1
|
Peñafiel-Ayala A, Peralta-Castro A, Mora-Garduño J, García-Medel P, Zambrano-Pereira AG, Díaz-Quezada C, Abraham-Juárez MJ, Benítez-Cardoza CG, Sloan DB, Brieba LG. Plant Organellar MSH1 Is a Displacement Loop-Specific Endonuclease. PLANT & CELL PHYSIOLOGY 2024; 65:560-575. [PMID: 37756637 PMCID: PMC11494383 DOI: 10.1093/pcp/pcad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
MutS HOMOLOG 1 (MSH1) is an organellar-targeted protein that obstructs ectopic recombination and the accumulation of mutations in plant organellar genomes. MSH1 also modulates the epigenetic status of nuclear DNA, and its absence induces a variety of phenotypic responses. MSH1 is a member of the MutS family of DNA mismatch repair proteins but harbors an additional GIY-YIG nuclease domain that distinguishes it from the rest of this family. How MSH1 hampers recombination and promotes fidelity in organellar DNA inheritance is unknown. Here, we elucidate its enzymatic activities by recombinantly expressing and purifying full-length MSH1 from Arabidopsis thaliana (AtMSH1). AtMSH1 is a metalloenzyme that shows a strong binding affinity for displacement loops (D-loops). The DNA-binding abilities of AtMSH1 reside in its MutS domain and not in its GIY-YIG domain, which is the ancillary nickase of AtMSH1. In the presence of divalent metal ions, AtMSH1 selectively executes multiple incisions at D-loops, but not other DNA structures including Holliday junctions or dsDNA, regardless of the presence or absence of mismatches. The selectivity of AtMSH1 to dismantle D-loops supports the role of this enzyme in preventing recombination between short repeats. Our results suggest that plant organelles have evolved novel DNA repair routes centered around the anti-recombinogenic activity of MSH1.
Collapse
Affiliation(s)
- Alejandro Peñafiel-Ayala
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Antolin Peralta-Castro
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Josue Mora-Garduño
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Paola García-Medel
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Angie G Zambrano-Pereira
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Corina Díaz-Quezada
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - María Jazmín Abraham-Juárez
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica, Programa Institucional en Biomedicina Molecular ENMyH-IPN, Guillermo Massieu Helguera No. 239, La Escalera Ticoman 07320 DF, México
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, Irapuato, Guanajuato 36821, México
| |
Collapse
|
2
|
Nirwal S, Kulkarni DS, Sharma A, Rao DN, Nair DT. Mechanism of formation of a toroid around DNA by the mismatch sensor protein. Nucleic Acids Res 2019; 46:256-266. [PMID: 29182773 PMCID: PMC5758902 DOI: 10.1093/nar/gkx1149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/01/2017] [Indexed: 01/26/2023] Open
Abstract
The DNA mismatch repair (MMR) pathway removes errors that appear during genome replication. MutS is the primary mismatch sensor and forms an asymmetric dimer that encircles DNA to bend it to scan for mismatches. The mechanism utilized to load DNA into the central tunnel was unknown and the origin of the force required to bend DNA was unclear. We show that, in absence of DNA, MutS forms a symmetric dimer wherein a gap exists between the monomers through which DNA can enter the central tunnel. The comparison with structures of MutS-DNA complexes suggests that the mismatch scanning monomer (Bm) will move by nearly 50 Å to associate with the other monomer (Am). Consequently, the N-terminal domains of both monomers will press onto DNA to bend it. The proposed mechanism of toroid formation evinces that the force required to bend DNA arises primarily due to the movement of Bm and hence, the MutS dimer acts like a pair of pliers to bend DNA. We also shed light on the allosteric mechanism that influences the expulsion of adenosine triphosphate from Am on DNA binding. Overall, this study provides mechanistic insight regarding the primary event in MMR i.e. the assembly of the MutS-DNA complex.
Collapse
Affiliation(s)
- Shivlee Nirwal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.,Manipal University, Manipal, 576104, Karnataka, India
| | - Dhananjaya S Kulkarni
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Amit Sharma
- TERI-DIAKEN Nanobiotechnolgy Centre, TERI-Gram, Gual Pahari, Gurgaon-Faridabad Road, Gurgaon, 122001, Haryana, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Deepak T Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| |
Collapse
|
3
|
Lakhani B, Thayer KM, Hingorani MM, Beveridge DL. Evolutionary Covariance Combined with Molecular Dynamics Predicts a Framework for Allostery in the MutS DNA Mismatch Repair Protein. J Phys Chem B 2017; 121:2049-2061. [PMID: 28135092 PMCID: PMC5346969 DOI: 10.1021/acs.jpcb.6b11976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Mismatch
repair (MMR) is an essential, evolutionarily conserved
pathway that maintains genome stability by correcting base-pairing
errors in DNA. Here we examine the sequence and structure of MutS
MMR protein to decipher the amino acid framework underlying its two
key activities—recognizing mismatches in DNA and using ATP
to initiate repair. Statistical coupling analysis (SCA) identified
a network (sector) of coevolved amino acids in the MutS protein family.
The potential functional significance of this SCA sector was assessed
by performing molecular dynamics (MD) simulations for alanine mutants
of the top 5% of 160 residues in the distribution, and control nonsector
residues. The effects on three independent metrics were monitored:
(i) MutS domain conformational dynamics, (ii) hydrogen bonding between
MutS and DNA/ATP, and (iii) relative ATP binding free energy. Each
measure revealed that sector residues contribute more substantively
to MutS structure–function than nonsector residues. Notably,
sector mutations disrupted MutS contacts with DNA and/or ATP from
a distance via contiguous pathways and correlated motions, supporting
the idea that SCA can identify amino acid networks underlying allosteric
communication. The combined SCA/MD approach yielded novel, experimentally
testable hypotheses for unknown roles of many residues distributed
across MutS, including some implicated in Lynch cancer syndrome.
Collapse
Affiliation(s)
- Bharat Lakhani
- Molecular Biology and Biochemistry Department, ‡Molecular Biophysics Program, §Chemistry Department, and ∥Computer Science Department, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Kelly M Thayer
- Molecular Biology and Biochemistry Department, ‡Molecular Biophysics Program, §Chemistry Department, and ∥Computer Science Department, Wesleyan University , Middletown, Connecticut 06459, United States
| | - Manju M Hingorani
- Molecular Biology and Biochemistry Department, ‡Molecular Biophysics Program, §Chemistry Department, and ∥Computer Science Department, Wesleyan University , Middletown, Connecticut 06459, United States
| | - David L Beveridge
- Molecular Biology and Biochemistry Department, ‡Molecular Biophysics Program, §Chemistry Department, and ∥Computer Science Department, Wesleyan University , Middletown, Connecticut 06459, United States
| |
Collapse
|
4
|
Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair (Amst) 2015; 38:14-23. [PMID: 26796427 DOI: 10.1016/j.dnarep.2015.11.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/05/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
Abstract
The machinery of DNA mismatch repair enzymes is highly conserved in evolution. The process is initiated by recognition of a DNA mismatch, and validated by ATP and the presence of a processivity clamp or a methylation mark. Several events in MMR promote conformational changes that lead to progression of the repair process. Here we discuss functional conformational changes in the MMR proteins and we compare the enzymes to paralogs in other systems.
