1
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
3
|
Irfanullah, Zeb A, Shinwari N, Shah K, Gilani SZT, Khan S, Lee KW, Raza SI, Hussain S, Liaqat K, Ahmad W. Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. Int J Biochem Cell Biol 2018; 102:76-86. [PMID: 30016695 DOI: 10.1016/j.biocel.2018.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Abstract
Homozygous and/or heterozygous loss of function mutations in the natriuretic peptide receptor B (NPR2) have been reported in causing acromesomelic dysplasia, type Maroteaux with variable clinical features and idiopathic short stature with nonspecific skeletal deformities. On the other hand, gain of function mutations in the same gene result in overgrowth disorder suggesting that NPR2 and its ligand, natriuretic peptide precursor C (CNP), are the key players of endochondral bone growth. However, the precise mechanism behind phenotypic variability of the NPR2 mutations is not fully understood so far. In the present study, three consanguineous families of Pakistani origin (A, B, C) with variable phenotypes of acromesomelic dysplasia, type Maroteaux were evaluated at clinical and molecular levels. Linkage analysis followed by Sanger sequencing of the NPR2 gene revealed three homozygous mutations including p.(Leu314 Arg), p.(Arg371*), and p.(Arg1032*) in family A, B and C, respectively. In silico structural and functional analyses substantiated that a novel missense mutation [p.(Leu314 Arg)] in family A allosterically affects binding of NPR2 homodimer to its ligand (CNP) which ultimately results in defective guanylate cyclase activity. A nonsense mutation [p.(Arg371*)] in family B entirely removed the transmembrane domain, protein kinase domain and guanylate cyclase domains of the NPR2 resulting in abolishing its guanylate cyclase activity. Another novel mutation [p.(Arg1032*)], found in family C, deteriorated the guanylate cyclase domain of the protein and probably plundered its guanylate cyclase activity. These results suggest that guanylate cyclase activity is the most critical function of the NPR2 and phenotypic severity of the NPR2 mutations is proportional to the reduction in its guanylate cyclase activity.
Collapse
Affiliation(s)
- Irfanullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan; Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Pakistan
| | - Amir Zeb
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Naila Shinwari
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Khadim Shah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Syed Zohaib Tayyab Gilani
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Saadullah Khan
- Department of Biotechnology & Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, KPK, Pakistan
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Sciences (BK21 Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Syed Irfan Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Pakistan.
| |
Collapse
|
4
|
Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response. Pathogens 2018; 7:pathogens7020048. [PMID: 29693583 PMCID: PMC6027212 DOI: 10.3390/pathogens7020048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Collapse
|
5
|
Oreopoulos J, Gray-Owen SD, Yip CM. High Density or Urban Sprawl: What Works Best in Biology? ACS NANO 2017; 11:1131-1135. [PMID: 28112892 DOI: 10.1021/acsnano.7b00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
With new approaches in imaging-from new tools or reagents to processing algorithms-come unique opportunities and challenges to our understanding of biological processes, structures, and dynamics. Although innovations in super-resolution imaging are affording novel perspectives into how molecules structurally associate and localize in response to, or in order to initiate, specific signaling events in the cell, questions arise as to how to interpret these observations in the context of biological function. Just as each neighborhood in a city has its own unique vibe, culture, and indeed density, recent work has shown that membrane receptor behavior and action is governed by their localization and association state. There is tremendous potential in developing strategies for tracking how the populations of these molecular neighborhoods change dynamically.
Collapse
Affiliation(s)
- John Oreopoulos
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto M5S 3G9, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto , Toronto M5S 1A8, Canada
| | - Christopher M Yip
- Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto M5S 3G9, Canada
| |
Collapse
|
6
|
Ichiki T, Burnett Jr JC. Atrial Natriuretic Peptide ― Old But New Therapeutic in Cardiovascular Diseases ―. Circ J 2017; 81:913-919. [DOI: 10.1253/circj.cj-17-0499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| | - John C. Burnett Jr
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic
| |
Collapse
|
7
|
Ichiki T, Huntley BK, Sangaralingham SJ, Burnett JC. Pro-Atrial Natriuretic Peptide: A Novel Guanylyl Cyclase-A Receptor Activator That Goes Beyond Atrial and B-Type Natriuretic Peptides. JACC-HEART FAILURE 2016; 3:715-23. [PMID: 26362447 DOI: 10.1016/j.jchf.2015.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The aim of this study was to determine if the atrial natriuretic peptide (ANP) precursor proANP is biologically active compared with ANP and B-type natriuretic peptide (BNP). BACKGROUND ProANP is produced in the atria and processed to ANP and activates the guanylyl cyclase receptor-A (GC-A) and its second messenger, cyclic guanosine monophosphate (cGMP). ProANP is found in the human circulation, but its bioavailability is undefined. METHODS The in vivo actions of proANP compared with ANP, BNP, and placebo were investigated in normal canines (667 pmol/kg, n = 5/group). cGMP activation in human embryonic kidney 293 cells expressing GC-A or guanylyl cyclase receptor-B was also determined. ProANP processing and degradation were observed in serum from normal subjects (n = 13) and patients with heart failure (n = 14) ex vivo. RESULTS ProANP had greater diuretic and natriuretic properties, with more sustained renal tubular actions, compared with ANP and BNP in vivo in normal canines, including marked renal vasodilation not observed with ANP or BNP. ProANP also resulted in greater and more prolonged cardiac unloading than ANP but much less hypotensive effects than BNP. ProANP stimulated cGMP generation by GC-A as much as ANP. ProANP was processed to ANP in serum from normal control subjects and patients with heart failure ex vivo. CONCLUSIONS ProANP represents a novel activator of GC-A with enhanced diuretic, natriuretic, and renal vasodilating properties, and it may represent a key circulating natriuretic peptide in cardiorenal and blood pressure homeostasis. These results support the concepts that proANP may be a potential innovative therapeutic beyond ANP or BNP for cardiorenal diseases, including heart failure.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
| | - Brenda K Huntley
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
8
|
Pseudomonas aeruginosa Expresses a Functional Human Natriuretic Peptide Receptor Ortholog: Involvement in Biofilm Formation. mBio 2015; 6:mBio.01033-15. [PMID: 26307165 PMCID: PMC4550695 DOI: 10.1128/mbio.01033-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Considerable evidence exists that bacteria detect eukaryotic communication molecules and modify their virulence accordingly. In previous studies, it has been demonstrated that the increasingly antibiotic-resistant pathogen Pseudomonas aeruginosa can detect the human hormones brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) at micromolar concentrations. In response, the bacterium modifies its behavior to adapt to the host physiology, increasing its overall virulence. The possibility of identifying the bacterial sensor for these hormones and interfering with this sensing mechanism offers an exciting opportunity to directly affect the infection process. Here, we show that BNP and CNP strongly decrease P. aeruginosa biofilm formation. Isatin, an antagonist of human natriuretic peptide receptors (NPR), prevents this effect. Furthermore, the human NPR-C receptor agonist cANF4-23 mimics the effects of natriuretic peptides on P. aeruginosa, while sANP, the NPR-A receptor agonist, appears to be weakly active. We show in silico that NPR-C, a preferential CNP receptor, and the P. aeruginosa protein AmiC have similar three-dimensional (3D) structures and that both CNP and isatin bind to AmiC. We demonstrate that CNP acts as an AmiC agonist, enhancing the expression of the ami operon in P. aeruginosa. Binding of CNP and NPR-C agonists to AmiC was confirmed by microscale thermophoresis. Finally, using an amiC mutant strain, we demonstrated that AmiC is essential for CNP effects on biofilm formation. In conclusion, the AmiC bacterial sensor possesses structural and pharmacological profiles similar to those of the human NPR-C receptor and appears to be a bacterial receptor for human hormones that enables P. aeruginosa to modulate biofilm expression. The bacterium Pseudomonas aeruginosa is a highly dangerous opportunist pathogen for immunocompromised hosts, especially cystic fibrosis patients. The sites of P. aeruginosa infection are varied, with predominance in the human lung, in which bacteria are in contact with host molecular messengers such as hormones. The C-type natriuretic peptide (CNP), a hormone produced by lung cells, has been described as a bacterial virulence enhancer. In this study, we showed that the CNP hormone counteracts P. aeruginosa biofilm formation and we identified the bacterial protein AmiC as the sensor involved in the CNP effects. We showed that AmiC could bind specifically CNP. These results show for the first time that a human hormone could be sensed by bacteria through a specific protein, which is an ortholog of the human receptor NPR-C. The bacterium would be able to modify its lifestyle by favoring virulence factor production while reducing biofilm formation.
