1
|
Chang L, Chen Q, Wang B, Liu J, Zhang M, Zhu W, Jiang J. Single cell RNA analysis uncovers the cell differentiation and functionalization for air breathing of frog lung. Commun Biol 2024; 7:665. [PMID: 38816547 PMCID: PMC11139932 DOI: 10.1038/s42003-024-06369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The evolution and development of vertebrate lungs have been widely studied due to their significance in terrestrial adaptation. Amphibians possess the most primitive lungs among tetrapods, underscoring their evolutionary importance in bridging the transition from aquatic to terrestrial life. However, the intricate process of cell differentiation during amphibian lung development remains poorly understood. Using single-cell RNA sequencing, we identify 13 cell types in the developing lungs of a land-dwelling frog (Microhyla fissipes). We elucidate the differentiation trajectories and mechanisms of mesenchymal cells, identifying five cell fates and their respective driver genes. Using temporal dynamics analyses, we reveal the gene expression switches of epithelial cells, which facilitate air breathing during metamorphosis. Furthermore, by integrating the published data from another amphibian and two terrestrial mammals, we illuminate both conserved and divergent cellular repertoires during the evolution of tetrapod lungs. These findings uncover the frog lung cell differentiation trajectories and functionalization for breathing in air and provide valuable insights into the cell-type evolution of vertebrate lungs.
Collapse
Affiliation(s)
- Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Nelissen E, Schepers M, Ponsaerts L, Foulquier S, Bronckaers A, Vanmierlo T, Sandner P, Prickaerts J. Soluble guanylyl cyclase: A novel target for the treatment of vascular cognitive impairment? Pharmacol Res 2023; 197:106970. [PMID: 37884069 DOI: 10.1016/j.phrs.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Vascular cognitive impairment (VCI) describes neurodegenerative disorders characterized by a vascular component. Pathologically, it involves decreased cerebral blood flow (CBF), white matter lesions, endothelial dysfunction, and blood-brain barrier (BBB) impairments. Molecularly, oxidative stress and inflammation are two of the major underlying mechanisms. Nitric oxide (NO) physiologically stimulates soluble guanylate cyclase (sGC) to induce cGMP production. However, under pathological conditions, NO seems to be at the basis of oxidative stress and inflammation, leading to a decrease in sGC activity and expression. The native form of sGC needs a ferrous heme group bound in order to be sensitive to NO (Fe(II)sGC). Oxidation of sGC leads to the conversion of ferrous to ferric heme (Fe(III)sGC) and even heme-loss (apo-sGC). Both Fe(III)sGC and apo-sGC are insensitive to NO, and the enzyme is therefore inactive. sGC activity can be enhanced either by targeting the NO-sensitive native sGC (Fe(II)sGC), or the inactive, oxidized sGC (Fe(III)sGC) and the heme-free apo-sGC. For this purpose, sGC stimulators acting on Fe(II)sGC and sGC activators acting on Fe(III)sGC/apo-sGC have been developed. These sGC agonists have shown their efficacy in cardiovascular diseases by restoring the physiological and protective functions of the NO-sGC-cGMP pathway, including the reduction of oxidative stress and inflammation, and improvement of vascular functioning. Yet, only very little research has been performed within the cerebrovascular system and VCI pathology when focusing on sGC modulation and its potential protective mechanisms on vascular and neural function. Therefore, within this review, the potential of sGC as a target for treating VCI is highlighted.
