1
|
Li H, Qiu J, Liu C, Yu G, Wu D, Chu Y, Wang K. MicroRNA-221 protects myocardial contractility in myocardial ischemia/reperfusion injury through phospholamban. PLoS One 2025; 20:e0316887. [PMID: 39883723 PMCID: PMC11781681 DOI: 10.1371/journal.pone.0316887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression. METHODS The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins. Changes in the structural integrity of the mouse heart were identified with HE and MASSON staining, while TUNEL staining was used to evaluate the TUNEL-positive cells of cardiomyocytes. Changes in myocardium calcium concentration were detected with reagent kits and the targeting interaction between miRNA 221 and PLB was evaluated using a luciferase reporter assay. RESULTS In the myocardium of MIRI mice, miRNA 221 level was significantly reduced, while the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), and apoptosis-related genes caspase 3, and Cyt C were increased markedly, as well as calcium levels in myocardium. Following the overexpression of miRNA 221 in myocardium, there was a marked alleviation of myocardial injury and cardiomyocyte apoptosis and necrosis, significant enhancement of left ventricular systolic function, and marked decrease in the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), caspase 3 and Cyt C, as well as a significant decrease in total calcium levels in myocardium. CONCLUSIONS miRNA 221 can alleviate myocardial injury in mouse myocardial ischemia/reperfusion by suppressing the expression of PLB, thus reducing calcium overload in myocardium.
Collapse
Affiliation(s)
- Hongyu Li
- School of Nursing, NingBo College of Health Sciences, Ningbo, Zhejiang, China
| | - Jimiao Qiu
- Department of Health Service, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Chang Liu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guobing Yu
- Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Danyu Wu
- Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Yichun Chu
- Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| | - Kai Wang
- Department of Pathology, 906 Hospital of Joint Logistic Support Force of PLA, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
4
|
Agyapong ED, Pedriali G, Ramaccini D, Bouhamida E, Tremoli E, Giorgi C, Pinton P, Morciano G. Calcium signaling from sarcoplasmic reticulum and mitochondria contact sites in acute myocardial infarction. J Transl Med 2024; 22:552. [PMID: 38853272 PMCID: PMC11162575 DOI: 10.1186/s12967-024-05240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Acute myocardial infarction (AMI) is a serious condition that occurs when part of the heart is subjected to ischemia episodes, following partial or complete occlusion of the epicardial coronary arteries. The resulting damage to heart muscle cells have a significant impact on patient's health and quality of life. About that, recent research focused on the role of the sarcoplasmic reticulum (SR) and mitochondria in the physiopathology of AMI. Moreover, SR and mitochondria get in touch each other through multiple membrane contact sites giving rise to the subcellular region called mitochondria-associated membranes (MAMs). MAMs are essential for, but not limited to, bioenergetics and cell fate. Disruption of the architecture of these regions occurs during AMI although it is still unclear the cause-consequence connection and a complete overview of the pathological changes; for sure this concurs to further damage to heart muscle. The calcium ion (Ca2+) plays a pivotal role in the pathophysiology of AMI and its dynamic signaling between the SR and mitochondria holds significant importance. In this review, we tried to summarize and update the knowledge about the roles of these organelles in AMI from a Ca2+ signaling point of view. Accordingly, we also reported some possible cardioprotective targets which are directly or indirectly related at limiting the dysfunctions caused by the deregulation of the Ca2+ signaling.
Collapse
Affiliation(s)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | | | | | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| |
Collapse
|
5
|
Dixon TAM, Rhyno ELM, El N, McGaw SP, Otley NA, Parker KS, Buldo EC, Pabody CM, Savoie M, Cockshutt A, Morash AJ, Lamarre SG, MacCormack TJ. Taurine depletion impairs cardiac function and affects tolerance to hypoxia and high temperatures in brook char (Salvelinus fontinalis). J Exp Biol 2023; 226:286891. [PMID: 36728502 DOI: 10.1242/jeb.245092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Physiological and environmental stressors can cause osmotic stress in fish hearts, leading to a reduction in intracellular taurine concentration. Taurine is a β-amino acid known to regulate cardiac function in other animal models but its role in fish has not been well characterized. We generated a model of cardiac taurine deficiency (TD) by feeding brook char (Salvelinus fontinalis) a diet enriched in β-alanine, which inhibits cardiomyocyte taurine uptake. Cardiac taurine levels were reduced by 21% and stress-induced changes in normal taurine handling were observed in TD brook char. Responses to exhaustive exercise and acute thermal and hypoxia tolerance were then assessed using a combination of in vivo, in vitro and biochemical approaches. Critical thermal maximum was higher in TD brook char despite significant reductions in maximum heart rate. In vivo, TD brook char exhibited a lower resting heart rate, blunted hypoxic bradycardia and a severe reduction in time to loss of equilibrium under hypoxia. In vitro function was similar between control and TD hearts under oxygenated conditions, but stroke volume and cardiac output were severely compromised in TD hearts under severe hypoxia. Aspects of mitochondrial structure and function were also impacted in TD permeabilized cardiomyocytes, but overall effects were modest. High levels of intracellular taurine are required to achieve maximum cardiac function in brook char and cardiac taurine efflux may be necessary to support heart function under stress. Taurine appears to play a vital, previously unrecognized role in supporting cardiovascular function and stress tolerance in fish.
Collapse
Affiliation(s)
- Toni-Anne M Dixon
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Emma-Lee M Rhyno
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nir El
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Samuel P McGaw
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Nathan A Otley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Katya S Parker
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Elena C Buldo
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Claire M Pabody
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Mireille Savoie
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Amanda Cockshutt
- Department of Chemistry, Saint Francis Xavier University, Antigonish, NS, Canada, B2G 2W5
| | - Andrea J Morash
- Department of Biology, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| | - Simon G Lamarre
- Departement de Biologie, Université de Moncton, Moncton, NB, Canada, E1A 3E9
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB, Canada, E4L 1E4
| |
Collapse
|
6
|
Impact of Prenatal Alcohol Exposure on the Development and Myocardium of Adult Mice: Morphometric Changes, Transcriptional Modulation of Genes Related to Cardiac Dysfunction, and Antioxidant Cardioprotection. Antioxidants (Basel) 2023; 12:antiox12020256. [PMID: 36829814 PMCID: PMC9952294 DOI: 10.3390/antiox12020256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The impact of prenatal alcohol exposure (PAE) varies considerably between individuals, leading to morphological and genetic changes. However, minor changes usually go undetected in PAE children. We investigated PAE's effects on gene transcription of genes related to cardiac dysfunction signaling in mouse myocardium and morphological changes. C57Bl/6 mice were subjected to a 10% PAE protocol. In postnatal days 2 and 60 (PN2 and PN60), morphometric measurements in the offspring were performed. Ventricular samples of the heart were collected in PN60 from male offspring for quantification of mRNA expression of 47 genes of nine myocardial signal transduction pathways related to cardiovascular dysfunction. Animals from the PAE group presented low birth weight than the Control group, but the differences were abolished in adult mice. In contrast, the mice's size was similar in PN2; however, PAE mice were oversized at PN60 compared with the Control group. Cardiac and ventricular indexes were increased in PAE mice. PAE modulated the mRNA expression of 43 genes, especially increasing the expressions of genes essential for maladaptive tissue remodeling. PAE animals presented increased antioxidant enzyme activities in the myocardium. In summary, PAE animals presented morphometric changes, transcription of cardiac dysfunction-related genes, and increased antioxidant protection in the myocardium.
Collapse
|
7
|
Valentim M, Brahmbhatt A, Tupling A. Skeletal and cardiac muscle calcium transport regulation in health and disease. Biosci Rep 2022; 42:BSR20211997. [PMID: 36413081 PMCID: PMC9744722 DOI: 10.1042/bsr20211997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
In healthy muscle, the rapid release of calcium ions (Ca2+) with excitation-contraction (E-C) coupling, results in elevations in Ca2+ concentrations which can exceed 10-fold that of resting values. The sizable transient changes in Ca2+ concentrations are necessary for the activation of signaling pathways, which rely on Ca2+ as a second messenger, including those involved with force generation, fiber type distribution and hypertrophy. However, prolonged elevations in intracellular Ca2+ can result in the unwanted activation of Ca2+ signaling pathways that cause muscle damage, dysfunction, and disease. Muscle employs several calcium handling and calcium transport proteins that function to rapidly return Ca2+ concentrations back to resting levels following contraction. This review will detail our current understanding of calcium handling during the decay phase of intracellular calcium transients in healthy skeletal and cardiac muscle. We will also discuss how impairments in Ca2+ transport can occur and how mishandling of Ca2+ can lead to the pathogenesis and/or progression of skeletal muscle myopathies and cardiomyopathies.