Collapse
|
9
|
Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. MEMBRANES 2015; 5:253-87. [PMID: 26151885 PMCID: PMC4584282 DOI: 10.3390/membranes5030253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed.
Collapse
|
10
|
Huntley BK, Sandberg SM, Heublein DM, Sangaralingham SJ, Burnett JC, Ichiki T. Pro-B-type natriuretic peptide-1-108 processing and degradation in human heart failure. Circ Heart Fail 2014; 8:89-97. [PMID: 25339504 DOI: 10.1161/circheartfailure.114.001174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND We have reported that pro-B-type natriuretic peptide (BNP)-1-108 circulates and is processed to mature BNP1-32 in human blood. Building on these findings, we sought to determine whether proBNP1-108 processed forms in normal circulation are biologically active and stimulate cGMP, and whether proBNP1-108 processing and activity are altered in human heart failure (HF) compared with normal. Because BNP1-32 is deficient whereas proBNP1-108 is abundant in HF, we hypothesize that proBNP1-108 processing and degradation are impaired in HF patients ex vivo. METHODS AND RESULTS We measured circulating molecular forms, including BNP1-32, proBNP1-108, and N-terminal-proBNP, and all were significantly higher in patients with HF when compared with that in normals. Fresh serum samples from normals or patients with HF were incubated with or without exogenous nonglycosylated proBNP1-108 tagged with 6 C-terminal Histidines to facilitate peptide isolation. His-tag proBNP1-108 was efficiently processed into BNP1-32/3-32 at 5 minutes in normal serum, persisted for 15 minutes, then disappeared. Delayed processing of proBNP1-108 was observed in HF samples, and the degradation pattern differed depending on left ventricular function. The 5-minute processed forms from both normal and HF serums were active and generated cGMP via guanylyl cyclase-A receptors; however, the 180-minute samples were not active. The proBNP1-108 processing enzyme corin and BNP-degrading enzyme dipeptidyl peptidase-4 were reduced in HF versus normal, perhaps contributing to differential BNP metabolism in HF. CONCLUSIONS Exogenous proBNP1-108 is processed into active BNP1-32 and ultimately degraded in normal circulation. The processing and degradation of BNP molecular forms were altered but complete in HF, which may contribute to the pathophysiology of HF.
Collapse
Affiliation(s)
- Brenda K Huntley
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| | - Sharon M Sandberg
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| | - Denise M Heublein
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| | - S Jeson Sangaralingham
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| | - John C Burnett
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN
| | - Tomoko Ichiki
- From the Cardiorenal Research Laboratory, Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN.
| |
Collapse
|
11
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C. Front Mol Neurosci 2014; 7:75. [PMID: 25202235 PMCID: PMC4141235 DOI: 10.3389/fnmol.2014.00075] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022] Open
Abstract
Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca2+ and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca2+, and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca2+, and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca2+, and IP3 in different cells and tissue systems.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
12
|
Zhang J, Zhao Z, Wang J. Natriuretic peptide receptor A as a novel target for cancer. World J Surg Oncol 2014; 12:174. [PMID: 24894887 PMCID: PMC4049422 DOI: 10.1186/1477-7819-12-174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/09/2014] [Indexed: 11/22/2022] Open
Abstract
The receptor for the cardiac hormone atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPR-A), has been reported to be expressed in lung cancer, prostate cancer and ovarian cancer. NPR-A expression and signaling is important for tumor growth; its deficiency protects C57BL/6 mice from lung, skin and ovarian cancers. This suggests that NPR-A is a new marker and a new target for cancer therapy. Recently, NPR-A has been demonstrated to be expressed in pre-implantation embryos and in embryonic stem cells, which has a novel role in the maintenance of self-renewal and pluripotency of embryonic stem cells. A nanoparticle-formulated interfering RNA for NPR-A attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH2-terminal peptide of the ANP prohormone which downregulates NPR-A expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. These results suggest that NPR-A is involved in tumorigenesis and a new target for cancer therapy. This review focuses on structure, abnormal functions and carcinogenic mechanisms of NPR-A to investigate its role in tumorigenesis.
Collapse
Affiliation(s)
| | | | - Jiansheng Wang
- Department of Thoracic Surgery 2, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
13
|
D'Alessandro R, Masarone D, Buono A, Gravino R, Rea A, Salerno G, Golia E, Ammendola E, Del Giorno G, Santangelo L, Russo MG, Calabrò R, Bossone E, Pacileo G, Limongelli G. Natriuretic peptides: molecular biology, pathophysiology and clinical implications for the cardiologist. Future Cardiol 2014; 9:519-34. [PMID: 23834693 DOI: 10.2217/fca.13.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natriuretic peptides (NPs) counter the effects of volume overload or adrenergic activation of the cardiovascular system. They are able to induce arterial vasodilatations, natriuresis and diuresis, and they reduce the activities of the renin-angiotensin-aldosterone system and the sympathetic nervous system. However, in addition to wall stress, other factors have been associated with elevated natriuretic peptide levels. Since 2000, because of their characteristics, NPs have become quantitative plasma biomarkers of heart failure. Nowadays, NPs play an important role not only in the diagnosis of heart failure, but also for a prognostic purpose and a guide to medical therapy. Finally, a new drug that modulates the NP system or recombinant analogs of NPs are now available in patients with heart failure.
Collapse
|
14
|
Bach T, Bergholtz S, Riise J, Qvigstad E, Skomedal T, Osnes JB, Levy FO. Identification of small molecule NPR-B antagonists by high throughput screening — potential use in heart failure. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:5-14. [DOI: 10.1007/s00210-013-0940-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 11/12/2013] [Indexed: 02/06/2023]
|
15
|
Arshad N, Ballal S, Visweswariah SS. Site-specific N-linked glycosylation of receptor guanylyl cyclase C regulates ligand binding, ligand-mediated activation and interaction with vesicular integral membrane protein 36, VIP36. J Biol Chem 2012; 288:3907-17. [PMID: 23269669 DOI: 10.1074/jbc.m112.413906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.
Collapse
Affiliation(s)
- Najla Arshad
- Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
16
|
Orbay H, Hong H, Zhang Y, Cai W. PET/SPECT imaging of hindlimb ischemia: focusing on angiogenesis and blood flow. Angiogenesis 2012; 16:279-87. [PMID: 23117521 DOI: 10.1007/s10456-012-9319-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/22/2012] [Indexed: 12/12/2022]
Abstract
Peripheral artery disease (PAD) is a result of the atherosclerotic narrowing of blood vessels to the extremities, and the subsequent tissue ischemia can lead to the up-regulation of angiogenic growth factors and formation of new vessels as a recovery mechanism. Such formation of new vessels can be evaluated with various non-invasive molecular imaging techniques, where serial images from the same subjects can be obtained to allow the documentation of disease progression and therapeutic response. The most commonly used animal model for preclinical studies of PAD is the murine hindlimb ischemia model, and a number of radiotracers have been investigated for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of PAD. In this review article, we summarize the PET/SPECT tracers that have been tested in the murine hindlimb ischemia model as well as those used clinically to assess the extremity blood flow.
