1
|
Rahaman S, Steele JH, Zeng Y, Xu S, Wang Y. Evolutionary insights into elongation factor G using AlphaFold and ancestral analysis. Comput Biol Med 2025; 191:110188. [PMID: 40222265 DOI: 10.1016/j.compbiomed.2025.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Elongation factor G (EF-G) is crucial for ribosomal translocation, a fundamental step in protein synthesis. Despite its indispensable role, the conformational dynamics and evolution of EF-G remain elusive. By integrating AlphaFold structural predictions with multiple sequence alignment (MSA)-based sequence analysis, we explored the conformational landscape, sequence-specific patterns, and evolutionary divergence of EF-G. We identified five high-confidence structural states of wild type (WT) EF-G, revealing broader conformational diversity than previously captured by experimental data. Phylogenetic analysis and MSA-embedded sequence patterns demonstrated that single-point mutations in the switch I loop modulate equilibrium between the two dominant conformational states, con1 and con2, which exhibit distinct functional specializations. Reconstructions of two ancestral EF-Gs revealed minimal GTPase activity and reduced translocase function in both forms, suggesting that robust translocase activity emerged after the divergence of con1 and con2. However, ancestral EF-Gs retained the fidelity of three-nucleotide translocation, underscoring the early evolutionary conservation of accurate mRNA movement. These findings establish a framework for understanding how conformational flexibility shapes EF-G function and specialization. Moreover, our computational pipeline can be extended to other translational GTPases, providing broader insights into the evolution of the translational machinery. This study highlights the power of AlphaFold-assisted structural analysis in revealing the mechanistic and evolutionary relationships involved in protein translation.
Collapse
Affiliation(s)
- Shawonur Rahaman
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Jacob H Steele
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Yi Zeng
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Yuhong Wang
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Chakraborty A, Bhakta K, Ghosh A, Manna D, Maity AR, Sikder K, Chakraborti S, Basu A. Artesunate Perturbs GTP Binding of the Conserved GTPase Obg Thereby Alleviating Antibiotic Resistance in Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2025; 11:1190-1202. [PMID: 40278541 DOI: 10.1021/acsinfecdis.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen that causes various secondary infections among hospital-associated patients. The pathogen is challenging to treat due to its resistance to a wide spectrum of antibiotics, including the last-resort antibiotic vancomycin and newly developed drugs, such as linezolid and daptomycin. While the invention of entirely new drugs to combat MRSA infection seems almost impossible, potentiating the efficacy of conventional antibiotics is critical. Our article explores the novel application of the antimalarial drug artesunate, which enhances the efficacy of vancomycin and cefoxitin in treating MRSA infections. We focused on ObgSa, a conserved GTPase in MRSA, and found that artesunate selectively binds to its GTP-binding pocket. We further evaluated the GTP-binding activity and metal dependence (specifically, Mg2+) of this conserved GTPase. In silico analysis identified several threonine residues essential for GTP binding, which were subsequently mutated to assess their role in GTP binding. As shown in the analysis, these mutations significantly impacted both the GTP binding and hydrolysis functions of ObgSa. Notably, these threonine residues were also crucial for artesunate binding within the GTP-binding domain. When the effect of artesunate was assessed, the drug competitively inhibited GTP binding and hydrolysis of the GTPase. This result was manifested as reduced antibiotic tolerance, disruption of biofilms, and a decrease in persister cells─critical factors in chronic infections. In summary, our research presents an innovative strategy to combat antimicrobial resistance through artesunate, highlighting its potential effectiveness in eradicating infections.
Collapse
Affiliation(s)
- Asmita Chakraborty
- Department of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute, Howrah, West Bengal 711202, India
| | - Koustav Bhakta
- Biological Sciences Unified Academic Campus Bose Institute EN-80, Sector V Bidhan Nagar, Kolkata 700 091, India
| | - Abhrajyoti Ghosh
- Biological Sciences Unified Academic Campus Bose Institute EN-80, Sector V Bidhan Nagar, Kolkata 700 091, India
| | - Dipak Manna
- Department of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute, Howrah, West Bengal 711202, India
| | - Amit Ranjan Maity
- Institute of Biotechnology, Amity University Kolkata Campus, Major Arterial Road, Action Area II, Newtown, Kadampukur, Kolkata, West Bengal 700135, India
| | - Kunal Sikder
- Department of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute, Howrah, West Bengal 711202, India
| | - Soumyananda Chakraborti
- Department of Biological Science, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078, India
| | - Arnab Basu
- Department of Biomedical Science and Technology, The School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute, Howrah, West Bengal 711202, India
| |
Collapse
|
3
|
Grupp B, Graser JB, Seifermann J, Gerhardt S, Lemkul JA, Gehrke JF, Johnsson N, Gronemeyer T. Interface integrity in septin protofilaments is maintained by an arginine residue conserved from yeast to man. Mol Biol Cell 2025; 36:ar59. [PMID: 40137961 DOI: 10.1091/mbc.e25-01-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
The septins are conserved, filament-forming, guanine nucleotide binding cytoskeletal proteins. They assemble into palindromic protofilaments which polymerize further into higher-ordered structures that participate in essential intracellular processes such as cytokinesis or polarity establishment. Septins belong structurally to the P-Loop NTPases but, unlike their relatives Ras or Rho, do not mediate signals to effectors through GTP binding and hydrolysis. Biochemical approaches addressing how and why septins utilize nucleotides are hampered by the lack of nucleotide-free complexes. Using molecular dynamics simulations, we determined structural alterations and intersubunit binding free energies in human and yeast septin dimer structures and in their in silico generated apo forms. An interchain salt bridge network around the septin unique β-meander, conserved across all kingdoms of septin containing species, is destabilized upon nucleotide removal, concomitant with disruption of the entire G-interface. Within this network, we confirmed a conserved arginine residue, which coordinates the guanine base of the nucleotide, as the central interaction hub. The essential role of this arginine for interface integrity was experimentally confirmed to be conserved in septins from yeast to human.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Jano Benito Graser
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Julia Seifermann
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Stefan Gerhardt
- Institute of Biochemistry, Albert-Ludwigs University, Freiburg 79104, Germany
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061
| | - Jan Felix Gehrke
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, Ulm 89081, Germany
| |
Collapse
|
4
|
Gupta S, Sinha S, Bhakta K, Bhowmick A, Ghosh A. Unravelling the role of the A domain and N-terminal alpha-helices of FtsY in archaeal signal recognition particle. Int J Biol Macromol 2025; 306:141645. [PMID: 40032113 DOI: 10.1016/j.ijbiomac.2025.141645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Signal recognition particle (SRP) system is critical for protein translocation across membranes in all domains of life. In archaea, this pathway relies on two GTPase proteins, SRP54 and FtsY, which interact with SRP RNA to facilitate the targeting of nascent proteins to the membrane. Although the SRP components in eukaryotes and bacteria are well characterized, the mechanisms underlying SRP-dependent membrane targeting in archaea remain poorly understood, particularly concerning the role of the FtsY N-terminal domains. This study provides an in-depth exploration of the archaeal SRP system, focusing on the N-terminal domains of the FtsY protein and their role in the formation and functionality of the targeting complex (TC). We characterized the minimal structural domains of FtsY required for SRP54 binding and membrane association, demonstrating the critical involvement of the A domain and N-terminal alpha helices in facilitating these processes. The deletion of these domains led to a progressive reduction in the affinity between SRP54 and FtsY, disrupting TC formation and compromising its catalytic efficiency. Molecular dynamics simulations and thermodynamic analyses corroborated these experimental findings, revealing that the A domain is integral to stabilizing TC and enhancing reciprocal GTP hydrolysis. Furthermore, the study showed that membrane association, mediated by the orientation of the A domain and the αN1 helix, is essential for stabilizing the interaction between SRP and the membrane. These results shed light on the molecular basis of SRP assembly and membrane targeting in archaea, marking an important advancement in our understanding of the archaeal SRP machinery.
Collapse
Affiliation(s)
- Sayandeep Gupta
- Department of Bioengineering, University of Oregon, 1505 Franklin Blvd., Eugene, OR 97403, USA
| | - Souvik Sinha
- Department of Bioengineering, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Koustav Bhakta
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India
| | - Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, WB, India.
| |
Collapse
|
5
|
Raj R, Kumar A, Savithri HS, Singh P. Groundnut bud necrosis virus encoded movement protein NSm binds to GTP and ATP. 3 Biotech 2025; 15:146. [PMID: 40321847 PMCID: PMC12044118 DOI: 10.1007/s13205-025-04305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Groundnut bud necrosis virus (GBNV) is a tripartite negative sense RNA virus that belongs to tospoviridae family. The M RNA encodes non-structural protein-m (NSm), a movement protein in tospoviruses. In this communication, we demonstrate that, GBNV NSm interacts with ATP and GTP. UV crosslinking with [γ-32P] ATP indicates that GBNV NSm forms two distinct complexes with ATP one of them is Mg2+ dependent and the other is Mg2+ independent. It also binds to ATP- and GTP-coupled agarose resin and shows competition with free ATP and GTP but not with UTP and CTP. The NSm-NTP interaction was further validated by intrinsic fluorescence quenching studies. NTPs and dNTPs both could quench the intrinsic fluorescence of NSm. However, maximum quenching of fluorescence occurred in the presence of GTP, followed by ATP, suggesting that it is the preferred ligand. The extent of fluorescence quenching with different concentrations of GTP was used to calculate the binding constant, and it was found to be 3 μM, lower than that reported for other proteins that can bind NTP. This is the first report of the GTP and ATP binding property of NSm from any Tospoviruses. Further, NSm could also hydrolyze GTP. Preliminary sequence analysis suggests the presence of two putative atypical Walker A motif from amino acid sequences 51-58 and 267-274, indicating that this sequence might be involved in NTP binding. This motif is conserved in most of the tospoviruses. NSm from GBNV an Asian clade, localize to ER network and remodels it to vesicles which has been proposed to be involved in movement through plasmodesmata (PD). Therefore, GTP-NSm interaction might be involved in signaling cell to cell trafficking.