Collapse
Affiliation(s)
- Ellis Nelissen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Laura Ponsaerts
- Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium; Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, School for Mental Health and Neuroscience (MHeNS), School for Cardiovascular Diseases (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands; Neuro-immune connect and repair lab, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium
| | - Peter Sandner
- Bayer AG, Pharmaceuticals R&D, Pharma Research Center, 42113 Wuppertal, Germany; Hannover Medical School, 30625 Hannover, Germany
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
3
|
Khanal S, Bhavnani N, Mathias A, Lallo J, Gupta S, Ohanyan V, Ferrell JM, Raman P. Deletion of Smooth Muscle O-GlcNAc Transferase Prevents Development of Atherosclerosis in Western Diet-Fed Hyperglycemic ApoE -/- Mice In Vivo. Int J Mol Sci 2023; 24:7899. [PMID: 37175604 PMCID: PMC10178779 DOI: 10.3390/ijms24097899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Accumulating evidence highlights protein O-GlcNAcylation as a putative pathogenic contributor of diabetic vascular complications. We previously reported that elevated protein O-GlcNAcylation correlates with increased atherosclerotic lesion formation and VSMC proliferation in response to hyperglycemia. However, the role of O-GlcNAc transferase (OGT), regulator of O-GlcNAc signaling, in the evolution of diabetic atherosclerosis remains elusive. The goal of this study was to determine whether smooth muscle OGT (smOGT) plays a direct role in hyperglycemia-induced atherosclerotic lesion formation and SMC de-differentiation. Using tamoxifen-inducible Myh11-CreERT2 and Ogtfl/fl mice, we generated smOGTWT and smOGTKO mice, with and without ApoE-null backgrounds. Following STZ-induced hyperglycemia, smOGTWT and smOGTKO mice were kept on a standard laboratory diet for the study duration. In a parallel study, smOGTWTApoE-/- and smOGTKOApoE-/- were initiated on Western diet at 8-wks-age. Animals harvested at 14-16-wks-age were used for plasma and tissue collection. Loss of smOGT augmented SM contractile marker expression in aortic vessels of STZ-induced hyperglycemic smOGTKO mice. Consistently, smOGT deletion attenuated atherosclerotic lesion lipid burden (Oil red O), plaque area (H&E), leukocyte (CD45) and smooth muscle cell (ACTA2) abundance in Western diet-fed hyperglycemic smOGTKOApoE-/- mice. This was accompanied by increased SM contractile markers and reduced inflammatory and proliferative marker expression. Further, smOGT deletion attenuated YY1 and SRF expression (transcriptional regulators of SM contractile genes) in hyperglycemic smOGTKOApoE-/- and smOGTKO mice. These data uncover an athero-protective outcome of smOGT loss-of-function and suggest a direct regulatory role of OGT-mediated O-GlcNAcylation in VSMC de-differentiation in hyperglycemia.
Collapse
Affiliation(s)
- Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Neha Bhavnani
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
| | - Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.K.)
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Khachigian LM, Black BL, Ferdinandy P, De Caterina R, Madonna R, Geng YJ. Transcriptional regulation of vascular smooth muscle cell proliferation, differentiation and senescence: Novel targets for therapy. Vascul Pharmacol 2022; 146:107091. [PMID: 35896140 DOI: 10.1016/j.vph.2022.107091] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Vascular smooth muscle cells (SMC) possess a unique cytoplasticity, regulated by transcriptional, translational and phenotypic transformation in response to a diverse range of extrinsic and intrinsic pathogenic factors. The mature, differentiated SMC phenotype is physiologically typified transcriptionally by expression of genes encoding "contractile" proteins, such as SMα-actin (ACTA2), SM-MHC (myosin-11) and SM22α (transgelin). When exposed to various pathological conditions (e.g., pro-atherogenic risk factors, hypertension), SMC undergo phenotypic modulation, a bioprocess enabling SMC to de-differentiate in immature stages or trans-differentiate into other cell phenotypes. As recent studies suggest, the process of SMC phenotypic transformation involves five distinct states characterized by different patterns of cell growth, differentiation, migration, matrix protein expression and declined contractility. These changes are mediated via the action of several transcriptional regulators, including myocardin and serum response factor. Conversely, other factors, including Kruppel-like factor 4 and nuclear factor-κB, can inhibit SMC differentiation and growth arrest, while factors such as yin yang-1, can promote SMC differentiation whilst inhibiting proliferation. This article reviews recent advances in our understanding of regulatory mechanisms governing SMC phenotypic modulation. We propose the concept that transcription factors mediating this switching are important biomarkers and potential pharmacological targets for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Péter Ferdinandy
- Cardiovascular and Metabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Raffaele De Caterina
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Rosalinda Madonna
- Cardiovascular Division, Pisa University Hospital & University of Pisa, Via Paradisa, 2, Pisa 56124, Italy; Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Yong-Jian Geng
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Center for Cardiovascular Biology and Atherosclerosis Research, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
5
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
6
|
Intrauterine Nitric Oxide Deficiency Weakens Differentiation of Vascular Smooth Muscle in Newborn Rats. Int J Mol Sci 2021; 22:ijms22158003. [PMID: 34360769 PMCID: PMC8347173 DOI: 10.3390/ijms22158003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring.