Collapse
Affiliation(s)
- Hakan Orbay
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, 1111 Highland Ave, Room 7137, Madison, WI 53705-2275, USA
| | | | | | | |
Collapse
|
17
|
Pandey KN. Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. ACTA ACUST UNITED AC 2012; 2:210-26. [PMID: 19746200 DOI: 10.1016/j.jash.2008.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thus far, three related natriuretic peptides (NPs) and three distinct receptors have been identified, which have advanced our knowledge towards understanding the control of high blood pressure, hypertension, and cardiovascular disorders to a great extent. Biochemical and molecular studies have been advanced to examine receptor function and signaling mechanisms and the role of second messenger cGMP in pathophysiology of hypertension, renal hemodynamics, and cardiovascular functions. The development of gene-knockout and gene-duplication mouse models along with transgenic mice have provided a framework for understanding the importance of the antagonistic actions of natriuretic peptides receptor in cardiovascular events at the molecular level. Now, NPs are considered as circulating markers of congestive heart failure, however, their therapeutic potential for the treatment of cardiovascular diseases such as hypertension, renal insufficiency, cardiac hypertrophy, congestive heart failure, and stroke has just begun to unfold. Indeed, the alternative avenues of investigations in this important are need to be undertaken, as we are at the initial stage of the molecular therapeutic and pharmacogenomic implications.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
18
|
Toxin mediated diarrhea in the 21 century: the pathophysiology of intestinal ion transport in the course of ETEC, V. cholerae and rotavirus infection. Toxins (Basel) 2010; 2:2132-57. [PMID: 22069677 PMCID: PMC3153279 DOI: 10.3390/toxins2082132] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/09/2010] [Indexed: 12/31/2022] Open
Abstract
An estimated 4 billion episodes of diarrhea occur each year. As a result, 2–3 million children and 0.5–1 million adults succumb to the consequences of this major healthcare concern. The majority of these deaths can be attributed to toxin mediated diarrhea by infectious agents, such as E. coli, V. cholerae or Rotavirus. Our understanding of the pathophysiological processes underlying these infectious diseases has notably improved over the last years. This review will focus on the cellular mechanism of action of the most common enterotoxins and the latest specific therapeutic approaches that have been developed to contain their lethal effects.
Collapse
|
19
|
Ogawa H, Qiu Y, Philo JS, Arakawa T, Ogata CM, Misono KS. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site. Protein Sci 2010; 19:544-57. [PMID: 20066666 DOI: 10.1002/pro.332] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.
Collapse
Affiliation(s)
- Haruo Ogawa
- Department of Biochemistry, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
20
|
Li I, Mills E, Truong K. A Computational Tool for Monte Carlo Simulations of Biomolecular Reaction Networks Modeled on Physical Principles. IEEE Trans Nanobioscience 2010; 9:24-30. [DOI: 10.1109/tnb.2009.2035114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Pandey KN. Ligand-mediated endocytosis and intracellular sequestration of guanylyl cyclase/natriuretic peptide receptors: role of GDAY motif. Mol Cell Biochem 2010; 334:81-98. [PMID: 19941037 PMCID: PMC4316816 DOI: 10.1007/s11010-009-0332-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 12/31/2022]
Abstract
The guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), also referred to as GC-A, is a single polypeptide molecule having a critical function in blood pressure regulation and cardiovascular homeostasis. GC-A/NPRA, which resides in the plasma membrane, consists of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular cytoplasmic region containing a protein kinase-like homology domain (KHD) and a guanylyl cyclase (GC) catalytic domain. After binding with atrial and brain natriuretic peptides (ANP and BNP), GC-A/NPRA is internalized and sequestered into intracellular compartments. Therefore, GC-A/NPRA is a dynamic cellular macromolecule that traverses different subcellular compartments through its lifetime. This review describes the roles of short-signal sequences in the internalization, trafficking, and intracellular redistribution of GC-A/NPRA from cell surface to cell interior. Evidence indicates that, after internalization, the ligand-receptor complexes dissociate inside the cell and a population of GC-A/NPRA recycles back to the plasma membrane. Subsequently, the disassociated ligands are degraded in the lysosomes. However, a small percentage of the ligand escapes the lysosomal degradative pathway, and is released intact into culture medium. Using pharmacologic and molecular perturbants, emphasis has been placed on the cellular regulation and processing of ligand-bound GC-A/NPRA in terms of receptor trafficking and down-regulation in intact cells. The discussion is concluded by examining the functions of short-signal sequence motifs in the cellular life-cycle of GC-A/NPRA, including endocytosis, trafficking, metabolic processing, inactivation, and/or down-regulation in model cell systems.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University School of Medicine, SL-39 1430 Tulane Ave, New Orleans, LA 70112, USA.
| |
Collapse
|
22
|
Bondarenko VA, Hayashi F, Usukura J, Yamazaki A. Involvement of rhodopsin and ATP in the activation of membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC) by GC-activating proteins (GCAPs): a new model for ROS-GC activation and its link to retinal diseases. Mol Cell Biochem 2009; 334:125-39. [PMID: 19941040 DOI: 10.1007/s11010-009-0323-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 11/04/2009] [Indexed: 11/27/2022]
Abstract
Membranous guanylate cyclase in retinal photoreceptor outer segments (ROS-GC), a key enzyme for the recovery of photoreceptors to the dark state, has a topology identical to and cytoplasmic domains homologous to those of peptide-regulated GCs. However, under the prevailing concept, its activation mechanism is significantly different from those of peptide-regulated GCs: GC-activating proteins (GCAPs) function as the sole activator of ROS-GC in a Ca(2+)-sensitive manner, and neither reception of an outside signal by the extracellular domain (ECD) nor ATP binding to the kinase homology domain (KHD) is required for its activation. We have recently shown that ATP pre-binding to the KHD in ROS-GC drastically enhances its GCAP-stimulated activity, and that rhodopsin illumination, as the outside signal, is required for the ATP pre-binding. These results indicate that illuminated rhodopsin is involved in ROS-GC activation in two ways: to initiate ATP binding to ROS-GC for preparation of its activation and to reduce [Ca(2+)] through activation of cGMP phosphodiesterase. These two signal pathways are activated in a parallel and proportional manner and finally converge for strong activation of ROS-GC by Ca(2+)-free GCAPs. These results also suggest that the ECD receives the signal for ATP binding from illuminated rhodopsin. The ECD is projected into the intradiscal space, i.e., an intradiscal domain(s) of rhodopsin is also involved in the signal transfer. Many retinal disease-linked mutations are found in these intradiscal domains; however, their consequences are often unclear. This model will also provide novel insights into causal relationship between these mutations and certain retinal diseases.
Collapse
|
23
|
Ogawa H, Qiu Y, Huang L, Tam-Chang SW, Young HS, Misono KS. Structure of the atrial natriuretic peptide receptor extracellular domain in the unbound and hormone-bound states by single-particle electron microscopy. FEBS J 2009; 276:1347-55. [PMID: 19187227 DOI: 10.1111/j.1742-4658.2009.06870.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Atrial natriuretic peptide (ANP) plays a major role in blood pressure and volume regulation. ANP activities are mediated by a cell surface, single-span transmembrane receptor linked to its intrinsic guanylate cyclase activity. The crystal structures of the dimerized ANP receptor extracellular domain (ECD) with and without ANP have revealed a novel hormone-induced rotation mechanism occurring in the juxtamembrane region that appears to mediate signal transduction [Ogawa H, Qiu Y, Ogata CM & Misono KS (2004) J Biol Chem 279, 28625-28631]. However, the ECD crystal packing contains two major intermolecular contacts that suggest two possible dimer pairs: 'head-to-head' (hh) and 'tail-to-tail' (tt) dimers associated via the membrane-distal and membrane-proximal subdomains, respectively. The existence of these two potential dimer forms challenges the proposed signaling mechanism. In this study, we performed single-particle electron microscopy (EM) to determine the ECD dimer structures occurring in the absence of crystal contacts. EM reconstruction yielded the dimer structures with and without ANP in only the hh dimer forms. We further performed steady-state fluorescence spectroscopy of Trp residues, one of which (Trp74) occurs in the hh dimer interface and none of which occurs in the tt dimer interface. ANP binding caused a time-dependent decrease in Trp emission at 350 nm that was attributable to partially buried Trp74 in the unbound hh dimer interface becoming exposed to solvent water upon ANP binding. Thus, the results of single-particle EM and Trp fluorescence studies have provided direct evidence for hh dimer structures for unbound and ANP-bound receptor. The results also support the proposed rotation mechanism for transmembrane signaling by the ANP receptor.