Collapse
Affiliation(s)
- Rishi Raj
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| | - Abhay Kumar
- ICAR-National Research Centre on Litchi, Muzaffarpur, Bihar 842 002 India
| | - H. S. Savithri
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012 India
| | - Pratibha Singh
- Department of Botany, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar 845401 India
| |
Collapse
|
6
|
Ahmed R, Nishibe N, Zhang Z, Maruta S. Photocontrol of the small GTPase Ras using its regulatory factor, GTPase-activating protein, modified with photochromic nanodevices. J Biochem 2025; 177:363-374. [PMID: 39930719 DOI: 10.1093/jb/mvaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/18/2025] [Indexed: 04/30/2025] Open
Abstract
Ras, a small GTPase, is central to the regulation of diverse cellular processes including transcription, cell cycle progression, growth, migration, cytoskeletal reorganization, apoptosis, cell survival and senescence. Ras activation is mediated by GTP binding, whereas its inactivation occurs via GDP binding, which is tightly controlled by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). GAPs accelerate GTP hydrolysis, playing a crucial role in modulating Ras signalling to prevent excessive or prolonged activation. Here, we investigated monofunctional azobenzene derivatives as photochromic modulators to control the function of Ras in a light-dependent and reversible manner. Three thiol-reactive azobenzene derivatives with distinct electrostatic properties were synthesized and incorporated into GAP functional sites to modulate Ras activity. GAP mutants containing a single cysteine residue at the functional site were generated using an Escherichia coli expression system. Our results showed that modifications near the GAP 'arginine finger', a critical region for stabilizing the GTP hydrolysis transition state of Ras, induced significant light-dependent changes in GTPase activity. We achieved photoreversible control of the interaction between Ras and its effector Raf using these azobenzene derivatives. These findings suggest that Ras function can be precisely modulated using photochromic molecules, providing a novel light-based approach for controlling Ras activity.
Collapse
Affiliation(s)
- Rajib Ahmed
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Nobuyuki Nishibe
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Ziyun Zhang
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | - Shinsaku Maruta
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
7
|
Choi E, Ryu E, Kim D, Byun JW, Kim K, Lee M, Hwang J. The dual functions of the GTPase BipA in ribosome assembly and surface structure biogenesis in Salmonella enterica serovar Typhimurium. PLoS Pathog 2025; 21:e1013047. [PMID: 40203049 PMCID: PMC12013901 DOI: 10.1371/journal.ppat.1013047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/22/2025] [Accepted: 03/16/2025] [Indexed: 04/11/2025] Open
Abstract
The bactericidal/permeability-increasing protein (BPI)-inducible protein A (BipA) is a highly conserved protein in Gram-negative bacteria that is structurally similar to translational GTPases such as IF2, EF-Tu, and EF-G. Our previous research showed that deleting bipA in Escherichia coli at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. This LPS defect activates the Regulator of Capsule Synthesis (Rcs) pathway, resulting in an overproduction of capsular polysaccharides, a reduction in biofilm formation, and decreased flagella-mediated motility. In this study, we aimed to elucidate the role of BipA in the pathogenicity of Salmonella enterica serovar Typhimurium. We constructed bipA deletion mutants in two pathogenic S. Typhimurium strains, SL1344 and 14028, as well as in the attenuated strain LT2. Our ribosome profiling experiments using the mutant S. Typhimurium strains revealed a defect in ribosome assembly at 20°C, with the accumulation of abnormal 50S ribosomal subunits. We further demonstrated that the absence of BipA in S. Typhimurium impaired LPS biosynthesis at 20°C, compromising membrane integrity and presumably activating the Rcs pathway. This activation altered virulence factors, including reduced biofilm formation, particularly in the 14028ΔbipA strain. Furthermore, the SL1344ΔbipA and 14028ΔbipA strains exhibited significantly decreased swimming motility at 20°C compared to 37°C, confirmed by microscopic observation showing fewer flagella at 20°C. Subsequently, both strains exhibited a significant reduction in invasion capability and cytotoxicity toward human intestinal epithelial cells (HCT116). This functional attenuation was corroborated by the decrease in virulence observed in the 14028ΔbipA strain in a mouse model. Our findings suggest that, in S. Typhimurium, BipA functions as a bacterial fitness factor, contributing to ribosome assembly, LPS synthesis, and virulence-related processes, particularly under stress conditions relevant to host environments.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Eunwoo Ryu
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Donghwee Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ji-Won Byun
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kahyun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Minho Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
8
|
Aval SF, Seffouh A, Moon KM, Foster LJ, Ortega J, Fredrick K. Role of the sarcin-ricin loop of 23S rRNA in biogenesis of the 50S ribosomal subunit. RNA (NEW YORK, N.Y.) 2025; 31:585-599. [PMID: 39875174 PMCID: PMC11912913 DOI: 10.1261/rna.080335.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
The sarcin-ricin loop (SRL) is one of the most conserved segments of ribosomal RNA (rRNA). Translational GTPases (trGTPases), such as EF-G, EF-Tu, and IF2, form contacts with the SRL that are critical for GTP hydrolysis and factor function. Previous studies showed that expression of 23S rRNA lacking the SRL confers a dominant lethal phenotype in Escherichia coli Isolated ΔSRL particles were found to be not only inactive in protein synthesis but also incompletely assembled. In particular, block 4 of the subunit, which includes the peptidyl transferase center, remained unfolded. Here, we explore the basis of this assembly defect. We find that 23S rRNA extracted from ΔSRL subunits can be efficiently reconstituted into 50S subunits, and these reconstituted ΔSRL particles exhibit full peptidyl transferase activity. We also further characterize ΔSRL particles purified from cells, using cryo-EM and proteomic methods. These particles lack density for rRNA and r-proteins of block 4, consistent with earlier chemical probing data. Incubation of these particles with excess total r-protein of the large subunit (TP50) fails to restore substantial peptidyl transferase activity. Interestingly, proteomic analysis of control and mutant particles shows an overrepresentation of multiple assembly factors in the ΔSRL case. We propose that one or more GTPases normally act to release assembly factors, and this activity is blocked in the absence of the SRL.
Collapse
MESH Headings
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Peptidyl Transferases/metabolism
- Peptidyl Transferases/genetics
- Cryoelectron Microscopy
- Nucleic Acid Conformation
- Protein Biosynthesis
- GTP Phosphohydrolases/metabolism
Collapse
Affiliation(s)
- Sepideh Fakhretaha Aval
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Amal Seffouh
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
- Centre for Structural Biology, McGill University, Montreal, Quebec H3G 0B1, Canada
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
9
|
Zhu J, Xie R, Ren Q, Zhou J, Chen C, Xie MX, Zhou Y, Zhang Y, Liu N, Wang J, Zhang Z, Liu X, Yan W, Gong Q, Dong L, Zhu J, Wang F, Xie Z. Asgard Arf GTPases can act as membrane-associating molecular switches with the potential to function in organelle biogenesis. Nat Commun 2025; 16:2622. [PMID: 40097441 PMCID: PMC11914678 DOI: 10.1038/s41467-025-57902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Inward membrane budding, i.e., the bending of membrane towards the cytosol, is essential for forming and maintaining eukaryotic organelles. In eukaryotes, Arf GTPases initiate this inward budding. Our research shows that Asgard archaea genomes encode putative Arf proteins (AArfs). AArfs possess structural elements characteristic of their eukaryotic counterparts. When expressed in yeast and mammalian cells, some AArfs displayed GTP-dependent membrane targeting. In vitro, AArf associated with both eukaryotic and archaeal membranes. In yeast, AArfs interacted with and were regulated by key organelle biogenesis players. Expressing an AArf led to a massive proliferation of endomembrane organelles including the endoplasmic reticulum and Golgi. This AArf interacted with Sec23, a COPII vesicle coat component, in a GTP-dependent manner. These findings suggest certain AArfs are membrane-associating molecular switches with the functional potential to initiate organelle biogenesis, and the evolution of a functional coat could be the next critical step towards establishing eukaryotic cell architecture.
Collapse
Affiliation(s)
- Jing Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiaoying Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiaming Zhou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chen Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Meng-Xi Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - You Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jinchao Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengwei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wupeng Yan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Liang Dong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
- Department of Nephrology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, and School of Oceanography, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China.