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Groothuizen FS, Winkler I, Cristóvão M, Fish A, Winterwerp HHK, Reumer A, Marx AD, Hermans N, Nicholls RA, Murshudov GN, Lebbink JHG, Friedhoff P, Sixma TK. MutS/MutL crystal structure reveals that the MutS sliding clamp loads MutL onto DNA. eLife 2015; 4:e06744. [PMID: 26163658 PMCID: PMC4521584 DOI: 10.7554/elife.06744] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch. DOI:http://dx.doi.org/10.7554/eLife.06744.001 The genetic code of DNA is written using four letters: “A”, “C”, “T”, and “G”. Molecules of DNA form a double helix in which the letters in the two opposing strands pair up in a specific manner—“A” pairs with “T”, and “C” pairs with “G”. A cell must replicate its DNA before it divides, and sometimes the wrong DNA letter can get added into the new DNA strand. If left uncorrected, these mistakes accumulate over time and can eventually harm the cell. As a result, cells have evolved several ways to identify these mistakes and correct them, including one known as “mismatch repair”. Mismatch repair occurs via several stages. The process starts when a protein called MutS comes across a site in the DNA where the letters are mismatched (for example, where an “A” is paired with a “C”, instead of a “T”). MutS can recognize such a mismatch, bind it, and then bind to another molecule called ATP. MutS then changes shape and encircles the DNA like a clamp that can slide along the DNA. Only when it forms this “sliding clamp” state can MutS recruit another protein called MutL. This activity in turn triggers a series of further events that ultimately correct the mismatch. However, it remains poorly understood how MutS forms a clamp around DNA and how and why this state recruits MutL in order to start the repair. To visualize this short-lived intermediate, Groothuizen et al. trapped the relevant complex in the presence of DNA containing a mismatch and then used a technique called X-ray crystallography to determine the three-dimensional structure of MutS bound to MutL. The structure reveals that two copies of MutS tilt across each other and open up a channel, which is large enough to accommodate the DNA. In this manner, MutS is able to form a loose ring around the DNA. The changes in the structure and the movement of the DNA to the new channel were confirmed using another technique, commonly referred to as FRET. Groothuizen et al. observed that the movements in the MutS protein also serve to make the interfaces available that can recognize MutL. If these interfaces were disturbed, MutS and MutL were unable to associate with each other, which resulted in a failure to trigger mismatch repair. Further analysis revealed that that MutL binds to DNA only after MutS has recognised the mismatch and formed a clamp around it. This is the first time that the MutS clamp and the MutS/MutL complex have been visualized, and further work is now needed to understand how MutL triggers other events that ultimately repair the mismatched DNA. DOI:http://dx.doi.org/10.7554/eLife.06744.002
Collapse
Affiliation(s)
- Flora S Groothuizen
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ines Winkler
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Michele Cristóvão
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Alexander Fish
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Annet Reumer
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreas D Marx
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Nicolaas Hermans
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robert A Nicholls
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Garib N Murshudov
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Joyce H G Lebbink
- Department of Genetics, Cancer Genomics Netherlands, Erasmus Medical Center, Rotterdam, Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Titia K Sixma
- Division of Biochemistry and CGC.nl, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
6
|
Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma 2015; 124:443-62. [PMID: 25862369 DOI: 10.1007/s00412-015-0514-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
The genome of all organisms is constantly being challenged by endogenous and exogenous sources of DNA damage. Errors like base:base mismatches or small insertions and deletions, primarily introduced by DNA polymerases during DNA replication are repaired by an evolutionary conserved DNA mismatch repair (MMR) system. The MMR system, together with the DNA replication machinery, promote repair by an excision and resynthesis mechanism during or after DNA replication, increasing replication fidelity by up-to-three orders of magnitude. Consequently, inactivation of MMR genes results in elevated mutation rates that can lead to increased cancer susceptibility in humans. In this review, we summarize our current understanding of MMR with a focus on the different MMR protein complexes, their function and structure. We also discuss how recent findings have provided new insights in the spatio-temporal regulation and mechanism of MMR.
Collapse
Affiliation(s)
- Gloria X Reyes
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Tobias T Schmidt
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Richard D Kolodner
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Moores-UCSD Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0669, USA
| | - Hans Hombauer
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Edelbrock MA, Kaliyaperumal S, Williams KJ. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res 2013; 743-744:53-66. [PMID: 23391514 DOI: 10.1016/j.mrfmmm.2012.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/18/2022]
Abstract
The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.
Collapse
Affiliation(s)
| | - Saravanan Kaliyaperumal
- Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772, USA.
| | - Kandace J Williams
- University of Toledo College of Medicine and Life Sciences, Department of Biochemistry & Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614, USA.
| |
Collapse
|
8
|
Hargreaves VV, Putnam CD, Kolodner RD. Engineered disulfide-forming amino acid substitutions interfere with a conformational change in the mismatch recognition complex Msh2-Msh6 required for mismatch repair. J Biol Chem 2012; 287:41232-44. [PMID: 23045530 DOI: 10.1074/jbc.m112.402495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding causes the mispair-bound Msh2-Msh6 mismatch recognition complex to slide along the DNA away from the mismatch, and ATP is required for the mispair-dependent interaction between Msh2-Msh6 and Mlh1-Pms1. It has been inferred from these observations that ATP induces conformational changes in Msh2-Msh6; however, the nature of these conformational changes and their requirement in mismatch repair are poorly understood. Here we show that ATP induces a conformational change within the C-terminal region of Msh6 that protects the trypsin cleavage site after Msh6 residue Arg(1124). An engineered disulfide bond within this region prevented the ATP-driven conformational change and resulted in an Msh2-Msh6 complex that bound mispaired bases but could not form sliding clamps or bind Mlh1-Pms1. The engineered disulfide bond also reduced mismatch repair efficiency in vivo, indicating that this ATP-driven conformational change plays a role in mismatch repair.
Collapse
Affiliation(s)
- Victoria V Hargreaves
- Ludwig Institute for Cancer Research, Department of Medicine, Moores-University of California San Diego Cancer Center, and Institute of Genomic Medicine, University of California School of Medicine, San Diego, La Jolla, California 92093-0669, USA
| | | | | |
Collapse
|
9
|
Ehrat EA, Johnson BR, Williams JD, Borchert GM, Larson ED. G-quadruplex recognition activities of E. Coli MutS. BMC Mol Biol 2012; 13:23. [PMID: 22747774 PMCID: PMC3437207 DOI: 10.1186/1471-2199-13-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022] Open
Abstract
Background Guanine quadruplex (G4 DNA) is a four-stranded structure that contributes to genome instability and site-specific recombination. G4 DNA folds from sequences containing tandemly repetitive guanines, sequence motifs that are found throughout prokaryote and eukaryote genomes. While some cellular activities have been identified with binding or processing G4 DNA, the factors and pathways governing G4 DNA metabolism are largely undefined. Highly conserved mismatch repair factors have emerged as potential G4-responding complexes because, in addition to initiating heteroduplex correction, the human homologs bind non-B form DNA with high affinity. Moreover, the MutS homologs across species have the capacity to recognize a diverse range of DNA pairing variations and damage, suggesting a conserved ability to bind non-B form DNA. Results Here, we asked if E. coli MutS and a heteroduplex recognition mutant, MutS F36A, were capable of recognizing and responding to G4 DNA structures. We find by mobility shift assay that E. coli MutS binds to G4 DNA with high affinity better than binding to G-T heteroduplexes. In the same assay, MutS F36A failed to recognize G-T mismatched oligonucleotides, as expected, but retained an ability to bind to G4 DNA. Association with G4 DNA by MutS is not likely to activate the mismatch repair pathway because nucleotide binding did not promote release of MutS or MutS F36A from G4 DNA as it does for heteroduplexes. G4 recognition activities occur under physiological conditions, and we find that M13 phage harboring G4-capable DNA poorly infected a MutS deficient strain of E. coli compared to M13mp18, suggesting functional roles for mismatch repair factors in the cellular response to unstable genomic elements. Conclusions Taken together, our findings demonstrate that E. coli MutS has a binding activity specific for non-B form G4 DNA, but such binding appears independent of canonical heteroduplex repair activation.