Collapse
|
7
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
8
|
Zheng JP, He X, Liu F, Yin S, Wu S, Yang M, Zhao J, Dai X, Jiang H, Yu L, Yin Q, Ju D, Li C, Lipovich L, Xie Y, Zhang K, Li HJ, Zhou J, Li L. YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation. Sci Rep 2020; 10:21781. [PMID: 33311559 PMCID: PMC7732823 DOI: 10.1038/s41598-020-78544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiangqin He
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
- The Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fang Liu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Shuping Yin
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Shichao Wu
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Maozhou Yang
- Bone and Joint Center, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiawei Zhao
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Xiaohua Dai
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hong Jiang
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Luyi Yu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Qin Yin
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Donghong Ju
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Claire Li
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Youming Xie
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA
| | - Hui J Li
- Department of Medicine, University of Massachusetts, Worcester, MA, 01655, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li Li
- Department of Internal Medicine, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University, 421 E. Canfield Ave. #2146, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Wang Y, Hao Y, Zhao Y, Huang Y, Lai D, Du T, Wan X, Zhu Y, Liu Z, Wang Y, Wang N, Zhang P. TRIM28 and TRIM27 are required for expressions of PDGFRβ and contractile phenotypic genes by vascular smooth muscle cells. FASEB J 2020; 34:6271-6283. [PMID: 32162409 DOI: 10.1096/fj.201902828rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cells (VSMCs) in the normal arterial media continually express contractile phenotypic markers which are reduced dramatically in response to injury. Tripartite motif-containing proteins are a family of scaffold proteins shown to regulate gene silencing, cell growth, and differentiation. We here investigated the biological role of tripartite motif-containing 28 (TRIM28) and tripartite motif-containing 27 (TRIM27) in VSMCs. We observed that siRNA-mediated knockdown of TRIM28 and TRIM27 inhibited platelet-derived growth factor (PDGF)-induced migration in human VSMCs. Both TRIM28 and TRIM27 can regulate serum response element activity and were required for maintaining the contractile gene expression in human VSMCs. At the same time, TRIM28 and TRIM27 knockdown reduced the expression of PDGF receptor-β (PDGFRβ) and the phosphorylation of its downstream signaling components. Immunoprecipitation showed that TRIM28 formed complexes with TRIM27 through its N-terminal RING-B boxes-Coiled-Coil domain. Furthermore, TRIM28 and TRIM27 were shown to be upregulated and mediate the VSMC contractile marker gene and PDGFRβ expression in differentiating human bone marrow mesenchymal stem cells. In conclusion, we identified that TRIM28 and TRIM27 cooperatively maintain the endogenous expression of PDGFRβ and contractile phenotype of human VSMCs.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Zhao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwu Lai
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohong Wan
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuefeng Zhu
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Jin M, Wu Y, Wang Y, Yu D, Yang M, Yang F, Feng C, Chen T. MicroRNA-29a promotes smooth muscle cell differentiation from stem cells by targeting YY1. Stem Cell Res 2016; 17:277-284. [PMID: 27591939 DOI: 10.1016/j.scr.2016.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/22/2016] [Accepted: 07/30/2016] [Indexed: 11/16/2022] Open
Abstract
MicroRNA-29a (miR-29a) has been extensively studied in tumor biology and fibrotic diseases, but little is known about its functional roles in vascular smooth muscle cell (VSMC) differentiation from embryonic stem cells (ESCs). Using well-established VSMC differentiation models, we have observed that miR-29a induces VSMC differentiation from mouse ESCs by negatively regulating YY1, a transcription factor that inhibits muscle cell differentiation and muscle-specific gene expression. Moreover, gene expression levels of three VSMC specific transcriptional factors were up-regulated by miR-29a over-expression, but down-regulated by miR-29a inhibition or YY1 over-expression. Taken together, our data demonstrate that miR-29a and its target gene, YY1, play a regulatory role in VSMC differentiation from ESCs in vitro and in vivo.