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
10
|
Dai Y, Zhao Q, Yan H, Ye K, Wang L, Guo L, Guo N, Li W, Yang J. Adaptive attenuation of virulence mediated by Wzc mutation in ST11-KL47 Carbapenem-resistant Klebsiella pneumonia. Front Cell Infect Microbiol 2025; 15:1561631. [PMID: 40134783 PMCID: PMC11933079 DOI: 10.3389/fcimb.2025.1561631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Introduction The impact of the hypermucoviscosity (HMV) phenotype in ST11-KL47 carbapenem-resistant Klebsiella pneumoniae (CRKp) pathogenicity warrants investigation for public health risk assessment. Methods We analyzed 230 clinical ST11-KL47 CRKp to identify the key factor in mucoviscosity acquisition via comparative genomic analysis. Sedimentation value served as the objective index to quantify HMV. The virulence in vivo was assessed using Galleria mellonella and mouse infection models. We employed genome engineering, capsular polysaccharides (CPS) quantification, and visualization to explore the role of Wzc mutation in CPS biosynthesis and HMV. The biological impact of Wzc-mediated HMV was investigated through competitive growth analysis, biofilm formation, serum resistance, anti-phagocytic ability, and adhesion assays. Transcriptomic analysis and scanning electron microscopy (SEM) were utilized to explore the relationship between polysaccharide composition, physical distribution, and changes in virulence. Results The Wzc mutations are identified as the key to mucoviscosity acquisition. Unexpectedly, Wzc-mediated HMV CRKp exhibits reduced pathogenicity versus non-mucoviscosity (NMV) strains in different animal models, with competitive disadvantage, decreased biofilm formation, serum resistance, and adhesion, yet higher anti-phagocytic ability in vitro. CPS extraction and visualization of genome-engineered strains verify the Wzc mutations mediate HMV by standardizing CPS chain length and overproducing cell-free extracellular polysaccharides (cell-free EPS). Transcriptomic results, lipopolysaccharides (LPS) quantification, and SEM collectively indicate a downregulation of LPS synthesis and the masking of LPS in HMV strains. Discussion These findings demonstrate that the Wzc-induced HMV attenuates ST11-KL47 CRKp virulence by modifying the exopolysaccharide composition and physical distribution.
Collapse
Affiliation(s)
- Yufeng Dai
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Qiang Zhao
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huanhuan Yan
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Kun Ye
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lifeng Wang
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ling Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Na Guo
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Wenwen Li
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Jiyong Yang
- Department of Laboratory Medicine, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Parida L, Paul A, Mohanty J, Sahoo PK. Molecular insights into septin 2 protein in rohu (Labeo rohita): revealing expression dynamics, antimicrobial activity and functional characteristics. Int J Biol Macromol 2025; 293:139353. [PMID: 39743099 DOI: 10.1016/j.ijbiomac.2024.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Septins are evolutionarily conserved GTP-binding proteins mediating innate immunity, autophagy and inflammation in higher animals; however, they are yet to be fully characterized in fish. The study encompasses cloning of complete septin 2 cDNA from the rohu carp (Labeo rohita) that consisted of an open reading frame of 1050 bp and phylogenetic amino acid similarity of 99.43 % to cyprinid Onychostoma macrolepis. Septin 2 was ubiquitously expressed in different tissues of healthy rohu, and during early developmental stages. Septin 2 transcript levels were increased in response to three infection models i.e. Aeromonas hydrophila, poly I:C, and Argulus siamensis, indicating its role in immunity. A synthetic antimicrobial peptide derived from the septin 2 gene revealed in vitro bactericidal activity. A produced recombinant protein of septin 2 (~40 kDa) when injected into rohu modulated the expression of various immune-related genes. Further, in vivo studies of this protein demonstrated protection against A. hydrophila (71 % relative percent survival) and delayed mortality against ectoparasite A. siamensis. A developed sandwich ELISA revealed enhanced septin 2 level post A. hydrophila infection. The present study provides a new understanding of the septin 2 gene's multifunctional role in rohu and its importance in fish antimicrobial defence.
Collapse
Affiliation(s)
- Lopamudra Parida
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Anirban Paul
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India
| | - Pramoda Kumar Sahoo
- National Referral Laboratory for Freshwater Fish Diseases, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (CIFA), Kausalyaganga, Bhubaneswar 751002, India.
| |
Collapse
|
12
|
Yu T, Li X, Dong W, Zhou Q, Li Q, Du Z, Zeng F. Conserved GTPase OLA1 promotes efficient translation on D/E-rich mRNA. Nat Commun 2025; 16:1549. [PMID: 39934121 PMCID: PMC11814078 DOI: 10.1038/s41467-025-56797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The TRAFAC (translation factors) GTPase OLA1 plays a critical role in various stress responses and is implicated in the regulation of tumor progression. It is conserved from bacteria to eukaryotes and regulates the translation through binding to the ribosome. Here, we report the cryo-electron microscopy structure of its Escherichia coli homolog, YchF, with the 50S subunit. In this structure, YchF is positioned at the side of the 50S subunit by engaging with uL14, bL19, and rRNA helix H62 through its helical and ATPase domains. We further demonstrate that the helical domain is essential for OLA1/YchF to function. A comprehensive analysis of the structure and Ribo-seq data points out that OLA1/YchF promotes the splitting of ribosomes into subunits on D/E-rich mRNA. Our findings provide crucial structural insights into the molecular mechanism of OLA1/YchF-associated translation-stalling regulation, which maintains the translation of genes involved in stress response and tumor progression.
Collapse
Affiliation(s)
- Ting Yu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qixin Zhou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qingrong Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Zisuo Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China.
| |
Collapse
|
13
|
Vargová R, Chevreau R, Alves M, Courbin C, Terry K, Legrand P, Eliáš M, Ménétrey J, Dacks JB, Jackson CL. The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat Microbiol 2025; 10:495-508. [PMID: 39849086 DOI: 10.1038/s41564-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation. The Arf family is ubiquitous among eukaryotes, but its origins remain elusive. Here we report a group of prokaryotic GTPases, the ArfRs, which are widely present in Asgardarchaeota. Phylogenetic analyses reveal that eukaryotic Arf family proteins arose from the ArfR group. Expression of representative Asgardarchaeota ArfR proteins in yeast and X-ray crystallographic studies show that ArfR GTPases possess the mechanism of membrane binding and structural features unique to Arf family proteins. Our results indicate that Arf family GTPases originated in the archaeal ancestor of eukaryotes, consistent with aspects of the endomembrane system evolving early in eukaryogenesis.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roxanne Chevreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Alves
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Camille Courbin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre Legrand
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, France
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK.
| | | |
Collapse
|
14
|
Renaud EA, Maupin AJM, Berry L, Bals J, Bordat Y, Demolombe V, Rofidal V, Vignols F, Besteiro S. The HCF101 protein is an important component of the cytosolic iron-sulfur synthesis pathway in Toxoplasma gondii. PLoS Biol 2025; 23:e3003028. [PMID: 39913537 PMCID: PMC11838916 DOI: 10.1371/journal.pbio.3003028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/19/2025] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Abstract
Several key cellular functions depend on proteins harboring an iron-sulfur (Fe-S) cofactor. As these Fe-S proteins localize to several subcellular compartments, they require a dedicated machinery for cofactor assembly. For instance, in plants and algae there are Fe-S cluster synthesis pathways localizing to the cytosol, but also present in the mitochondrion and in the chloroplast, 2 organelles of endosymbiotic origin. Toxoplasma gondii is a plastid-bearing parasitic protist responsible for a pathology affecting humans and other warm-blooded vertebrates. We have characterized the Toxoplasma homolog of HCF101, originally identified in plants as a protein transferring Fe-S clusters to photosystem I subunits in the chloroplast. Contrarily to plants, we have shown that HCF101 does not localize to the plastid in parasites, but instead is an important component of the cytosolic Fe-S assembly (CIA) pathway which is vital for Toxoplasma. While the CIA pathway is widely conserved in eukaryotes, it is the first time the involvement of HCF101 in this pan-eukaryotic machinery is established. Moreover, as this protein is essential for parasite viability and absent from its mammalian hosts, it constitutes a novel and promising potential drug target.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurence Berry
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Bals
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Yann Bordat
- LPHI, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Demolombe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Valérie Rofidal
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Florence Vignols
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
15
|
Xu L, Guo J, Xie X, Wang H, Jiang A, Huang C, Yang H, Luo S, Chen L. GTPase GPN3 facilitates cell proliferation and migration in non-small cell lung cancer by impeding clathrin-mediated endocytosis of EGFR. Cell Death Discov 2025; 11:38. [PMID: 39893205 PMCID: PMC11787391 DOI: 10.1038/s41420-025-02317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Small GTPases play a critical role as regulatory molecules in signaling transduction and various cellular processes, contributing to the development of human diseases, including cancers. GPN3, an evolutionarily conserved member of the GPN-loop GTPase subfamily classified in 2007 according to its structure, has limited knowledge regarding its cellular functions and molecular mechanisms. In this study, we demonstrate that GPN3 interacts with clathrin light chain A (CLTA), a vesicle coat protein, as well as clathrin-mediated endocytosis associated modulators AP2B1 and AP2S1. Upregulation of GPN3 leads to the inhibition of clathrin-coated pit invagination. Furthermore, we discovered that GPN3 interacts with the epidermal growth factor receptor (EGFR) and regulates the co-localization of EGFR and CLTA, as well as the localization of EGFR in early endosomes upon EGF stimulation. As a result, this leads to a decrease in endocytic levels of EGFR and an increase in the accumulation of EGFR on the cell membrane surface, thereby prolonging activation of EGFR signaling. The functional effects exerted by GPN3 are dependent on cellular levels of GTP abundance. Furthermore, our findings indicate that aberrant overexpression of GPN3 is observed in non-small cell lung cancer (NSCLC) tissues compared to adjacent normal tissues, and high expression levels of GPN3 are associated with poor prognosis for NSCLC patients. Collectively, these findings reveal that GPN3 acts as an oncogene promoting cell proliferation and migration in NSCLC through regulation of clathrin-dependent EGFR endocytosis. These results suggest that targeting GPN3 could serve as a novel prognostic biomarker and therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Linlin Xu
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Pathology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiankun Guo
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xinsheng Xie
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Alan Jiang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
16
|
Langley CA, Dietzen PA, Emerman M, Tenthorey JL, Malik HS. Antiviral Mx proteins have an ancient origin and widespread distribution among eukaryotes. Proc Natl Acad Sci U S A 2025; 122:e2416811122. [PMID: 39854241 PMCID: PMC11789081 DOI: 10.1073/pnas.2416811122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood. Through comprehensive phylogenomic analyses with progressively expanded taxonomic sampling, we demonstrate that Mx proteins predate the interferon signaling system in vertebrates. Our analyses find an ancient monophyletic DSP lineage in eukaryotes that groups vertebrate and invertebrate Mx proteins with fungal MxF proteins, the largely uncharacterized plant and algal Dynamin 4A/4C proteins, and representatives from several other eukaryotic lineages, suggesting that Mx-like proteins date back close to the origin of Eukarya. Our phylogenetic analyses also find host-encoded and nucleocytoplasmic large DNA viruses-encoded DSPs interspersed in four distinct DSP lineages, indicating recurrent viral theft of host DSPs. Our analyses thus reveal an ancient history of viral and antiviral functions encoded by the Dynamin superfamily in eukaryotes.
