1
|
Macías Á, González-Guerra A, Moreno-Manuel AI, Cruz FM, Gutiérrez LK, García-Quintáns N, Roche-Molina M, Bermúdez-Jiménez F, Andrés V, Vera-Pedrosa ML, Martínez-Carrascoso I, Bernal JA, Jalife J. Kir2.1 dysfunction at the sarcolemma and the sarcoplasmic reticulum causes arrhythmias in a mouse model of Andersen-Tawil syndrome type 1. NATURE CARDIOVASCULAR RESEARCH 2022; 1:900-917. [PMID: 39195979 PMCID: PMC11358039 DOI: 10.1038/s44161-022-00145-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2024]
Abstract
Andersen-Tawil syndrome type 1 (ATS1) is associated with life-threatening arrhythmias of unknown mechanism. In this study, we generated and characterized a mouse model of ATS1 carrying the trafficking-deficient mutant Kir2.1Δ314-315 channel. The mutant mouse recapitulates the electrophysiological phenotype of ATS1, with QT prolongation exacerbated by flecainide or isoproterenol, drug-induced QRS prolongation, increased vulnerability to reentrant arrhythmias and multifocal discharges resembling catecholaminergic polymorphic ventricular tachycardia (CPVT). Kir2.1Δ314-315 cardiomyocytes display significantly reduced inward rectifier K+ and Na+ currents, depolarized resting membrane potential and prolonged action potentials. We show that, in wild-type mouse cardiomyocytes and skeletal muscle cells, Kir2.1 channels localize to sarcoplasmic reticulum (SR) microdomains, contributing to intracellular Ca2+ homeostasis. Kir2.1Δ314-315 cardiomyocytes exhibit defective SR Kir2.1 localization and function, as intact and permeabilized Kir2.1Δ314-315 cardiomyocytes display abnormal spontaneous Ca2+ release events. Overall, defective Kir2.1 channel function at the sarcolemma and the SR explain the life-threatening arrhythmias in ATS1 and its overlap with CPVT.
Collapse
Affiliation(s)
- Álvaro Macías
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Francisco M Cruz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Lilian K Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Reilly L, Eckhardt LL. Cardiac potassium inward rectifier Kir2: Review of structure, regulation, pharmacology, and arrhythmogenesis. Heart Rhythm 2021; 18:1423-1434. [PMID: 33857643 PMCID: PMC8328935 DOI: 10.1016/j.hrthm.2021.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Potassium inward rectifier channel Kir2 is an important component of terminal cardiac repolarization and resting membrane stability. This functionality is part of balanced cardiac excitability and is a defining feature of excitable cardiac membranes. “Gain-of-function” or “loss-of-function” mutations in KCNJ2, the gene encoding Kir2.1, cause genetic sudden cardiac death syndromes, and loss of the Kir2 current IK1 is a major contributing factor to arrhythmogenesis in failing human hearts. Here we provide a contemporary review of the functional structure, physiology, and pharmacology of Kir2 channels. Beyond the structure and functional relationships, we will focus on the elements of clinically used drugs that block the channel and the implications for treatment of atrial fibrillation with IK1-blocking agents. We will also review the clinical disease entities associated with KCNJ2 mutations and the growing area of research into associated arrhythmia mechanisms. Lastly, the presence of Kir2 channels has become a tipping point for electrical maturity in induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) and highlights the significance of understanding why Kir2 in iPS-CMs is important to consider for Comprehensive In Vitro Proarrhythmia Assay and drug safety testing.
Collapse
Affiliation(s)
- Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
3
|
Abstract
Potassium channels that exhibit the property of inward rectification (Kir channels) are present in most cells. Cloning of the first Kir channel genes 25 years ago led to recognition that inward rectification is a consequence of voltage-dependent block by cytoplasmic polyamines, which are also ubiquitously present in animal cells. Upon cellular depolarization, these polycationic metabolites enter the Kir channel pore from the intracellular side, blocking the movement of K+ ions through the channel. As a consequence, high K+ conductance at rest can provide very stable negative resting potentials, but polyamine-mediated blockade at depolarized potentials ensures, for instance, the long plateau phase of the cardiac action potential, an essential feature for a stable cardiac rhythm. Despite much investigation of the polyamine block, where exactly polyamines get to within the Kir channel pore and how the steep voltage dependence arises remain unclear. This Minireview will summarize current understanding of the relevance and molecular mechanisms of polyamine block and offer some ideas to try to help resolve the fundamental issue of the voltage dependence of polyamine block.
Collapse
Affiliation(s)
- Colin G Nichols
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Sun-Joo Lee
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
4
|
Abstract
The content of spermidine and spermine in mammalian cells has important roles in protein and nucleic acid synthesis and structure, protection from oxidative damage, activity of ion channels, cell proliferation, differentiation, and apoptosis. Spermidine is essential for viability and acts as the precursor of hypusine, a post-translational addition to eIF5A allowing the translation of mRNAs encoding proteins containing polyproline tracts. Studies with Gy mice and human patients with the very rare X-linked genetic condition Snyder-Robinson syndrome that both lack spermine synthase show clearly that the correct spermine:spermidine ratio is critical for normal growth and development.
Collapse
Affiliation(s)
- Anthony E Pegg
- From the Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
5
|
Cordeiro JM, Zeina T, Goodrow R, Kaplan AD, Thomas LM, Nesterenko VV, Treat JA, Hawel L, Byus C, Bett GC, Rasmusson RL, Panama BK. Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. J Mol Cell Cardiol 2015; 84:52-60. [PMID: 25889894 DOI: 10.1016/j.yjmcc.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
The inward rectifier potassium current, IK1, contributes to the terminal phase of repolarization of the action potential (AP), as well as the value and stability of the resting membrane potential. Regional variation in IK1 has been noted in the canine heart, but the biophysical properties have not been directly compared. We examined the properties and functional contribution of IK1 in isolated myocytes from ventricular, atrial and Purkinje tissue. APs were recorded from canine left ventricular midmyocardium, left atrial and Purkinje tissue. The terminal rate of repolarization of the AP in ventricle, but not in Purkinje, depended on changes in external K(+) ([K(+)]o). Isolated ventricular myocytes had the greatest density of IK1 while atrial myocytes had the lowest. Furthermore, the outward component of IK1 in ventricular cells exhibited a prominent outward component and steep negative slope conductance, which was also enhanced in 10 mM [K(+)]o. In contrast, both Purkinje and atrial cells exhibited little outward IK1, even in the presence of 10 mM [K(+)]o, and both cell types showed more persistent current at positive potentials. Expression of Kir2.1 in the ventricle was 76.9-fold higher than that of atria and 5.8-fold higher than that of Purkinje, whereas the expression of Kir2.2 and Kir2.3 subunits was more evenly distributed in Purkinje and atria. Finally, AP clamp data showed distinct contributions of IK1 for each cell type. IK1 and Kir2 subunit expression varies dramatically in regions of the canine heart and these regional differences in Kir2 expression likely underlie regional distinctions in IK1 characteristics, contributing to variations in repolarization in response to in [K(+)]o changes.