Collapse
Affiliation(s)
- Min Jin
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Yutao Wu
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yanwei Wang
- Department of Cardiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo 315000, PR China
| | - Danqing Yu
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Mei Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Feng Yang
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Chun Feng
- Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang 310009, PR China
| | - Ting Chen
- Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
11
|
Xie C, Guo Y, Zhu T, Zhang J, Ma PX, Chen YE. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin. J Biol Chem 2012; 287:14598-605. [PMID: 22411986 DOI: 10.1074/jbc.m111.329268] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Hippo-Yap (Yes-associated protein) signaling pathway has emerged as one of the critical pathways regulating cell proliferation, differentiation, and apoptosis in response to environmental and developmental cues. However, Yap1 roles in vascular smooth muscle cell (VSMC) biology have not been investigated. VSMCs undergo phenotypic switch, a process characterized by decreased gene expression of VSMC contractile markers and increased proliferation, migration, and matrix synthesis. The goals of the present studies were to investigate the relationship between Yap1 and VSMC phenotypic switch and to determine the molecular mechanisms by which Yap1 affects this essential process in VSMC biology. Results demonstrated that the expression of Yap1 was rapidly up-regulated by stimulation with PDGF-BB (a known inducer of phenotypic switch in VSMCs) and in the injured vessel wall. Knockdown of Yap1 impaired VSMC proliferation in vitro and enhanced the expression of VSMC contractile genes as well by increasing serum response factor binding to CArG-containing regions of VSMC-specific contractile genes within intact chromatin. Conversely, the interaction between serum response factor and its co-activator myocardin was reduced by overexpression of Yap1 in a dose-dependent manner. Taken together, these results indicate that down-regulation of Yap1 promotes VSMC contractile phenotype by both up-regulating myocardin expression and promoting the association of the serum response factor-myocardin complex with VSMC contractile gene promoters and suggest that the Yap1 signaling pathway is a central regulator of phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Changqing Xie
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Smooth muscle cells (SMCs) possess remarkable phenotypic plasticity that allows rapid adaptation to fluctuating environmental cues. For example, vascular SMCs undergo profound changes in their phenotype during neointimal formation in response to vessel injury or within atherosclerotic plaques. Recent studies have shown that interaction of serum response factor (SRF) and its numerous accessory cofactors with CArG box DNA sequences within promoter chromatin of SMC genes is a nexus for integrating signals that influence SMC differentiation in development and disease. During development, SMC-restricted sets of posttranslational histone modifications are acquired within the CArG box chromatin of SMC genes. These modifications in turn control the chromatin-binding properties of SRF. The histone modifications appear to encode a SMC-specific epigenetic program that is used by extracellular cues to influence SMC differentiation, by regulating binding of SRF and its partners to the chromatin template. Thus, SMC differentiation is dynamically regulated by the interplay between SRF accessory cofactors, the SRF-CArG interaction, and the underlying histone modification program. As such, the inherent plasticity of the SMC lineage offers unique glimpses into how cellular differentiation is dynamically controlled at the level of chromatin within the context of changing microenvironments. Further elucidation of how chromatin regulates SMC differentiation will undoubtedly yield valuable insights into both normal developmental processes and the pathogenesis of several vascular diseases that display detrimental SMC phenotypic behavior.