Collapse
Affiliation(s)
- Caroline A. Langley
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Peter A. Dietzen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Michael Emerman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Jeannette L. Tenthorey
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- Cellular Molecular Pharmacology Department, University of California San Francisco, San Francisco, CA94143
| | - Harmit S. Malik
- Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
17
|
Li R, Liu Y, Gao H, Lin Z. A gate-clamp mechanism for ssDNA translocation by DdmD in Vibrio cholerae plasmid defense. Nucleic Acids Res 2025; 53:gkaf064. [PMID: 39907109 PMCID: PMC11795196 DOI: 10.1093/nar/gkaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
The DdmDE antiplasmid system, consisting of the helicase-nuclease DdmD and the prokaryotic Argonaute (pAgo) protein DdmE, plays a crucial role in defending Vibrio cholerae against plasmids. Guided by DNA, DdmE specifically targets plasmids, disassembles the DdmD dimer, and forms a DdmD-DdmE handover complex to facilitate plasmid degradation. However, the precise ATP-dependent DNA translocation mechanism of DdmD has remained unclear. Here, we present cryo-EM structures of DdmD bound to single-stranded DNA (ssDNA) in nucleotide-free, ATPγS-bound, and ADP-bound states. These structures, combined with biochemical analysis, reveal a unique "gate-clamp" mechanism for ssDNA translocation by DdmD. Upon ATP binding, arginine finger residues R855 and R858 reorient to interact with the γ-phosphate, triggering HD2 domain movement. This shift repositions the gate residue Q781, causing a flip of the 3' flank base, which is then clamped by residue F639. After ATP hydrolysis, the arginine finger releases the nucleotide, inducing HD2 to return to its open state. This conformational change enables DdmD to translocate along ssDNA by one nucleotide in the 5' to 3' direction. This study provides new insights into the ATP-dependent translocation of DdmD and contributes to understanding the mechanistic diversity within SF2 helicases.
Collapse
Affiliation(s)
- Ruoyu Li
- College of Chemical Engineering, Fuzhou University, Fujian 350108, China
- National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yusong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310018, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haishan Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310018, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Zhonghui Lin
- National Joint Research Center on Biomedical Photodynamic Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
18
|
Mrnjavac N, Martin WF. GTP before ATP: The energy currency at the origin of genes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149514. [PMID: 39326542 PMCID: PMC7616719 DOI: 10.1016/j.bbabio.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F Martin
- Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Sakuma K, Chikenji G, Ota M. Statistical Analysis of Walker-A Motif-Containing β-α-β Supersecondary Structures in the Protein Data Bank. Methods Mol Biol 2025; 2870:79-93. [PMID: 39543032 DOI: 10.1007/978-1-0716-4213-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We introduce our approach to analyzing the entire Protein Data Bank (PDB) by combining state-of-the-art bioinformatic tools. As an interesting case, we report sequence/conformation analysis of Walker-A motifs and β-α-β supersecondary structures with/without this motif. Statistical analysis revealed that Walker-A motifs strongly correlate with β-α-β units having one or two intervening β-strands, while in general β-α-β units tend to exhibit direct contacts between the β-strands without intervening β-strands.
Collapse
Affiliation(s)
- Koya Sakuma
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - George Chikenji
- Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan.
- Institute for Glyco-core Research, Nagoya University, Nagoya, Aichi, Japan.
| |
Collapse
|
20
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
21
|
Kapila R, Mehra U, Kaur J, Verma Y, Jakar S, Datta K. Insights into Mtg3-mitochondrial ribosome association in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 737:150502. [PMID: 39180962 DOI: 10.1016/j.bbrc.2024.150502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Ribosome biogenesis is a highly regulated multistep process aided by energy-consuming auxiliary factors. GTPases form the largest class of auxiliary factors used by bacterial, cytosolic, and mitochondrial ribosomes for their maturation. Mtg3, a circularly permuted YqeH family of GTPase, is implicated in the mitoribosome small subunit biogenesis. However, its precise mechanistic role has yet to be characterized. Mtg3 is likely to bind precursor mitoribosome molecules during subunit maturation in vivo. However, this interaction has yet to be observed with mitoribosomes biochemically. In this study, we delineate the specific conditions necessary for preserving the association of Mtg3 with mitoribosomes on a sucrose density gradient. We show that the C-terminal domain of Mtg3 is required for robust binding to the mitoribosome. Furthermore, point mutants likely to abrogate GTP/GDP binding and GTPase activity compromise protein function in vivo. Surprisingly, the association with the mitoribosome was not compromised in mutants likely to be deficient for nucleotide binding/hydrolysis. Thus, our finding supports a model wherein Mtg3 binds to a precursor mitoribosome through its C-terminus to facilitate a conformational change or validate a folding intermediate driven by the GTP/GDP binding and hydrolysis cycle.
Collapse
Affiliation(s)
- Ritika Kapila
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Upasana Mehra
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Jaswinder Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Yash Verma
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Shweta Jakar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kaustuv Datta
- Department of Genetics, University of Delhi South Campus, New Delhi, India.
| |
Collapse
|
22
|
Chen W, Meng F, Li F, Tian C. The core septin gene CgSEP5 is associated with formation of infection structures and pathogenicity in Colletotrichum gloeosporioides. Int J Biol Macromol 2024; 283:137759. [PMID: 39557259 DOI: 10.1016/j.ijbiomac.2024.137759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Colletotrichum gloeosporioides is a model plant pathogenic fungus, and the appressoria are the main infection structures integral to the pathogenic process. Septin proteins play fundamental roles in facilitating shape alteration and organizing the F-actin cytoskeleton, thereby aiding the invasive growth of various fungi. Herein, we examined the roles of four septin-coding genes (CgSEP3, CgSEP4, CgSEP5, and CgSEP6) in C. gloeosporioides. Our findings reveal the diverse functions of septins in C. gloeosporioides, which encompass the regulation of vegetative growth, conidiation, cell wall integrity, and stress responses. Critically, septins are involved in the formation, invasion, and expansion of infection structures and they directly influence virulence on unwounded hosts. Interestingly, the deletion of CgSEP4 resulted in the formation of hooked and bent germ tubes and caused a significant decrease in appressorium turgor pressure, which has not been reported in other fungi. Our findings demonstrated that CgSEP3 and CgSEP6 were regulated by ROS signal transduction during the formation of infection structure. Moreover, the knockout of the key component, CgSEP5, significantly decreased growth rate compared to the wild type, completely blocking the penetration of infection structures and subsequently abolishing virulence on poplar leaves. By subcellular localization of GFP fusions, it was proved that CgSEP5 may regulate the formation of appressorial pegs in C. gloeosporioides through forming a ring-like structure inside the appressorium. Collectively, our research underscores the pivotal role of septins in fungal pathogenicity, by orchestrating the formation and development of infection structures. We speculate that CgSEP5 function as a promising anti-fungal target, and believe these findings provide a substantial reference for future investigations into the mechanisms underpinning the invasion of fungi appressoria on woody plants.