Collapse
Affiliation(s)
- Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Tanya Zeina
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Robert Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Aaron D Kaplan
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Lini M Thomas
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Vladislav V Nesterenko
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Leo Hawel
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Craig Byus
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Glenna C Bett
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States; Department of Obstetrics and Gynecology, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Brian K Panama
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States.
| |
Collapse
|
6
|
Long VP, Bonilla IM, Vargas-Pinto P, Nishijima Y, Sridhar A, Li C, Mowrey K, Wright P, Velayutham M, Kumar S, Lee NY, Zweier JL, Mohler PJ, Györke S, Carnes CA. Heart failure duration progressively modulates the arrhythmia substrate through structural and electrical remodeling. Life Sci 2015; 123:61-71. [PMID: 25596015 PMCID: PMC4763601 DOI: 10.1016/j.lfs.2014.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/10/2023]
Abstract
AIMS Ventricular arrhythmias are a common cause of death in patients with heart failure (HF). Structural and electrical abnormalities in the heart provide a substrate for such arrhythmias. Canine tachypacing-induced HF models of 4-6 weeks duration are often used to study pathophysiology and therapies for HF. We hypothesized that a chronic canine model of HF would result in greater electrical and structural remodeling than a short term model, leading to a more arrhythmogenic substrate. MAIN METHODS HF was induced by ventricular tachypacing for one (short-term) or four (chronic) months to study remodeling. KEY FINDINGS Left ventricular contractility was progressively reduced, while ventricular hypertrophy and interstitial fibrosis were evident at 4 month but not 1 month of HF. Left ventricular myocyte action potentials were prolonged after 4 (p<0.05) but not 1 month of HF. Repolarization instability and early afterdepolarizations were evident only after 4 months of HF (p<0.05), coinciding with a prolonged QTc interval (p<0.05). The transient outward potassium current was reduced in both HF groups (p<0.05). The outward component of the inward rectifier potassium current was reduced only in the 4 month HF group (p<0.05). The delayed rectifier potassium currents were reduced in 4 (p<0.05) but not 1 month of HF. Reactive oxygen species were increased at both 1 and 4 months of HF (p<0.05). SIGNIFICANCE Reduced Ito, outward IK1, IKs, and IKr in HF contribute to EAD formation. Chronic, but not short term canine HF, results in the altered electrophysiology and repolarization instability characteristic of end-stage human HF.
Collapse
Affiliation(s)
- Victor P Long
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ingrid M Bonilla
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Pedro Vargas-Pinto
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Arun Sridhar
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Chun Li
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | | | - Patrick Wright
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Murugesan Velayutham
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Sanjay Kumar
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Nam Y Lee
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Jay L Zweier
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Györke
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Baronas VA, Kurata HT. Inward rectifiers and their regulation by endogenous polyamines. Front Physiol 2014; 5:325. [PMID: 25221519 PMCID: PMC4145359 DOI: 10.3389/fphys.2014.00325] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/06/2014] [Indexed: 12/02/2022] Open
Abstract
Inwardly-rectifying potassium (Kir) channels contribute to maintenance of the resting membrane potential and regulation of electrical excitation in many cell types. Strongly rectifying Kir channels exhibit a very steep voltage dependence resulting in silencing of their activity at depolarized membrane voltages. The mechanism underlying this steep voltage dependence is blockade by endogenous polyamines. These small multifunctional, polyvalent metabolites enter the long Kir channel pore from the intracellular side, displacing multiple occupant ions as they migrate to a stable binding site in the transmembrane region of the channel. Numerous structure-function studies have revealed structural elements of Kir channels that determine their susceptibility to polyamine block, and enable the steep voltage dependence of this process. In addition, various channelopathies have been described that result from alteration of the polyamine sensitivity or activity of strongly rectifying channels. The primary focus of this article is to summarize current knowledge of the molecular mechanisms of polyamine block, and provide some perspective on lingering uncertainties related to this physiologically important mechanism of ion channel blockade. We also briefly review some of the important and well understood physiological roles of polyamine sensitive, strongly rectifying Kir channels, primarily of the Kir2 family.
Collapse
Affiliation(s)
- Victoria A Baronas
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| | - Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
8
|
Pegg AE. The function of spermine. IUBMB Life 2014; 66:8-18. [PMID: 24395705 DOI: 10.1002/iub.1237] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 12/22/2022]
Abstract
Polyamines play important roles in cell physiology including effects on the structure of cellular macromolecules, gene expression, protein function, nucleic acid and protein synthesis, regulation of ion channels, and providing protection from oxidative damage. Vertebrates contain two polyamines, spermidine and spermine, as well as their precursor, the diamine putrescine. Although spermidine has an essential and unique role as the precursor of hypusine a post-translational modification of the elongation factor eIF5A, which is necessary for this protein to function in protein synthesis, no unique role for spermine has been identified unequivocally. The existence of a discrete spermine synthase enzyme that converts spermidine to spermine suggest that spermine must be needed and this is confirmed by studies with Gy mice and human patients with Snyder-Robinson syndrome in which spermine synthase is absent or greatly reduced. In both cases, this leads to a severe phenotype with multiple effects among which are intellectual disability, other neurological changes, hypotonia, and reduced growth of muscle and bone. This review describes these alterations and focuses on the roles of spermine which may contribute to these phenotypes including reducing damage due to reactive oxygen species, protection from stress, permitting correct current flow through inwardly rectifying K(+) channels, controlling activity of brain glutamate receptors involved in learning and memory, and affecting growth responses. Additional possibilities include acting as storage reservoir for maintaining appropriate levels of free spermidine and a possible non-catalytic role for spermine synthase protein.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
9
|
Cheng LF, Wang F, Lopatin AN. Metabolic stress in isolated mouse ventricular myocytes leads to remodeling of t tubules. Am J Physiol Heart Circ Physiol 2011; 301:H1984-95. [PMID: 21890686 PMCID: PMC3213956 DOI: 10.1152/ajpheart.00304.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/29/2011] [Indexed: 01/07/2023]
Abstract
Cardiac ventricular myocytes possess an extensive t-tubular system that facilitates the propagation of membrane potential across the cell body. It is well established that ionic currents at the restricted t-tubular space may lead to significant changes in ion concentrations, which, in turn, may affect t-tubular membrane potential. In this study, we used the whole cell patch-clamp technique to study accumulation and depletion of t-tubular potassium by measuring inward rectifier potassium tail currents (I(K1,tail)), and inward rectifier potassium current (I(K1)) "inactivation". At room temperatures and in the absence of Mg(2+) ions in pipette solution, the amplitude of I(K1,tail) measured ~10 min after the establishment of whole cell configuration was reduced by ~18%, but declined nearly twofold in the presence of 1 mM cyanide. At ~35°C I(K1,tail) was essentially preserved in intact cells, but its amplitude declined by ~85% within 5 min of cell dialysis, even in the absence of cyanide. Intracellular Mg(2+) ions played protective role at all temperatures. Decline of I(K1,tail) was accompanied by characteristic changes in its kinetics, as well as by changes in the kinetics of I(K1) inactivation, a marker of depletion of t-tubular K(+). The data point to remodeling of t tubules as the primary reason for the observed effects. Consistent with this, detubulation of myocytes using formamide-induced osmotic stress significantly reduced I(K1,tail), as well as the inactivation of inward I(K1). Overall, the data provide strong evidence that changes in t tubule volume/structure may occur on a short time scale in response to various types of stress.
Collapse
Affiliation(s)
- Lu-Feng Cheng
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5622, USA.