Collapse
Affiliation(s)
- Haruo Ogawa
- Department of Biochemistry, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | |
Collapse
|
24
|
Knake C, Burmann BM, Schweimer K, Matecko I, Rösch P. The membrane proximal extracellular domain of human hGC-B folds independently. J Biomol Struct Dyn 2008; 26:465-72. [PMID: 19108585 DOI: 10.1080/07391102.2009.10507261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human Guanylyl Cyclase B (hGC-B) is a single-transmembrane receptor protein which upon binding C-type natriuretic peptide (CNP) to its extracellular domain catalyzes the intracellular conversion of GTP to the second messenger cGMP. cGMP in turn affects various physiological processes such as smooth muscle contraction, cell proliferation, phototransduction, and salt as well as fluid homeostasis. The 3-dimensional binding site of the peptide hormone is unknown, and the binding mechanism is not yet understood. Therefore, a model of the C-terminal moiety of the extracellular domain of human GC-B containing the potential binding site was derived from the crystal structure of (GC-A). The selected protein sequence was provided with an N-terminal TEV-cleavage site and fused with a 109 aa thioredoxin-tag and a hexahistidine-tag. The identity of the purified 25 kDa protein was confirmed by protein mass fingerprint and its secondary structure was determined by CD- and NMR-spectroscopy. The protein proved to be properly folded with the observed secondary structure matching the predicted secondary structure and the homologous structure in the extracellular domain of GC-A. Size exclusion chromatography confirmed the monomeric state of P-hGC-B.
Collapse
Affiliation(s)
- Claudia Knake
- Department of Biopolymers and Research Center for Bio-Macromolecules, University of Bayreuth, Universitatsstrabe 30, 95440 Bayreuth, Germany
| | | | | | | | | |
Collapse
|
25
|
Lauber T, Tidten N, Matecko I, Zeeb M, Rösch P, Marx UC. Design and characterization of a soluble fragment of the extracellular ligand-binding domain of the peptide hormone receptor guanylyl cyclase-C. Protein Eng Des Sel 2008; 22:1-7. [PMID: 18987130 DOI: 10.1093/protein/gzn062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal guanylyl cyclase-C (GC-C) was originally identified as an Escherichia coli heat-stable enterotoxin (STa) receptor. STa stimulates GC-C to much higher activity than the endogenous ligands guanylin and uroguanylin, causing severe diarrhea. To investigate the interactions of the endogenous and bacterial ligands with GC-C, we designed and characterized a soluble and properly folded fragment of the extracellular ligand-binding domain of GC-C. The membrane-bound guanylyl cyclases exhibit a single transmembrane spanning helix and a globularly folded extracellular ligand-binding domain that comprises about 410 of 1050 residues. Based on the crystal structure of the dimerized-binding domain of the guanylyl cyclase-coupled atrial natriuretic peptide receptor and a secondary structure-guided sequence alignment, we generated a model of the extracellular domain of GC-C comprised of two subdomains. Mapping of mutational and cross-link data onto this structural model restricts the ligand-binding region to the membrane proximal subdomain. We thus designed miniGC-C, a 197 amino acid fragment that mimics the ligand-binding membrane proximal subdomain. Cloning, expression and spectroscopic studies reveal miniGC-C to be a soluble and properly folded protein with a distinct secondary and tertiary structure. MiniGC-C binds STa with nanomolar affinity.
Collapse
Affiliation(s)
- T Lauber
- Lehrstuhl für Biopolymere and Forschungszentrum für Bio-Makromoleküle, Universität Bayreuth 95440, Bayreuth
| | | | | | | | | | | |
Collapse
|
26
|
Hartmann M, Skryabin BV, Müller T, Gazinski A, Schröter J, Gassner B, Nikolaev VO, Bünemann M, Kuhn M. Alternative splicing of the guanylyl cyclase-A receptor modulates atrial natriuretic peptide signaling. J Biol Chem 2008; 283:28313-20. [PMID: 18713751 DOI: 10.1074/jbc.m805521200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Atrial (ANP) and B-type natriuretic peptides (BNP) modulate blood pressure and volume through the stimulation of cyclic GMP production by their guanylyl cyclase-A (GC-A) receptor. A novel isoform of GC-A has been identified that is the result of differential splicing of exon 4. The deletion of a 51-bp sequence is predicted to delete 17 amino acids (Lys314-Gln330) in the membrane-distal part of the extracellular domain. Reverse transcription-PCR analyses demonstrated low messenger RNA expression levels of spliced GC-A in all tissues. Homology modeling suggested that the alterations in the protein structure could interfere with ANP binding or signaling. Indeed, functional studies in transfected HEK 293 cells demonstrated that binding of ANP and ANP-induced cyclic GMP formation by GC-ADelta(Lys314-Gln330) were totally abolished. Furthermore, cotransfection studies showed that this GC-A variant forms heterodimers with the wild type receptor and inhibits ligand-inducible cGMP generation. Finally, treatment of mice with angiotensin II (300 ng/kg/min during 7 days) resulted in enhanced pulmonary mRNA expression of spliced GC-A, which was concomitant to diminished GC-A/cGMP responses to ANP. We conclude that alternative splicing can regulate endogenous ANP/GC-A signaling. Angiotensin II-induced alternative splicing of GC-A may represent a novel mechanism for reducing the sensitivity to ANP.
Collapse
Affiliation(s)
- Michael Hartmann
- Institute of Physiology, University of Würzburg, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning. EMBO J 2008; 27:1321-32. [PMID: 18388862 DOI: 10.1038/emboj.2008.64] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 03/05/2008] [Indexed: 12/22/2022] Open
Abstract
The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.
Collapse
|
28
|
Brock C, Oueslati N, Soler S, Boudier L, Rondard P, Pin JP. Activation of a dimeric metabotropic glutamate receptor by intersubunit rearrangement. J Biol Chem 2007; 282:33000-8. [PMID: 17855348 DOI: 10.1074/jbc.m702542200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although many G protein-coupled receptors (GPCRs) can form dimers, a possible role of this phenomenon in their activation remains elusive. A recent and exciting proposal is that a dynamic intersubunit interplay may contribute to GPCR activation. Here, we examined this possibility using dimeric metabotropic glutamate receptors (mGluRs). We first developed a system to perfectly control their subunit composition and show that mGluR dimers do not form larger oligomers. We then examined an mGluR dimer containing one subunit in which the extracellular agonist-binding domain was uncoupled from the G protein-activating transmembrane domain. Despite this uncoupling in one protomer, agonist stimulation resulted in symmetric activation of either transmembrane domain in the dimer with the same efficiency. This, plus other data, can only be explained by an intersubunit rearrangement as the activation mechanism. Although well established for other types of receptors such as tyrosine kinase and guanylate cyclase receptors, this is the first clear demonstration that such a mechanism may also apply to GPCRs.