Collapse
Affiliation(s)
- Wenyan Chen
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Fanli Meng
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhan Li
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
23
|
Klochkova E, Biktimirov A, Islamov D, Belousov A, Validov S, Yusupov M, Usachev K. Crystal structure of the GDP-bound GTPase Era from Staphylococcus aureus. Biochem Biophys Res Commun 2024; 735:150852. [PMID: 39432921 DOI: 10.1016/j.bbrc.2024.150852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
GTPase Era from Staphylococcus aureus belongs to the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPases class and plays a significant role in the vital activity of this pathogenic microorganism as a maturation factor of the 30S ribosome subunit. However, the functions of this protein are not fully understood, making it a promising object for further study. Here, the 2.76 Å resolution crystal structure of Staphylococcus aureus Era in complex with GDP is presented. Structural comparison with other GTP-bound and GDP-bound homologous proteins, GTPase domain and the KH domain revealed a mutual orientation in S. aureus which has not been described before. The GDP-bound Era structure presented here will facilitate efforts to elucidate its interactions with its regulators and lay the foundation for a structure-based search for specific inhibitors.
Collapse
Affiliation(s)
- Evelina Klochkova
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation
| | - Artem Biktimirov
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation
| | - Daut Islamov
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation
| | - Anatolii Belousov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russian Federation; Sao Carlos Institute of Physics, University of Sao Paulo, poloTErRA, 13563-120, Sao Carlos, São Paolo, Brazil
| | - Shamil Validov
- Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, 420111, Russian Federation
| | - Marat Yusupov
- National Research Centre Kurchatov Institute, Kurchatov Sq. 2, 123182, Moscow, Russian Federation; Institute of Genetics, Molecular and Cellular Biology, CNRS UMR7104, INSERM U964, Universit'e de Strasbourg, Illkirch, F-67400, France
| | - Konstantin Usachev
- Kazan Federal University, 18 Kremlyovskaya St., 420008, Kazan, Russian Federation.
| |
Collapse
|
24
|
Brown HJ, Duggin IG. MinD proteins regulate CetZ1 localization in Haloferax volcanii. Front Microbiol 2024; 15:1474697. [PMID: 39651350 PMCID: PMC11621097 DOI: 10.3389/fmicb.2024.1474697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
CetZ proteins are archaea-specific homologs of the cytoskeletal proteins FtsZ and tubulin. In the pleomorphic archaeon Haloferax volcanii, CetZ1 contributes to the development of rod shape and motility, and has been implicated in the proper assembly and positioning of the archaellum and chemotaxis motility proteins. CetZ1 shows complex subcellular localization, including irregular midcell structures and filaments along the long axis of developing rods and patches at the cell poles of the motile rod cell type. The polar localizations of archaellum and chemotaxis proteins are also influenced by MinD4, the only previously characterized archaeal member of the MinD family of ATPases, which are better known for their roles in the positioning of the division ring in bacteria. Using minD mutant strains and CetZ1 subcellular localization studies, we show here that a second minD homolog, minD2, has a strong influence on motility and the localization of CetZ1. Knockout of the minD2 gene altered the distribution of a fluorescent CetZ1-mTq2 fusion protein in a broad midcell zone and along the edges of rod cells, and inhibited the localization of CetZ1-mTq2 at the cell poles. MinD4 had a similar but weaker influence on motility and CetZ1-mTq2 localization. The minD2/4 mutant strains formed rod cell shapes like the wildtype at an early log stage of growth. Our results are consistent with distinct roles for CetZ1 in rod shape formation and at the poles of mature rods, that are positioned through the action of the MinD proteins and contribute to the development of swimming motility in multiple ways. They represent the first report of MinD proteins controlling the positioning of tubulin superfamily proteins in archaea.
Collapse
Affiliation(s)
| | - Iain G. Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
25
|
Bhatta P, Hu X. Molecular Determinants for Guanine Binding in GTP-Binding Proteins: A Data Mining and Quantum Chemical Study. Int J Mol Sci 2024; 25:12449. [PMID: 39596514 PMCID: PMC11594714 DOI: 10.3390/ijms252212449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
GTP-binding proteins are essential molecular switches that regulate a wide range of cellular processes. Their function relies on the specific recognition and binding of guanine within their binding pockets. This study aims to elucidate the molecular determinants underlying this recognition. A large-scale data mining of the Protein Data Bank yielded 298 GTP-binding protein complexes, which provided a structural foundation for a systematic analysis of the intermolecular interactions that are responsible for the molecular recognition of guanine in proteins. It was found that multiple modes of non-bonded interactions including hydrogen bonding, cation-π interactions, and π-π stacking interactions are employed by GTP-binding proteins for binding. Subsequently, the strengths of non-bonded interaction energies between guanine and its surrounding protein residues were quantified by means of the double-hybrid DFT method B2PLYP-D3/cc-pVDZ. Hydrogen bonds, particularly those involving the N2 and O6 atoms of guanine, confer specificity to guanine recognition. Cation-π interactions between the guanine ring and basic residues (Lys and Arg) provide significant electrostatic stabilization. π-π stacking interactions with aromatic residues (Phe, Tyr, and Trp) further contribute to the overall binding affinity. This synergistic interplay of multiple interaction modes enables GTP-binding proteins to achieve high specificity and stability in guanine recognition, ultimately underpinning their crucial roles in cellular signaling and regulation. Notably, the NKXD motif, while historically considered crucial for guanine binding in GTP-binding proteins, is not universally required. Our study revealed significant variability in hydrogen bonding patterns, with many proteins lacking the NKXD motif but still effectively binding guanine through alternative arrangements of interacting residues.
Collapse
Affiliation(s)
| | - Xiche Hu
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA;
| |
Collapse
|
26
|
Liu C, Lei L, Zhu J, Chen L, Peng S, Zhang M, Zhang Z, Tang J, Chen Q, Kong L, Zheng Y, Ladera-Carmona M, Kogel KH, Wei Y, Qi P. FgGET3, an ATPase of the GET Pathway, Is Important for the Development and Virulence of Fusarium graminearum. Int J Mol Sci 2024; 25:12172. [PMID: 39596240 PMCID: PMC11594295 DOI: 10.3390/ijms252212172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
GET3 is an ATPase protein that plays a pivotal role in the guided entry of the tail-anchored (GET) pathway. The protein facilitates the targeting and inserting of tail-anchored (TA) proteins into the endoplasmic reticulum (ER) by interacting with a receptor protein complex on the ER. The role of GET3 in various biological processes has been established in yeast, plants, and mammals but not in filamentous fungi. Fusarium graminearum is the major causal agent of Fusarium head blight (FHB), posing a threat to the yield and quality of wheat. In this study, we found that FgGET3 exhibits a high degree of sequence and structural conservation with its homologs across a wide range of organisms. Ectopic expression of FgGET3 in yeast restored the growth defects of the Saccharomyces cerevisiae ScGET3 knock-out mutant. Furthermore, FgGET3 was found to dimerize and localize to the cytoplasm, similar to its homologs in other species. Deletion of FgGET3 in F. graminearum results in decreased fungal growth, fragmented vacuoles, altered abiotic stress responses, reduced conidia production, delayed conidial germination, weakened virulence on wheat spikes and reduced DON production. Collectively, these findings underscore the critical role of FgGET3 in regulating diverse cellular and biological functions essential for the growth and virulence of F. graminearum.
Collapse
Affiliation(s)
- Caihong Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Lu Lei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jing Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Lirun Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Shijing Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Mi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Ziyi Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Jie Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Qing Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Li Kong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Maria Ladera-Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
| | - Karl-Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (M.L.-C.); (K.-H.K.)
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.L.); (J.Z.); (L.C.); (S.P.); (M.Z.); (Z.Z.); (J.T.); (Q.C.); (L.K.); (Y.Z.)
| |
Collapse
|
27
|
Patro M, Grünberger F, Sivabalasarma S, Gfrerer S, Rodriguez-Franco M, Nußbaum P, Grohmann D, Ithurbide S, Albers SV. MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii. Front Microbiol 2024; 15:1474570. [PMID: 39600568 PMCID: PMC11588486 DOI: 10.3389/fmicb.2024.1474570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (∆minD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Institute of Biochemistry Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab & Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Gfrerer
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry Genetics and Microbiology, Institute of Microbiology and Archaea Centre, Single-Molecule Biochemistry Lab & Biochemistry Centre Regensburg, University of Regensburg, Regensburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
29
|
K M K, N U, S K. Conformational dynamics and ribosomal interactions of Bacillus subtilis Obg in various nucleotide-bound states: Insights from molecular dynamics simulation. Int J Biol Macromol 2024; 279:135337. [PMID: 39241998 DOI: 10.1016/j.ijbiomac.2024.135337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Obg, a GTPase, binds to the premature 50S ribosomal subunit and facilitates recruitment of rproteins and rRNA processing to form the mature 50S subunit. This binding depends on nucleotide-induced conformational changes (GDP/GTP). However, the mechanism by which Obg undergoes conformational changes to associate with the premature 50S subunit is unknown. Therefore, 1000 ns molecular dynamics simulations were conducted to investigate this mechanism. Visualization of the simulated trajectory showed that in GDP and GTP-bound states, the C-domain moved towards the SwI region, while in GTP-Mg2+ and ppGpp-bound states, the C-domain shifted towards the N-tails. Further, positioning these conformations of Obg on the 50S subunit suggests possible mechanisms by which the GTP-Mg2+ bound state is responsible for recruiting rprotein, as well as the impact of the absence of Mg2+ in the GTP-bound state. Furthermore, the study provides insights into the conformational changes that may lead to the dissociation of the GDP-bound state from the 50S subunit and explores the potential role of the ppGpp-bound state in inhibiting 70S ribosome formation. Additionally, RMSF and community network analyses reveal how internal dynamics and intricate connections within Obg affect C-domain motion.