Collapse
Affiliation(s)
- Mark A. Valentim
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aditya N. Brahmbhatt
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - A. Russell Tupling
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
8
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Gates MA, Morash AJ, Lamarre SG, MacCormack TJ. Intracellular taurine deficiency impairs cardiac contractility in rainbow trout (Oncorhynchus mykiss) without affecting aerobic performance. J Comp Physiol B 2021; 192:49-60. [PMID: 34581858 DOI: 10.1007/s00360-021-01407-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023]
Abstract
Taurine is a non-proteinogenic sulfonic acid found in high concentrations inside vertebrate cardiomyocytes and its movement across the sarcolemmal membrane is critical for cell volume regulation. Taurine deficiency is rare in mammals, where it impairs cardiac contractility and leads to congestive heart failure. In fish, cardiac taurine levels vary substantially between species and can decrease by up to 60% in response to environmental change but its contribution to cardiac function is understudied. We addressed this gap in knowledge by generating a taurine-deficient rainbow trout (Oncorhynchus mykiss) model using a feed enriched with 3% β-alanine to inhibit cellular taurine uptake. Cardiac taurine was reduced by 17% after 4 weeks with no effect on growth or condition factor. Taurine deficiency did not affect routine or maximum rates of O2 consumption, aerobic scope, or critical swimming speed in whole animals but cardiac contractility was significantly impaired. In isometrically contracting ventricular strip preparations, the force-frequency and extracellular Ca2+-sensitivity relationships were both shifted downward and maximum pacing frequency was significantly lower in β-alanine fed trout. Cardiac taurine deficiency reduces sarcoplasmic reticular Ca2+-ATPase activity in mammals and our results are consistent with such an effect in rainbow trout. Our data indicate that intracellular taurine contributes to the regulation of cardiac contractility in rainbow trout. Aerobic performance was unaffected in β-alanine-fed animals, but further study is needed to determine if more significant natural reductions in taurine may constrain performance under certain environmental conditions.
Collapse
Affiliation(s)
- M A Gates
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - A J Morash
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - S G Lamarre
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada.,Department of Biology, Mount Allison University, Sackville, NB, Canada.,Department of Biology, Université de Moncton, Moncton, NB, Canada
| | - T J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, 63C York St., Sackville, NB, E4L1G8, Canada. .,Department of Biology, Mount Allison University, Sackville, NB, Canada. .,Department of Biology, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
10
|
Wang Y, Shi Q, Li M, Zhao M, Reddy Gopireddy R, Teoh JP, Xu B, Zhu C, Ireton KE, Srinivasan S, Chen S, Gasser PJ, Bossuyt J, Hell JW, Bers DM, Xiang YK. Intracellular β 1-Adrenergic Receptors and Organic Cation Transporter 3 Mediate Phospholamban Phosphorylation to Enhance Cardiac Contractility. Circ Res 2021; 128:246-261. [PMID: 33183171 PMCID: PMC7856104 DOI: 10.1161/circresaha.120.317452] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE β1ARs (β1-adrenoceptors) exist at intracellular membranes and OCT3 (organic cation transporter 3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular β1AR in cardiac contractility remains to be elucidated. OBJECTIVE Test localization and function of intracellular β1AR on cardiac contractility. METHODS AND RESULTS Membrane fractionation, super-resolution imaging, proximity ligation, coimmunoprecipitation, and single-molecule pull-down demonstrated a pool of β1ARs in mouse hearts that were associated with sarco/endoplasmic reticulum Ca2+-ATPase at the sarcoplasmic reticulum (SR). Local PKA (protein kinase A) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared with wild-type, myocytes lacking OCT3 (OCT3-KO [OCT3 knockout]) responded identically to the membrane-permeant βAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3-KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3-KO selectively suppressed calcium transients and contraction responses to norepinephrine but not isoproterenol. Furthermore, sotalol, a membrane-impermeant βAR-blocker, suppressed isoproterenol-induced PKA activation at the PM but permitted PKA activation at the SR, phospholamban phosphorylation, and contractility. Moreover, pretreatment with sotalol in OCT3-KO myocytes prevented norepinephrine-induced PKA activation at both PM and the SR and contractility. CONCLUSIONS Functional β1ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular β1ARs requires catecholamine transport via OCT3.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Adrenergic beta-Antagonists/pharmacology
- Animals
- Calcium-Binding Proteins/metabolism
- Cell Membrane/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Female
- Heart Rate
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Phosphorylation
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Sarcoplasmic Reticulum/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Qian Shi
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Minghui Li
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- Nanjing First Hospital, Nanjing Medical University, China (M.L., S.C.)
| | - Meimi Zhao
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- Department of Pharmaceutical Toxicology, China Medical University (M.Z.)
| | - Raghavender Reddy Gopireddy
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Jian-Peng Teoh
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Bing Xu
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.)
| | - Chaoqun Zhu
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Kyle E Ireton
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Sanghavi Srinivasan
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Shaoliang Chen
- Nanjing First Hospital, Nanjing Medical University, China (M.L., S.C.)
| | - Paul J Gasser
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI (P.J.G.)
| | - Julie Bossuyt
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Johannes W Hell
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Donald M Bers
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis (Y.W., Q.S., M.L., M.Z., R.R.G., J.-P.T., B.X., C.Z., K.E.I., S.S., J.B., J.W.H., D.M.B., Y.K.X.)
- VA Northern California Health Care System, Mather, CA (B.X., Y.K.X.)
| |
Collapse
|
11
|
Role of Oxidation-Dependent CaMKII Activation in the Genesis of Abnormal Action Potentials in Atrial Cardiomyocytes: A Simulation Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1597012. [PMID: 32685443 PMCID: PMC7327560 DOI: 10.1155/2020/1597012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/20/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023]
Abstract
Atrial fibrillation is a common cardiac arrhythmia with an increasing incidence rate. Particularly for the aging population, understanding the underlying mechanisms of atrial arrhythmia is important in designing clinical treatment. Recently, experiments have shown that atrial arrhythmia is associated with oxidative stress. In this study, an atrial cell model including oxidative-dependent Ca2+/calmodulin- (CaM-) dependent protein kinase II (CaMKII) activation was developed to explore the intrinsic mechanisms of atrial arrhythmia induced by oxidative stress. The simulation results showed that oxidative stress caused early afterdepolarizations (EADs) of action potentials by altering the dynamics of transmembrane currents and intracellular calcium cycling. Oxidative stress gradually elevated the concentration of calcium ions in the cytoplasm by enhancing the L-type Ca2+ current and sarcoplasmic reticulum (SR) calcium release. Owing to increased intracellular calcium concentration, the inward Na+/Ca2+ exchange current was elevated which slowed down the repolarization of the action potential. Thus, the action potential was prolonged and the L-type Ca2+ current was reactivated, resulting in the genesis of EAD. Furthermore, based on the atrial single-cell model, a two-dimensional (2D) ideal tissue model was developed to explore the effect of oxidative stress on the electrical excitation wave conduction in 2D tissue. Simulation results demonstrated that, under oxidative stress conditions, EAD hindered the conduction of electrical excitation and caused an unstable spiral wave, which could disrupt normal cardiac rhythm and cause atrial arrhythmia. This study showed the effects of excess reactive oxygen species on calcium cycling and action potential in atrial myocytes and provided insights regarding atrial arrhythmia induced by oxidative stress.
Collapse
|
12
|
Law ML, Cohen H, Martin AA, Angulski ABB, Metzger JM. Dysregulation of Calcium Handling in Duchenne Muscular Dystrophy-Associated Dilated Cardiomyopathy: Mechanisms and Experimental Therapeutic Strategies. J Clin Med 2020; 9:jcm9020520. [PMID: 32075145 PMCID: PMC7074327 DOI: 10.3390/jcm9020520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
: Duchenne muscular dystrophy (DMD) is an X-linked recessive disease resulting in the loss of dystrophin, a key cytoskeletal protein in the dystrophin-glycoprotein complex. Dystrophin connects the extracellular matrix with the cytoskeleton and stabilizes the sarcolemma. Cardiomyopathy is prominent in adolescents and young adults with DMD, manifesting as dilated cardiomyopathy (DCM) in the later stages of disease. Sarcolemmal instability, leading to calcium mishandling and overload in the cardiac myocyte, is a key mechanistic contributor to muscle cell death, fibrosis, and diminished cardiac contractile function in DMD patients. Current therapies for DMD cardiomyopathy can slow disease progression, but they do not directly target aberrant calcium handling and calcium overload. Experimental therapeutic targets that address calcium mishandling and overload include membrane stabilization, inhibition of stretch-activated channels, ryanodine receptor stabilization, and augmentation of calcium cycling via modulation of the Serca2a/phospholamban (PLN) complex or cytosolic calcium buffering. This paper addresses what is known about the mechanistic basis of calcium mishandling in DCM, with a focus on DMD cardiomyopathy. Additionally, we discuss currently utilized therapies for DMD cardiomyopathy, and review experimental therapeutic strategies targeting the calcium handling defects in DCM and DMD cardiomyopathy.