Collapse
Affiliation(s)
- Oliver G McDonald
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22903, USA
| | | |
Collapse
|
14
|
Kawai-Kowase K, Owens GK. Multiple repressor pathways contribute to phenotypic switching of vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 292:C59-69. [PMID: 16956962 DOI: 10.1152/ajpcell.00394.2006] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle cell (SMC) differentiation is an essential component of vascular development and these cells perform biosynthetic, proliferative, and contractile roles in the vessel wall. SMCs are not terminally differentiated and possess the ability to modulate their phenotype in response to changing local environmental cues. The focus of this review is to provide an overview of the current state of knowledge of molecular mechanisms involved in controlling phenotypic switching of SMC with particular focus on examination of processes that contribute to the repression of SMC marker genes. We discuss the environmental cues which actively regulate SMC phenotypic switching, such as platelet-derived growth factor-BB, as well as several important regulatory mechanisms required for suppressing expression of SMC-specific/selective marker genes in vivo, including those dependent on conserved G/C-repressive elements, and/or highly conserved degenerate CArG elements found in the promoters of many of these marker genes. Finally, we present evidence indicating that SMC phenotypic switching involves multiple active repressor pathways, including Krüppel-like zinc finger type 4, HERP, and ERK-dependent phosphorylation of Elk-1 that act in a complementary fashion.
Collapse
Affiliation(s)
- Keiko Kawai-Kowase
- Department of Molecular Physiology and Biological Physics, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
15
|
Favot L, Hall SM, Haworth SG, Kemp PR. Cytoplasmic YY1 is associated with increased smooth muscle-specific gene expression: implications for neonatal pulmonary hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 167:1497-509. [PMID: 16314465 PMCID: PMC1613200 DOI: 10.1016/s0002-9440(10)61236-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immediately after birth the adluminal vascular SMCs of the pulmonary elastic arteries undergo transient actin cytoskeletal remodeling as well as cellular de-differentiation and proliferation. Vascular smooth muscle phenotype is regulated by serum response factor, which is itself regulated in part by the negative regulator YY1. We therefore studied the subcellular localization of YY1 in arteries of normal newborn piglets and piglets affected by neonatal pulmonary hypertension. We found that YY1 localization changed during development and that expression of gamma-smooth muscle actin correlated with expression of cytoplasmic rather than nuclear YY1. Analysis of the regulation of YY1 localization in vitro demonstrated that polymerized gamma-actin sequestered EGFP-YY1 in the cytoplasm and that YY1 activation of c-myc promoter activity was inhibited by LIM kinase, which increases actin polymerization. Consistent with these data siRNA-mediated down-regulation of YY1 in C2C12 cells increased SM22-alpha expression and inhibited cell proliferation. Thus, actin polymerization controls subcellular YY1 localization, which contributes to vascular SMC proliferation and differentiation in normal pulmonary artery development. In the absence of actin depolymerization, YY1 does not relocate to the nucleus, and this lack of relocation may contribute to the pathobiology of pulmonary hypertension.
Collapse
Affiliation(s)
- Laure Favot
- Department of Biochemistry, Section of Cardiovascular Biology, University of Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Nakagawa K, Kuzumaki N. Transcriptional activity of megakaryoblastic leukemia 1 (MKL1) is repressed by SUMO modification. Genes Cells 2005; 10:835-50. [PMID: 16098147 DOI: 10.1111/j.1365-2443.2005.00880.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Megakaryoblastic leukemia 1 (MKL1) was originally identified as a gene translocated in megakaryoblastic leukemia. It has been shown that MKL1 functions as a RhoA-regulated transcriptional coactivator of serum response factor (SRF). In order to identify a protein that regulates the function of MKL1, we performed yeast two-hybrid screening and isolated cDNA that encodes UBC9, an E2 enzyme of small ubiquitin-related modifier-1 (SUMO-1), as an MKL1-binding protein. UBC9 was found to physically interact with MKL1 by GST pull-down assay, and MKL1 was covalently modified with SUMO-1 in 293T cells and in vitro reconstitution system. MKL1 sumoylation is enhanced by either serum stimulation or co-expression of constitutively active form of RhoA. Mutational analysis showed that lysine residues at 499, 576, and 624 are the major acceptor sites for SUMO-1. In addition, reporter gene analysis revealed that mutation of the three sumoylation sites strongly enhances the transcriptional activity of MKL1. The covalent attachment of SUMO-1 to MKL1 by gene fusion represses MKL1-dependent transcription in a complementary manner. Finally, mutation of the sumoylation sites of MKL1 also enhances SRF-dependent transcription without affecting MKL1-SRF interaction. The combined results demonstrated that MKL1 is sumoylated and this modification represses transcriptional activity of MKL1.