Collapse
Affiliation(s)
- Kavya K M
- Department of Studies in Physics, University of Mysore, Mysuru, India.
| | - Upendra N
- Center for Research and Innovations, Faculty of Natural Sciences, Adichunchanagiri University, B.G.Nagara, India.
| | - Krishnaveni S
- Department of Studies in Physics, University of Mysore, Mysuru, India.
| |
Collapse
|
30
|
Liao F, Yu G, Zhang C, Liu Z, Li X, He Q, Yin H, Liu X, Li Z, Zhang H. Structural basis for the concerted antiphage activity in the SIR2-HerA system. Nucleic Acids Res 2024; 52:11336-11348. [PMID: 39217465 PMCID: PMC11472057 DOI: 10.1093/nar/gkae750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recently, a novel two-gene bacterial defense system against phages, encoding a SIR2 NADase and a HerA ATPase/helicase, has been identified. However, the molecular mechanism of the bacterial SIR2-HerA immune system remains unclear. Here, we determine the cryo-EM structures of SIR2, HerA and their complex from Paenibacillus sp. 453MF in different functional states. The SIR2 proteins oligomerize into a dodecameric ring-shaped structure consisting of two layers of interlocked hexamers, in which each subunit exhibits an auto-inhibited conformation. Distinct from the canonical AAA+ proteins, HerA hexamer alone in this antiphage system adopts a split spiral arrangement, which is stabilized by a unique C-terminal extension. SIR2 and HerA proteins assemble into a ∼1.1 MDa torch-shaped complex to fight against phage infection. Importantly, disruption of the interactions between SIR2 and HerA largely abolishes the antiphage activity. Interestingly, binding alters the oligomer state of SIR2, switching from a dodecamer to a tetradecamer state. The formation of the SIR2-HerA binary complex activates NADase and nuclease activities in SIR2 and ATPase and helicase activities in HerA. Together, our study not only provides a structural basis for the functional communications between SIR2 and HerA proteins, but also unravels a novel concerted antiviral mechanism through NAD+ degradation, ATP hydrolysis, and DNA cleavage.
Collapse
Affiliation(s)
- Fumeng Liao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guimei Yu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiuqiu He
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
31
|
Rivas M, Fox GE. On the Nature of the Last Common Ancestor: A Story from its Translation Machinery. J Mol Evol 2024; 92:593-604. [PMID: 39259330 DOI: 10.1007/s00239-024-10199-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
The Last Common Ancestor (LCA) is understood as a hypothetical population of organisms from which all extant living creatures are thought to have descended. Its biology and environment have been and continue to be the subject of discussions within the scientific community. Since the first bacterial genomes were obtained, multiple attempts to reconstruct the genetic content of the LCA have been made. In this review, we compare 10 of the most extensive reconstructions of the gene content possessed by the LCA as they relate to aspects of the translation machinery. Although each reconstruction has its own methodological biases and many disagree in the metabolic nature of the LCA all, to some extent, indicate that several components of the translation machinery are among the most conserved genetic elements. The datasets from each reconstruction clearly show that the LCA already had a largely complete translational system with a genetic code already in place and therefore was not a progenote. Among these features several ribosomal proteins, transcription factors like IF2, EF-G, and EF-Tu and both class I and class II aminoacyl tRNA synthetases were found in essentially all reconstructions. Due to the limitations of the various methodologies, some features such as the occurrence of rRNA posttranscriptional modified bases are not fully addressed. However, conserved as it is, non-universal ribosomal features found in various reconstructions indicate that LCA's translation machinery was still evolving, thereby acquiring the domain specific features in the process. Although progenotes from the pre-LCA likely no longer exist recent results obtained by unraveling the early history of the ribosome and other genetic processes can provide insight to the nature of the pre-LCA world.
Collapse
Affiliation(s)
- Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| |
Collapse
|
32
|
Sutjita P, Musalgaonkar S, Recchia-Rife J, Huang L, Xhemalce B, Johnson AW. The Ribosome Assembly Factor LSG1 Interacts with Vesicle-Associated Membrane Protein-Associated Proteins (VAPs). Mol Cell Biol 2024; 44:345-357. [PMID: 39133101 PMCID: PMC11376406 DOI: 10.1080/10985549.2024.2384600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
LSG1 is a conserved GTPase involved in ribosome assembly. It is required for the eviction of the nuclear export adapter NMD3 from the pre-60S subunit in the cytoplasm. In human cells, LSG1 has also been shown to interact with vesicle-associated membrane protein-associated proteins (VAPs) that are found primarily on the endoplasmic reticulum. VAPs interact with a large host of proteins which contain FFAT motifs (two phenylalanines (FF) in an acidic tract) and are involved in many cellular functions including membrane traffic and regulation of lipid transport. Here, we show that human LSG1 binds to VAPs via a noncanonical FFAT-like motif. Deletion of this motif specifically disrupts the localization of LSG1 to the ER, without perturbing LSG1-dependent recycling of NMD3 in cells or modulation of LSG1 GTPase activity in vitro.
Collapse
Affiliation(s)
- Putri Sutjita
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas, USA
| | | | - Jeffrey Recchia-Rife
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Lisa Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Arlen W. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
Patro M, Sivabalasarma S, Gfrerer S, Rodriguez-Franco M, Nußbaum P, Ithurbide S, Albers SV. MinD2 modulates cell shape and motility in the archaeon Haloferax volcanii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606218. [PMID: 39131313 PMCID: PMC11312570 DOI: 10.1101/2024.08.01.606218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
In bacteria and archaea, proteins of the ParA/MinD family of ATPases regulate the spatiotemporal organization of various cellular cargoes, including cell division proteins, motility structures, chemotaxis systems, and chromosomes. In bacteria, such as Escherichia coli, MinD proteins are crucial for the correct placement of the Z-ring at mid-cell during cell division. However, previous studies have shown that none of the 4 MinD homologs present in the archaeon Haloferax volcanii have a role in cell division, suggesting that these proteins regulate different cellular processes in haloarchaea. Here, we show that while deletion of MinD2 in H. volcanii (ΔminD2) does not affect cell growth or division, it impacts cell shape and motility by mispositioning the chemotaxis arrays and archaellum motors. Finally, we explore the links between MinD2 and MinD4, which has been previously shown to modulate the localization of chemosensory arrays and archaella in H. volcanii, finding that the two MinD homologues have synergistic effects in regulating the positioning of the motility machinery. Collectively, our findings identify MinD2 as an important link between cell shape and motility in H. volcanii and further our understanding of the mechanisms by which multiple MinD proteins regulate cellular functions in haloarchaea.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Gfrerer
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Institute of Biology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Phillip Nußbaum
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
35
|
Harris DF, Rucker HR, Garcia AK, Yang ZY, Chang SD, Feinsilber H, Kaçar B, Seefeldt LC. Ancient nitrogenases are ATP dependent. mBio 2024; 15:e0127124. [PMID: 38869277 PMCID: PMC11253609 DOI: 10.1128/mbio.01271-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
Life depends on a conserved set of chemical energy currencies that are relics of early biochemistry. One of these is ATP, a molecule that, when paired with a divalent metal ion such as Mg2+, can be hydrolyzed to support numerous cellular and molecular processes. Despite its centrality to extant biochemistry, it is unclear whether ATP supported the function of ancient enzymes. We investigate the evolutionary necessity of ATP by experimentally reconstructing an ancestral variant of the N2-reducing enzyme nitrogenase. The Proterozoic ancestor is predicted to be ~540-2,300 million years old, post-dating the Great Oxidation Event. Growth rates under nitrogen-fixing conditions are ~80% of those of wild type in Azotobacter vinelandii. In the extant enzyme, the hydrolysis of two MgATP is coupled to electron transfer to support substrate reduction. The ancestor has a strict requirement for ATP with no other nucleotide triphosphate analogs (GTP, ITP, and UTP) supporting activity. Alternative divalent metal ions (Fe2+, Co2+, and Mn2+) support activity with ATP but with diminished activities compared to Mg2+, similar to the extant enzyme. Additionally, it is shown that the ancestor has an identical efficiency in ATP hydrolyzed per electron transferred to the extant of two. Our results provide direct laboratory evidence of ATP usage by an ancient enzyme.IMPORTANCELife depends on energy-carrying molecules to power many sustaining processes. There is evidence that these molecules may predate the rise of life on Earth, but how and when these dependencies formed is unknown. The resurrection of ancient enzymes provides a unique tool to probe the enzyme's function and usage of energy-carrying molecules, shedding light on their biochemical origins. Through experimental reconstruction, this research investigates the ancestral dependence of a nitrogen-fixing enzyme on the energy carrier ATP, a requirement for function in the modern enzyme. We show that the resurrected ancestor does not have generalist nucleotide specificity. Rather, the ancestor has a strict requirement for ATP, like the modern enzyme, with similar function and efficiency. The findings elucidate the early-evolved necessity of energy-yielding molecules, delineating their role in ancient biochemical processes. Ultimately, these insights contribute to unraveling the intricate tapestry of evolutionary biology and the origins of life-sustaining dependencies.