Collapse
Affiliation(s)
- Michelle L. Law
- Department of Family and Consumer Sciences, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA;
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Ashley A. Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
- Correspondence: ; Tel.: +1-612-625-5902; Fax: +1-612-625-5149
| |
Collapse
|
13
|
Gannon MP, Link MS. Phenotypic variation and targeted therapy of hypertrophic cardiomyopathy using genetic animal models. Trends Cardiovasc Med 2019; 31:20-31. [PMID: 31862214 DOI: 10.1016/j.tcm.2019.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) has a variable clinical presentation due to the diversity of causative genetic mutations. Animal models allow in vivo study of genotypic expression through non-invasive imaging, pathologic sampling, and force analysis. This review focuses on the spontaneous and induced mutations in various animal models affecting mainly sarcomere proteins. The sarcomere is comprised of thick (myosin) filaments and related proteins including myosin heavy chain and myosin binding protein-C; thin (actin) filament proteins and their associated regulators including tropomyosin, troponin I, troponin C, and troponin T. The regulatory milieu including transcription factors and cell signaling also play a significant role. Animal models provide a layered approach of understanding beginning with the causative mutation as a foundation. The functional consequences of protein energy utilization and calcium sensitivity in vivo and ex vivo can be studied. Beyond pathophysiologic disruption of sarcomere function, these models demonstrate the clinical sequalae of diastolic dysfunction, heart failure, and arrhythmogenic death. Through this cascade of understanding the mutation followed by their functional significance, targeted therapies have been developed and are briefly discussed.
Collapse
Affiliation(s)
- Michael P Gannon
- National Heart, Lung and Blood Institute, National Institutes of Health, US Department of Health and Human Services, Bldg 10, Rm B1D416, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Mark S Link
- University of Texas Southwestern Medical Center, USA
| |
Collapse
|
14
|
Pimenov OY, Galimova MH, Evdokimovskii EV, Averin AS, Nakipova OV, Reyes S, Alekseev AE. Myocardial α2-Adrenoceptors as Therapeutic Targets to Prevent Cardiac Hypertrophy and Heart Failure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905021x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
15
|
van Setten J, Verweij N, Mbarek H, Niemeijer MN, Trompet S, Arking DE, Brody JA, Gandin I, Grarup N, Hall LM, Hemerich D, Lyytikäinen LP, Mei H, Müller-Nurasyid M, Prins BP, Robino A, Smith AV, Warren HR, Asselbergs FW, Boomsma DI, Caulfield MJ, Eijgelsheim M, Ford I, Hansen T, Harris TB, Heckbert SR, Hottenga JJ, Iorio A, Kors JA, Linneberg A, MacFarlane PW, Meitinger T, Nelson CP, Raitakari OT, Silva Aldana CT, Sinagra G, Sinner M, Soliman EZ, Stoll M, Uitterlinden A, van Duijn CM, Waldenberger M, Alonso A, Gasparini P, Gudnason V, Jamshidi Y, Kääb S, Kanters JK, Lehtimäki T, Munroe PB, Peters A, Samani NJ, Sotoodehnia N, Ulivi S, Wilson JG, de Geus EJC, Jukema JW, Stricker B, van der Harst P, de Bakker PIW, Isaacs A. Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative ECG traits. Eur J Hum Genet 2019; 27:952-962. [PMID: 30679814 PMCID: PMC6777533 DOI: 10.1038/s41431-018-0295-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1, SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions), demonstrating involvement of cardiac-related pathways and regulation of nearby genes.
Collapse
Affiliation(s)
- Jessica van Setten
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hamdi Mbarek
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leanne M Hall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, England
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Daiane Hemerich
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33520, Tampere, Finland
| | - Hao Mei
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany
| | - Bram P Prins
- Human Genetics Research Centre, ICCS, St George's University of London, London, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Folkert W Asselbergs
- Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, and Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, MD, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Annamaria Iorio
- Cardiovascular Department, "Ospedali Riuniti and University of Trieste", Trieste, Italy
| | - Jan A Kors
- Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital-The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Meitinger
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, England
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20520, Finland
| | - Claudia T Silva Aldana
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
- Institute of translational Medicine-IMT-Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Rosario, Colombia
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti and University of Trieste", Trieste, Italy
| | - Moritz Sinner
- Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Monika Stoll
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands
| | - Andre Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Melanie Waldenberger
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Research unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paolo Gasparini
- DSM, University of Trieste, Trieste, Italy
- IRCCS-Burlo Garofolo Children Hospital, Via dell'Istria 65, Trieste, Italy
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - Yalda Jamshidi
- Human Genetics Research Centre, ICCS, St George's University of London, London, UK
| | - Stefan Kääb
- Department of Medicine I, Ludwig-Maximilians-Universität, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, 33520, Tampere, Finland
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Research Centre, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Annette Peters
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, England
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Groby Road, Leicester, UK
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Sheila Ulivi
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Eco J C de Geus
- Department of Biological Psychology, Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Stricker
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aaron Isaacs
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
- Department of Biochemistry, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
16
|
Alekseev AE, Park S, Pimenov OY, Reyes S, Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol Ther 2019; 197:179-190. [PMID: 30703415 DOI: 10.1016/j.pharmthera.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α2-adrenoceptor (α2-AR) isoforms, abundant in sympathetic synapses and noradrenergic neurons of the central nervous system, are integral in the presynaptic feed-back loop mechanism that moderates norepinephrine surges. We recently identified that postsynaptic α2-ARs, found in the myocellular sarcolemma, also contribute to a muscle-delimited feedback control capable of attenuating mobilization of intracellular Ca2+ and myocardial contractility. This previously unrecognized α2-AR-dependent rheostat is able to counteract competing adrenergic receptor actions in cardiac muscle. Specifically, in ventricular myocytes, nitric oxide (NO) and cGMP are the intracellular messengers of α2-AR signal transduction pathways that gauge the kinase-phosphatase balance and manage cellular Ca2+ handling preventing catecholamine-induced Ca2+ overload. Moreover, α2-AR signaling counterbalances phospholipase C - PKC-dependent mechanisms underscoring a broader cardioprotective potential under sympathoadrenergic and angiotensinergic challenge. Recruitment of such tissue-specific features of α2-AR under sustained sympathoadrenergic drive may, in principle, be harnessed to mitigate or prevent cardiac malfunction. However, cardiovascular disease may compromise peripheral α2-AR signaling limiting pharmacological targeting of these receptors. Prospective cardiac-specific gene or cell-based therapeutic approaches aimed at repairing or improving stress-protective α2-AR signaling may offer an alternative towards enhanced preservation of cardiac muscle structure and function.
Collapse
Affiliation(s)
- Alexey E Alekseev
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Oleg Yu Pimenov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Santiago Reyes
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Stabile 5, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| |
Collapse
|
17
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
19
|
Roles of PDE1 in Pathological Cardiac Remodeling and Dysfunction. J Cardiovasc Dev Dis 2018; 5:jcdd5020022. [PMID: 29690591 PMCID: PMC6023290 DOI: 10.3390/jcdd5020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
Pathological cardiac hypertrophy and dysfunction is a response to various stress stimuli and can result in reduced cardiac output and heart failure. Cyclic nucleotide signaling regulates several cardiac functions including contractility, remodeling, and fibrosis. Cyclic nucleotide phosphodiesterases (PDEs), by catalyzing the hydrolysis of cyclic nucleotides, are critical in the homeostasis of intracellular cyclic nucleotide signaling and hold great therapeutic potential as drug targets. Recent studies have revealed that the inhibition of the PDE family member PDE1 plays a protective role in pathological cardiac remodeling and dysfunction by the modulation of distinct cyclic nucleotide signaling pathways. This review summarizes recent key findings regarding the roles of PDE1 in the cardiac system that can lead to a better understanding of its therapeutic potential.