Collapse
Affiliation(s)
- Edward A Ehrat
- School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | | | | | | | | |
Collapse
|
10
|
Mendillo ML, Putnam CD, Mo AO, Jamison JW, Li S, Woods VL, Kolodner RD. Probing DNA- and ATP-mediated conformational changes in the MutS family of mispair recognition proteins using deuterium exchange mass spectrometry. J Biol Chem 2010; 285:13170-82. [PMID: 20181951 PMCID: PMC2857143 DOI: 10.1074/jbc.m110.108894] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/23/2010] [Indexed: 11/06/2022] Open
Abstract
We have performed deuterium exchange mass spectrometry (DXMS) to probe the conformational changes that the bacterial MutS homodimer and the homologous eukaryotic heterodimer Msh2-Msh6 undergo when binding to ATP or DNA. The DXMS data support the view that high affinity binding to mispair-containing DNA and low affinity binding to fully base-paired DNA both involve forming rings by MutS protein family dimers around the DNA; however, mispair binding protects additional regions from deuterium exchange. DXMS also reveals two distinct conformations upon binding one or two ATP molecules and that binding of two ATP molecules propagates conformational changes to other regions of the protein complexes. The regions showing major changes in deuterium exchange upon ATP binding tend to occur in regions distinct from those involved in DNA binding, suggesting that although communication occurs between DNA and nucleotide binding, sliding clamps formed by binding both ATP and mispairs could result from the simultaneous action of two independent conformational changes.
Collapse
Affiliation(s)
- Marc L. Mendillo
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| | - Christopher D. Putnam
- From the Departments of
Medicine and
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| | | | | | - Sheng Li
- From the Departments of
Medicine and
| | | | - Richard D. Kolodner
- From the Departments of
Medicine and
- Cellular and Molecular Medicine
- Cancer Center, and
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, La Jolla, California 92093-0669
| |
Collapse
|
11
|
A conserved MutS homolog connector domain interface interacts with MutL homologs. Proc Natl Acad Sci U S A 2009; 106:22223-8. [PMID: 20080788 DOI: 10.1073/pnas.0912250106] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Escherichia coli MutS forms a mispair-dependent ternary complex with MutL that is essential for initiating mismatch repair (MMR) but is structurally uncharacterized, in part owing to its dynamic nature. Here, we used hydrogen/deuterium exchange mass spectrometry and other methods to identify a region in the connector domain (domain II) of MutS that binds MutL and is required for mispair-dependent ternary complex formation and MMR. A structurally conserved region in Msh2, the eukaryotic homolog, was required for formation of a mispair-dependent Msh2-Msh6-Mlh1-Pms1 ternary complex. These data indicate that the connector domain of MutS and Msh2 contains the interface for binding MutL and Mlh1-Pms1, respectively, and support a mechanism whereby mispair and ATP binding induces a conformational change that allows the MutS and Msh2 interfaces to interact with their partners.
Collapse
|
12
|
Huang SYN, Crothers DM. The role of nucleotide cofactor binding in cooperativity and specificity of MutS recognition. J Mol Biol 2008; 384:31-47. [PMID: 18773911 PMCID: PMC2666446 DOI: 10.1016/j.jmb.2008.08.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
Mismatch repair (MMR) is essential for eliminating biosynthetic errors generated during replication or genetic recombination in virtually all organisms. The critical first step in Escherichia coli MMR is the specific recognition and binding of MutS to a heteroduplex, containing either a mismatch or an insertion/deletion loop of up to four nucleotides. All known MutS homologs recognize a similar broad spectrum of substrates. Binding and hydrolysis of nucleotide cofactors by the MutS-heteroduplex complex are required for downstream MMR activity, although the exact role of the nucleotide cofactors is less clear. Here, we showed that MutS bound to a 30-bp heteroduplex containing an unpaired T with a binding affinity approximately 400-fold stronger than to a 30-bp homoduplex, a much higher specificity than previously reported. The binding of nucleotide cofactors decreased both MutS specific and nonspecific binding affinity, with the latter marked by a larger drop, further increasing MutS specificity by approximately 3-fold. Kinetic studies showed that the difference in MutS K(d) for various heteroduplexes was attributable to the difference in intrinsic dissociation rate of a particular MutS-heteroduplex complex. Furthermore, the kinetic association event of MutS binding to heteroduplexes was marked by positive cooperativity. Our studies showed that the positive cooperativity in MutS binding was modulated by the binding of nucleotide cofactors. The binding of nucleotide cofactors transformed E. coli MutS tetramers, the functional unit in E. coli MMR, from a cooperative to a noncooperative binding form. Finally, we found that E. coli MutS bound to single-strand DNA with significant affinity, which could have important implication for strand discrimination in eukaryotic MMR mechanism.
Collapse
Affiliation(s)
- Shar-yin N. Huang
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| | - Donald M. Crothers
- Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| |
Collapse
|
13
|
Miguel V, Monti MR, Argaraña CE. The role of MutS oligomers on Pseudomonas aeruginosa mismatch repair system activity. DNA Repair (Amst) 2008; 7:1799-808. [PMID: 18687413 DOI: 10.1016/j.dnarep.2008.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/09/2008] [Indexed: 11/26/2022]
Abstract
The Escherichia coli DNA Mismatch Repair (MMR) protein MutS exist as dimers and tetramers in solution, and the identification of its functional oligomeric state has been matter of extensive study. In the present work, we have analyzed the oligomerization state of MutS from Pseudomonas aeruginosa a bacterial species devoid of Dam methylation and MutH homologue. By analyzing native MutS and different mutated versions of the protein, we determined that P. aeruginosa MutS is mainly tetrameric in solution and that its oligomerization capacity is conducted as in E. coli, by the C-terminal region of the protein. The analysis of mismatch oligonucleotide binding activity showed that wild-type MutS binds to DNA as tetramer. The DNA binding activity decreased when the C-terminal region was deleted (MutSDelta798) or when a full-length MutS with tetramerization defects (MutSR842E) was tested. The ATPase activity of MutSDelta798 was similar to MutSR842E and diminished respect to the wild-type protein. Experiments carried out on a P. aeruginosa mutS strain to test the proficiency of different oligomeric versions of MutS to function in vivo showed that MutSDelta798 is not functional and that full-length dimeric version MutSR842E, is not capable of completely restoring the MMR activity of the mutant strain. Additional experiments carried out in conditions of high mutation rate induced by the base analogue 2-AP confirm that the dimeric version of MutS is not as efficient as the tetrameric wild-type protein to prevent mutations. Therefore, it is concluded that although dimeric MutS is sufficient for MMR activity, optimal activity is obtained with the tetrameric version of the protein and therefore it should be considered as the active form of MutS in P. aeruginosa.