| | | | | |
Collapse
|
10
|
Pegg AE, Wang X. Mouse models to investigate the function of spermine. Commun Integr Biol 2011; 2:271-4. [PMID: 19641749 DOI: 10.4161/cib.2.3.8225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Many functions have been ascribed to polyamines, but there has been no clear identification of a unique role for spermine. The Gy mouse has a deletion of part of the X chromosome that includes the SMS gene encoding spermine synthase. Tissues from male Gy mice have no spermine but increased spermidine. They have multiple abnormalities including a tendency to sudden death, small size, circling behavior and other neurological symptoms, sterility and deafness. These changes are reversed by breeding with mice expressing a spermine synthase transgene. Detailed studies of hearing in Gy mice show that the absence of spermine synthase leads to loss of the endocochlear potential. Since this potential requires the cochlear lateral wall-specific Kir4.1 channel, regulation by spermine of transport via these channels appears to be an essential function. A similar spermine-related defect in the functioning of cardiac Kir channels could account for arrhythmias leading to sudden death. The effect of the absence of spermine on glutamate receptor ion channels in the brain may account for the neurological symptoms and could contribute to the lack of fertility and normal growth but more direct effects on gene expression are also possible. Advantages and limitations of the Gy model are discussed.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology; Milton S. Hershey Medical Center; Pennsylvania State University College of Medicine; Hershey, PA USA
| | | |
Collapse
|
11
|
Abstract
Ventricular fibrillation (VF) is the leading cause of sudden cardiac death. This brief review addresses issues relevant to the dynamics of the rotors responsible for functional reentry and VF. It also makes an attempt to summarize present-day knowledge of the manner in which the dynamic interplay between inward and outward transmembrane currents and the heterogeneous cardiac structure establish a substrate for the initiation and maintenance of rotors and VF. The fragmentary nature of our current understanding of ionic VF mechanisms does not even allow an approach toward a "Theory of VF". Yet some hope is provided by recently obtained insight into the roles played in VF by some of the sarcolemmal ion channels that control the excitation-recovery process. For example, strong evidence supports the idea that the interplay between the rapid-inward sodium current and the inward-rectifier potassium current controls rotor formation, as well as rotor stability and frequency. Solid evidence also exists for an involvement of L-type calcium current in the control of rotor frequency and in determining VF-to-ventricular tachycardia conversion. Less clear, however, is whether or not time dependent outward currents through voltage-gated potassium channels affect the fibrillatory process. Hopefully, taking advantage of currently available approaches of structural, molecular and cellular biology, together with computational and imaging techniques, will afford us the opportunity to further advance knowledge on VF mechanisms.
Collapse
Affiliation(s)
- Sami F Noujaim
- Department of Pharmacology and Institute for Cardiovascular Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
12
|
Kurata HT, Zhu EA, Nichols CG. Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1. ACTA ACUST UNITED AC 2010; 135:495-508. [PMID: 20421374 PMCID: PMC2860589 DOI: 10.1085/jgp.200910253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Polyamine block of inwardly rectifying potassium (Kir) channels underlies their steep voltage dependence observed in vivo. We have examined the potency, voltage dependence, and kinetics of spermine block in dimeric Kir2.1 constructs containing one nonreactive subunit and one cysteine-substituted subunit before and after modification by methanethiosulfonate (MTS) reagents. At position 169C (between the D172 “rectification controller” and the selectivity filter), modification by either 2-aminoethyl MTS (MTSEA) or 2-(trimethylammonium)ethyl MTS (MTSET) reduced the potency and voltage dependence of spermine block, consistent with this position overlapping the spermine binding site. At position 176C (between D172 and the M2 helix bundle crossing), modification by MTSEA also weakened spermine block. In contrast, MTSET modification of 176C dramatically slowed the kinetics of spermine unblock, with almost no effect on potency or voltage dependence. The data are consistent with MTSET modification of 176C introducing a localized barrier in the inner cavity, resulting in slower spermine entry into and exit from a “deep” binding site (likely between the D172 rectification controller and the selectivity filter), but leaving the spermine binding site mostly unaffected. These findings constrain the location of deep spermine binding that underlies steeply voltage-dependent block, and further suggest important chemical details of high affinity binding of spermine in Kir2.1 channels—the archetypal model of strong inward rectification.
Collapse
Affiliation(s)
- Harley T Kurata
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | |
Collapse
|
13
|
Pegg AE, Michael AJ. Spermine synthase. Cell Mol Life Sci 2010; 67:113-21. [PMID: 19859664 PMCID: PMC2822986 DOI: 10.1007/s00018-009-0165-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 08/24/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Spermine is present in many organisms including animals, plants, some fungi, some archaea, and some bacteria. It is synthesized by spermine synthase, a highly specific aminopropyltransferase. This review describes spermine synthase structure, genetics, and function. Structural and biochemical studies reveal that human spermine synthase is an obligate dimer. Each monomer contains a C-terminal domain where the active site is located, a central linking domain that also forms the lid of the catalytic domain, and an N-terminal domain that is structurally very similar to S-adenosylmethionine decarboxylase. Gyro mice, which have an X-chromosomal deletion including the spermine synthase (SMS) gene, lack all spermine and have a greatly reduced size, sterility, deafness, neurological abnormalities, and a tendency to sudden death. Mutations in the human SMS lead to a rise in spermidine and reduction of spermine causing Snyder-Robinson syndrome, an X-linked recessive condition characterized by mental retardation, skeletal defects, hypotonia, and movement disorders.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
14
|
Coburn RF. Polyamine effects on cell function: Possible central role of plasma membrane PI(4,5)P2. J Cell Physiol 2009; 221:544-51. [DOI: 10.1002/jcp.21899] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Anumonwo JMB, Lopatin AN. Cardiac strong inward rectifier potassium channels. J Mol Cell Cardiol 2009; 48:45-54. [PMID: 19703462 DOI: 10.1016/j.yjmcc.2009.08.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/13/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Cardiac I(K1) and I(KACh) are the major potassium currents displaying classical strong inward rectification, a unique property that is critical for their roles in cardiac excitability. In the last 15 years, research on I(K1) and I(KACh) has been propelled by the cloning of the underlying inwardly rectifying potassium (Kir) channels, the discovery of the molecular mechanism of strong rectification and the linking of a number of disorders of cardiac excitability to defects in genes encoding Kir channels. Disease-causing mutations in Kir genes have been shown experimentally to affect one or more of the following channel properties: structure, assembly, trafficking, and regulation, with the ultimate effect of a gain- or a loss-of-function of the channel. It is now established that I(K1) and I(KACh) channels are heterotetramers of Kir2 and Kir3 subunits, respectively. Each homomeric Kir channel has distinct biophysical and regulatory properties, and individual Kir subunits often display different patterns of regional, cellular, and membrane distribution. These differences are thought to underlie important variations in the physiological properties of I(K1) and I(KACh). It has become increasingly clear that the contribution of I(K1) and I(KACh) channels to cardiac electrical activity goes beyond their long recognized role in the stabilization of resting membrane potential and shaping the late phase of action potential repolarization in individual myocytes but extends to being critical elements determining the overall electrical stability of the heart.
Collapse
Affiliation(s)
- Justus M B Anumonwo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5622, USA
| | | |
Collapse
|
16
|
Grzeda KR, Anumonwo JMB, O'Connell R, Jalife J. A single-cell model of phase-driven control of ventricular fibrillation frequency. Biophys J 2009; 96:2961-76. [PMID: 19348777 DOI: 10.1016/j.bpj.2008.11.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2008] [Revised: 11/17/2008] [Accepted: 11/21/2008] [Indexed: 10/20/2022] Open
Abstract
The mechanisms controlling the rotation frequency of functional reentry in ventricular fibrillation (VF) are poorly understood. It has been previously shown that Ba2+ at concentrations up to 50 mumol/L slows the rotation frequency in the intact guinea pig (GP) heart, suggesting a role of the inward rectifier current (I(K1)) in the mechanism governing the VF response to Ba2+. Given that other biological (e.g., sinoatrial node) and artificial systems display phase-locking behavior, we hypothesized that the mechanism for controlling the rotation frequency of a rotor by I(K1) blockade is phase-driven, i.e., the phase shift between transmembrane current and voltage remains constant at varying levels of I(K1) blockade. We measured whole-cell admittance in isolated GP myocytes and in transfected human embryonic kidney (HEK) cells stably expressing Kir 2.1 and 2.3 channels. The admittance phase, i.e., the phase difference between current and voltage, was plotted versus the frequency in control conditions and at 10 or 50 micromol/L Ba2+ (in GP heart cells) or 1 mM Ba2+ (in HEK cells). The horizontal distance between plots was called the "frequency shift in a single cell" and analyzed. The frequency shift in a single cell was -14.14 +/- 5.71 Hz (n = 14) at 10 microM Ba2+ and -18.51 +/- 4.00 Hz (n = 10) at 50 microM Ba2+, p < 0.05. The values perfectly matched the Ba2+-induced reduction of VF frequency observed previously in GP heart. A similar relationship was found in the computer simulations. The phase of Ba2+-sensitive admittance in GP cells was -2.65 +/- 0.32 rad at 10 Hz and -2.79 +/- 0.26 rad at 30 Hz. In HEK cells, the phase of Ba2+-sensitive admittance was 3.09 +/- 0.03 rad at 10 Hz and 3.00 +/- 0.17 rad at 30 Hz. We have developed a biological single-cell model of rotation-frequency control. The results show that although rotation frequency changes as a result of I(K1) blockade, the phase difference between transmembrane current and transmembrane voltage remains constant, enabling us to quantitatively predict the change of VF frequency resulting from I(K1) blockade, based on single-cell measurement.