Collapse
|
20
|
Smeazzetto S, Tadini-Buoninsegni F, Thiel G, Moncelli MR. Selectivity of the phospholamban ion channel investigated by single channel measurements. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
21
|
Chen BC, Shibu MA, Kuo CH, Shen CY, Chang-Lee SN, Lai CH, Chen RJ, Yao CH, Viswanadha VP, Liu JS, Chen WK, Huang CY. E4BP4 inhibits AngII-induced apoptosis in H9c2 cardiomyoblasts by activating the PI3K-Akt pathway and promoting calcium uptake. Exp Cell Res 2018; 363:227-234. [PMID: 29331388 DOI: 10.1016/j.yexcr.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023]
Abstract
The bZIP transcription factor E4BP4 is a survival factor that is known to be elevated in diseased heart and promote cell survival. In this study the role of E4BP4 on angiotensin-II (AngII)-induced apoptosis has been examined in in vitro cell model. H9c2 cardiomyoblast cells that overexpressed E4BP4 were exposed to AngII to observe the cardio-protective effects of E4BP4 on hypertension related apoptosis. The results from TUNEL assays revealed that E4BP4 significantly attenuated AngII-induced apoptosis. Further analysis by Western blot and RT-PCR showed that E4BP4 inhibited AngII-induced IGF-II mRNA expression and cleavage of caspase-3 through the PI3K-Akt pathway. In addition, E4BP4 enhanced calcium reuptake into the sacroplasmic reticulum by down-regulating PP2A and by up-regulating the phosphorylation of PKA and PLB proteins. Our findings indicate that E4BP4 functions as a survival factor in cardiomyoblasts by inhibiting IGF-II transcription and by regulating calcium cycling.
Collapse
Affiliation(s)
- Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Shu Nu Chang-Lee
- Department of Healthcare Administration, Asia University, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung, General Hospital, Taichung 41152, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | | | - Jian-Shen Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan; Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Kung Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
22
|
Paul M, Kemparaju K, Girish KS. Inhibition of constitutive NF-κB activity induces platelet apoptosis via ER stress. Biochem Biophys Res Commun 2017; 493:1471-1477. [PMID: 28986259 DOI: 10.1016/j.bbrc.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
Platelets are anucleate cells, known for their pivotal roles in hemostasis, inflammation, immunity, and disease progression. Being anuclear, platelets are known to express several transcriptional factors which exert nongenomic functions, including the positive and negative regulation of platelet activation. NF-κB is one such transcriptional factor involved in the regulation of genes for survival, proliferation, inflammation and immunity. Although, the role NF-κB in platelet activation and aggregation is partially known, its function in management of platelet survival and apoptosis remain unexplored. Therefore, two unrelated inhibitors of NF-κB activation, BAY 11-7082 and MLN4924 were used to determine the role of NF-κB in platelets. Inhibition of NF-κB caused decreased SERCA activity and increased cytosolic Ca2+ level causing ER stress which was determined by the phosphorylation of eIF2-α. Further, there was increased BAX and decreased BCl-2 levels, incidence of mitochondrial membrane potential depolarization, release of cytochrome c into cytosol, caspase activation, PS externalization and cell death in BAY 11-7082 and MLN4924 treated platelets. The obtained results demonstrate the critical role played by NF-κB in Ca2+ homeostasis and survival of platelets. In addition, the study demonstrates the potential side effects associated with NF-κB inhibitors employed during inflammation and cancer therapy.
Collapse
Affiliation(s)
- Manoj Paul
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India
| | - Kempaiah Kemparaju
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India.
| | - Kesturu S Girish
- DOS in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570 006, India; Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru 572 103, India.
| |
Collapse
|
23
|
Subcellular Targeting of PDE4 in Cardiac Myocytes and Generation of Signaling Compartments. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, Tan R, Barbagallo F, West T, Anderson E, Wei W, Abel ED, Xiang YK. Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation 2016; 135:73-88. [PMID: 27815373 DOI: 10.1161/circulationaha.116.022281] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/13/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) and obesity independently increase the risk of heart failure by incompletely understood mechanisms. We propose that hyperinsulinemia might promote adverse consequences in the hearts of subjects with type-2 DM and obesity. METHODS High-fat diet feeding was used to induce obesity and DM in wild-type mice or mice lacking β2-adrenergic receptor (β2AR) or β-arrestin2. Wild-type mice fed with high-fat diet were treated with a β-blocker carvedilol or a GRK2 (G-protein-coupled receptor kinase 2) inhibitor. We examined signaling and cardiac contractile function. RESULTS High-fat diet feeding selectively increases the expression of phosphodiesterase 4D (PDE4D) in mouse hearts, in concert with reduced protein kinase A phosphorylation of phospholamban, which contributes to systolic and diastolic dysfunction. The expression of PDE4D is also elevated in human hearts with DM. The induction of PDE4D expression is mediated by an insulin receptor, insulin receptor substrate, and GRK2 and β-arrestin2-dependent transactivation of a β2AR-extracellular regulated protein kinase signaling cascade. Thus, pharmacological inhibition of β2AR or GRK2, or genetic deletion of β2AR or β-arrestin2, all significantly attenuate insulin-induced phosphorylation of extracellular regulated protein kinase and PDE4D induction to prevent DM-related contractile dysfunction. CONCLUSIONS These studies elucidate a novel mechanism by which hyperinsulinemia contributes to heart failure by increasing PDE4D expression and identify β2AR or GRK2 as plausible therapeutic targets for preventing or treating heart failure in subjects with type 2 DM.
Collapse
MESH Headings
- Animals
- Carbazoles/pharmacology
- Carvedilol
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 4/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism
- Diabetes Mellitus, Type 2/complications
- Diet, High-Fat
- Extracellular Signal-Regulated MAP Kinases/metabolism
- G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Heart Failure/etiology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Obesity/complications
- Propanolamines/pharmacology
- Receptors, Adrenergic, beta-2/deficiency
- Receptors, Adrenergic, beta-2/genetics
- Signal Transduction
- Vasodilator Agents/pharmacology
- beta-Arrestin 2/deficiency
- beta-Arrestin 2/genetics
Collapse
Affiliation(s)
- Qingtong Wang
- Department of Pharmacology, University of California at Davis, CA 95616, USA
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - Yongming Liu
- Department of Pharmacology, University of California at Davis, CA 95616, USA
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China
| | - Qin Fu
- Department of Pharmacology, University of California at Davis, CA 95616, USA
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Xu
- Department of Pharmacology, University of California at Davis, CA 95616, USA
| | - Yuan Zhang
- Department of Medicine, Division of Endocrinology and Metabolism and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Sungjin Kim
- Department of Pharmacology, University of California at Davis, CA 95616, USA
| | - Ruensern Tan
- Department of Pharmacology, University of California at Davis, CA 95616, USA
| | - Federica Barbagallo
- Department of Pharmacology, University of California at Davis, CA 95616, USA
| | - Toni West
- Department of Pharmacology, University of California at Davis, CA 95616, USA
| | - Ethan Anderson
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, NC 27834, USA
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, 230032, China
| | - E Dale Abel
- Department of Medicine, Division of Endocrinology and Metabolism and Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, CA 95616, USA
- VA Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
25
|
Singh RB, Dandekar SP, Elimban V, Gupta SK, Dhalla NS. Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 2016; 263:241-56. [PMID: 27520682 DOI: 10.1023/b:mcbi.0000041865.63445.40] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is a major cause of death and thus a great deal of effort has been made in salvaging the diseased myocardium. Although various factors have been identified as possible causes of different cardiac diseases such as heart failure and ischemic heart disease, there is a real need to elucidate their role for the better understanding of the cardiac disease pathology and formulation of strategies for developing newer therapeutic interventions. In view of the intimate involvement of different types of proteases in maintaining cellular structure, the role of proteases in various cardiac diseases has become the focus of recent research. Proteases are present in the cytosol as well as are localized in a number of subcellular organelles in the cell. These are known to use extracellular matrix, cytoskeletal, sarcolemmal, sarcoplasmic reticular, mitochondrial and myofibrillar proteins as substrates. Work from different laboratories using a wide variety of techniques has shown that the activation of proteases causes alterations of a number of specific proteins leading to subcellular remodeling and cardiac dysfunction. Inhibition of protease action by different drugs and agents, therefore, has a clinical relevance and is expected to form a part of new treatment paradigm for improving heart function. This review examines the biochemistry and localization of some of the proteases in the cardiac tissue in addition to identification of the sites of action of some protease inhibitors. (Mol Cell Biochem 263: 241-256, 2004).
