of the H-NS proteins.
Collapse
Affiliation(s)
- J M Nieto
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Dole S, Kühn S, Schnetz K. Post-transcriptional enhancement of Escherichia coli bgl operon silencing by limitation of BglG-mediated antitermination at low transcription rates. Mol Microbiol 2002; 43:217-26. [PMID: 11849549 DOI: 10.1046/j.1365-2958.2002.02734.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The silent bgl operon of Escherichia coli is activated by spontaneous mutations that derepress its promoter. In addition, expression depends on specific transcriptional antitermination within the operon by the antiterminator protein BglG. Here, we show that BglG-mediated antitermination limits expression of the bgl operon when the cellular transcription rate is low. The expression levels of chromosomally encoded activated bgl operon alleles are low but increase significantly when BglG protein is provided in trans or when the expression is rendered independent of BglG-mediated antitermination by mutation of the terminator. Plasmid-encoded activated bgl operon alleles are expressed at high levels. Moreover, a moderate (threefold) further increase in the transcription rate of chromosomally encoded activated bgl operon alleles in an rpoS mutant can result in high (up to 50-fold increased) expression levels. These data show that the expression of the bgl operon does not correlate linearly with its cellular transcription rate. Moderate differences in the transcription initiation rate are amplified post-transcriptionally into large changes in the expression level of the operon by the requirement of a threshold for BglG-mediated antitermination. Implications for bgl operon regulation by global regulators H-NS, RpoS and others are discussed.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institut für Genetik, Universität zu Köln, Weyertal 121, 50931 Köln, Germany
| | | | | |
Collapse
|
45
|
Rimsky S, Zuber F, Buckle M, Buc H. A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol 2001; 42:1311-23. [PMID: 11886561 DOI: 10.1046/j.1365-2958.2001.02706.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The H-NS protein is a major component of the bacterial nucleoid and plays a crucial role in the global gene regulation of enteric bacteria. Although H-NS does not exhibit a high DNA sequence specificity, a number of H-NS-responsive promoters have been shown to contain regions of intrinsic DNA curvature located either upstream or downstream of the transcription start point. We have studied H-NS binding to DNA and in vitro transcriptional regulation by H-NS at several synthetic promoters with or without curved sequences inserted upstream of the Pribnow box. We show how such inserts determine the final organization of H-NS-containing nucleoprotein complexes and how this affects transcription. We refine a two-step mechanism for the constitution of H-NS assemblies that are efficient in regulation.
Collapse
Affiliation(s)
- S Rimsky
- Unité de Physicochimie des Macromolécules Biologiques, URA 1773 du Centre National de la Recherche Scientifique, Institut Pasteur, F-75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
46
|
Camacho A, Salas M. Mechanism for the switch of phi29 DNA early to late transcription by regulatory protein p4 and histone-like protein p6. EMBO J 2001; 20:6060-70. [PMID: 11689446 PMCID: PMC125705 DOI: 10.1093/emboj/20.21.6060] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage phi29 gene expression takes place from four major promoters, three of them (A2b, A2c and A3) clustered within 219 bp at a central region of the genome. Transcription regulation of these promoters involves both a highly specific DNA-binding protein (p4) and a low specificity DNA-binding protein (p6) functionally related to prokaryotic histone-like proteins. Protein p6 forms extended oligomeric arrays along the phage DNA. In contrast, protein p4 binds specifically upstream of late promoter A3 and early promoter A2c. We have analysed the concomitant binding of p6 and p4 and found that the proteins cooperate with each other in the binding to the central region of the genome, resulting in a ternary p4-p6-DNA complex that affects local DNA topology. Through this complex, protein p6 exerts a direct role in the repression of promoter A2c, impeding unwinding of the DNA strands needed for open complex formation. In contrast, protein p6 functions by reinforcing the positioning of protein p4 in the repression of promoter A2b and activation of promoter A3, thereby facilitating p4-mediated transcription regulation.