Collapse
Affiliation(s)
- Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
14
|
Higgins JD, Vignard J, Mercier R, Pugh AG, Franklin FCH, Jones GH. AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:28-39. [PMID: 18318687 DOI: 10.1111/j.1365-313x.2008.03470.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MSH5, a meiosis-specific member of the MutS-homologue family of genes, is required for normal levels of recombination in budding yeast, mouse and Caenorhabditis elegans. In this paper we report the identification and characterization of the Arabidopsis homologue of MSH5 (AtMSH5). Transcripts of AtMSH5 are specific to reproductive tissues, and immunofluorescence studies indicate that expression of the protein is abundant during prophase I of meiosis. In a T-DNA tagged insertional mutant (Atmsh5-1), recombination is reduced to about 13% of wild-type levels. The residual chiasmata are randomly distributed between cells and chromosomes. These data provide further evidence for at least two pathways of meiotic recombination in Arabidopsis and indicate that AtMSH5 protein is required for the formation of class I interference-sensitive crossovers. Localization of AtMSH5 to meiotic chromosomes occurs at leptotene and is dependent on DNA double-strand break formation and strand exchange. Localization of AtMSH5 to the chromatin at mid-prophase I is dependent on expression of AtMSH4. At late zygotene/early pachytene a proportion of AtMSH5 foci co-localize with AtMLH1 which marks crossover-designated sites. Chromosome synapsis appears to proceed normally, without significant delay, in Atmsh5-1 but the pachytene stage is extended by several hours, indicative of the operation of a surveillance system that monitors the progression of prophase I.
Collapse
Affiliation(s)
- James D Higgins
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | |
Collapse
|
15
|
Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129:391-407. [PMID: 18406444 PMCID: PMC2574955 DOI: 10.1016/j.mad.2008.02.012] [Citation(s) in RCA: 312] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 02/22/2008] [Accepted: 02/28/2008] [Indexed: 02/09/2023]
Abstract
DNA mismatch repair (MMR) proteins are ubiquitous players in a diverse array of important cellular functions. In its role in post-replication repair, MMR safeguards the genome correcting base mispairs arising as a result of replication errors. Loss of MMR results in greatly increased rates of spontaneous mutation in organisms ranging from bacteria to humans. Mutations in MMR genes cause hereditary nonpolyposis colorectal cancer, and loss of MMR is associated with a significant fraction of sporadic cancers. Given its prominence in mutation avoidance and its ability to target a range of DNA lesions, MMR has been under investigation in studies of ageing mechanisms. This review summarizes what is known about the molecular details of the MMR pathway and the role of MMR proteins in cancer susceptibility and ageing.
Collapse
Affiliation(s)
- Peggy Hsieh
- Genetics & Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
16
|
Miguel V, Pezza RJ, Argaraña CE. The C-terminal region of Escherichia coli MutS and protein oligomerization. Biochem Biophys Res Commun 2007; 360:412-7. [PMID: 17599803 DOI: 10.1016/j.bbrc.2007.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/12/2007] [Indexed: 11/22/2022]
Abstract
Escherichia coli MutS, an 853 amino acids oligomeric protein, is involved in the postreplicative DNA mismatch repair and avoidance of homeologous recombination. By constructing MutS mutated versions of the C-terminal region, we determined that deletion of the last 7 C-terminal amino acids is enough to abolish tetramer formation and that the K850A substitution destabilize the tetramer structure. It is proposed that the C-terminal extreme alpha helix (residues 839-850) of the protein may play an important role in protein oligomerization. We also show that the C-terminal region or the C-terminal plus the HTH domain of MutS, fused to the monomeric Maltose Binding Protein promote oligomerization of the chimeric protein. However, chemical cross-linking experiments indicate that the HTH domain improves the oligomerization properties of the fused protein. Escherichia coli cells expressing the fused proteins become hypermutator suggesting that the C-terminal region of MutS plays an important role in vivo.
Collapse
Affiliation(s)
- Virginia Miguel
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
17
|
Bai H, Lu AL. Physical and functional interactions between Escherichia coli MutY glycosylase and mismatch repair protein MutS. J Bacteriol 2006; 189:902-10. [PMID: 17114250 PMCID: PMC1797285 DOI: 10.1128/jb.01513-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli MutY and MutS increase replication fidelity by removing adenines that were misincorporated opposite 7,8-dihydro-8-oxo-deoxyguanines (8-oxoG), G, or C. MutY DNA glycosylase removes adenines from these mismatches through a short-patch base excision repair pathway and thus prevents G:C-to-T:A and A:T-to-G:C mutations. MutS binds to the mismatches and initiates the long-patch mismatch repair on daughter DNA strands. We have previously reported that the human MutY homolog (hMYH) physically and functionally interacts with the human MutS homolog, hMutSalpha (Y. Gu et al., J. Biol. Chem. 277:11135-11142, 2002). Here, we show that a similar relationship between MutY and MutS exists in E. coli. The interaction of MutY and MutS involves the Fe-S domain of MutY and the ATPase domain of MutS. MutS, in eightfold molar excess over MutY, can enhance the binding activity of MutY with an A/8-oxoG mismatch by eightfold. The MutY expression level and activity in mutS mutant strains are sixfold and twofold greater, respectively, than those for the wild-type cells. The frequency of A:T-to-G:C mutations is reduced by two- to threefold in a mutS mutY mutant compared to a mutS mutant. Our results suggest that MutY base excision repair and mismatch repair defend against the mutagenic effect of 8-oxoG lesions in a cooperative manner.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD 21201, USA
| | | |
Collapse
|
18
|
Manelyte L, Urbanke C, Giron-Monzon L, Friedhoff P. Structural and functional analysis of the MutS C-terminal tetramerization domain. Nucleic Acids Res 2006; 34:5270-9. [PMID: 17012287 PMCID: PMC1636413 DOI: 10.1093/nar/gkl489] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Escherichia coli DNA mismatch repair (MMR) protein MutS is essential for the correction of DNA replication errors. In vitro, MutS exists in a dimer/tetramer equilibrium that is converted into a monomer/dimer equilibrium upon deletion of the C-terminal 53 amino acids. In vivo and in vitro data have shown that this C-terminal domain (CTD, residues 801–853) is critical for tetramerization and the function of MutS in MMR and anti-recombination. We report the expression, purification and analysis of the E.coli MutS-CTD. Secondary structure prediction and circular dichroism suggest that the CTD is folded, with an α-helical content of 30%. Based on sedimentation equilibrium and velocity analyses, MutS-CTD forms a tetramer of asymmetric shape. A single point mutation (D835R) abolishes tetramerization but not dimerization of both MutS-CTD and full-length MutS. Interestingly, the in vivo and in vitro MMR activity of MutSCF/D835R is diminished to a similar extent as a truncated MutS variant (MutS800, residues 1–800), which lacks the CTD. Moreover, the dimer-forming MutSCF/D835R has comparable DNA binding affinity with the tetramer-forming MutS, but is impaired in mismatch-dependent activation of MutH. Our data support the hypothesis that tetramerization of MutS is important but not essential for MutS function in MMR.