Collapse
Affiliation(s)
- Carsten Brock
- University of Montpellier 1 and 2, CNRS UMR 5203, Institute of Functional Genomics, 141 rue de la Cardonille, Montpellier, France
| | | | | | | | | | | |
Collapse
|
29
|
Pin JP, Neubig R, Bouvier M, Devi L, Filizola M, Javitch JA, Lohse MJ, Milligan G, Palczewski K, Parmentier M, Spedding M. International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 2007; 59:5-13. [PMID: 17329545 DOI: 10.1124/pr.59.1.5] [Citation(s) in RCA: 204] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
G protein-coupled receptors (GPCRs) have long been considered to be monomeric membrane proteins. Although numerous recent studies have indicated that GPCRs can form multimeric complexes, the functional and pharmacological consequences of this phenomenon have remained elusive. With the discovery that the functional GABA(B) receptor is an obligate heterodimer and with the use of energy transfer technologies, it is now accepted that GPCRs can form heteromultimers. In some cases, specific properties of such heteromers not shared by their respective homomers have been reported. Although in most cases these properties have only been observed in heterologous expression systems, there are a few reports describing data consistent with such heteromultimeric GPCR complexes also existing in native tissues. The present article illustrates well-documented examples of such native multimeric complexes, lists a number of recommendations for recognition and acceptance of such multimeric receptors, and gives recommendations for their nomenclature.
Collapse
Affiliation(s)
- Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, 141, rue de la Cardonille, 34094 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamazaki A, Yamazaki M, Yamazaki RK, Usukura J. Illuminated rhodopsin is required for strong activation of retinal guanylate cyclase by guanylate cyclase-activating proteins. Biochemistry 2006; 45:1899-909. [PMID: 16460036 DOI: 10.1021/bi0519396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently shown that activation of retinal guanylate cyclase (retGC) by GC-activating proteins (GCAPs) is much stronger than that previously reported and that preincubation of photoreceptor outer segment homogenates with ATP or its analogue, adenylyl imidodiphosphate (AMP-PNP), is required for the strong activation [Yamazaki, A., Yu, H., Yamazaki, M., Honkawa, H., Matsuura, I., Usukura, J., and Yamazaki, R. K. (2003) J. Biol. Chem. 278, 33150-33160]. Here we show that illuminated rhodopsin is essential for development of the AMP-PNP incubation effect. This was demonstrated by illumination of dark homogenates and treatments of illuminated homogenates with 11-cis-retinal and hydroxylamine prior to the AMP-PNP incubation and by measurement of the GCAP2 concentration required for 50% activation. We also found that the AMP-PNP incubation effect was not altered by addition of guanosine 5'-O-(3-thiotriphosphate), indicating that transducin activation is not required. It is concluded that illuminated rhodopsin is involved in retGC activation in two ways: to initiate the ATP incubation effect for preparation of retGC activation as shown here and to reduce the Ca2+ concentrations through cGMP phosphodiesterase activation as already known. These two signal pathways may be activated in a parallel and perhaps proportional manner and finally converge for strong activation of retGC by Ca2+-free GCAPs.
Collapse
Affiliation(s)
- Akio Yamazaki
- Kresge Eye Institute and Departments of Ophthalmology and Pharmacology, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
31
|
Hasegawa M, Matsumoto-Ishikawa Y, Hijikata A, Hidaka Y, Go M, Shimonishi Y. Disulfide linkages and a three-dimensional structure model of the extracellular ligand-binding domain of guanylyl cyclase C. Protein J 2006; 24:315-25. [PMID: 16284729 DOI: 10.1007/s10930-005-6752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Guanylyl cyclase C (GC-C) is a single-transmembrane receptor that is specifically activated by endogenous ligands, including guanylin, and the exogenous ligand, heat-stable enterotoxin. Using combined HPLC separation and MS analysis techniques the positions of the disulfide linkages in the extracellular ligand-binding domain (ECD) of GC-C were determined to be between Cys7-Cys94, Cys72-Cys77, Cys101-Cys128 and Cys179-Cys226. Furthermore, a three-dimensional structural model of the ECD was constructed by homology modeling, using the structure of the ECD of GC-A as a template (van den Akker et al., 2000, Nature, 406: 101-104) and the information of the disulfide linkages. Although the GC-C model was similar to the known structure of GC-A, importantly its ligand-binding site appears to be located on the quite different region from that in GC-A.
Collapse
Affiliation(s)
- Makoto Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 2006; 27:47-72. [PMID: 16291870 DOI: 10.1210/er.2005-0014] [Citation(s) in RCA: 723] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Natriuretic peptides are a family of structurally related but genetically distinct hormones/paracrine factors that regulate blood volume, blood pressure, ventricular hypertrophy, pulmonary hypertension, fat metabolism, and long bone growth. The mammalian members are atrial natriuretic peptide, B-type natriuretic peptide, C-type natriuretic peptide, and possibly osteocrin/musclin. Three single membrane-spanning natriuretic peptide receptors (NPRs) have been identified. Two, NPR-A/GC-A/NPR1 and NPR-B/GC-B/NPR2, are transmembrane guanylyl cyclases, enzymes that catalyze the synthesis of cGMP. One, NPR-C/NPR3, lacks intrinsic enzymatic activity and controls the local concentrations of natriuretic peptides through constitutive receptor-mediated internalization and degradation. Single allele-inactivating mutations in the promoter of human NPR-A are associated with hypertension and heart failure, whereas homozygous inactivating mutations in human NPR-B cause a form of short-limbed dwarfism known as acromesomelic dysplasia type Maroteaux. The physiological effects of natriuretic peptides are elicited through three classes of cGMP binding proteins: cGMP-dependent protein kinases, cGMP-regulated phosphodiesterases, and cyclic nucleotide-gated ion channels. In this comprehensive review, the structure, function, regulation, and biological consequences of natriuretic peptides and their associated signaling proteins are described.
Collapse
Affiliation(s)
- Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, 6-155 Jackson Hall, 321 Church Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
33
|
Hasegawa M, Shimonishi Y. Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C. ACTA ACUST UNITED AC 2005; 65:261-71. [PMID: 15705168 DOI: 10.1111/j.1399-3011.2005.00218.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guanylate cyclase C (GC-C), a member of the membrane-bound GC family, consists of an extracellular domain (ECD) and an intracellular domain, which are connected by a single-transmembrane region. GC-C is a receptor protein, i.e. specifically stimulated by the endogenous peptides guanylin, uroguanylin, lymphoguanylin, and the exogenous peptide heat-stable enterotoxin (ST(a)), secreted by pathogenic Escherichia coli and acting on the intestinal brush border membranes. The binding of these peptide ligands to the ECD of GC-C results in the synthesis of cyclic GMP in cells, which, in turn, regulates a variety of intracellular physiologic processes. As the cloning of GC-C, its physiologic functions of each domain have been vigorously investigated. The structural characterization of the ligand-binding domain of the receptor promises to provide important clues for better understanding of the mechanisms of receptor recognition and activation. Recently, structural data for each domain of membrane-bound GCs and related proteins has become available. Coupling information obtained from such work and validation of structure-function relationships of GC-C and its ligands should allow for three-dimensional mapping of their interaction site in detail. Our approach to this issue involved designing photoaffinity-labeling ST(a) analogs, capable of binding covalently to the ligand-binding region of the ECD of GC-C. The photoaffinity-labeling ligand was used to covalently label a soluble form of the recombinant ECD protein. Mass spectrometric analyses of an endoproteinase digest of the ECD revealed that the ligand specifically bound to a narrow region contained in the membrane-proximal subdomain of the ECD of GC-C. These results will enable us to identify the possible binding motifs within the ligand-binding domain by computer modeling. In this review, we summarize the available data on the recognition mechanism between ST(a) and GC-C at the molecular level.