Collapse
Affiliation(s)
- Krzysztof R Grzeda
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
17
|
Role of Mg(2+) block of the inward rectifier K(+) current in cardiac repolarization reserve: A quantitative simulation. J Mol Cell Cardiol 2009; 47:76-84. [PMID: 19303883 DOI: 10.1016/j.yjmcc.2009.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 03/01/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
Abstract
Different K(+) currents serve as "repolarization reserve" or a redundant repolarizing mechanism that protects against excessive prolongation of the cardiac action potential and therefore arrhythmia. Impairment of the inward rectifier K(+) current (I(K1)) has been implicated in the pathogenesis of cardiac arrhythmias. The characteristics of I(K1) reflect the kinetics of channel block by intracellular cations, primarily spermine (a polyamine) and Mg(2+), whose cellular levels may vary under various pathological conditions. However, the relevance of endogenous I(K1) blockers to the repolarization reserve is still not fully understood in detail. Here we used a mathematical model of a cardiac ventricular myocyte which quantitatively reproduces the dynamics of I(K1) block to examine the effects of the intracellular spermine and Mg(2+) concentrations, through modifying I(K1), on the action potential repolarization. Our simulation indicated that an I(K1) transient caused by relief of Mg(2+) block flows during early phase 3. Increases in the intracellular spermine/Mg(2+) concentration, or decreases in the intracellular Mg(2+) concentration, to levels outside their normal ranges prolonged action potential duration by decreasing the I(K1) transient. Moreover, reducing both the rapidly activating delayed rectifier current (I(Kr)) and the I(K1) transient caused a marked retardation of repolarization and early afterdepolarization because they overlap in the voltage range at which they flow. Our results indicate that the I(K1) transient caused by relief of Mg(2+) block is an important repolarizing current, especially when I(Kr) is reduced, and that abnormal intracellular free spermine/Mg(2+) concentrations may be a missing risk factor for malignant arrhythmias in I(Kr)-related acquired (drug-induced) and congenital long QT syndromes.
Collapse
|
18
|
Integrins step up the pace of cell migration through polyamines and potassium channels. Proc Natl Acad Sci U S A 2008; 105:7109-10. [PMID: 18480268 DOI: 10.1073/pnas.0803231105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
19
|
Abstract
Previous studies have shown that cardiac inward rectifier potassium current (I(K1)) channels are heteromers of distinct Kir2 subunits and suggested that species- and tissue-dependent expression of these subunits may underlie variability of I(K1). In this study, we investigated the contribution of the slowly activating Kir2.3 subunit and free intracellular polyamines (PAs) to variability of I(K1) in the mouse heart. The kinetics of activation was measured in Kir2 concatemeric tetramers with known subunit stoichiometry. Inclusion of only one Kir2.3 subunit to a Kir2.1 channel led to an approximate threefold slowing of activation kinetics, with greater slowing on subsequent additions of Kir2.3 subunits. Activation kinetics of I(K1) in both ventricles and both atria was found to correspond to fast-activating Kir2.1/Kir2.2 channels, suggesting no major contribution of Kir2.3 subunits. In contrast, I(K1) displayed significant variation in both the current density and inward rectification, suggesting involvement of intracellular PAs. The total levels of PAs were similar across the mouse heart. Measurements of the free intracellular PAs in isolated myocytes, using transgenically expressed Kir2.1 channels as PA sensors, revealed "microheterogeneity" of I(K1) rectification as well as lower levels of free PAs in atrial myocytes compared with ventricular cells. These findings provide a quantitative explanation for the regional heterogeneity of I(K1).
Collapse
Affiliation(s)
- Brian K Panama
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
20
|
Lopez-Santiago LF, Meadows LS, Ernst SJ, Chen C, Malhotra JD, McEwen DP, Speelman A, Noebels JL, Maier SK, Lopatin AN, Isom LL. Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J Mol Cell Cardiol 2007; 43:636-47. [PMID: 17884088 PMCID: PMC2099572 DOI: 10.1016/j.yjmcc.2007.07.062] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/19/2007] [Accepted: 07/31/2007] [Indexed: 11/20/2022]
Abstract
In neurons, voltage-gated sodium channel beta subunits regulate the expression levels, subcellular localization, and electrophysiological properties of sodium channel alpha subunits. However, the contribution of beta subunits to sodium channel function in heart is poorly understood. We examined the role of beta1 in cardiac excitability using Scn1b null mice. Compared to wildtype mice, electrocardiograms recorded from Scn1b null mice displayed longer RR intervals and extended QT(c) intervals, both before and after autonomic block. In acutely dissociated ventricular myocytes, loss of beta1 expression resulted in a approximately 1.6-fold increase in both peak and persistent sodium current while channel gating and kinetics were unaffected. Na(v)1.5 expression increased in null myocytes approximately 1.3-fold. Action potential recordings in acutely dissociated ventricular myocytes showed slowed repolarization, supporting the extended QT(c) interval. Immunostaining of individual myocytes or ventricular sections revealed no discernable alterations in the localization of sodium channel alpha or beta subunits, ankyrin(B), ankyrin(G), N-cadherin, or connexin-43. Together, these results suggest that beta1 is critical for normal cardiac excitability and loss of beta1 may be associated with a long QT phenotype.
Collapse
Affiliation(s)
| | | | - Sara J. Ernst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chunling Chen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Jyoti Dhar Malhotra
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Dyke P. McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Audrey Speelman
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| | - Jeffrey L. Noebels
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | - Anatoli N. Lopatin
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Lori L. Isom
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Xue T, Siu CW, Lieu DK, Lau CP, Tse HF, Li RA. Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation 2007; 115:1839-50. [PMID: 17389267 PMCID: PMC2698014 DOI: 10.1161/circulationaha.106.659391] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although I(f), encoded by the hyperpolarization-activated cyclic-nucleotide-modulated (HCN) channel gene family, is known to be functionally important in pacing, its mechanistic action is largely inferential and indeed somewhat controversial. To dissect in detail the role of I(f), we investigated the functional consequences of overexpressing in adult guinea pig left ventricular cardiomyocytes (LVCMs) various HCN1 constructs that have been engineered to exhibit different gating properties. METHODS AND RESULTS We created the recombinant adenoviruses Ad-CMV-GFP-IRES (CGI), Ad-CGI-HCN1, Ad-CGI-HCN1-delta delta delta, and Ad-CGI-HCN1-Ins, which mediate ectopic expression of GFP alone, WT, EVY235-7delta delta delta, and Ins HCN1 channels, respectively; EVY235-7delta delta delta and Ins encode channels in which the S3-S4 linkers have been shortened and lengthened to favor and inhibit opening, respectively. Ad-CGI-HCN1, Ad-CGI-HCN1-delta delta delta, and Ad-CGI-HCN1-Ins, but not control Ad-CGI, transduction of LVCMs led to robust expression of I(f) with comparable densities when fully open (approximately = -22 pA/pF at -140 mV; P>0.05) but distinctive activation profiles (V(1/2) = -70.8+/-0.6, -60.4+/-0.7, and -87.7+/-0.7 mV; P<0.01, respectively). Whereas control (nontransduced or Ad-CGI-transduced) LVCMs were electrically quiescent, automaticity (206+/-16 bpm) was observed exclusively in 61% of Ad-HCN1-delta delta delta-transduced cells that displayed depolarized maximum diastolic potential (-60.6+/-0.5 versus -70.6+/-0.6 mV of resting membrane potential of control cells; P<0.01) and gradual phase 4 depolarization (306+/-32 mV/s) that were typical of genuine nodal cells. Furthermore, spontaneously firing Ad-HCN1-delta delta delta-transduced LVCMs responded positively to adrenergic stimulation (P<0.05) but exhibited neither overdrive excitation nor suppression. In contrast, the remaining 39% of Ad-HCN1-delta delta delta-transduced cells exhibited no spontaneous action potentials; however, a single ventricular action potential associated with a depolarized resting membrane potential and a unique, incomplete "phase 4-like" depolarization that did not lead to subsequent firing could be elicited on simulation. Such an intermediate phenotype, similarly observed in 100% of Ad-CGI-HCN- and Ad-CGI-HCN1-Ins-transduced LVCMs, could be readily reversed by ZD7288, hinting at a direct role of I(f). Correlation analysis revealed the specific biophysical parameters required for I(f) to function as an active membrane potential oscillator. CONCLUSIONS Our results not only contribute to a better understanding of cardiac pacing but also may advance current efforts that focus primarily on automaticity induction to the next level by enabling bioengineering of central and peripheral cells that make up the native sinoatrial node.