Collapse
Affiliation(s)
- Raja B Singh
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Sucheta P Dandekar
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Suresh K Gupta
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| |
Collapse
|
26
|
Guizoni DM, Oliveira-Junior SA, Noor SLR, Pagan LU, Martinez PF, Lima ARR, Gomes MJ, Damatto RL, Cezar MDM, Bonomo C, Zornoff LAM, Okoshi K, Okoshi MP. Effects of late exercise on cardiac remodeling and myocardial calcium handling proteins in rats with moderate and large size myocardial infarction. Int J Cardiol 2016; 221:406-12. [PMID: 27404715 DOI: 10.1016/j.ijcard.2016.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Physical exercise attenuates myocardial infarction (MI)-induced cardiac remodeling. However, it is unsettled whether late exercise modulates post-infarction cardiac remodeling differentially according to infarct size. We investigated the effects of exercise started at late stage heart failure on cardiac remodeling in rats with moderate and large sized MI. METHODS Three months after MI, rats were assigned into sedentary and exercise groups. Exercise rats underwent treadmill for three months. After assessing infarct size by histological analysis, rats were subdivided into four groups: moderate MI sedentary (Mod MI-Sed; n=7), Mod MI exercised (Mod MI-Ex; n=7), Large MI-Sed (n=11), and Large MI-Ex (n=10). RESULTS Before exercise, MI-induced cardiac changes were demonstrated by comparing results to a Sham group; alterations were more intense in rats with large than moderate MI size. Systolic function, evaluated by echocardiogram using the variation in LV fractional area change between after and before exercise, was improved in exercise than sedentary groups. Calsequestrin expression increased in exercised compared to sedentary groups. L-type calcium channel was higher in Mod MI-Ex than Mod MI-Sed. SERCA2a, phospholamban, and Na(+)/Ca(2+) exchanger expression did not differ between groups. CONCLUSION Late exercise improves systolic function and modulates intracellular calcium signaling proteins in rats with moderate and large MI.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | | | - Sefora L R Noor
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Luana U Pagan
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Paula F Martinez
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil; School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Aline R R Lima
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Mariana J Gomes
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo L Damatto
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marcelo D M Cezar
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Camila Bonomo
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Leonardo A M Zornoff
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Marina P Okoshi
- Internal Medicine Department, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu, Brazil.
| |
Collapse
|
27
|
Zhang Y, Chen A, Song L, Li M, Luo Z, Zhang W, Chen Y, He B. Low-Level Vagus Nerve Stimulation Reverses Cardiac Dysfunction and Subcellular Calcium Handling in Rats With Post-Myocardial Infarction Heart Failure. Int Heart J 2016; 57:350-5. [PMID: 27181040 DOI: 10.1536/ihj.15-516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vagus nerve stimulation (VNS), targeting the imbalanced autonomic nervous system, is a promising therapeutic approach for chronic heart failure (HF). Moreover, calcium cycling is an important part of cardiac excitation-contraction coupling (ECC), which also participates in the antiarrhythmic effects of VNS. We hypothesized that low-level VNS (LL-VNS) could improve cardiac function by regulation of intracellular calcium handling properties. The experimental HF model was established by ligation of the left anterior descending coronary artery (LAD). Thirty-two male Sprague-Dawley rats were divided into 3 groups as follows; control group (sham operated without coronary ligation, n = 10), HF-VNS group (HF rats with VNS, n = 12), and HF-SS group (HF rats with sham nerve stimulation, n = 10). After 8 weeks of treatment, LL-VNS significantly improved left ventricular ejection fraction (LVEF) and attenuated myocardial interstitial fibrosis in the HF-VNS group compared with the HF-SS group. Elevated plasma norepinephrine and dopamine, but not epinephrine, were partially reduced by LL-VNS. Additionally, LL-VNS restored the protein and mRNA levels of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a), Na(+)-Ca(2+) exchanger 1 (NCX1), and phospholamban (PLB) whereas the expression of ryanodine receptor 2 (RyR2) as well as mRNA level was unaffected. Thus, our study results suggest that the improvement of cardiac performance by LL-VNS is accompanied by the reversal of dysfunctional calcium handling properties including SERCA2a, NCX1, and PLB which may be a potential molecular mechanism of VNS for HF.
Collapse
Affiliation(s)
- Yunhe Zhang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Daniels L, Bell JR, Delbridge LMD, McDonald FJ, Lamberts RR, Erickson JR. The role of CaMKII in diabetic heart dysfunction. Heart Fail Rev 2016. [PMID: 26198034 DOI: 10.1007/s10741-015-9498-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is an increasing epidemic that places a significant burden on health services worldwide. The incidence of heart failure (HF) is significantly higher in diabetic patients compared to non-diabetic patients. One underlying mechanism proposed for the link between DM and HF is activation of calmodulin-dependent protein kinase (CaMKIIδ). CaMKIIδ mediates ion channel function and Ca(2+) handling during excitation-contraction and excitation-transcription coupling in the myocardium. CaMKIIδ activity is up-regulated in the myocardium of diabetic patients and mouse models of diabetes, where it promotes pathological signaling that includes hypertrophy, fibrosis and apoptosis. Pharmacological inhibition and knockout models of CaMKIIδ have shown some promise of a potential therapeutic benefit of CaMKIIδ inhibition, with protection against cardiac hypertrophy and apoptosis reported. This review will highlight the pathological role of CaMKIIδ in diabetes and discuss CaMKIIδ as a therapeutic target in DM, and also the effects of exercise on CaMKIIδ.
Collapse
Affiliation(s)
- Lorna Daniels
- Department of Physiology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
29
|
Sanoudou D, Kolokathis F, Arvanitis D, Al-Shafai K, Krishnamoorthy N, Buchan RJ, Walsh R, Tsiapras D, Barton PJ, Cook SA, Kremastinos D, Yacoub M. Genetic modifiers to the PLN L39X mutation in a patient with DCM and sustained ventricular tachycardia? Glob Cardiol Sci Pract 2015; 2015:29. [PMID: 26535225 PMCID: PMC4614339 DOI: 10.5339/gcsp.2015.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/30/2015] [Indexed: 11/03/2022] Open
Affiliation(s)
- Despina Sanoudou
- 4 Dept. of Internal Medicine, Medical School, University of Athens, Greece. ; Biomedical Research Foundation of the Academy of Athens, Greece
| | | | | | - Kholoud Al-Shafai
- Qatar Cardiovascular Research Center (QCRC), Qatar Foundation, Doha, Qatar
| | | | - Rachel J Buchan
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. ; National Heart & Lung Institute, Imperial College London, London, UK
| | - Roddy Walsh
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. ; National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Paul Jr Barton
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. ; National Heart & Lung Institute, Imperial College London, London, UK
| | - Stuart A Cook
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK. ; National Heart & Lung Institute, Imperial College London, London, UK. ; NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Magdi Yacoub
- Qatar Cardiovascular Research Center (QCRC), Qatar Foundation, Doha, Qatar. ; NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Storozynsky E. Multimodality assessment and treatment of chemotherapy-induced cardiotoxicity. Future Cardiol 2015; 11:421-4. [DOI: 10.2217/fca.15.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eugene Storozynsky
- University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
31
|
Specific Biomarkers: Detection of Cancer Biomarkers Through High-Throughput Transcriptomics Data. Cognit Comput 2015. [DOI: 10.1007/s12559-015-9336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Dysfunctional conformational dynamics of protein kinase A induced by a lethal mutant of phospholamban hinder phosphorylation. Proc Natl Acad Sci U S A 2015; 112:3716-21. [PMID: 25775607 DOI: 10.1073/pnas.1502299112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between kinases and substrates is crucial for the formation of catalytically committed complexes that enable phosphoryl transfer. However, a clear understanding on how substrates modulate kinase structural dynamics to control catalytic efficiency is still missing. Here, we used solution NMR spectroscopy to study the conformational dynamics of two complexes of the catalytic subunit of the cAMP-dependent protein kinase A with WT and R14 deletion phospholamban, a lethal human mutant linked to familial dilated cardiomyopathy. Phospholamban is a central regulator of heart muscle contractility, and its phosphorylation by protein kinase A constitutes a primary response to β-adrenergic stimulation. We found that the single deletion of arginine in phospholamban's recognition sequence for the kinase reduces its binding affinity and dramatically reduces phosphorylation kinetics. Structurally, the mutant prevents the enzyme from adopting conformations and motions committed for catalysis, with concomitant reduction in catalytic efficiency. Overall, these results underscore the importance of a well-tuned structural and dynamic interplay between the kinase and its substrates to achieve physiological phosphorylation levels for proper Ca(2+) signaling and normal cardiac function.
Collapse
|
33
|
Chan YH, Tsai WC, Song Z, Ko CY, Qu Z, Weiss JN, Lin SF, Chen PS, Jones LR, Chen Z. Acute reversal of phospholamban inhibition facilitates the rhythmic whole-cell propagating calcium waves in isolated ventricular myocytes. J Mol Cell Cardiol 2015; 80:126-35. [PMID: 25596331 DOI: 10.1016/j.yjmcc.2014.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 02/01/2023]
Abstract
Phospholamban (PLB) inhibits the activity of cardiac sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a). Phosphorylation of PLB during sympathetic activation reverses SERCA2a inhibition, increasing SR Ca(2+) uptake. However, sympathetic activation also modulates multiple other intracellular targets in ventricular myocytes (VMs), making it impossible to determine the specific effects of the reversal of PLB inhibition on the spontaneous SR Ca(2+) release. Therefore, it remains unclear how PLB regulates rhythmic activity in VMs. Here, we used the Fab fragment of 2D12, a monoclonal anti-PLB antibody, to test how acute reversal of PLB inhibition affects the spontaneous SR Ca(2+) release in normal VMs. Ca(2+) sparks and spontaneous Ca(2+) waves (SCWs) were recorded in the line-scan mode of confocal microscopy using the Ca(2+) fluorescent dye Fluo-4 in isolated permeabilized mouse VMs. Fab, which reverses PLB inhibition, significantly increased the frequency, amplitude, and spatial/temporal spread of Ca(2+) sparks in VMs exposed to 50 nM free [Ca(2+)]. At physiological diastolic free [Ca(2+)] (100-200 nM), Fab facilitated the formation of whole-cell propagating SCWs. At higher free [Ca(2+)], Fab increased the frequency and velocity, but decreased the decay time of the SCWs. cAMP had little additional effect on the frequency or morphology of Ca(2+) sparks or SCWs after Fab addition. These findings were complemented by computer simulations. In conclusion, acute reversal of PLB inhibition alone significantly increased the spontaneous SR Ca(2+) release, leading to the facilitation and organization of whole-cell propagating SCWs in normal VMs. PLB thus plays a key role in subcellular Ca(2+) dynamics and rhythmic activity of VMs.