Collapse
Affiliation(s)
| | - Margarita Salas
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|
47
|
Schechter LM, Lee CA. AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol Microbiol 2001; 40:1289-99. [PMID: 11442828 DOI: 10.1046/j.1365-2958.2001.02462.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During infection, Salmonella enterica serovar Typhimurium colonizes the small intestine of its hosts. This process requires a type III secretion system encoded by several genes on Salmonella pathogenicity island 1 (SPI1), a 40 kb region of DNA near centisome 63 of the Salmonella chromosome. SPI1 gene expression is controlled by a complex regulatory cascade. HilA, a member of the OmpR/ToxR family of transcriptional regulators, directly activates the expression of two SPI1 operons encoding type III apparatus components. hilA transcription is repressed by many environmental conditions and regulatory mutations. This repression requires an upstream repressing sequence (URS) located between -314 and -68 relative to the hilA transcription start site. The repressing activity of the URS is counteracted by two AraC/XylS family members named HilC and HilD. We show that HilC and HilD bind directly to the hilA promoter region in vitro. We also provide evidence that HilC and HilD bind to the same or overlapping sites within the URS. Our data are consistent with a model in which HilC and HilD derepress hilA expression by binding directly to the URS and counteracting its repressing effect in vivo.
Collapse
Affiliation(s)
- L M Schechter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
48
|
Manna D, Wang X, Higgins NP. Mu and IS1 transpositions exhibit strong orientation bias at the Escherichia coli bgl locus. J Bacteriol 2001; 183:3328-35. [PMID: 11344140 PMCID: PMC99630 DOI: 10.1128/jb.183.11.3328-3335.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The region upstream of the Escherichia coli bgl operon is an insertion hot spot for several transposons. Elements as distantly related as Tn1, Tn5, and phage Mu home in on this location. To see what characteristics result in a high-affinity site for transposition, we compared in vivo and in vitro Mu transposition patterns near the bgl promoter. In vivo, Mu insertions were focused in two narrow zones of DNA near bgl, and both zones exhibited a striking orientation bias. Five hot spots upstream of the bgl cyclic AMP binding protein (CAP) binding site had Mu insertions exclusively with the phage oriented left to right relative to the direction of bgl transcription. One hot spot within the CAP binding domain had the opposite (right-to-left) orientation of phage insertion. The DNA segment lying between these two Mu hot-spot clusters is extremely A/T rich (80%) and is an efficient target for insertion sequences during stationary phase. IS1 insertions that activate the bgl operon resulted in a decrease in Mu insertions near the CAP binding site. Mu transposition in vitro differed significantly from the in vivo transposition pattern, having a new hot-spot cluster at the border of the A/T-rich segment. Transposon hot-spot behavior and orientation bias may relate to an asymmetry of transposon DNA-protein complexes and to interactions with proteins that produce transcriptionally silenced chromatin.
Collapse
Affiliation(s)
- D Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
49
|
Abstract
Transcriptional repressors are usually viewed as proteins that bind to promoters in a way that impedes subsequent binding of RNA polymerase. Although this repression mechanism is found at several promoters, there is a growing list of repressors that inhibit transcription initiation in other ways. For example, several repressors allow the simultaneous binding of RNA polymerase to the promoter, but interfere with subsequent events of the initiation process, eventually inhibiting transcription initiation. The recent increase in the number of repressors for which the repression mechanism has been characterized in detail has shown an amazing variety of strategies to repress transcription initiation. It is not surprising to find that the repression mechanism used is usually exquisitely adapted to the characteristics of the promoter and of the repressor involved.
Collapse
Affiliation(s)
- F Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Campus de la Universidad Autónoma de Madrid, Cantoblanco, 28049-, Madrid, Spain.
| |
Collapse
|
50
|
Abstract
Nucleoid proteins are a group of abundant DNA binding proteins that modulate the structure of the bacterial chromosome. They have been recruited as specific negative and positive regulators of gene transcription and their fluctuating patterns of expression are often exploited to impart an additional level of control with respect to environmental conditions.
Collapse
Affiliation(s)
- S M McLeod
- Department of Biological Chemistry, School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | | |
Collapse
|