Collapse
Affiliation(s)
- Tian Xue
- Department of Cell Biology and Human Anatomy, University of California, Davis, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sridhar A, Dech SJ, Lacombe VA, Elton TS, McCune SA, Altschuld RA, Carnes CA. Abnormal diastolic currents in ventricular myocytes from spontaneous hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 2006; 291:H2192-8. [PMID: 16766638 DOI: 10.1152/ajpheart.01146.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is a common cause of heart failure, and ventricular arrhythmias are a major cause of death in heart failure. The spontaneous hypertension heart failure (SHHF) rat model was used to study altered ventricular electrophysiology in hypertension and heart failure. We hypothesized that a reduction in the inward rectifier K(+) current (I(K1)) and expression of pacemaker current (I(f)) would favor abnormal automaticity in the SHHF ventricle. SHHF ventricular myocytes were isolated at 2 and 8 mo of age and during end-stage heart failure (>/=17 mo); myocytes from age-matched rats served as controls. Inward I(K1) was significantly reduced at both 8 and >/=17 mo in SHHF rats compared with controls. There was a reduction in inward I(K1) due to aging in the controls only at >/=17 mo. We found a significant increase in I(f) at all ages in the SHHF rats, compared with young controls. In controls, there was an age-dependent increase in I(f). Action potential recordings in the SHHF rats demonstrated abnormal automaticity, which was abolished by the addition of an I(f) blocker (10 muM zatebradine). Increased I(f) during hypertension alone or combined increases in I(f) with reduced I(K1) during the progression to hypertensive heart failure contribute to a substrate for arrhythmogenesis.
Collapse
Affiliation(s)
- Arun Sridhar
- Ohio State Univ., College of Pharmacy, 500 W. 12th Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Jänne J, Alhonen L, Keinänen TA, Pietilä M, Uimari A, Pirinen E, Hyvönen MT, Järvinen A. Animal disease models generated by genetic engineering of polyamine metabolism. J Cell Mol Med 2006; 9:865-82. [PMID: 16364196 PMCID: PMC6740286 DOI: 10.1111/j.1582-4934.2005.tb00385.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The polyamines putrescine, spermidine and spermine are natural components of all living cells. Although their exact cellular functions are still largely unknown, a constant supply of these compounds is required for mammalian cell proliferation to occur. Studies with animals displaying genetically altered polyamine metabolism have shown that polyamines are intimately involved in the development of diverse tumors, putrescine apparently has specific role in skin physiology and neuroprotection and the higher polyamines spermidine and spermine are required for the maintenance of pancreatic integrity and liver regeneration. In the absence of ongoing polyamine biosynthesis, murine embryogenesis does not proceed beyond the blastocyst stage. The last years have also witnessed the appearance of the first reports linking genetically altered polyamine metabolism to human diseases.
Collapse
Affiliation(s)
- Juhani Jänne
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute for Molecular Sciences, University of Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nisenberg O, Pegg A, Welsh P, Keefer K, Shantz L. Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice. Biochem J 2006; 393:295-302. [PMID: 16153183 PMCID: PMC1383688 DOI: 10.1042/bj20051196] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study was designed to provide a better understanding of the role played by AdoMetDC (S-adenosylmethionine decarboxylase), the key rate-controlling enzyme in the synthesis of spermidine and spermine, in controlling polyamine levels and the importance of polyamines in cardiac physiology. The alphaMHC (alpha-myosin heavy chain) promoter was used to generate transgenic mice with cardiac-specific expression of AdoMetDC. A founder line (alphaMHC/AdoMetDC) was established with a >100-fold increase in AdoMetDC activity in the heart. Transgene expression was maximal by 1 week of age and remained constant into adulthood. However, the changes in polyamine levels were most pronounced during the first week of age, with a 2-fold decrease in putrescine and spermidine and a 2-fold increase in spermine. At later times, spermine returned to near control levels, whereas putrescine and spermidine levels remained lower, suggesting that compensatory mechanisms exist to limit spermine accumulation. The alphaMHC/AdoMetDC mice did not display an overt cardiac phenotype, but there was an increased cardiac hypertrophy after beta-adrenergic stimulation with isoprenaline ('isoproterenol'), as well as a small increase in spermine content. Crosses of the alphaMHC/AdoMetDC with alphaMHC/ornithine decarboxylase mice that have a >1000-fold increase in cardiac ornithine decarboxylase were lethal in utero, presumably due to increase in spermine to toxic levels. These findings suggest that cardiac spermine levels are highly regulated to avoid polyamine-induced toxicity and that homoeostatic mechanisms can maintain non-toxic levels even when one enzyme of the biosynthetic pathway is greatly elevated but are unable to do so when two biosynthetic enzymes are increased.