Collapse
Affiliation(s)
- Yi-Hsin Chan
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Linkou, Taoyuan, Taiwan
| | - Wei-Chung Tsai
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung University College of Medicine, Kaohsiung, Taiwan
| | - Zhen Song
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Christopher Y Ko
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - James N Weiss
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larry R Jones
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zhenhui Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
34
|
Lymperopoulos A, Garcia D, Walklett K. Pharmacogenetics of cardiac inotropy. Pharmacogenomics 2014; 15:1807-1821. [PMID: 25493572 DOI: 10.2217/pgs.14.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability to stimulate cardiac contractility is known as positive inotropy. Endogenous hormones, such as adrenaline and several natural or synthetic compounds possess this biological property, which is invaluable in the modern cardiovascular therapy setting, especially in acute heart failure or in cardiogenic shock. A number of proteins inside the cardiac myocyte participate in the molecular pathways that translate the initial stimulus, that is, the hormone or drug, into the effect of increased contractility (positive inotropy). Genetic variations (polymorphisms) in several genes encoding these proteins have been identified and characterized in humans with potentially significant consequences on cardiac inotropic function. The present review discusses these polymorphisms and their effects on cardiac inotropy, along with the individual pharmacogenomics of the most important positive inotropic agents in clinical use today. Important areas for future investigations in the field are also highlighted.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, 3200 S. University Drive, HPD (Terry) Bldg/Room 1338, Ft. Lauderdale, FL 33328-2018, USA
| | | | | |
Collapse
|
35
|
Houser SR. Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res 2014; 114:1320-7; discussion 1327. [PMID: 24723657 DOI: 10.1161/circresaha.114.300569] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This Controversies in Research article discusses the hypothesis that protein kinase A (PKA)-mediated phosphorylation of the Ryanodine Receptor (RyR) at a single serine (RyRS2808) is essential for normal sympathetic regulation of cardiac myocyte contractility and is responsible for the disturbed Ca(2+) regulation that underlies depressed contractility in heart failure. Studies supporting this hypothesis have associated hyperphosphorylation of RyRS2808 and heart failure progression in animals and humans and have shown that a phosphorylation defective RyR mutant mouse (RyRS2808A) does not respond normally to sympathetic agonists and does not exhibit heart failure symptoms after myocardial infarction. Studies to confirm and extend these ideas have failed to support the original data. Experiments from many different laboratories have convincingly shown that PKA-mediated RyRS2808 phosphorylation does not play any significant role in the normal sympathetic regulation of sarcoplasmic reticulum Ca2+ release or cardiac contractility. Hearts and myocytes from RyRS2808A mice have been shown to respond normally to sympathetic agonists, and to increase Ca(2+) influx, Ca(2+) transients, and Ca(2+) efflux. Although the RyR is involved in heart failure-related Ca(2+) disturbances, this results from Ca(2+)-calmodulin kinase II and reactive oxygen species-mediated regulation rather than by RyR2808 phosphorylation. Also, a new study has shown that RyRS2808A mice are not protected from myocardial infarction. Collectively, there is now a clear consensus in the published literature showing that dysregulated RyRs contribute to the altered Ca(2+) regulatory phenotype of the failing heart, but PKA-mediated phosphorylation of RyRS2808 has little or no role in these alterations.
Collapse
Affiliation(s)
- Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
36
|
Di Carlo MN, Said M, Ling H, Valverde CA, De Giusti VC, Sommese L, Palomeque J, Aiello EA, Skapura DG, Rinaldi G, Respress JL, Brown JH, Wehrens XHT, Salas MA, Mattiazzi A. CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2014; 74:274-83. [PMID: 24949568 PMCID: PMC4131282 DOI: 10.1016/j.yjmcc.2014.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022]
Abstract
Ca(2+)-calmodulin kinase II (CaMKII) activation is deleterious in cardiac ischemia/reperfusion (I/R). Moreover, inhibition of CaMKII-dependent phosphorylations at the sarcoplasmic reticulum (SR) prevents CaMKII-induced I/R damage. However, the downstream targets of CaMKII at the SR level, responsible for this detrimental effect, remain unclear. In the present study we aimed to dissect the role of the two main substrates of CaMKII at the SR level, phospholamban (PLN) and ryanodine receptors (RyR2), in CaMKII-dependent I/R injury. In mouse hearts subjected to global I/R (45/120min), phosphorylation of the primary CaMKII sites, S2814 on cardiac RyR2 and of T17 on PLN, significantly increased at the onset of reperfusion whereas PKA-dependent phosphorylation of RyR2 and PLN did not change. Similar results were obtained in vivo, in mice subjected to regional myocardial I/R (1/24h). Knock-in mice with an inactivated serine 2814 phosphorylation site on RyR2 (S2814A) significantly improved post-ischemic mechanical recovery, reduced infarct size and decreased apoptosis. Conversely, knock-in mice, in which CaMKII site of RyR2 is constitutively activated (S2814D), significantly increased infarct size and exacerbated apoptosis. In S2814A and S2814D mice subjected to regional myocardial ischemia, infarct size was also decreased and increased respectively. Transgenic mice with double-mutant non-phosphorylatable PLN (S16A/T17A) in the PLN knockout background (PLNDM) also showed significantly increased post-ischemic cardiac damage. This effect cannot be attributed to PKA-dependent PLN phosphorylation and was not due to the enhanced L-type Ca(2+) current, present in these mice. Our results reveal a major role for the phosphorylation of S2814 site on RyR2 in CaMKII-dependent I/R cardiac damage. In contrast, they showed that CaMKII-dependent increase in PLN phosphorylation during reperfusion opposes rather than contributes to I/R damage.