Collapse
Affiliation(s)
- Derek F. Harris
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Holly R. Rucker
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Scott D. Chang
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Hannah Feinsilber
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| |
Collapse
|
36
|
Mochi JA, Jani J, Tak K, Pappachan A. Insights into the ATP / GTP selectivity of a GTPase, adenylosuccinate synthetase from Leishmania donovani. Biochem Biophys Res Commun 2024; 715:149975. [PMID: 38676997 DOI: 10.1016/j.bbrc.2024.149975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.
Collapse
Affiliation(s)
- Jigneshkumar A Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Kiran Tak
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India; Department of Biology, Indian Institute of Sciences Education and Research (IISER), Bhopal, 462 066, Madhya Pradesh, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
37
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The evolutionary origins and ancestral features of septins. Front Cell Dev Biol 2024; 12:1406966. [PMID: 38994454 PMCID: PMC11238149 DOI: 10.3389/fcell.2024.1406966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Septins are a family of membrane-associated cytoskeletal guanine-nucleotide binding proteins that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that membrane binding is an ancestral trait. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, NC, United States
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, GA, United States
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
38
|
Liu J, Huang J, Lu J, Ouyang R, Xu W, Zhang J, Chen-Xiao K, Wu C, Shang D, Go VLWB, Guo J, Xiao GG. Obg-like ATPase 1 exacerbated gemcitabine drug resistance of pancreatic cancer. iScience 2024; 27:110027. [PMID: 38883822 PMCID: PMC11177196 DOI: 10.1016/j.isci.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a poor prognosis due to inefficient diagnosis and tenacious drug resistance. Obg-like ATPase 1 (OLA1) is overexpressed in many malignant tumors. The molecular mechanism of OLA1 underlying gemcitabine (GEM)-induced drug resistance was investigated in this study. An enhanced expression of OLA1 was observed in a GEM acquired resistant pancreatic cancer cell lines and in patients with pancreatic cancer. Overexpressed OLA1 showed poor overall survival rates in patients with pancreatic cancer. Dysregulation of the OLA1 reduced expression of CD44+/CD133+, and improved the sensitivity of pancreatic cancer cells to GEM. OLA1 highly expression facilitated the formation of the OLA1/Sonic Hedgehog (SHH)/Hedgehog-interacting protein (HHIP) complex in nuclei, resulting in the inhibition of negative feedback of Hedgehog signaling induced by HHIP. This study suggests that OLA1 may be developed as an innovative drug target for an effective therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Institute of clinical medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jun Lu
- Department of General Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Runze Ouyang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wenchao Xu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianlu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kevin Chen-Xiao
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, San Francisco, CA, USA
| | - Chengjun Wu
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Vay Liang W Bill Go
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Junchao Guo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gary Guishan Xiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- The UCLA Agi Hirshberg Center for Pancreatic Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Functional Genomics and Proteomics Laboratory, Osteoporosis Research Center, Creighton University Medical Center, Omaha, NE, USA
| |
Collapse
|
39
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
40
|
Ceballos-Zúñiga F, Menéndez M, Pérez-Dorado I. New insights into the domain of unknown function (DUF) of EccC 5, the pivotal ATPase providing the secretion driving force to the ESX-5 secretion system. Acta Crystallogr D Struct Biol 2024; 80:397-409. [PMID: 38805245 PMCID: PMC11154593 DOI: 10.1107/s2059798324004248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Type VII secretion (T7S) systems, also referred to as ESAT-6 secretion (ESX) systems, are molecular machines that have gained great attention due to their implications in cell homeostasis and in host-pathogen interactions in mycobacteria. The latter include important human pathogens such as Mycobacterium tuberculosis (Mtb), the etiological cause of human tuberculosis, which constitutes a pandemic accounting for more than one million deaths every year. The ESX-5 system is exclusively found in slow-growing pathogenic mycobacteria, where it mediates the secretion of a large family of virulence factors: the PE and PPE proteins. The secretion driving force is provided by EccC5, a multidomain ATPase that operates using four globular cytosolic domains: an N-terminal domain of unknown function (EccC5DUF) and three FtsK/SpoIIIE ATPase domains. Recent structural and functional studies of ESX-3 and ESX-5 systems have revealed EccCDUF to be an ATPase-like fold domain with potential ATPase activity, the functionality of which is essential for secretion. Here, the crystal structure of the MtbEccC5DUF domain is reported at 2.05 Å resolution, which reveals a nucleotide-free structure with degenerated cis-acting and trans-acting elements involved in ATP binding and hydrolysis. This crystallographic study, together with a biophysical assessment of the interaction of MtbEccC5DUF with ATP/Mg2+, supports the absence of ATPase activity proposed for this domain. It is shown that this degeneration is also present in DUF domains from other ESX and ESX-like systems, which are likely to exhibit poor or null ATPase activity. Moreover, based on an in silico model of the N-terminal region of MtbEccC5DUF, it is hypothesized that MtbEccC5DUF is a degenerated ATPase domain that may have retained the ability to hexamerize. These observations draw attention to DUF domains as structural elements with potential implications in the opening and closure of the membrane pore during the secretion process via their involvement in inter-protomer interactions.
Collapse
Affiliation(s)
- Fernando Ceballos-Zúñiga
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish Research Council, Serrano 119, 28006 Madrid, Spain
| | - Margarita Menéndez
- Department of Structure and Thermodynamics of Macromolecules, Institute of Physical Chemistry Blas Cabrera, Spanish Research Council, Serrano 119, 28006 Madrid, Spain
- CIBER of Respiratory Diseases, ISCIII, Sinesio Delgado 10, 28029 Madrid, Spain
| | - Inmaculada Pérez-Dorado
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish Research Council, Serrano 119, 28006 Madrid, Spain
| |
Collapse
|
41
|
Shivangi, Khan Y, Ekka MK, Meena LS. Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity. Braz J Microbiol 2024; 55:1033-1051. [PMID: 38386260 PMCID: PMC11153397 DOI: 10.1007/s42770-024-01267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Mycobacterium tuberculosis is composed of a cumbersome signaling and protein network which partakes in bacterial survival and augments its pathogenesis. Mycobacterial PhoH2 (Mt-PhoH2) is a signaling element and a predictive phosphate starvation protein that works in an ATP-dependent manner. Here, we elaborated the characterization of Mt-PhoH2 through biophysical, biochemical, and computational methods. In addition to its intrinsic ATPase activity, the biochemical experiments revealed its GTPase activity and both activities are metal ion dependent. Magnesium, manganese, copper, iron, nickel, zinc, cesium, calcium, and lithium were examined for their effect on activity, and the optimum activity was found with 10 mM of Mg2+ ions. The kinetic parameters of 3 µM Mt-PhoH2 were observed as Km 4.873 ± 0.44 µM, Vmax 12.3817 ± 0.084 µM/min/mg, Kcat 0.0075 ± 0.00005 s-1, and Kcat/Km 0.0015 ± 0.000001 µM-1 s-1 with GTP. In the case of GTP as a substrate, a 20% decrease in enzymatic activity and a 50% increase in binding affinity of Mt-PhoH2 were observed. The substrates ADP and GDP inhibit the ATPase and GTPase activity of Mt-PhoH2. CD spectroscopy showed the dominance of alpha helix in the secondary structure of Mt-PhoH2, and this structural pattern was altered upon addition of ATP and GTP. In silico inhibitor screening revealed ML141 and NAV_2729 as two potential inhibitors of the catalytic activity of Mt-PhoH2. Mt-PhoH2 is essential for mycobacterial growth as its knockdown strain showed a decreased growth effect. Overall, the present article emphasizes the factors essential for the proper functioning of Mt-PhoH2 which is a participant in the toxin-antitoxin machinery and may also play an important role in phosphate starvation.
Collapse
Affiliation(s)
- Shivangi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Yasmeen Khan
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Laxman S Meena
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC, Ghaziabad, Uttar Pradesh, 201 002, India.
- CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- CSIR-Institute of Genomics and Integrative Biology, Academy of Scientific & Innovative Research (AcSIR), Mall Road, Delhi, 110007, India.
| |
Collapse
|
42
|
Sourice M, Oriol C, Aubert C, Mandin P, Py B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119746. [PMID: 38719030 DOI: 10.1016/j.bbamcr.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Charlotte Oriol
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
43
|
Cox RM, Papoulas O, Shril S, Lee C, Gardner T, Battenhouse AM, Lee M, Drew K, McWhite CD, Yang D, Leggere JC, Durand D, Hildebrandt F, Wallingford JB, Marcotte EM. Ancient eukaryotic protein interactions illuminate modern genetic traits and disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595818. [PMID: 38853926 PMCID: PMC11160598 DOI: 10.1101/2024.05.26.595818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
All eukaryotes share a common ancestor from roughly 1.5 - 1.8 billion years ago, a single-celled, swimming microbe known as LECA, the Last Eukaryotic Common Ancestor. Nearly half of the genes in modern eukaryotes were present in LECA, and many current genetic diseases and traits stem from these ancient molecular systems. To better understand these systems, we compared genes across modern organisms and identified a core set of 10,092 shared protein-coding gene families likely present in LECA, a quarter of which are uncharacterized. We then integrated >26,000 mass spectrometry proteomics analyses from 31 species to infer how these proteins interact in higher-order complexes. The resulting interactome describes the biochemical organization of LECA, revealing both known and new assemblies. We analyzed these ancient protein interactions to find new human gene-disease relationships for bone density and congenital birth defects, demonstrating the value of ancestral protein interactions for guiding functional genetics today.