Collapse
Affiliation(s)
- Oleg Nisenberg
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Anthony E. Pegg
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Patricia A. Welsh
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Kerry Keefer
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA 17033, U.S.A
| | - Lisa M. Shantz
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, 500 University Drive, Hershey, PA 17033, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Ikeguchi Y, Wang X, McCLOSKEY D, Coleman C, Nelson P, Hu G, Shantz L, Pegg A. Characterization of transgenic mice with widespread overexpression of spermine synthase. Biochem J 2004; 381:701-7. [PMID: 15104536 PMCID: PMC1133879 DOI: 10.1042/bj20040419] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/21/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
A widespread increase in SpmS (spermine synthase) activity has been produced in transgenic mice using a construct in which the human SpmS cDNA was placed under the control of a composite CMV-IE (cytomegalovirus immediate early gene) enhancer-chicken beta-actin promoter. Four separate founder CAG/SpmS mice were studied. Transgenic expression of SpmS was found in all of the tissues examined, but the relative SpmS activities varied widely according to the founder animal and the tissue studied. Very large increases in SpmS activity were seen in many tissues. SpdS (spermidine synthase) activity was not affected. Although there was a statistically significant decline in spermidine content and increase in spermine, the alterations were small compared with the increase in SpmS activity. These results provide strong support for the concept that the levels of the higher polyamines spermidine and spermine are not determined only by the relative activities of the two aminopropyltransferases. Other factors such as availability of the aminopropyl donor substrate decarboxylated S-adenosylmethionine and possibly degradation or excretion must also influence the spermidine/spermine ratio. No deleterious effects of SpmS overexpression were seen. The mice had normal growth, fertility and behaviour up to the age of 12 months. However, breeding the CAG/SpmS mice with MHC (alpha-myosin heavy chain)/AdoMetDC (S-adenosylmethionine decarboxylase) mice, which have a large increase in S-adenosylmethionine decarboxylase expression in heart, was lethal. In contrast, breeding the CAG/SpmS mice with MHC/ODC (L-ornithine decarboxylase) mice, which have a large increase in cardiac ornithine decarboxylase expression, had a protective effect in preventing the small decrease in viability of the MHC/ODC mice.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Xiaojing Wang
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Diane E. McCLOSKEY
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Catherine S. Coleman
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Paul Nelson
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Guirong Hu
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | - Lisa M. Shantz
- Department of Cellular and Molecular Physiology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine. P.O. Box 850, Hershey, PA 17033, U.S.A
| | | |
Collapse
|
26
|
Li J, McLerie M, Lopatin AN. Transgenic upregulation ofIK1in the mouse heart leads to multiple abnormalities of cardiac excitability. Am J Physiol Heart Circ Physiol 2004; 287:H2790-802. [PMID: 15271672 DOI: 10.1152/ajpheart.00114.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To assess the functional significance of upregulation of the cardiac current ( IK1), we have produced and characterized the first transgenic (TG) mouse model of IK1upregulation. To increase IK1density, a pore-forming subunit of the Kir2.1 (green fluorescent protein-tagged) channel was expressed in the heart under control of the α-myosin heavy chain promoter. Two lines of TG animals were established with a high level of TG expression in all major parts of the heart: line 1 mice were characterized by 14% heart hypertrophy and a normal life span; line 2 mice displayed an increased mortality rate, and in mice ≤1 mo old, heart weight-to-body weight ratio was increased by >100%. In adult ventricular myocytes expressing the Kir2.1-GFP subunit, IK1conductance at the reversal potential was increased ∼9- and ∼10-fold in lines 1 and 2, respectively. Expression of the Kir2.1 transgene in line 2 ventricular myocytes was heterogeneous when assayed by single-cell analysis of GFP fluorescence. Surface ECG recordings in line 2 mice revealed numerous abnormalities of excitability, including slowed heart rate, premature ventricular contractions, atrioventricular block, and atrial fibrillation. Line 1 mice displayed a less severe phenotype. In both TG lines, action potential duration at 90% repolarization and monophasic action potential at 75–90% repolarization were significantly reduced, leading to neuronlike action potentials, and the slow phase of the T wave was abolished, leading to a short Q-T interval. This study provides a new TG model of IK1upregulation, confirms the significant role of IK1in cardiac excitability, and is consistent with adverse effects of IK1upregulation on cardiac electrical activity.
Collapse
Affiliation(s)
- Jingdong Li
- Dept. of Molecular and Integrative Physiology, Univ. of Michigan, Rm. 7812 Medical Science II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
27
|
Wang X, Ikeguchi Y, McCloskey DE, Nelson P, Pegg AE. Spermine Synthesis Is Required for Normal Viability, Growth, and Fertility in the Mouse. J Biol Chem 2004; 279:51370-5. [PMID: 15459188 DOI: 10.1074/jbc.m410471200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spermidine is essential for viability in eukaryotes but the importance of the longer polyamine spermine has not been established. Spermine is formed from spermidine by the action of spermine synthase, an aminopropyltransferase, whose gene (SpmS) is located on the X chromosome. Deletion of part of the X chromosome that include SpmS in Gy mice leads to a striking phenotype in affected males that includes altered phosphate metabolism and symptoms of hypophosphatemic rickets, circling behavior, hyperactivity, head shaking, inner ear abnormalities, deafness, sterility, a profound postnatal growth retardation, and a propensity to sudden death. It was not clear to what extent these alterations were due to the loss of spermine synthase activity, since this chromosomal deletion extends well beyond the SpmS gene and includes at least one other gene termed Phex. We have bred the Gy carrier female mice with transgenic mice (CAG/SpmS mice) that express spermine synthase from the ubiquitous CAG promoter. The resulting Gy-CAG/SpmS mice had extremely high levels of spermine synthase and contained spermine in all tissues examined. These mice had a normal life span and fertility and a normal growth rate except for a reduction in body weight due to a loss of bone mass that was consistent with the observation that the derangement in phosphate metabolism is due to the loss of the Phex gene and was not restored. These results show that spermine synthesis is needed for normal growth, viability, and fertility in male mice and that regulation of spermine synthase content is not required.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
28
|
Malhotra JD, Thyagarajan V, Chen C, Isom LL. Tyrosine-phosphorylated and Nonphosphorylated Sodium Channel β1 Subunits Are Differentially Localized in Cardiac Myocytes. J Biol Chem 2004; 279:40748-54. [PMID: 15272007 DOI: 10.1074/jbc.m407243200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channel alpha and beta subunits expressed in mammalian heart are differentially localized to t-tubules and intercalated disks. Sodium channel beta subunits are multifunctional molecules that participate in channel modulation and cell adhesion. Reversible, receptor-mediated changes in beta1 tyrosine phosphorylation modulate its ability to recruit and associate with ankyrin. The purpose of the present study was to test our hypothesis that tyrosine-phosphorylated beta1 (pYbeta1) and nonphosphorylated beta1 subunits may be differentially localized in heart and thus interact with different cytoskeletal and signaling proteins. We developed an antibody that specifically recognizes pYbeta1 and investigated the differential subcellular localization of beta1 and pYbeta1 in mouse ventricular myocytes. We found that pYbeta1 colocalized with connexin-43, N-cadherin, and Nav1.5 at intercalated disks but was not detected at the t-tubules. Anti-pYbeta1 immunoprecipitates N-cadherin from heart membranes and from cells transfected with beta1 and N-cadherin in the absence of other sodium channel subunits. pYbeta1 does not associate with ankyrinB in heart membranes. N-cadherin and connexin-43 associate with Nav1.5 in heart membranes as assessed by co-immunoprecipitation assays. We propose that sodium channel complexes at intercalated disks of ventricular myocytes are composed of Nav1.5 and pYbeta1 and that these complexes are in close association with both N-cadherin and connexin-43. beta1 phosphorylation appears to regulate its localization to differential subcellular domains.
Collapse
Affiliation(s)
- Jyoti D Malhotra
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-0632, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding–unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for high-affinity binding of blockers. D172 appears to be located somewhat internal to the narrow K+ selectivity filter, whereas E224 and E299 form a ring at a more intracellular site. Using a series of alkyl-bis-amines of varying length as calibration, we investigated how the acidic residues in IRK1 interact with amine groups in the natural polyamines (putrescine, spermidine, and spermine) that cause rectification in cells. To block the pore, the leading amine of bis-amines of increasing length penetrates ever deeper into the pore toward D172, while the trailing amine in every bis-amine binds near a more intracellular site and interacts with E224 and E299. The leading amine in nonamethylene-bis-amine (bis-C9) makes the closest approach to D172, displacing the maximal number of K+ ions and exhibiting the strongest voltage dependence. Cells do not synthesize bis-amines longer than putrescine (bis-C4) but generate the polyamines spermidine and spermine by attaching an amino-propyl group to one or both ends of putrescine. Voltage dependence of channel block by the tetra-amine spermine is comparable to that of block by the bis-amines bis-C9 (shorter) or bis-C12 (equally long), but spermine binds to IRK1 with much higher affinity than either bis-amine does. Thus, counterintuitively, the multiple amines in spermine primarily confer the high affinity but not the strong voltage dependence of channel block. Tetravalent spermine achieves a stronger interaction with the pore by effectively behaving like a pair of tethered divalent cations, two amine groups in its leading half interacting primarily with D172, whereas the other two in the trailing half interact primarily with E224 and E299. Thus, nature has optimized not only the blocker but also, in a complementary manner, the channel for producing rapid, high-affinity, and strongly voltage-dependent channel block, giving rise to exceedingly sharp rectification.