Collapse
Affiliation(s)
- Koji Nakagawa
- Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | | |
Collapse
|
17
|
Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, Selsby JT, Criswell DS. In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol (1985) 2005; 100:258-65. [PMID: 16166235 DOI: 10.1152/japplphysiol.00936.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibition of nitric oxide synthase (NOS) activity in vivo impedes hypertrophy in the overloaded rat plantaris. We investigated the mechanism for this effect by examining early events leading to muscle growth following 5 or 12 days of functional overload. Male Sprague-Dawley rats (approximately 350 g) were randomly divided into three treatment groups: control, N(G)-nitro-L-arginine methyl ester (L-NAME; 90 mg.kg(-1).day(-1)), and 1-(2-trifluoromethyl-phenyl)-imidazole (TRIM; 10 mg.kg(-1).day(-1)). Unilateral removal of synergists induced chronic overload (OL) of the right plantaris. Sham surgery performed on the left hindlimb served as a normally loaded control. L-NAME and TRIM treatments prevented OL-induced skeletal alpha-actin and type I (slow) myosin heavy chain mRNA expression at 5 days. Conversely, neither L-NAME nor TRIM affected hepatocyte growth factor or VEGF mRNA responses to OL at 5 days. However, OL induction of IGF-I and mechanogrowth factor mRNA was greater (P < 0.05) in the TRIM group compared with the controls. Furthermore, the phosphorylated-to-total p70 S6 kinase ratio was higher in OL muscle from NOS-inhibited groups, compared with control OL. At 12 days of OL, the cumulative proliferation of plantaris satellite cells was assessed by subcutaneous implantation of time release 5'-bromo-2'-deoxyuridine pellets during the OL-inducing surgeries. Although OL caused a fivefold increase in the number of mitotically active (5'-bromo-2'-deoxyuridine positive) sublaminar nuclei, this was unaffected by concurrent NOS inhibition. Therefore, NOS activity may provide negative feedback control of IGF-I/p70 S6 kinase signaling during muscle growth. Moreover, NOS activity may be involved in transcriptional regulation of skeletal alpha-actin and type I (slow) myosin heavy chain during functional overload.
Collapse
Affiliation(s)
- Jeff E Sellman
- P. O. Box 118206, Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Mariner PD, Luckey SW, Long CS, Sucharov CC, Leinwand LA. Yin Yang 1 represses alpha-myosin heavy chain gene expression in pathologic cardiac hypertrophy. Biochem Biophys Res Commun 2005; 326:79-86. [PMID: 15567155 DOI: 10.1016/j.bbrc.2004.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Indexed: 10/26/2022]
Abstract
In the work presented here, we elucidate a mechanism for the repression of alpha-myosin heavy chain (MyHC) during pathological cardiac hypertrophy. We demonstrate that the transcription factor Yin Yang 1 (YY1) significantly decreases endogenous alpha-MyHC mRNA and protein expression in neonatal rat ventricular myocytes. Furthermore, mutation of the YY1 binding sites in the proximal rat alpha-MyHC promoter increases promoter activity and alleviates YY1-mediated repression of the promoter. Despite the presence of 5 sites that bind YY1, only one site, located at -94bp of the rat alpha-MyHC promoter, is both necessary and sufficient for pathological repression of the promoter by phorbol esters, revealing a unique mechanism for the repression of alpha-MyHC expression during cardiac hypertrophy.