Collapse
Affiliation(s)
- M Hasegawa
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan.
| | | |
Collapse
|
34
|
Zhang Q, Moalem J, Tse J, Scholz PM, Weiss HR. Effects of natriuretic peptides on ventricular myocyte contraction and role of cyclic GMP signaling. Eur J Pharmacol 2005; 510:209-15. [PMID: 15763244 DOI: 10.1016/j.ejphar.2005.01.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 01/14/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Natriuretic peptides, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) act through different receptors and at different potencies to affect cardiac myocyte function. We tested the hypothesis that these three peptides would differentially reduce cardiomyocyte function through their effects on the cyclic GMP signaling pathway. Rabbit ventricular myocytes were isolated and stimulated by electrical field stimulation. Cell function was measured using a video edge detector. ANP BNP or CNP at 10(-9), 10(-8), 10(-7) M were added to the myocytes. Intracellular cyclic GMP was determined using a radioimmunoassay in the absence or presence of ANP, BNP or CNP. All natriuretic peptides decreased myocyte contractility in a similar concentration dependent manner. Myocyte percentage shortening was significantly decreased with all peptides at 10(-7) M compared with baseline (ANP from 5.4+/-0.4 to 3.9+/-0.2%; BNP from 5.0+/-0.2 to 3.5+/-0.1%; CNP from 5.6+/-0.3 to 4.0+/-0.3%). Maximum rate of shortening and relaxation were also decreased similarly and significantly. Intracellular cyclic GMP was significantly increased in myocytes treated with ANP, BNP or CNP (Baseline 1.0+/-0.2, ANP 2.1+/-0.2, BNP 2.3+/-0.3, CNP 2.0+/-0.2 pmol/10(5) myocytes). Furthermore, inhibition of the cyclic GMP protein kinase with KT5823 caused a reversal in the functional effects of CNP. We concluded that all natriuretic peptides had similar negative effects on ventricular myocyte function and their effects were accompanied by increased cyclic GMP. Blockade the effect of CNP by a cyclic GMP protein kinase inhibitor demonstrated that effects were mediated through the cyclic GMP signaling pathway.
Collapse
Affiliation(s)
- Qihang Zhang
- Heart and Brain Circulation Laboratory, Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, Piscataway, NJ 08854-5635, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Increasing evidence suggests that natriuretic peptides (NPs) play diverse roles in mammals, including renal hemodynamics, neuroendocrine, and cardiovascular functions. Collectively, NPs are classified as hypotensive hormones; the main actions of NPs are implicated in eliciting natriuretic, diuretic, steroidogenic, antiproliferative, and vasorelaxant effects, important factors in the control of body fluid volume and blood pressure homeostasis. One of the principal loci involved in the regulatory actions of NPs is their cognate plasma membrane receptor molecules, which are activated by binding with specific NPs. Interaction of NPs with their receptors plays a central role in physiology and pathophysiology of hypertension and cardiovascular disorders. Gaining insight into the intricacies of NPs-specific receptor signaling pathways is of pivotal importance for understanding both hormone-receptor biology and the disease states arising from abnormal hormone receptor interplay. During the last decade there has been a surge in interest in NP receptors; consequently, a wealth of information has emerged concerning molecular structure and function, signaling mechanisms, and use of transgenics and gene-targeted mouse models. The objective of this present review is to summarize and document the previous findings and recent discoveries in the field of the natriuretic peptide hormone family and receptor systems with emphasis on the structure-function relationship, signaling mechanisms, and the physiological and pathophysiological significance in health and disease.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
36
|
Abstract
Guanylyl cyclases (GC) are widely distributed enzymes that signal via the production of the second messenger cGMP. The particulate guanylyl cyclases share a similar topology: an extracellular ligand binding domain and intracellular regulatory kinase-homology and cyclase catalytic domains. The natriuretic peptide receptors GC-A and -B mediate the effects of a family of peptides, atrial, B- and C-type natriuretic peptide (ANP, BNP and CNP, respectively), with natriuretic, diuretic and vasorelaxant properties. ANP and BNP, through the activation of GC-A, act as endocrine hormones to regulate blood pressure and volume, and inhibit cardiac hypertrophy. CNP, on the other hand, acts in an autocrine/paracrine fashion to induce vasorelaxation and vascular remodeling, and to regulate bone growth through its cognate receptor GC-B. GC-B, like GC-A, is phosphorylated in the basal state, and undergoes both homologous and heterologous desensitization, reflected by dephosphorylation of specific sites in the kinase-homology domain. This review will examine the structure and function of GC-B, and summarize the physiological processes in which this receptor is thought to participate.
Collapse
Affiliation(s)
- Stephanie Schulz
- Division of Clinical Pharmacology, Department of Medicine and Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
37
|
Pandey KN. Internalization and trafficking of guanylyl cyclase/natriuretic peptide receptor-A. Peptides 2005; 26:985-1000. [PMID: 15911067 DOI: 10.1016/j.peptides.2004.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
One of the principal loci involved in the regulatory action of atrial and brain natriuretic peptides (ANP and BNP) is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), whose ligand-binding efficiency and GC catalytic activity vary remarkably in different target cells and tissues. In its mature form, NPRA resides in the plasma membrane and contains an extracellular ligand-binding domain, a single transmembrane region, and the intracellular protein kinase-like homology domain (KHD) and guanylyl cyclase (GC) catalytic domain. NPRA is a dynamic cellular macromolecule that traverses through different compartments of the cell through its lifetime. Binding of ligand to NPRA triggers a complex array of signal transduction events and accelerates the endocytosis. The endocytic transport is important in regulating signal transduction, formation of specialized signaling complexes, and modulation of specific components of internalization events. The present review describes the experiments which reveal the internalization of ligand-receptor complexes of NPRA, receptor trafficking and recycling, and delivery of both ligand-receptor molecules into subcellular compartments. The ligand-receptor complexes of NPRA are finally degraded within the lysosomes. The experimental evidence provides a consensus forum, which establishes the endocytosis, cellular trafficking, sequestration, and metabolic processing of ANP/NPRA complexes in the intact cells. The discussion is afforded to address the experimental insights into the mechanisms that cells utilize in modulating the delivery and metabolic processing of ligand-bound NPRA into the cell interior.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
38
|
Misono KS, Ogawa H, Qiu Y, Ogata CM. Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 2005; 26:957-68. [PMID: 15911065 DOI: 10.1016/j.peptides.2004.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 12/30/2004] [Indexed: 11/19/2022]
Abstract
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.
Collapse
Affiliation(s)
- Kunio S Misono
- Department of Biochemistry and Molecular Biology, MS-330, School of Medicine, University of Nevada, 1664 N Virginia Street, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|
39
|
Jossart C, Coupal M, McNicoll N, Fournier A, Wilkes BC, De Léan A. Photolabeling Study of the Ligand Binding Domain of Natriuretic Peptide Receptor A: Development of a Model. Biochemistry 2005; 44:2397-408. [PMID: 15709752 DOI: 10.1021/bi048251y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are loop-shaped peptidic hormones that have multiple actions on body fluid homeostasis. Their physiological effects are mediated through the activation of their receptor, natriuretic peptide receptor A (NPRA). This receptor is a member of the membrane guanylyl cyclase family and catalyzes cyclic guanosine monophosphate (cGMP) production following its activation. To map the binding site of human NPRA, we applied the methionine proximity assay method to this receptor. We photolabeled NPRA mutants, presenting a single methionine in the binding domain of the receptor, and used benzoylphenylalanine- (Bpa-) substituted peptides at positions 0, 3, 18, 26, and 28 of the ligand. We identified that the N-terminus of the peptide is interacting with the region between Asp(177) and Val(183) of the receptor. Arg(3) is interacting in the vicinity of Phe(172). Leu(18) binds close to Val(116). Phe(26) binds in the vicinity of His(195), and the C-terminal Tyr(28) is located close to Met(173). We next proceeded with photolabeling of a dual Bpa-substituted peptide and showed that the N-terminus and Leu(18) interact with opposite receptor subunits. On the basis of our results, a molecular model of peptide-bound NPRA was developed by homology modeling with the C-type natriuretic peptide- (CNP-) bound natriuretic peptide receptor C (NPRC) crystal structure. The model has been validated by molecular dynamics simulations. Our work provides a rational basis for interpreting and predicting natriuretic peptide binding to the human NPRA.