Collapse
Affiliation(s)
- Donglin Guo
- University of Pennsylvania, Department of Physiology D302A Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
30
|
Spencer CI, Borg JJ, Kozlowski RZ, Sham JSK. Differential effects of extracellular cesium on early afterdepolarizations in ventricular myocytes and arrhythmogenesis in isolated hearts of rats and guinea pigs. Pflugers Arch 2004; 448:478-89. [PMID: 15138823 DOI: 10.1007/s00424-004-1281-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/13/2004] [Indexed: 10/26/2022]
Abstract
CsCl has been shown to be arrhythmogenic in-vivo and to cause early afterdepolarizations (EADs) in isolated cardiac preparations, but the underlying electrophysiological mechanisms are ill-defined. To elucidate these actions further, the effects of extracellular solutions containing 3 mM CsCl and either 2 mM KCl (Cs2K solution) or 5 mM KCl (Cs5K solution) on membrane potential and ionic currents in rat and guinea-pig ventricular myocytes were compared. Cs2K solution rapidly and reversibly inhibited outward I(K1), and reduced other K(+) currents by about 20%. Current-clamped myocytes were rapidly hyperpolarized by this solution and action potentials were prolonged, but EADs were not observed. In contrast, EADs were triggered by E-4031, H(2)O(2), and the pyrethroid tefluthrin. Membrane-potential changes reversed after replacing Cs2K with Cs5K solution, with the recovery of 50% of outward I(K1). These results suggest that Cs2K solution inhibited I(K1) and caused a late prolongation of the action-potential duration, but the affected membrane potentials were too negative to elicit EAD mechanisms. In isolated hearts perfused with modified Tyrode's, Cs2K, and Cs5K solutions, bradycardia and arrhythmias were evoked by both CsCl-containing solutions. A comparison of such results with the effects of these solutions on myocytes suggests that I(K1) inhibition and EADs in ventricular myocytes are unlikely to be involved in arrhythmogenesis under our conditions.
Collapse
Affiliation(s)
- C Ian Spencer
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins Medical Institutions, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
Inward rectifiers are a class of K+ channels that can conduct much larger inward currents at membrane voltages negative to the K+ equilibrium potential than outward currents at voltages positive to it, even when K+ concentrations on both sides of the membrane are made equal. This conduction property, called inward rectification, enables inward rectifiers to perform many important physiological tasks. Rectification is not an inherent property of the channel protein itself, but reflects strong voltage dependence of channel block by intracellular cations such as Mg2+ and polyamines. This voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field along the pore, which is energetically coupled to the blocker binding and unbinding. This mutual displacement mechanism between several K+ ions and a blocker explains the signature feature of inward rectifier K+ channels, namely, that at a given concentration of intracellular K+, their macroscopic conductance depends on the difference between membrane voltage and the K+ equilibrium potential rather than on membrane voltage itself.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
32
|
Jänne J, Alhonen L, Pietilä M, Keinänen TA. Genetic approaches to the cellular functions of polyamines in mammals. ACTA ACUST UNITED AC 2004; 271:877-94. [PMID: 15009201 DOI: 10.1111/j.1432-1033.2004.04009.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The polyamines putrescine, spermidine and spermine are organic cations shown to participate in a bewildering number of cellular reactions, yet their exact functions in intermediary metabolism and specific interactions with cellular components remain largely elusive. Pharmacological interventions have demonstrated convincingly that a steady supply of these compounds is a prerequisite for cell proliferation to occur. The last decade has witnessed the appearance of a substantial number of studies, in which genetic engineering of polyamine metabolism in transgenic rodents has been employed to unravel their cellular functions. Transgenic activation of polyamine biosynthesis through an overexpression of their biosynthetic enzymes has assigned specific roles for these compounds in spermatogenesis, skin physiology, promotion of tumorigenesis and organ hypertrophy as well as neuronal protection. Transgenic activation of polyamine catabolism not only profoundly disturbs polyamine homeostasis in most tissues, but also creates a complex phenotype affecting skin, female fertility, fat depots, pancreatic integrity and regenerative growth. Transgenic expression of ornithine decarboxylase antizyme has suggested that this unique protein may act as a general tumor suppressor. Homozygous deficiency of the key biosynthetic enzymes of the polyamines, ornithine and S-adenosylmethionine decarboxylase, as achieved through targeted disruption of their genes, is not compatible with murine embryogenesis. Finally, the first reports of human diseases apparently caused by mutations or rearrangements of the genes involved in polyamine metabolism have appeared.
Collapse
Affiliation(s)
- Juhani Jänne
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.
| | | | | | | |
Collapse
|
33
|
Paajanen V, Vornanen M. Regulation of action potential duration under acute heat stress by I(K,ATP) and I(K1) in fish cardiac myocytes. Am J Physiol Regul Integr Comp Physiol 2003; 286:R405-15. [PMID: 14592934 DOI: 10.1152/ajpregu.00500.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism underlying temperature-dependent shortening of action potential (AP) duration was examined in the fish (Carassius carassius L.) heart ventricle. Acute temperature change from +5 to +18 degrees C (heat stress) shortened AP duration from 2.8 +/- 0.3 to 1.3 +/- 0.1 s in intact ventricles. In 56% (18 of 32) of enzymatically isolated myocytes, heat stress also induced reversible opening of ATP-sensitive K+ channels and increased their single-channel conductance from 37 +/- 12 pS at +8 degrees C to 51 +/- 13 pS at +18 degrees C (Q10 = 1.38) (P < 0.01; n = 12). The ATP-sensitive K+ channels of the crucian carp ventricle were characterized by very low affinity to ATP both at +8 degrees C [concentration of Tris-ATP that produces half-maximal inhibition of the channel (K1/2)= 1.35 mM] and +18 degrees C (K1/2 = 1.85 mM). Although acute heat stress induced ATP-sensitive K+ current (IK,ATP) in patch-clamped myocytes, similar heat stress did not cause any glibenclamide (10 microM)-sensitive changes in AP duration in multicellular ventricular preparations. Examination of APs and K+ currents from the same myocytes by alternate recording under current-clamp and voltage-clamp modes revealed that changes in AP duration were closely correlated with temperature-specific changes in the voltage-dependent rectification of the background inward rectifier K+ current IK1. In approximately 15% of myocytes (4 out of 27), IK,ATP-dependent shortening of AP followed the IK1-induced AP shortening. Thus heat stress-induced shortening of AP duration in crucian carp ventricle is primarily dependent on IK1. IK,ATP is induced only in response to prolonged temperature elevation or perhaps in the presence of additional stressors.
Collapse
Affiliation(s)
- Vesa Paajanen
- Univ. of Joensuu, Dept. of Biology, P.O. Box 111, 80101 Joensuu, Finland.