Collapse
Affiliation(s)
- Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Haiyun Ling
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0636, USA
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Verónica C De Giusti
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Leandro Sommese
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Darlene G Skapura
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Gustavo Rinaldi
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina
| | - Jonathan L Respress
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0636, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Margarita A Salas
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT, La Plata, Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
37
|
Fu Q, Xu B, Liu Y, Parikh D, Li J, Li Y, Zhang Y, Riehle C, Zhu Y, Rawlings T, Shi Q, Clark RB, Chen X, Abel ED, Xiang YK. Insulin inhibits cardiac contractility by inducing a Gi-biased β2-adrenergic signaling in hearts. Diabetes 2014; 63:2676-89. [PMID: 24677713 PMCID: PMC4113065 DOI: 10.2337/db13-1763] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin and adrenergic stimulation are two divergent regulatory systems that may interact under certain pathophysiological circumstances. Here, we characterized a complex consisting of insulin receptor (IR) and β2-adrenergic receptor (β2AR) in the heart. The IR/β2AR complex undergoes dynamic dissociation under diverse conditions such as Langendorff perfusions of hearts with insulin or after euglycemic-hyperinsulinemic clamps in vivo. Activation of IR with insulin induces protein kinase A (PKA) and G-protein receptor kinase 2 (GRK2) phosphorylation of the β2AR, which promotes β2AR coupling to the inhibitory G-protein, Gi. The insulin-induced phosphorylation of β2AR is dependent on IRS1 and IRS2. After insulin pretreatment, the activated β2AR-Gi signaling effectively attenuates cAMP/PKA activity after β-adrenergic stimulation in cardiomyocytes and consequently inhibits PKA phosphorylation of phospholamban and contractile responses in myocytes in vitro and in Langendorff perfused hearts. These data indicate that increased IR signaling, as occurs in hyperinsulinemic states, may directly impair βAR-regulated cardiac contractility. This β2AR-dependent IR and βAR signaling cross-talk offers a molecular basis for the broad interaction between these signaling cascades in the heart and other tissues or organs that may contribute to the pathophysiology of metabolic and cardiovascular dysfunction in insulin-resistant states.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- G-Protein-Coupled Receptor Kinase 2/genetics
- G-Protein-Coupled Receptor Kinase 2/metabolism
- Insulin/administration & dosage
- Insulin/pharmacology
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Mice
- Mice, Knockout
- Myocardial Contraction/drug effects
- Myocardial Contraction/physiology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, ChinaDepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, CA
| | - Yongming Liu
- Department of Pharmacology, University of California, Davis, Davis, CAShuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dippal Parikh
- Department of Pharmacology, University of California, Davis, Davis, CA
| | - Jing Li
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - Yuan Zhang
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Christian Riehle
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Yi Zhu
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Tenley Rawlings
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Qian Shi
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| | - Richard B Clark
- Department of Integrative Biology and Pharmacology, University of Texas Houston Medical Center, Houston, TX
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center, Temple University Medical Center, Philadelphia, PA
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, Program in Molecular Medicine, University of Utah, Salt Lake City, UTFraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, Davis, CADepartment of Molecular and Integrative Physiology, University of Illinois at Urbana, Urbana, IL
| |
Collapse
|
38
|
Alpha-2 adrenoceptors and imidazoline receptors in cardiomyocytes mediate counterbalancing effect of agmatine on NO synthesis and intracellular calcium handling. J Mol Cell Cardiol 2014; 68:66-74. [DOI: 10.1016/j.yjmcc.2013.12.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/11/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022]
|
39
|
Gao MH, Lai NC, Tang T, Guo T, Tang R, Chun BJ, Wang H, Dalton NN, Suarez J, Dillmann WH, Hammond HK. Preserved cardiac function despite marked impairment of cAMP generation. PLoS One 2013; 8:e72151. [PMID: 24147149 PMCID: PMC3797917 DOI: 10.1371/journal.pone.0072151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/06/2013] [Indexed: 01/10/2023] Open
Abstract
Objectives So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca2+ handling or myofilament response to Ca2+ using agents that do not affect cAMP. Although left ventricular (LV) function is tightly linked to adenylyl cyclase (AC) activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca2+ handling alone. Methods and Results We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut). Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001), but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca2+ transients in response to isoproterenol (p = 0.0001). AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03) and reduced expression of phospholamban protein (p = 0.01). Conclusion LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca2+ handling — effects that occur despite diminished cAMP.
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sorensen AB, Søndergaard MT, Overgaard MT. Calmodulin in a Heartbeat. FEBS J 2013; 280:5511-32. [DOI: 10.1111/febs.12337] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/28/2013] [Accepted: 05/07/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Anders B. Sorensen
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Mads T. Søndergaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| | - Michael T. Overgaard
- Department of Biotechnology, Chemistry and Environmental Engineering; Aalborg University; Denmark
| |
Collapse
|
41
|
Wenxin-Keli Regulates the Calcium/Calmodulin-Dependent Protein Kinase II Signal Transduction Pathway and Inhibits Cardiac Arrhythmia in Rats with Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:464508. [PMID: 23781262 PMCID: PMC3679760 DOI: 10.1155/2013/464508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
Wenxin-Keli (WXKL) is a Chinese herbal compound reported to be of benefit in the treatment of cardiac arrhythmia, cardiac inflammation, and heart failure. Amiodarone is a noncompetitive inhibitor of the α- and β-adrenergic receptors and prevents calcium influx in the slow-response cells of the sinoatrial and atrioventricular nodes. Overexpression of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in transgenic mice results in heart failure and arrhythmias. We hypothesised that administration of WXKL and amiodarone can reduce the incidence of arrhythmias by regulating CaMKII signal transduction. A total of 100 healthy Sprague Dawley rats were used in the study. The rats were randomly divided into four groups (a sham group, a myocardial infarction (MI) group, a WXKL-treated group, and an amiodarone-treated group). A myocardial infarction model was established in these rats by ligating the left anterior descending coronary artery for 4 weeks. Western blotting was used to assess CaMKII, p-CaMKII (Thr-286), PLB, p-PLB (Thr-17), RYR2, and FK binding protein 12.6 (FKBP12.6) levels. The Ca2+ content in the sarcoplasmic reticulum (SR) and the calcium transient amplitude were studied by confocal imaging using the fluorescent indicator Fura-4. In conclusion, WXKL may inhibit heart failure and cardiac arrhythmias by regulating the CaMKII signal transduction pathway similar to amiodarone.
Collapse
|
42
|
Giroud S, Frare C, Strijkstra A, Boerema A, Arnold W, Ruf T. Membrane phospholipid fatty acid composition regulates cardiac SERCA activity in a hibernator, the Syrian hamster (Mesocricetus auratus). PLoS One 2013; 8:e63111. [PMID: 23650545 PMCID: PMC3641109 DOI: 10.1371/journal.pone.0063111] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/28/2013] [Indexed: 11/18/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) have strong effects on hibernation and daily torpor. Increased dietary uptake of PUFA of the n-6 class, particularly of Linoleic acid (LA, C18:2 n-6) lengthens torpor bout duration and enables animals to reach lower body temperatures (Tb) and metabolic rates. As previously hypothesized, this well-known influence of PUFA may be mediated via effects of the membrane fatty acid composition on sarcoplasmic reticulum (SR) Ca2+−ATPase 2a (SERCA) in the heart of hibernators. We tested the hypotheses that high proportions of n-6 PUFA in general, or specifically high proportions of LA (C18:2 n-6) in SR phospholipids (PL) should be associated with increased cardiac SERCA activity, and should allow animals to reach lower minimum Tb in torpor. We measured activity of SERCA from hearts of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus) in vitro at 35°C. Further, we determined the PL fatty acid composition of the SR membrane of these hearts. We found that SERCA activity strongly increased as the proportion of LA in SR PL increased but was negatively affected by the content of Docosahexaenoic acid (DHA; C22:6 n-3). SR PL from hibernating hamsters were characterized by high proportions of LA and low proportions of DHA. As a result, SERCA activity was significantly higher during entrance into torpor and in torpor compared to inter-bout arousal. Also, animals with increased SERCA activity reached lower Tb during torpor. Interestingly, a subgroup of hamsters which never entered torpor but remained euthermic throughout winter displayed a phenotype similar to animals in summer. This was characterized by lower proportions of LA and increased proportions of DHA in SR membranes, which is apparently incompatible with torpor. We conclude that the PUFA composition of SR membranes affects cardiac function via modulating SERCA activity, and hence determines the minimum Tb tolerated by hibernators.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
43
|
Targeted ablation of the histidine-rich Ca(2+)-binding protein (HRC) gene is associated with abnormal SR Ca(2+)-cycling and severe pathology under pressure-overload stress. Basic Res Cardiol 2013; 108:344. [PMID: 23553082 DOI: 10.1007/s00395-013-0344-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The histidine-rich Ca(2+)-binding protein (HRC) is located in the lumen of the sarcoplasmic reticulum (SR) and exhibits high-capacity Ca(2+)-binding properties. Overexpression of HRC in the heart resulted in impaired SR Ca(2+) uptake and depressed relaxation through its interaction with SERCA2a. However, the functional significance of HRC in overall regulation of calcium cycling and contractility is not currently well defined. To further elucidate the role of HRC in vivo under physiological and pathophysiological conditions, we generated and characterized HRC-knockout (KO) mice. The KO mice were morphologically and histologically normal compared to wild-type (WT) mice. At the cellular level, ablation of HRC resulted in significantly enhanced contractility, Ca(2+) transients, and maximal SR Ca(2+) uptake rates in the heart. However, after-contractions were developed in 50 % of HRC-KO cardiomyocytes, compared to 11 % in WT mice under stress conditions of high-frequency stimulation (5 Hz) and isoproterenol application. A parallel examination of the electrical activity revealed significant increases in the occurrence of Ca(2+) spontaneous SR Ca(2+) release and delayed afterdepolarizations with ISO in HRC-KO, compared to WT cells. The frequency of Ca(2+) sparks was also significantly higher in HRC-KO cells with ISO, consistent with the elevated SR Ca(2+) load in the KO cells. Furthermore, HRC-KO cardiomyocytes showed significantly deteriorated cell contractility and Ca(2+)-cycling caused possibly by depressed SERCA2a expression after transverse-aortic constriction (TAC). Also HRC-null mice exhibited severe cardiac hypertrophy, fibrosis, pulmonary edema and decreased survival after TAC. Our results indicate that ablation of HRC is associated with poorly regulated SR Ca(2+)-cycling, and severe pathology under pressure-overload stress, suggesting an essential role of HRC in maintaining the integrity of cardiac function.