Collapse
Affiliation(s)
| | - Claus Urbanke
- Medizinische Hochschule, StrukturanalyseCarl Neuberg Strasse 1, D-30625 Hannover, Germany
| | | | - Peter Friedhoff
- To whom correspondence should be addressed: Tel: +49 641 99 35407; Fax: +49 641 99 35409;
| |
Collapse
|
19
|
Cho M, Chung S, Heo SD, Ku J, Ban C. A simple fluorescent method for detecting mismatched DNAs using a MutS-fluorophore conjugate. Biosens Bioelectron 2006; 22:1376-81. [PMID: 16876990 DOI: 10.1016/j.bios.2006.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/16/2006] [Accepted: 06/14/2006] [Indexed: 11/20/2022]
Abstract
A fluorescent method was developed for the detection of unpaired and mismatched DNAs using a MutS-fluorophore conjugate. The fluorophore, 2-(4'-(iodoacetoamido)anilino) naphthalene-6-sulfonic acid (IAANS), was site-specifically attached to the 469 position of Thermus aquaticus (Taq.) MutS mutant (C42A/T469C). The fluorophore labeled residue located at the dimer interface of the protein undergoes a drastic conformational change upon binding with mismatched DNA. The close proximity of the two identical fluorescent molecules presumably causes the self-quenching of the fluorophore, since fluorescence emission of the biosensor decreases with increasing concentrations of mismatched DNA. The order of binding affinity for each unpaired and mismatched DNA obtained by this method was DeltaT (Kd=52 nM)>GT (62 nM)>DeltaC (130 nM)>CT (160 nM)>DeltaG (170 nM)>DeltaA (250 nM)>CC (720 nM)>AT (950 nM). This order is comparable to the previous results of the gel mobility shift assay. Thus, this method can be a simple, useful tool for elucidating the mechanism of DNA mismatch repair as well as a novel probe for detecting of genetic mutation.
Collapse
Affiliation(s)
- Minseon Cho
- Department of Chemistry and Division of Molecular and Life Sciences (BK21), Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Gyungbuk 790-784, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Joseph N, Duppatla V, Rao DN. Functional characterization of the DNA mismatch binding protein MutS from Haemophilus influenzae. Biochem Biophys Res Commun 2006; 334:891-900. [PMID: 16026761 DOI: 10.1016/j.bbrc.2005.06.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
This investigation demonstrates DNA mismatch repair activity in Haemophilus influenzae cell free extracts. The mutS gene as well as purified protein of H. influenzae restored repair activity in complementation assays performed with mutS deficient Escherichia coli strain. The difference in affinity for GT and AC mismatched bases by H. influenzae MutS was reflected in the efficiency with which these DNA heteroduplexes were repaired in vitro, with GT being repaired well and AC the least. Unlike E. coli MutS, the H. influenzae homolog failed to give protein-DNA complex with homoduplex DNA. Interestingly, MutS was found to bind single-stranded DNA but with lesser affinity as compared to heteroduplex DNA. Apart from the nucleotide- and DNA-mediated conformational transitions, as monitored by circular dichroism and limited proteolysis, our data suggest a functional role when H. influenzae MutS encounters single-stranded DNA during exonucleolytic step of DNA repair process. We propose that, conformational changes in H. influenzae MutS not only modulate mismatch recognition but also trigger some of the down stream processes involved in the DNA mismatch repair process.
Collapse
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Ravi R Iyer
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism that faces up to the environment in its exclusive human host with a small but hyperdynamic genome. Compared with Escherichia coli, several DNA-repair genes are absent in N. meningitidis, whereas the gene products of others interact differently. Instead of responding to external stimuli, the meningococcus spontaneously produces a plethora of genetic variants. The frequent genomic alterations and polymorphisms have profound consequences for the interaction of this microorganism with its host, impacting structural and antigenic changes in crucial surface components that are relevant for adherence and invasion as well as antibiotic resistance and vaccine development.
Collapse
Affiliation(s)
- Tonje Davidsen
- Centre for Molecular Biology and Neuroscience and Institute of Microbiology, University of Oslo, Rikshospitalet, N-0027 Oslo, Norway
| | | |
Collapse
|
23
|
Stanisławska-Sachadyn A, Sachadyn P, Ihle K, Sydorczuk C, Wiejacha K, Kur J. The construction of bifunctional fusion proteins consisting of MutS and GFP. J Biotechnol 2006; 121:134-43. [PMID: 16157410 DOI: 10.1016/j.jbiotec.2005.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 07/14/2005] [Accepted: 08/02/2005] [Indexed: 11/30/2022]
Abstract
MutS as a mismatch binding protein is a promising tool for SNP detection. Green fluorescent protein (GFP) is known as an excellent reporter domain. We constructed chimeric proteins consisting of MutS from Thermus thermophilus and GFPuv from Aequorea victoria by cloning the GFPuv gene into the plasmid vectors carrying the mutS gene. The GFPuv domain fused to the N-terminus of MutS (histag-GFP-MutS) exhibited the same level of green fluorescence as free GFPuv. To obtain the fluorescing histag-GFP-MutS protein the expression at 30 degrees C was required, while free GFPuv fluoresces when expressed both at 30 and 37 degrees C. The chimeric protein where the GFPuv domain was fused to the C-terminus of MutS exhibited much weaker green fluorescence (20-25% compared with those of histag-GFP-MutS or free GFPuv). The insertion of (ProGly)5 peptide linker between the MutS and GFP domains resulted in no significant improvement in GFP fluorescence. No shifts in the excitation and emission spectra have been observed for the GFP domain in the fusion proteins. The fusion proteins with GFP at the N- and C-terminus of MutS recognised DNA mismatches similarly like T. thermophilus MutS. The fluorescent proteins recognising DNA mismatches could be useful for SNP scanning or intracellular DNA analysis. The fusion proteins around 125 kDa were efficiently expressed in E. coli and purified in milligram amounts using metal chellate affinity chromatography.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Gdańsk University of Technology, Department of Microbiology, ul. Narutowicza 11/12, 80-952 Gdańsk, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Joseph N, Duppatla V, Rao DN. Prokaryotic DNA Mismatch Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:1-49. [PMID: 16891168 DOI: 10.1016/s0079-6603(06)81001-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nimesh Joseph
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
25
|
Abstract
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
26
|
Calmann MA, Nowosielska A, Marinus MG. The MutS C terminus is essential for mismatch repair activity in vivo. J Bacteriol 2005; 187:6577-9. [PMID: 16159793 PMCID: PMC1236653 DOI: 10.1128/jb.187.18.6577-6579.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 06/20/2005] [Indexed: 11/20/2022] Open
Abstract
An Escherichia coli K-12 strain was constructed with a chromosomal deletion (mutSdelta800) in the mutS gene that produced the removal of the C-terminal 53 amino acids which are not present in the MutS crystal structure. This strain has a MutS null phenotype for mutation avoidance, anti-recombination, and sensitivity to cytotoxic agents in a dam mutant background.