| | | |
Collapse
|
34
|
Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, Hamid Q, Rothenberg ME. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 2003; 111:1863-74. [PMID: 12813022 PMCID: PMC161427 DOI: 10.1172/jci17912] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 04/01/2003] [Indexed: 11/17/2022] Open
Abstract
Asthma is on the rise despite intense, ongoing research underscoring the need for new scientific inquiry. In an effort to provide unbiased insight into disease pathogenesis, we took an approach involving expression profiling of lung tissue from mice with experimental asthma. Employing asthma models induced by different allergens and protocols, we identified 6.5% of the tested genome whose expression was altered in an asthmatic lung. Notably, two phenotypically similar models of experimental asthma were shown to have distinct transcript profiles. Genes related to metabolism of basic amino acids, specifically the cationic amino acid transporter 2, arginase I, and arginase II, were particularly prominent among the asthma signature genes. In situ hybridization demonstrated marked staining of arginase I, predominantly in submucosal inflammatory lesions. Arginase activity was increased in allergen-challenged lungs, as demonstrated by increased enzyme activity, and increased levels of putrescine, a downstream product. Lung arginase activity and mRNA expression were strongly induced by IL-4 and IL-13, and were differentially dependent on signal transducer and activator of transcription 6. Analysis of patients with asthma supported the importance of this pathway in human disease. Based on the ability of arginase to regulate generation of NO, polyamines, and collagen, these results provide a basis for pharmacologically targeting arginine metabolism in allergic disorders.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Musa H, Veenstra RD. Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophys J 2003; 84:205-19. [PMID: 12524276 PMCID: PMC1302604 DOI: 10.1016/s0006-3495(03)74843-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Accepted: 08/26/2002] [Indexed: 11/20/2022] Open
Abstract
The effects of spermine and spermidine, endogenous polyamines that block many forms of ion channels, were investigated in homotypic connexin (Cx)-40 gap junctions expressed in N2A cells. Spermine blocked up to 95% of I(j) through homotypic Cx40 gap junctions in a concentration- and transjunctional voltage (V(j))-dependent manner. V(j) was varied from 5 to 50 mV in 5-mV steps and the dissociation constants (K(m)) were determined from spermine concentrations ranging from 10 micro M to 2 mM. The K(m) values ranged from 4.9 mM to 107 micro M for 8.6 < or = V(j) < or = 37.7 mV, within the physiological range of intracellular spermine for V(j) > or = 20 mV. The K(m) values for spermidine were > or = 5 mM. Estimates of the electrical distance (delta) for spermine (z = +4) and spermidine (z = +3) were 0.96 and 0.76 respectively. Cx40 single channel conductance was 129 pS in the presence of 2-mM spermine and channel open probability was significantly reduced in a V(j)-dependent manner. Similar concentrations of spermine did not block I(j) through homotypic Cx43 gap junctions, indicating that spermine selectively blocks Cx40 gap junctions. This is contrary to our previous findings that large tetraalkylammonium ions, also known to block several forms of ion channels, block junctional currents (I(j)) through homotypic connexin Cx40 and Cx43 gap junctions.
Collapse
Affiliation(s)
- Hassan Musa
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
36
|
Carnes CA, Dech SJ. Effects of dihydrotestosterone on cardiac inward rectifier K(+) current. INTERNATIONAL JOURNAL OF ANDROLOGY 2002; 25:210-4. [PMID: 12121570 DOI: 10.1046/j.1365-2605.2002.00349.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED There are well-described sexually dimorphic differences both in the electrocardiogram and in the propensity to develop drug-induced arrhythmias. The QT interval and the risk of ventricular proarrhythmia are reduced in males compared with females. Inward rectifier potassium current (IK(1)) is a primary determinant of the ventricular resting membrane potential, and an important contributor to myocardial excitability. METHODS AND RESULTS Using the whole-cell patch-clamp technique, we evaluated the effects of dihydrotestosterone (DHT) on IK(1) in ventricular myocytes from castrated rabbits that were treated with either replacement DHT or vehicle-control for 3 weeks. Compared with the DHT-treated group, myocytes from the control animals had a significant reduction in inward IK(1) conductance (p < 0.005) and rectification ratio (RR) (p < 0.04) with no significant change in peak outward current. Acute DHT superfusion of the myocytes increased inward IK(1) conductance from baseline (p < 0.05) and increased the RR (p < 0.05). Testosterone has been reported to increase intracellular ornithine decarboxylase activity in ventricular tissue, which would increase intracellular polyamines, known modulators of IK(1) rectification. We found that inclusion of the intracellular polyamines spermidine and putrescine in the pipette solution caused a decrease in inward IK(1), accompanied by an increase in peak outward current and a reduction in the RR. CONCLUSION In summary, DHT modulates IK(1) in a chronic, as well as, an acute fashion. These effects are not because of altered intracellular polyamines. DHT may modulate myocardial excitability through effects on IK(1).
Collapse
Affiliation(s)
- Cynthia A Carnes
- College of Pharmacy and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
37
|
Bastida CM, Tejada F, Cremades A, Peñafiel R. The preovulatory rise of ovarian ornithine decarboxylase is required for progesterone secretion by the corpus luteum. Biochem Biophys Res Commun 2002; 293:106-11. [PMID: 12054570 DOI: 10.1016/s0006-291x(02)00191-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ovarian progesterone secretion during the diestrus stage of the estrous cycle is produced by luteal cells derived from granulosa and thecal cells after the differentiation process that follows ovulation. Our results show that blockade of the preovulatory rise of ovarian ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, by treatment with the specific inhibitor alpha-difluoromethylornithine (DFMO) leads to a significant decrease in the ovarian progesterone content and a dramatic fall in the plasma levels of this hormone during the following diestrus. The same inhibition was produced in spite of the fact that both luteinizing and follicle stimulating hormones were given concomitantly with DFMO. On the other hand, the acute rise in the plasma progesterone levels observed after administration of human chorionic gonadotropin to mice at different periods of the estrous cycle was not affected by DFMO administration. Our results indicate that although elevated levels of ODC are not required for acute ovarian steroidogenesis, the preovulatory peak of ovarian ODC activity observed in the evening of proestrus may be critical for the establishment of a constitutive steroidogenic pathway and progesterone secretion by the corpus luteum during the diestrus stage of the murine estrous cycle.
Collapse
Affiliation(s)
- Carmen M Bastida
- Department of Biochemistry, School of Medicine, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|
38
|
Shantz LM, Feith DJ, Pegg AE. Targeted overexpression of ornithine decarboxylase enhances beta-adrenergic agonist-induced cardiac hypertrophy. Biochem J 2001; 358:25-32. [PMID: 11485548 PMCID: PMC1222028 DOI: 10.1042/0264-6021:3580025] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
These studies were designed to determine the consequences of constitutive overexpression of ornithine decarboxylase (ODC) in the heart. Induction of ODC is known to occur in response to agents that induce cardiac hypertrophy. However, it is not known whether high ODC levels are sufficient for the development of a hypertrophic phenotype. Transgenic mice were generated with cardiac-specific expression of a stable ODC protein using the alpha-myosin heavy-chain promoter. Founder lines with >1000-fold overexpression of ODC in the heart were established, resulting in a 50-fold overaccumulation of putrescine, 4-fold elevation in spermidine, a slight increase in spermine and accumulation of large amounts of cadaverine compared with littermate controls. Despite these significant alterations in polyamines, myocardial hypertrophy, as measured by ratio of heart to body weight, did not develop, although atrial natriuretic factor RNA was slightly elevated in transgenic ventricles. However, stimulation of beta-adrenergic signalling by isoproterenol resulted in severe hypertrophy and even death in ODC-overexpressing mice without further altering polyamine levels, compared with only a mild hypertrophy in littermates. When beta1-adrenergic stimulation was blocked by simultaneous treatment with isoproterenol and the beta1 antagonist atenolol, a significant, although reduced, hypertrophy was still present in the hearts of transgenic mice, suggesting that both beta1 and beta2 adrenergic receptors contribute to the hypertrophic phenotype. Therefore these mice provide a model to study the in vivo co-operativity between high ODC activity and activation of other pathways leading to hypertrophy in the heart.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology H166, P.O. Box 850, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
39
|
Abstract
The cardiac inward rectifier potassium current (I(K1)), present in all ventricular and atrial myocytes, has been suggested to play a major role in repolarization of the action potential and stabilization of the resting potential. The molecular basis is now ascribed to members of the Kir2 sub-family of inward rectifier K channel genes, and the availability of recombinant expression systems has led to elucidation of the mechanism of inward rectification, as well as additional regulatory mechanisms involving intracellular pH and phosphorylation. In vivo manipulation of the genes encoding I(K1)and regulatory proteins now promise to provide new insights to the role of this conductance in the heart. This review details recent advances and considers the prospects for further elucidation of the role of this conductance in cardiac electrical activity.
Collapse
Affiliation(s)
- A N Lopatin
- Department of Physiology, University of Michigan, 1150 W Medical Center Drive, Ann Arbor, MI 48109-0622, USA
| | | |
Collapse
|