Collapse
Affiliation(s)
- Peter D Mariner
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
19
|
Himeda CL, Ranish JA, Angello JC, Maire P, Aebersold R, Hauschka SD. Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer. Mol Cell Biol 2004; 24:2132-43. [PMID: 14966291 PMCID: PMC350548 DOI: 10.1128/mcb.24.5.2132-2143.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 09/09/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chick Embryo
- Creatine Kinase/genetics
- Creatine Kinase/metabolism
- Creatine Kinase, MM Form
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Gene Expression Regulation, Enzymologic
- Genes, Regulator
- HeLa Cells
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Immunomagnetic Separation
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteomics
- Trans-Activators
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Charis L Himeda
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cyclic GMP, produced in response to nitric oxide and natriuretic peptides, is a key regulator of vascular smooth muscle cell contractility, growth, and differentiation, and is implicated in opposing the pathophysiology of hypertension, cardiac hypertrophy, atherosclerosis, and vascular injury/restenosis. cGMP regulates gene expression both positively and negatively at transcriptional as well as at posttranscriptional levels. cGMP-regulated transcription factors include the cAMP-response element binding protein CREB, the serum response factor SRF, and the nuclear factor of activated T cells NF/AT. cGMP can regulate CREB directly, through phosphorylation by cGMP-dependent protein kinase, or indirectly, through activation of mitogen-activated protein kinase pathways; regulation of SRF and NF/AT by cGMP is indirect, through modulation of RhoA and calcineurin signaling, respectively. Downregulation of the RNA-binding protein HuR by cGMP leads to destabilization of guanylate cyclase mRNA, but this posttranscriptional mechanism may affect many more cGMP-regulated genes. In this review, we discuss the role of cGMP-regulated gene expression in (patho)physiological processes most relevant to the cardiovascular system, such as regulation of vascular tone, cardiac hypertrophy, phenotypic modulation of vascular smooth muscle cells, and regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Renate B Pilz
- Department of Medicine and Cancer Center, University of California at San Diego, 9500 Gilman Dr, La Jolla, Calif 92093-0652, USA.
| | | |
Collapse
|
21
|
Johansson R, Persson K. Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 286:R642-8. [PMID: 14656765 DOI: 10.1152/ajpregu.00443.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic modulation of smooth muscle is associated with various pathological conditions, including bladder dysfunction. Cytoskeletal dynamics modulate the cell phenotype and were recently shown to be involved in regulation of inducible nitric oxide synthase (iNOS). We tested the hypothesis that the cell differentiation status affects iNOS expression, and that iNOS is preferentially expressed in immature dedifferentiated bladder smooth muscle cells (BSMC). Isolated at BSMC were put into different stages of differentiation by serum deprivation on laminin-coated plates in the presence of IGF-I and by interaction with Rho signaling and actin polymerization. iNOS and smooth muscle-myosin heavy chain (SM-MHC) protein expression were investigated with Western blot analysis. Our results showed iNOS protein in BSMC exposed to interleukin-1 beta (2 ng/ml) + TNF-alpha (50 ng/ml). Growth of BSMC in serum-free medium on laminin in the presence of IGF-I increased SM-MHC expression, whereas cytokine-induced iNOS was inhibited. Disruption of F-actin with latrunculin B (0.5 microM) potentiated iNOS expression and decreased SM-MHC expression. Rho inhibition with C3 (2.5 microg/ml) increased iNOS expression, whereas SM-MHC expression was slightly decreased. Rho-kinase inhibition with Y-27632 (10 microM) mediated a decrease in iNOS and a slight increase in SM-MHC expression. In conclusion, the capacity of BSMC to express iNOS was negatively correlated to differentiation status measured as SM-MHC expression. Actin cytoskeletal dynamics and Rho signaling are involved in regulation of cytokine-induced iNOS expression in BSMC. Phenotypic changes and impairment in actin cytoskeleton formation may potentiate cytokine activation and in turn increase nitric oxide production in the bladder during disease.