Collapse
Affiliation(s)
- Melissa A Calmann
- Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
27
|
Kang J, Huang S, Blaser MJ. Structural and functional divergence of MutS2 from bacterial MutS1 and eukaryotic MSH4-MSH5 homologs. J Bacteriol 2005; 187:3528-37. [PMID: 15866941 PMCID: PMC1112012 DOI: 10.1128/jb.187.10.3528-3537.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MutS homologs, identified in nearly all bacteria and eukaryotes, include the bacterial proteins MutS1 and MutS2 and the eukaryotic MutS homologs 1 to 7, and they often are involved in recognition and repair of mismatched bases and small insertion/deletions, thereby limiting illegitimate recombination and spontaneous mutation. To explore the relationship of MutS2 to other MutS homologs, we examined conserved protein domains. Fundamental differences in structure between MutS2 and other MutS homologs suggest that MutS1 and MutS2 diverged early during evolution, with all eukaryotic homologs arising from a MutS1 ancestor. Data from MutS1 crystal structures, biochemical results from MutS2 analyses, and our phylogenetic studies suggest that MutS2 has functions distinct from other members of the MutS family. A mutS2 mutant was constructed in Helicobacter pylori, which lacks mutS1 and mismatch repair genes mutL and mutH. We show that MutS2 plays no role in mismatch or recombinational repair or deletion between direct DNA repeats. In contrast, MutS2 plays a significant role in limiting intergenomic recombination across a range of donor DNA tested. This phenotypic analysis is consistent with the phylogenetic and biochemical data suggesting that MutS1 and MutS2 have divergent functions.
Collapse
Affiliation(s)
- Josephine Kang
- Department of Microbiology, New York University School of Medicine, and VA Medical Center, New York, NY 10016, USA.
| | | | | |
Collapse
|
28
|
Calmann MA, Nowosielska A, Marinus MG. Separation of mutation avoidance and antirecombination functions in an Escherichia coli mutS mutant. Nucleic Acids Res 2005; 33:1193-200. [PMID: 15731339 PMCID: PMC549567 DOI: 10.1093/nar/gki263] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA mismatch repair in Escherichia coli has been shown to be involved in two distinct processes: mutation avoidance, which removes potential mutations arising as replication errors, and antirecombination which prevents recombination between related, but not identical (homeologous), DNA sequences. We show that cells with the mutSΔ800 mutation (which removes the C-terminal 53 amino acids of MutS) on a multicopy plasmid are proficient for mutation avoidance. In interspecies genetic crosses, however, recipients with the mutSΔ800 mutation show increased recombination by up to 280-fold relative to mutS+. The MutSΔ800 protein binds to O6-methylguanine mismatches but not to intrastrand platinated GG cross-links, explaining why dam bacteria with the mutSΔ800 mutation are resistant to cisplatin, but not MNNG, toxicity. The results indicate that the C-terminal end of MutS is necessary for antirecombination and cisplatin sensitization, but less significant for mutation avoidance. The inability of MutSΔ800 to form tetramers may indicate that these are the active form of MutS.
Collapse
Affiliation(s)
| | | | - M. G. Marinus
- To whom correspondence should be addressed. Tel: +1 508 856 3330; Fax: +1 508 856 3036;
| |
Collapse
|
29
|
Lamers MH, Georgijevic D, Lebbink JH, Winterwerp HHK, Agianian B, de Wind N, Sixma TK. ATP increases the affinity between MutS ATPase domains. Implications for ATP hydrolysis and conformational changes. J Biol Chem 2004; 279:43879-85. [PMID: 15297450 DOI: 10.1074/jbc.m406380200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MutS is the key protein of the Escherichia coli DNA mismatch repair system. It recognizes mispaired and unpaired bases and has intrinsic ATPase activity. ATP binding after mismatch recognition by MutS serves as a switch that enables MutL binding and the subsequent initiation of mismatch repair. However, the mechanism of this switch is poorly understood. We have investigated the effects of ATP binding on the MutS structure. Crystallographic studies of ATP-soaked crystals of MutS show a trapped intermediate, with ATP in the nucleotide-binding site. Local rearrangements of several residues around the nucleotide-binding site suggest a movement of the two ATPase domains of the MutS dimer toward each other. Analytical ultracentrifugation experiments confirm such a rearrangement, showing increased affinity between the ATPase domains upon ATP binding and decreased affinity in the presence of ADP. Mutations of specific residues in the nucleotide-binding domain reduce the dimer affinity of the ATPase domains. In addition, ATP-induced release of DNA is strongly reduced in these mutants, suggesting that the two activities are coupled. Hence, it seems plausible that modulation of the affinity between ATPase domains is the driving force for conformational changes in the MutS dimer. These changes are driven by distinct amino acids in the nucleotide-binding site and form the basis for long-range interactions between the ATPase domains and DNA-binding domains and subsequent binding of MutL and initiation of mismatch repair.
Collapse
Affiliation(s)
- Meindert H Lamers
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
DNA mismatch repair (MMR) guards the integrity of the genome in virtually all cells. It contributes about 1000-fold to the overall fidelity of replication and targets mispaired bases that arise through replication errors, during homologous recombination, and as a result of DNA damage. Cells deficient in MMR have a mutator phenotype in which the rate of spontaneous mutation is greatly elevated, and they frequently exhibit microsatellite instability at mono- and dinucleotide repeats. The importance of MMR in mutation avoidance is highlighted by the finding that defects in MMR predispose individuals to hereditary nonpolyposis colorectal cancer. In addition to its role in postreplication repair, the MMR machinery serves to police homologous recombination events and acts as a barrier to genetic exchange between species.
Collapse
Affiliation(s)
- Mark J Schofield
- Genetics and Biochemistry Branch, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
31
|
Selmane T, Schofield MJ, Nayak S, Du C, Hsieh P. Formation of a DNA mismatch repair complex mediated by ATP. J Mol Biol 2004; 334:949-65. [PMID: 14643659 DOI: 10.1016/j.jmb.2003.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis.
Collapse
Affiliation(s)
- Tassadite Selmane
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-1810, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
DNA alkylation tolerance is a major concern in cancer chemotherapy. It has been suggested that mutations in DNA mismatch repair genes may result in alkylation tolerance. This alkylation tolerant phenotype is often manifested in cells lacking an O(6)-methylguanine DNA methyltransferase (MTase) activity. However, deletion of each mismatch repair gene in the MTase mutant of a model eukaryotic yeast does not result in alkylation tolerance. We previously isolated an alkylation tolerant mutant and mapped the mutation to MSH5. Here we present evidence that a single point mutation that results in a Y823H amino acid substitution, but not deletion, of the MSH5 gene is responsible for tolerance to killing by DNA alkylating agents. We also find that other preexisting amino acid variations may also enhance alkylation tolerance in the above mutation background. Since MSH5 encodes a protein homologous to DNA mismatch recognition proteins, mismatch repair genes are frequently mutated in cancers cells and, like mismatch repair genes, MSH5 is highly conserved from yeast to human, this observation suggests novel mechanisms of chemotherapeutic drug resistance that may occur in certain human cancer patients.