Collapse
Affiliation(s)
- Rachael M Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shirlee Shril
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Tynan Gardner
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Muyoung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Claire D McWhite
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - David Yang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janelle C Leggere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue Pittsburgh, PA 15213, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
44
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
45
|
He X, Wang L, Tsang HY, Liu X, Yang X, Pu S, Guo Z, Yang C, Wu Q, Zhou Z, Cen X, Zhao H. GTPBP8 modulates mitochondrial fission through a Drp1-dependent process. J Cell Sci 2024; 137:jcs261612. [PMID: 38587461 PMCID: PMC11112121 DOI: 10.1242/jcs.261612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.
Collapse
Affiliation(s)
- Xiumei He
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hoi Ying Tsang
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Xiaonan Liu
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice 40752, Poland
| | - Xiaofeng Yang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin 541004, China
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin 541004, China
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Darbyshire AL, Wolthers KR. Characterization of a Structurally Distinct ATP-Dependent Reactivating Factor of Adenosylcobalamin-Dependent Lysine 5,6-Aminomutase. Biochemistry 2024; 63:913-925. [PMID: 38471967 DOI: 10.1021/acs.biochem.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Several anaerobic bacterial species, including the Gram-negative oral bacterium Fusobacterium nucleatum, ferment lysine to produce butyrate, acetate, and ammonia. The second step of the metabolic pathway─isomerization of β-l-lysine to erythro-3,5-diaminohexanoate─is catalyzed by the adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP)-dependent enzyme, lysine 5,6-aminomutase (5,6-LAM). Similar to other AdoCbl-dependent enzymes, 5,6-LAM undergoes mechanism-based inactivation due to loss of the AdoCbl 5'-deoxyadenosyl moiety and oxidation of the cob(II)alamin intermediate to hydroxocob(III)alamin. Herein, we identified kamB and kamC, two genes responsible for ATP-dependent reactivation of 5,6-LAM. KamB and KamC, which are encoded upstream of the genes corresponding to α and β subunits of 5,6-LAM (kamD and kamE), co-purified following coexpression of the genes in Escherichia coli. KamBC exhibited a basal level of ATP-hydrolyzing activity that was increased 35% in a reaction mixture that facilitated 5,6-LAM turnover with β-l-lysine or d,l-lysine. Ultraviolet-visible (UV-vis) spectroscopic studies performed under anaerobic conditions revealed that KamBC in the presence of ATP/Mg2+ increased the steady-state concentration of the cob(II)alamin intermediate in the presence of excess β-l-lysine. Using a coupled UV-visible spectroscopic assay, we show that KamBC is able to reactivate 5,6-LAM through exchange of the damaged hydroxocob(III)alamin for AdoCbl. KamBC is also specific for 5,6-LAM as it had no effect on the rate of substrate-induced inactivation of the homologue, ornithine 4,5-aminomutase. Based on sequence homology, KamBC is structurally distinct from previously characterized B12 chaperones and reactivases, and correspondingly adds to the list of proteins that have evolved to maintain the cellular activity of B12 enzymes.
Collapse
Affiliation(s)
- Amanda L Darbyshire
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
47
|
Chakraborty S, Kanade M, Gayathri P. Mechanism of GTPase activation of a prokaryotic small Ras-like GTPase MglA by an asymmetrically interacting MglB dimer. J Biol Chem 2024; 300:107197. [PMID: 38508314 PMCID: PMC11016934 DOI: 10.1016/j.jbc.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal β-strand of MglB1 and β0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Manil Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Pananghat Gayathri
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India.
| |
Collapse
|
48
|
Sakuma K, Koike R, Ota M. Dual-wield NTPases: A novel protein family mined from AlphaFold DB. Protein Sci 2024; 33:e4934. [PMID: 38501460 PMCID: PMC10949312 DOI: 10.1002/pro.4934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
AlphaFold protein structure database (AlphaFold DB) archives a vast number of predicted models. We conducted systematic data mining against AlphaFold DB and discovered an uncharacterized P-loop NTPase family. The structure of the protein family was surprisingly novel, showing an atypical topology for P-loop NTPases, noticeable twofold symmetry, and two pairs of independent putative active sites. Our findings show that structural data mining is a powerful approach to identifying undiscovered protein families.
Collapse
Affiliation(s)
- Koya Sakuma
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
| | - Ryotaro Koike
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
| | - Motonori Ota
- Department of Complex Systems ScienceGraduate School of Informatics, Nagoya UniversityNagoyaAichiJapan
- Institute for Glyco‐core Research, Nagoya UniversityNagoyaAichiJapan
| |
Collapse
|
49
|
Delic S, Shuman B, Lee S, Bahmanyar S, Momany M, Onishi M. The Evolutionary Origins and Ancestral Features of Septins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586683. [PMID: 38585751 PMCID: PMC10996617 DOI: 10.1101/2024.03.25.586683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Septins are a family of membrane-associated cytoskeletal GTPases that play crucial roles in various cellular processes, such as cell division, phagocytosis, and organelle fission. Despite their importance, the evolutionary origins and ancestral function of septins remain unclear. In opisthokonts, septins form five distinct groups of orthologs, with subunits from multiple groups assembling into heteropolymers, thus supporting their diverse molecular functions. Recent studies have revealed that septins are also conserved in algae and protists, indicating an ancient origin from the last eukaryotic common ancestor. However, the phylogenetic relationships among septins across eukaryotes remained unclear. Here, we expanded the list of non-opisthokont septins, including previously unrecognized septins from rhodophyte red algae and glaucophyte algae. Constructing a rooted phylogenetic tree of 254 total septins, we observed a bifurcation between the major non-opisthokont and opisthokont septin clades. Within the non-opisthokont septins, we identified three major subclades: Group 6 representing chlorophyte green algae (6A mostly for species with single septins, 6B for species with multiple septins), Group 7 representing algae in chlorophytes, heterokonts, haptophytes, chrysophytes, and rhodophytes, and Group 8 representing ciliates. Glaucophyte and some ciliate septins formed orphan lineages in-between all other septins and the outgroup. Combining ancestral-sequence reconstruction and AlphaFold predictions, we tracked the structural evolution of septins across eukaryotes. In the GTPase domain, we identified a conserved GAP-like arginine finger within the G-interface of at least one septin in most algal and ciliate species. This residue is required for homodimerization of the single Chlamydomonas septin, and its loss coincided with septin duplication events in various lineages. The loss of the arginine finger is often accompanied by the emergence of the α0 helix, a known NC-interface interaction motif, potentially signifying the diversification of septin-septin interaction mechanisms from homo-dimerization to hetero-oligomerization. Lastly, we found amphipathic helices in all septin groups, suggesting that curvature-sensing is an ancestral trait of septin proteins. Coiled-coil domains were also broadly distributed, while transmembrane domains were found in some septins in Group 6A and 7. In summary, this study advances our understanding of septin distribution and phylogenetic groupings, shedding light on their ancestral features, potential function, and early evolution.
Collapse
Affiliation(s)
- Samed Delic
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Brent Shuman
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Shoken Lee
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Shirin Bahmanyar
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, Georgia, USA
| | - Masayuki Onishi
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
50
|
Fowler W, Deng C, Teodoro OT, de Pablo JJ, Tirrell MV. Synthetic and Computational Design Insights toward Mimicking Protein Binding of Phosphate. Bioconjug Chem 2024; 35:300-311. [PMID: 38377539 PMCID: PMC10962344 DOI: 10.1021/acs.bioconjchem.3c00454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
The unique and precise capabilities of proteins are renowned for their specificity and range of application. Effective mimicking of protein-binding offers enticing potential to direct their abilities toward useful applications, but it is nevertheless quite difficult to realize this characteristic of protein behavior in a synthetic material. Here, we design, synthesize, and evaluate experimentally and computationally a series of multicomponent phosphate-binding peptide amphiphile micelles to derive design insights into how protein binding behavior translates to synthetic materials. By inserting the Walker A P-loop binding motif into this peptide synthetic material, we successfully implemented the protein-binding design parameters of hydrogen-bonding and electrostatic interaction to bind phosphate completely and selectively in this highly tunable synthetic platform. Moreover, in this densely arrayed peptide environment, we use molecular dynamics simulations to identify an intriguing mechanistic shift of binding that is inaccessible in traditional proteins, introducing two corresponding new design elements─flexibility and minimization of the loss of entropy due to ion binding, in protein-analogous synthetic materials. We then translate these new design factors to de novo peptide sequences that bind phosphate independent of protein-extracted sequence or conformation. Overall, this work reveals that traditional complex conformational restrictions of binding by proteins can be replaced and repurposed in a multicomponent peptide amphiphile synthetic material, opening up opportunities for future enhanced protein-inspired design.
Collapse
Affiliation(s)
- Whitney
C. Fowler
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Chuting Deng
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - O. Therese Teodoro
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|