Collapse
Affiliation(s)
- Christian Jossart
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prézeau L, Pin JP. Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 2004; 11:706-13. [PMID: 15235591 DOI: 10.1038/nsmb794] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 06/14/2004] [Indexed: 11/08/2022]
Abstract
Membrane receptors, key components in signal transduction, often function as dimers. These include some G protein-coupled receptors such as metabotropic glutamate (mGlu) receptors that have large extracellular domains (ECDs) where agonists bind. How agonist binding in dimeric ECDs activates the effector domains remains largely unknown. The structure of the dimeric ECDs of mGlu(1) solved in the presence of agonist revealed two specific conformations in which either one or both protomers are in an agonist-stabilized closed form. Here we examined whether both conformations correspond to an active form of the full-length receptor. Using a system that allows the formation of dimers made of a wild-type and a mutant subunit, we show that the closure of one ECD per dimer is sufficient to activate the receptor, but the closure of both ECDs is required for full activity.
Collapse
Affiliation(s)
- Julie Kniazeff
- Laboratory of Functional Genomics, Department of Molecular Pharmacology, Centre National de la Recherche Scientifique, Unite Propre de Recherche 2580, 141 rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are a family of polypeptide mediators exerting numerous actions in cardiovascular homeostasis. ANP and BNP are cardiac derived, being secreted and up-regulated in myocardium in response to many pathophysiological stimuli. CNP is an endothelium-derived mediator. The classical endocrine effects of ANP and BNP on fluid homeostasis and blood pressure, especially in conditions characterised by left ventricular dysfunction, are well recognised and extensively researched. However, there is accumulating evidence that, in addition to endocrine actions, ANP and BNP exhibit important autocrine and paracrine functions within the heart and coronary circulation. These include regulation of myocyte growth, inhibition of fibroblast proliferation and extracellular matrix deposition, a cytoprotective anti-ischaemic (preconditioning-like) function, and influences on coronary endothelium and vascular smooth muscle proliferation and contractility. Most if not all of these actions can be ascribed to particulate guanylyl cyclase activation because the ANP/BNP receptor, natriuretic peptide receptor (NPR)-A, has an intracellular guanylyl cyclase domain. Subsequent elevation of the intracellular second messenger cGMP may exert diverse physiological effects through activation of cGMP-dependent protein kinases (cGK), predominantly cGK-I. However, there appear to be other contributory mechanisms in several of these actions, including the augmentation of nitric oxide synthesis. These diverse actions may represent counterregulatory mechanisms in the pathophysiology of many cardiovascular diseases, not just those typified by left ventricular dysfunction. Ultimately, insights from the autocrine/paracrine actions of natriuretic peptides may provide routes to therapeutic application in cardiac diseases of natriuretic peptides and drugs that modify their availability.
Collapse
|
42
|
Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004; 24:370-7. [PMID: 14724235 PMCID: PMC6729975 DOI: 10.1523/jneurosci.3141-03.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) play a major role in cell-cell communication in the CNS. These proteins oscillate between various inactive and active conformations, the latter being stabilized by agonists. Although mutations can lead to constitutive activity, most of these destabilize inactive conformations, and none lock the receptor in an active state. Moreover, GPCRs are known to form dimers, but the role of each protomer in the activation process remains unclear. Here, we show that the heterodimeric GPCR for the main inhibitory neurotransmitter, the GABA(B) receptor, can be locked in its active state by introducing two cysteines expected to form a disulphide bridge to maintain the binding domain of the GABA(B1) subunit in a closed form. This constitutively active receptor cannot be inhibited by antagonists, but its normal functioning, activation by agonists, and inhibition by antagonists can be restored after reduction with dithiothreitol. These data show that the closed state of the binding domain of GABA(B1) is sufficient to turn ON this heterodimeric receptor and illustrate for the first time that a GPCR can be locked in an active conformation.
Collapse
Affiliation(s)
- Julie Kniazeff
- Laboratory for Functional Genomic, Department of Molecular Pharmacology, Centre National de la Recherche Scientifique Unité Propre de Recherche-2580, Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes. J Biol Chem 2003; 278:48617-26. [PMID: 12970365 DOI: 10.1074/jbc.m303713200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies have demonstrated that natriuretic peptides (NPs), peptide hormones with natriuretic, diuretic, and vasodilating properties, exert a potent control on the lipolysis in human adipocytes via the activation of the type A guanylyl cyclase receptor (1, 2). In the current study we investigated the intracellular mechanisms involved in the NP-stimulated lipolytic effect in human preadipocytes and adipocytes. We demonstrate that the atrial NP (ANP)-induced lipolysis in human adipocytes was associated with an enhanced serine phosphorylation of the hormone-sensitive lipase (HSL). Both ANP-mediated lipolysis and HSL phosphorylation were inhibited in the presence of increasing concentrations of the guanylyl cyclase inhibitor LY-83583. ANP did not modulate the activity of the cAMP-dependent protein kinase (PKA). Moreover, H-89, a PKA inhibitor, did not affect the ANP-induced lipolysis. On primary cultures of human preadipocytes, the ANP-mediated lipolytic effect was dependent on the differentiation process. On differentiated human preadipocytes, ANP-mediated lipolysis, associated with an increased phosphorylation of HSL and of perilipin A, was strongly decreased by treatment with the inhibitor of the cGMP-dependent protein kinase I (cGKI), Rp-8-pCPT-cGMPS. Thus, ANP-induced lipolysis in human adipocytes is a cGMP-dependent pathway that induces the phosphorylation of HSL and perilipin A via the activation of cGKI. The present study shows that lipolysis in human adipocytes can be controlled by an independent cGKI-mediated signaling as well as by the classical cAMP/PKA pathway.
Collapse
Affiliation(s)
- Coralie Sengenes
- Obesity Research Unit, INSERM U 586, Institut Louis Bugnard, Centre Hospitalier Universitaire Rangueil, Université Paul Sabatier, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Qiu Y, Ogawa H, Miyagi M, Misono KS. Constitutive activation and uncoupling of the atrial natriuretic peptide receptor by mutations at the dimer interface. Role of the dimer structure in signalling. J Biol Chem 2003; 279:6115-23. [PMID: 14600147 DOI: 10.1074/jbc.m310225200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal packing of the extracellular hormone binding domain of the atrial natriuretic peptide (ANP) receptor contains two possible dimer pairs, the head-to-head (hh) and tail-to-tail (tt) dimer pairs associated through the membrane-distal and membrane-proximal subdomains, respectively. The tt-dimer structure has been proposed previously (van den Akker, F., Zhang, X., Miyagi, M., Huo, X., Misono, K. S., and Yee, V. C. (2000) Nature 406, 101-104). However, no direct evidence is available to identify the physiological dimer form. Here we report site-directed mutagenesis studies of residues at the two alternative dimer interfaces in the full-length receptor expressed on COS cells. The Trp74 to Arg mutation (W74R) or D71R at the hh-dimer interface caused partial constitutive guanylate cyclase activation, whereas mutation F96D or H99D caused receptor uncoupling. In contrast, mutation Y196D or L225D at the tt-interface had no such effect. His99 modification at the hh-dimer interface by ethoxyformic anhydride abolished ANP binding. These results suggest that the hh-dimer represents the physiological structure. Recently, we determined the crystal structure of ANPR complexed with ANP and proposed a hormone-induced rotation mechanism mediating transmembrane signaling (H. Ogawa, Y. Qiu, C. M. Ogata, and K. S. Misono, submitted for publication). The observed effects of mutations are consistent with the ANP-induced structural change identified from the crystal structures with and without ANP and support the proposed rotation mechanism for ANP receptor signaling.