Collapse
Affiliation(s)
- Sonya Bawa
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | |
Collapse
|
33
|
Acharya S, Foster PL, Brooks P, Fishel R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 2003; 12:233-46. [PMID: 12887908 DOI: 10.1016/s1097-2765(03)00219-3] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Escherichia coli MutS and MutL proteins have been conserved throughout evolution, although their combined functions in mismatch repair (MMR) are poorly understood. We have used biochemical and genetic studies to ascertain a physiologically relevant mechanism for MMR. The MutS protein functions as a regional lesion sensor. ADP-bound MutS specifically recognizes a mismatch. Repetitive rounds of mismatch-provoked ADP-->ATP exchange results in the loading of multiple MutS hydrolysis-independent sliding clamps onto the adjoining duplex DNA. MutL can only associate with ATP-bound MutS sliding clamps. Interaction of the MutS-MutL sliding clamp complex with MutH triggers ATP binding by MutL that enhances the endonuclease activity of MutH. Additionally, MutL promotes ATP binding-independent turnover of idle MutS sliding clamps. These results support a model of MMR that relies on two dynamic and redundant ATP-regulated molecular switches.
Collapse
Affiliation(s)
- Samir Acharya
- Genetics and Molecular Biology Program, Kimmel Cancer Center - BLSB 933, 233 S. 10th Street, Philadelphia, PA 19107, USA.
| | | | | | | |
Collapse
|
34
|
Alani E, Lee JY, Schofield MJ, Kijas AW, Hsieh P, Yang W. Crystal structure and biochemical analysis of the MutS.ADP.beryllium fluoride complex suggests a conserved mechanism for ATP interactions in mismatch repair. J Biol Chem 2003; 278:16088-94. [PMID: 12582174 DOI: 10.1074/jbc.m213193200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mismatch repair ATP binding and hydrolysis activities by the MutS family proteins are important for both mismatch recognition and for transducing mismatch recognition signals to downstream repair factors. Despite intensive efforts, a MutS.ATP.DNA complex has eluded crystallographic analysis. Searching for ATP analogs that strongly bound to Thermus aquaticus (Taq) MutS, we found that ADP.beryllium fluoride (ABF), acted as a strong inhibitor of several MutS family ATPases. Furthermore, ABF promoted the formation of a ternary complex containing the Saccharomyces cerevisiae MSH2.MSH6 and MLH1.PMS1 proteins bound to mismatch DNA but did not promote dissociation of MSH2.MSH6 from mismatch DNA. Crystallographic analysis of the Taq MutS.DNA.ABF complex indicated that although this complex was very similar to that of MutS.DNA.ADP, both ADP.Mg(2+) moieties in the MutS. DNA.ADP structure were replaced by ABF. Furthermore, a disordered region near the ATP-binding pocket in the MutS B subunit became traceable, whereas the equivalent region in the A subunit that interacts with the mismatched nucleotide remained disordered. Finally, the DNA binding domains of MutS together with the mismatched DNA were shifted upon binding of ABF. We hypothesize that the presence of ABF is communicated between the two MutS subunits through the contact between the ordered loop and Domain III in addition to the intra-subunit helical lever arm that links the ATPase and DNA binding domains.
Collapse
Affiliation(s)
- Eric Alani
- Department of Molecular Biology and Genetics, 459 Biotechnology Building, Cornell University, Ithaca, NY 14853-2703, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Stanisławska-Sachadyn A, Sachadyn P, Jedrzejczak R, Kur J. Construction and purification of his6-Thermus thermophilus MutS protein. Protein Expr Purif 2003; 28:69-77. [PMID: 12651109 DOI: 10.1016/s1046-5928(02)00649-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mutS gene from the thermophilic bacterium Thermus thermophilus was PCR amplified, cloned, and expressed in Escherichia coli. The recombinant MutS protein containing an oligohistidine domain at the N-terminus was purified in a single step by Ni(2+) affinity chromatography to apparent homogeneity. The mismatch recognition properties of the his(6)-tagged MutS protein were confirmed by DNA protection against exonuclease digestion and retardation assays. The results of analytical gel filtration indicate that the predominant form of T. thermophilus MutS at micromolar concentrations is a tetramer.
Collapse
Affiliation(s)
- Anna Stanisławska-Sachadyn
- Technical University of Gdańsk, Department of Microbiology, ul. Narutowicza 11/12, Gdansk 80-952, Poland
| | | | | | | |
Collapse
|
36
|
Pezza RJ, Villarreal MA, Montich GG, Argaraña CE. Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS. A structural model for the vanadate-MutS interaction at the Walker A motif. Nucleic Acids Res 2002; 30:4700-8. [PMID: 12409461 PMCID: PMC135828 DOI: 10.1093/nar/gkf606] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MutS, a member of the ABC ATPases superfamily, is a mismatch DNA-binding protein constituent of the DNA post-replicative mismatch repair system (MMRS). In this work, it is shown that the ATPase activity of Pseudomonas aeruginosa and Escherichia coli MutS is inhibited by ortho- and decavanadate. Structural comparison of the region involved in the ATP binding of E.coli MutS with the corresponding region of other ABC ATPases inhibited by vanadate, including the myosin- orthovanadate-Mg complex, showed that they are highly similar. From these results it is proposed that the orthovanadate inhibition of MutS ATPase can take place by a similar mechanism to that described for other ATPases. Docking of decavanadate on the ATP-binding region of MutS showed that the energetically more favorable interaction of this compound would take place with the complex MutS- ADP-Mg, suggesting that the inhibitory effect could be produced by a steric impediment of the protein ATP/ADP exchange. Besides the effect observed on the ATPase activity, vanadate also affects the DNA-binding capability of the protein, and partially inhibits the oligomerization of MutS and the temperature-induced inactivation of the protein. From the results obtained, and considering that vanadate is an intracellular trace component, this compound could be considered as a new modulator of the MMRS.
Collapse
Affiliation(s)
- Roberto J Pezza
- Centro de Investigaciones en Química Biológica de Córdoba, UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
37
|
Hess MT, Gupta RD, Kolodner RD. Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. J Biol Chem 2002; 277:25545-53. [PMID: 11986324 DOI: 10.1074/jbc.m202282200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previous study described four dominant msh6 mutations that interfere with both the Msh2-Msh6 and Msh2-Msh3 mismatch recognition complexes (Das Gupta, R., and Kolodner, R. D. (2000) Nat. Genet. 24, 53-56). Modeling predicted that two of the amino acid substitutions (G1067D and G1142D) interfere with protein-protein interactions at the ATP-binding site-associated dimer interface, one (S1036P) similarly interferes with protein-protein interactions and affects the Msh2 ATP-binding site, and one (H1096A) affects the Msh6 ATP-binding site. The ATPase activity of the Msh2-Msh6-G1067D and Msh2-Msh6-G1142D complexes was inhibited by GT, +A, and +AT mispairs, and these complexes showed increased binding to GT and +A mispairs in the presence of ATP. The ATPase activity of the Msh2-Msh6-S1036P complex was inhibited by a GT mispair, and it bound the GT mispair in the presence of ATP, whereas its interaction with insertion mispairs was unchanged compared with the wild-type complex. The ATPase activity of the Msh2-Msh6-H1096A complex was generally attenuated, and its mispair-binding behavior was unaffected. These results are in contrast to those obtained with the wild-type Msh2-Msh6 complex, which showed mispair-stimulated ATPase activity and ATP inhibition of mispair binding. These results indicate that the dominant msh6 mutations cause more stable binding to mispairs and suggest that there may be differences in how base base and insertion mispairs are recognized.