Collapse
|
44
|
Ribeiro RF, Potratz FF, Pavan BMM, Forechi L, Lima FLM, Fiorim J, Fernandes AA, Vassallo DV, Stefanon I. Carvedilol prevents ovariectomy-induced myocardial contractile dysfunction in female rat. PLoS One 2013; 8:e53226. [PMID: 23308166 PMCID: PMC3538779 DOI: 10.1371/journal.pone.0053226] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/26/2012] [Indexed: 11/18/2022] Open
Abstract
Carvedilol has beneficial effects on cardiac function in patients with heart failure but its effect on ovariectomy-induced myocardial contractile dysfunction remains unclear. Estrogen deficiency induces myocardial contractile dysfunction and increases cardiovascular disease risk in postmenopausal women. Our aim was to investigate whether carvedilol, a beta receptor blocker, would prevent ovariectomy-induced myocardial contractile dysfunction. Female rats (8 weeks old) that underwent bilateral ovariectomy were randomly assigned to receive daily treatment with carvedilol (OVX+CAR, 20 mg/kg), placebo (OVX) and SHAM for 58 days. Left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10−8 to 10−2 M) were assessed. Expression of calcium handling proteins was measured by western blot analysis. Carvedilol treatment in the OVX animals: prevented weight gain and slight hypertrophy, restored the reduced positive inotropic responses to Ca2+ and isoproterenol, prevented the reduction in SERCA2a expression, abolished the increase in superoxide anion production, normalized the increase in p22phox expression, and decreased serum angiotensin converting enzyme (ACE) activity. This study demonstrated that myocardial contractile dysfunction and SERCA2a down regulation were prevented by carvedilol treatment. Superoxide anion production and NADPH oxidase seem to be involved in this response.
Collapse
|
45
|
Smeazzetto S, Saponaro A, Young HS, Moncelli MR, Thiel G. Structure-function relation of phospholamban: modulation of channel activity as a potential regulator of SERCA activity. PLoS One 2013; 8:e52744. [PMID: 23308118 PMCID: PMC3537670 DOI: 10.1371/journal.pone.0052744] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/20/2012] [Indexed: 11/22/2022] Open
Abstract
Phospholamban (PLN) is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca2+-ATPase (SERCA) in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 Å for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C) or destabilize (I47A) the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca2+ accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca2+ uptake. A reduced total conductance of the K+ transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca2+ uptake in the same way as an inhibition of K+ channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability.
Collapse
Affiliation(s)
| | - Andrea Saponaro
- Department of Biology and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Gerhard Thiel
- Plant Membrane Biophysics, TU-Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
46
|
Abstract
Cardiac myocyte function is dependent on the synchronized movements of Ca(2+) into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation-contraction coupling. Ca(2+) cycling is mediated by a number of critical Ca(2+)-handling proteins and transporters, such as L-type Ca(2+) channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca(2+) into the cytosol through LTCCs activates the release of Ca(2+) from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca(2+) sequesteration and myocyte relaxation. Excitation-contraction coupling is regulated by phosphorylation of Ca(2+)-handling proteins. Abnormalities in sarcoplasmic reticulum Ca(2+) cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca(2+) cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca(2+) homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure.
Collapse
|
47
|
Reil JC, Hohl M, Reil GH, Granzier HL, Kratz MT, Kazakov A, Fries P, Müller A, Lenski M, Custodis F, Gräber S, Fröhlig G, Steendijk P, Neuberger HR, Böhm M. Heart rate reduction by If-inhibition improves vascular stiffness and left ventricular systolic and diastolic function in a mouse model of heart failure with preserved ejection fraction. Eur Heart J 2012; 34:2839-49. [PMID: 22833515 DOI: 10.1093/eurheartj/ehs218] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS In diabetes mellitus, heart failure with preserved ejection fraction (HFPEF) is a significant comorbidity. No therapy is available that improves cardiovascular outcomes. The aim of this study was to characterize myocardial function and ventricular-arterial coupling in a mouse model of diabetes and to analyse the effect of selective heart rate (HR) reduction by If-inhibition in this HFPEF-model. METHODS AND RESULTS Control mice, diabetic mice (db/db), and db/db mice treated for 4 weeks with the If-inhibitor ivabradine (db/db-Iva) were compared. Aortic distensibility was measured by magnetic resonance imaging. Left ventricular (LV) pressure-volume analysis was performed in isolated working hearts, with biochemical and histological characterization of the cardiac and aortic phenotype. In db/db aortic stiffness and fibrosis were significantly enhanced compared with controls and were prevented by HR reduction in db/db-Iva. Left ventricular end-systolic elastance (Ees) was increased in db/db compared with controls (6.0 ± 1.3 vs. 3.4 ± 1.2 mmHg/µL, P < 0.01), whereas other contractility markers were reduced. Heart rate reduction in db/db-Iva lowered Ees (4.0 ± 1.1 mmHg/µL, P < 0.01), and improved the other contractility parameters. In db/db active relaxation was prolonged and end-diastolic capacitance was lower compared with controls (28 ± 3 vs. 48 ± 8 μL, P < 0.01). These parameters were ameliorated by HR reduction. Neither myocardial fibrosis nor hypertrophy were detected in db/db, whereas titin N2B expression was increased and phosphorylation of phospholamban was reduced both being prevented by HR reduction in db/db-Iva. CONCLUSION In db/db, a model of HFPEF, selective HR reduction by If-inhibition improved vascular stiffness, LV contractility, and diastolic function. Therefore, If-inhibition might be a therapeutic concept for HFPEF, if confirmed in humans.
Collapse
Affiliation(s)
- Jan-Christian Reil
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Kirrberger Straße D 66421, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ceholski DK, Trieber CA, Holmes CFB, Young HS. Lethal, hereditary mutants of phospholamban elude phosphorylation by protein kinase A. J Biol Chem 2012; 287:26596-605. [PMID: 22707725 DOI: 10.1074/jbc.m112.382713] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The sarcoplasmic reticulum calcium pump (SERCA) and its regulator, phospholamban, are essential components of cardiac contractility. Phospholamban modulates contractility by inhibiting SERCA, and this process is dynamically regulated by β-adrenergic stimulation and phosphorylation of phospholamban. Herein we reveal mechanistic insight into how four hereditary mutants of phospholamban, Arg(9) to Cys, Arg(9) to Leu, Arg(9) to His, and Arg(14) deletion, alter regulation of SERCA. Deletion of Arg(14) disrupts the protein kinase A recognition motif, which abrogates phospholamban phosphorylation and results in constitutive SERCA inhibition. Mutation of Arg(9) causes more complex changes in function, where hydrophobic substitutions such as cysteine and leucine eliminate both SERCA inhibition and phospholamban phosphorylation, whereas an aromatic substitution such as histidine selectively disrupts phosphorylation. We demonstrate that the role of Arg(9) in phospholamban function is multifaceted: it is important for inhibition of SERCA, it increases the efficiency of phosphorylation, and it is critical for protein kinase A recognition in the context of the phospholamban pentamer. Given the synergistic consequences on contractility, it is not surprising that the mutants cause lethal, hereditary dilated cardiomyopathy.
Collapse
Affiliation(s)
- Delaine K Ceholski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
49
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012; 205:9-25. [PMID: 22463608 DOI: 10.1111/j.1748-1716.2012.02389.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholamban (PLN) is a small phosphoprotein closely associated with the cardiac sarcoplasmic reticulum (SR). Dephosphorylated PLN tonically inhibits the SR Ca-ATPase (SERCA2a), while phosphorylation at Ser16 by PKA and Thr17 by Ca(2+) /calmodulin-dependent protein kinase (CaMKII) relieves the inhibition, and this increases SR Ca(2+) uptake. For this reason, PLN is one of the major determinants of cardiac contractility and relaxation. In this review, we attempted to highlight the functional significance of PLN in vertebrate cardiac physiology. We will refer to the huge literature on mammals in order to describe the molecular characteristics of this protein, its interaction with SERCA2a and its role in the regulation of the mechanic and the electric performance of the heart under basal conditions, in the presence of chemical and physical stresses, such as β-adrenergic stimulation, response to stretch, force-frequency relationship and intracellular acidosis. Our aim is to provide the basis to discuss the role of PLN also on the cardiac function of nonmammalian vertebrates, because so far this aspect has been almost neglected. Accordingly, when possible, the literature on PLN will be analysed taking into account the nonuniform cardiac structural and functional characteristics encountered in ectothermic vertebrates, such as the peculiar and variable organization of the SR, the large spectrum of response to stresses and the disaptive absence of crucial proteins (i.e. haemoglobinless and myoglobinless species).
Collapse
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|
50
|
Cerra MC, Imbrogno S. Phospholamban and cardiac function: a comparative perspective in vertebrates. Acta Physiol (Oxf) 2012. [DOI: 10.1111/j.1748-1716.2011.02389.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - S. Imbrogno
- Department of Cell Biology; University of Calabria; Arcavacata di Rende (CS); Italy
| |
Collapse
|