Collapse
Affiliation(s)
- Yue Qiu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
45
|
Ghanekar Y, Chandrashaker A, Visweswariah SS. Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3848-57. [PMID: 12950269 DOI: 10.1046/j.1432-1033.2003.03779.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The heat-stable enterotoxin peptides (ST) produced by enterotoxigenic Escherichia coli are one of the major causes of transitory diarrhea in the developing world. Toxin binding to its receptor, guanylyl cyclase C (GC-C), results in receptor activation and the production of high intracellular levels of cGMP. GC-C is expressed in two differentially glycosylated forms in intestinal epithelial cells. Prolonged exposure of human colonic cell lines to ST peptides induces cellular refractoriness to the ST peptide, in terms of intracellular cGMP accumulation. We have investigated the mechanism of cellular desensitization in human colonic Caco2 cells, and observe that exposure of cells to ST leads to a time and dose-dependent inability of cells to respond to the peptide in terms of GC-C stimulation, both in whole cells and membranes prepared from desensitized cells. This is concomitant with a 50% reduction in ST-binding activity in desensitized cells. Desensitization was correlated with a loss of the plasma membrane-associated, hyperglycosylated 145 kDa form of GC-C, while the predominant 130 kDa form, localized both on the plasma membrane and the endoplasmic reticulum, continued to be present in ST-treated cells. Desensitized cells recovered ST-responsiveness on removal of the ST peptide, which was correlated with a reappearance of the 145 kDa form on the cell surface, following processing of the endoplasmic reticulum-associated pool of the 130 kDa form. Selective internalization of the 145 kDa form of the receptor was required for cellular desensitization, as ST-treatment of cells at 4 degrees C did not lead to refractoriness. We therefore show a novel means of regulation of cellular responsiveness to the ST peptide, whereby altering cellular levels of the differentially glycosylated forms of GC-C can lead to differential ligand-mediated activation of the receptor.
Collapse
Affiliation(s)
- Yashoda Ghanekar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
46
|
Lauber T, Neudecker P, Rösch P, Marx UC. Solution structure of human proguanylin: the role of a hormone prosequence. J Biol Chem 2003; 278:24118-24. [PMID: 12707255 DOI: 10.1074/jbc.m300370200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endogenous ligand of guanylyl cyclase C, guanylin, is produced as the 94-amino-acid prohormone proguanylin, with the hormone guanylin located at the COOH terminus of the prohormone. The solution structure of proguanylin adopts a new protein fold and consists of a three-helix bundle, a small three-stranded beta-sheet of two NH2-terminal strands and one COOH-terminal strand, and an unstructured linker region. The sequence corresponding to guanylin is fixed in its bioactive topology and is involved in interactions with the NH2-terminal beta-hairpin: the hormone region (residues 80-94) partly wraps around the first 4 NH2-terminal residues that thereby shield parts of the hormone surface. These interactions provide an explanation for the negligible bioactivity of the prohormone as well as the important role of the NH2-terminal residues in the disulfide-coupled folding of proguanylin. Since the ligand binding region of guanylyl cyclase C is predicted to be located around an exposed beta-strand, the intramolecular interactions observed between guanylin and its prosequence may be comparable with the guanylin/receptor interaction.
Collapse
Affiliation(s)
- Thomas Lauber
- Lehrstuhl für Biopolymere, Universität Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany
| | | | | | | |
Collapse
|
47
|
Abstract
In the twelve years since the molecular elucidation of the metabotropic glutamate receptor subtype 1, a class III family of G-protein-coupled receptors has emerged; members of this family include the calcium-sensing receptor, the GABA(B) receptor, some odorant receptors and some taste receptors. Atomic structures of the ligand-binding core of the original metabotropic glutamate receptor 1 obtained using X-ray crystallography provide a foundation for determining the initial receptor activation of this important family of G-protein-coupled receptors.
Collapse
Affiliation(s)
- Hisato Jingami
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Suita-City, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
48
|
De Léan A, McNicoll N, Labrecque J. Natriuretic peptide receptor A activation stabilizes a membrane-distal dimer interface. J Biol Chem 2003; 278:11159-66. [PMID: 12547834 DOI: 10.1074/jbc.m212862200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously (Rondeau, J.-J., McNicoll, N., Gagnon, J., Bouchard, N., Ong, H., and De Léan, A. (1995) Biochemistry 34, 2130-2136) that atrial natriuretic peptide (ANP) stabilizes a dimeric form of the natriuretic peptide receptor A (NPRA) by simultaneously interacting with both receptor subunits. However, the first crystallographic study of unliganded NPRA extracellular domain documented a V-shaped dimer involving a membrane-proximal dimer interface and separate binding sites for ANP on each monomer. We explored the possibility of an alternative A-shaped dimer involving a membrane-distal dimer interface by substituting an unpaired solvent-exposed cysteine for Trp(74) in the amino-terminal lobe of full-length NPRA. The predicted spacing between Trp(74) from both subunits drastically differs, depending on whether the V-shaped (84 A) or the A-shaped (8 A) dimer model is considered. In contrast with the expected results for the reported V-shaped dimer, the NPRA(W74C) mutant was constitutively covalently dimeric. Also, the subunits spontaneously reassociated following transient disulfide reduction by dithiothreitol and reoxidation. However, ANP could neither bind to nor activate NPRA(W74C). Permanent disulfide opening by reduction with dithiothreitol and alkylation with N-ethylmaleimide rescued ANP binding to NPRA(W74C). The NPRA mutant could be maintained as a covalent dimer while preserving its function by crosslinking with the bifunctional alkylating agent phenylenedimaleimides (PDM), the ortho-substituted oPDM being more efficient than mPDM or pPDM. These results indicate that the membrane-distal lobe of the NPRAM extracellular domains are dynamically interfacing in the unliganded state and that ANP binding stabilizes the receptor dimer with more stringent spacing at the dimer interface.
Collapse
Affiliation(s)
- André De Léan
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| | | | | |
Collapse
|
49
|
Abstract
This report summarizes the Critical Assessment of Protein Structure Prediction (CASP5) target proteins, which included 67 experimental models submitted from various structural genomics efforts and independent research groups. Throughout this special issue, CASP5 targets are referred to with the identification numbers T0129-T0195. Several of these targets were excluded from the assessment for various reasons: T0164 and T0166 were cancelled by the organizers; T0131, T0144, T0158, T0163, T0171, T0175, and T0180 were not available in time; T0145 was "natively unfolded"; the T0139 structure became available before the target expired; and T0194 was solved for a different sequence than the one submitted. Table I outlines the sequence and structural information available for CASP5 proteins in the context of existing folds and evolutionary relationships. This information provided the basis for a domain-based classification of the target structures into three assessment categories: comparative modeling (CM), fold recognition (FR), and new fold (NF). The FR category was further subdivided into homologues [FR(H)] and analogs [FR(A)] based on evolutionary considerations, and the overlap between assessment categories was classified as CM/FR(H) and FR(A)/NF. CASP5 domains are illustrated in Figure 1. Examples of nontrivial links between CASP5 target domains and existing structures that support our classifications are provided.
Collapse
Affiliation(s)
- Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75390-9050, USA.
| | | | | | | |
Collapse
|
50
|
Krause CD, Mei E, Xie J, Jia Y, Bopp MA, Hochstrasser RM, Pestka S. Seeing the light: preassembly and ligand-induced changes of the interferon gamma receptor complex in cells. Mol Cell Proteomics 2002; 1:805-15. [PMID: 12438563 DOI: 10.1074/mcp.m200065-mcp200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our experiments were designed to test the hypothesis that the cell surface interferon gamma receptor chains are preassembled rather than associated by ligand and to assess the molecular changes on ligand binding. To accomplish this, we used fluorescence resonance energy transfer, a powerful spectroscopic technique that has been used to determine molecular interactions and distances between the donor and acceptor. However, current commercial instruments do not provide sufficient sensitivity or the full spectra to provide decisive results of interactions between proteins labeled with blue and green fluorescent proteins in living cells. In our experiments, we used the blue fluorescent protein and green fluorescent protein pair, attached a monochrometer and charge-coupled device camera to a modified confocal microscope, reduced background fluorescence with the use of two-photon excitation, and focused on regions of single cells to provide clear spectra of fluorescence resonance energy transfer. In contrast to the prevailing view, the results demonstrate that the receptor chains are preassociated and that the intracellular domains move apart on binding the ligand interferon gamma. Application of this technology should lead to new rapid methods for high throughput screening and delineation of the interactome of cells.
Collapse
Affiliation(s)
- Christopher D Krause
- Department of Molecular Genetics, Microbiology and Immunology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|