Collapse
Affiliation(s)
- Martin T Hess
- Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla 92093-0660, USA
| | | | | |
Collapse
|
38
|
Pezza RJ, Smania AM, Barra JL, Argaraña CE. Nucleotides and heteroduplex DNA preserve the active conformation of Pseudomonas aeruginosa MutS by preventing protein oligomerization. Biochem J 2002; 361:87-95. [PMID: 11742532 PMCID: PMC1222282 DOI: 10.1042/0264-6021:3610087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MutS, a component of the mismatch repair system begins the DNA reparation process by recognizing base/base mismatches or small insertion/deletion loops. We have cloned the mutS gene from the human opportunistic pathogen Pseudomonas aeruginosa and analysed the biochemical properties of the encoded protein. Complementation of the hypermutator phenotype of a P. aeruginosa mutS mutant strain indicated that the isolated gene was functional. When purified MutS was incubated at 37 degrees C in the absence of ligands, a rapid inactivation of the oligonucleotide binding capability and ATPase activity occurred. However, the presence of ATP, ADP or heteroduplex oligonucleotides, but not homoduplex oligonucleotides, prevented the protein from being inactivated. The analysis of the protein by native PAGE indicated that the active conformation state correlates with the presence of MutS dimer. Analysis by gel-filtration chromatography showed that the inactive protein formed by incubation at 37 degrees C in the absence of ligands corresponds to the formation of a high molecular mass oligomer. The kinetic analysis of the oligomer formation showed that the extent of the reaction was markedly dependent on the temperature and the presence of MutS ligands. However, the protein inactivation apparently occurred before the maximum extent of MutS oligomerization. Further analysis of the MutS oligomers by electron microscopy showed the presence of regular structures consisting of four subunits, with each subunit probably representing a MutS homodimer. It is concluded that MutS possesses an intrinsic propensity to form oligomeric structures and that the presence of physiological ligands, such as nucleotides or heteroduplex DNA, but not homoduplex DNA, plays an important role in keeping the protein in an active conformation by preventing protein oligomerization.
Collapse
Affiliation(s)
- Roberto J Pezza
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | |
Collapse
|
39
|
Drotschmann K, Yang W, Brownewell FE, Kool ET, Kunkel TA. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2-Msh6. J Biol Chem 2001; 276:46225-9. [PMID: 11641390 DOI: 10.1074/jbc.c100450200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of bacterial MutS homodimers bound to mismatched DNA reveal asymmetric interactions of the two subunits with DNA. A phenylalanine and glutamate of one subunit make mismatched base-specific interactions, and residues of both subunits contact the DNA backbone surrounding the mismatched base, but asymmetrically. A number of amino acids in MutS that contact the DNA are conserved in the eukaryotic Msh2-Msh6 heterodimer. We report here that yeast strains with amino acids substituted for residues inferred to interact with the DNA backbone or mismatched base have elevated spontaneous mutation rates consistent with defective mismatch repair. Purified Msh2-Msh6 with substitutions in the conserved Phe(337) and Glu(339) in Msh6 thought to stack or hydrogen bond, respectively, with the mismatched base do have reduced DNA binding affinity but normal ATPase activity. Moreover, wild-type Msh2-Msh6 binds with lower affinity to mismatches with thymine replaced by difluorotoluene, which lacks the ability to hydrogen bond. The results suggest that yeast Msh2-Msh6 interacts asymmetrically with the DNA through base-specific stacking and hydrogen bonding interactions and backbone contacts. The importance of these contacts decreases with increasing distance from the mismatch, implying that interactions at and near the mismatch are important for binding in a kinked DNA conformation.
Collapse
Affiliation(s)
- K Drotschmann
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
40
|
Schofield MJ, Brownewell FE, Nayak S, Du C, Kool ET, Hsieh P. The Phe-X-Glu DNA binding motif of MutS. The role of hydrogen bonding in mismatch recognition. J Biol Chem 2001; 276:45505-8. [PMID: 11602569 DOI: 10.1074/jbc.c100449200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of MutS protein from Thermus aquaticus and Escherichia coli in a complex with a mismatch-containing DNA duplex reveal that the Glu residue in a conserved Phe-X-Glu motif participates in a hydrogen-bonded contact with either an unpaired thymidine or the thymidine of a G-T base-base mismatch. Here, the role of hydrogen bonding in mismatch recognition by MutS is assessed. The relative affinities of MutS for DNA duplexes containing nonpolar shape mimics of A and T, 4-methylbenzimidazole (Z), and difluorotoluene (F), respectively, that lack hydrogen bonding donors and acceptors, are determined in gel mobility shift assays. The results provide support for an induced fit mode of mismatch binding in which duplexes destabilized by mismatches are preferred substrates for kinking by MutS. Hydrogen bonding between the O epsilon 2 group of Glu and the mismatched base contributes only marginally to mismatch recognition and is significantly less important than the aromatic ring stack with the conserved Phe residue. A MutS protein in which Ala is substituted for Glu(38) is shown to be defective for mismatch repair in vivo. DNA binding studies reveal a novel role for the conserved Glu residue in the establishment of mismatch discrimination by MutS.
Collapse
Affiliation(s)
- M J Schofield
- Genetics & Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
DNA mismatch repair (MMR) safeguards the integrity of the genome. In its role in postreplicative repair, this repair pathway corrects base-base and insertion/deletion (I/D) mismatches that have escaped the proofreading function of replicative polymerases. In its absence, cells assume a mutator phenotype in which the rate of spontaneous mutation is greatly elevated. The discovery that defects in mismatch repair segregate with certain cancer predisposition syndromes highlights its essential role in mutation avoidance. Recently, three-dimensional structures of MutS, a key repair protein that recognizes mismatches, have been determined by X-ray crystallography. This article provides an overview of the structural features of MutS proteins and discusses how the structural data together with biochemical and genetic studies reveal new insights into the molecular mechanisms of mismatch repair.
Collapse
Affiliation(s)
- P Hsieh
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10 Rm. 9D06, 10 Center Dr. MSC 1810, Bethesda, MD 20892-1810, USA.
| |
Collapse
|
42
|
Schofield MJ, Nayak S, Scott TH, Du C, Hsieh P. Interaction of Escherichia coli MutS and MutL at a DNA Mismatch. J Biol Chem 2001; 276:28291-9. [PMID: 11371566 DOI: 10.1074/jbc.m103148200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MutS and MutL are both required to activate downstream events in DNA mismatch repair. We examined the rate of dissociation of MutS from a mismatch using linear heteroduplex DNAs or heteroduplexes blocked at one or both ends by four-way DNA junctions in the presence and absence of MutL. In the presence of ATP, dissociation of MutS from linear heteroduplexes or heteroduplexes blocked at only one end occurs within 15 s. When both duplex ends are blocked, MutS remains associated with the DNA in complexes with half-lives of 30 min. DNase I footprinting of MutS complexes is consistent with migration of MutS throughout the DNA duplex region. When MutL is present, it associates with MutS and prevents ATP-dependent migration away from the mismatch in a manner that is dependent on the length of the heteroduplex. The rate and extent of mismatch-provoked cleavage at hemimethylated GATC sites by MutH in the presence of MutS, MutL, and ATP are the same whether the mismatch and GATC sites are in cis or in trans. These results suggest that a MutS-MutL complex in the vicinity of a mismatch is involved in activating MutH.
Collapse
Affiliation(s)
- M J Schofield
- Genetics and Biochemistry Branch, NIDDKD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|