Collapse
Affiliation(s)
- Rebecka Johansson
- Department of Clinical and Experimental Pharmacology, Lund University Hospital, SE-221 85 Lund, Sweden. Rebecka.Johansson@klinfa m.lu.se
| | | |
Collapse
|
22
|
Camoretti-Mercado B, Dulin NO, Solway J. Serum response factor function and dysfunction in smooth muscle. Respir Physiol Neurobiol 2003; 137:223-35. [PMID: 14516728 DOI: 10.1016/s1569-9048(03)00149-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tight control of smooth muscle cell (SM) proliferation, differentiation, and apoptosis requires a balance between signaling and transcriptional events. Recent developments in vascular research revealed that serum response factor (SRF) function is important for the regulation of each of these processes. The cloning and characterization of several SM specific genes and the discovery that SRF is central for their expression fueled studies aimed at understanding the role of molecular partners including co-activators and co-repressors. Perturbations of pathways involving SRF are associated with abnormalities in the myogenic program and aberrant phenotypic consequences. Surprisingly, studies on airway SM have remained an underrepresented area of investigation. Our laboratory described a novel regulatory mechanism of SRF function in airway myocytes by modulation of its subcellular localization. This review summarizes current knowledge on the structure and function of this essential transcription factor as well different modes of regulating SRF expression and activity that are becoming key players in directing SM function in health and disease.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, 5841 S Maryland Avenue, MC6026, Chicago, IL 60637,USA.
| | | | | |
Collapse
|
23
|
L'honore A, Lamb NJ, Vandromme M, Turowski P, Carnac G, Fernandez A. MyoD distal regulatory region contains an SRF binding CArG element required for MyoD expression in skeletal myoblasts and during muscle regeneration. Mol Biol Cell 2003; 14:2151-62. [PMID: 12802082 PMCID: PMC165104 DOI: 10.1091/mbc.e02-07-0451] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We show here that the distal regulatory region (DRR) of the mouse and human MyoD gene contains a conserved SRF binding CArG-like element. In electrophoretic mobility shift assays with myoblast nuclear extracts, this CArG sequence, although slightly divergent, bound two complexes containing, respectively, the transcription factor YY1 and SRF associated with the acetyltransferase CBP and members of C/EBP family. A single nucleotide mutation in the MyoD-CArG element suppressed binding of both SRF and YY1 complexes and abolished DRR enhancer activity in stably transfected myoblasts. This MyoD-CArG sequence is active in modulating endogeneous MyoD gene expression because microinjection of oligonucleotides corresponding to the MyoD-CArG sequence specifically and rapidly suppressed MyoD expression in myoblasts. In vivo, the expression of a transgenic construct comprising a minimal MyoD promoter fused to the DRR and beta-galactosidase was induced with the same kinetics as MyoD during mouse muscle regeneration. In contrast induction of this reporter was no longer seen in regenerating muscle from transgenic mice carrying a mutated DRR-CArG. These results show that an SRF binding CArG element present in MyoD gene DRR is involved in the control of MyoD gene expression in skeletal myoblasts and in mature muscle satellite cell activation during muscle regeneration.
Collapse
Affiliation(s)
- Aurore L'honore
- Cell Biology Unit, Institut de Génétique Humaine, 34396 Montpellier cedex 05, France
| | | | | | | | | | | |
Collapse
|
24
|
Yamashita T, Taka T, Nojima R, Ohta Y, Seki J, Yamamoto J. There is no valid evidence presented as to an impaired endothelial NO system in the stroke-prone spontaneously hypertensive rats. Thromb Res 2002; 105:507-11. [PMID: 12091051 DOI: 10.1016/s0049-3848(02)00069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Platelet reactivity in stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar-Kyoto rats (WKY) were compared. In vivo platelet reactivity was tested by the He-Ne laser-induced thrombosis model. The number of laser pulses needed to reach thrombotic occlusion of the targeted vessel was used as an index of thrombogenicity. SHRSP rats needed significantly less number of irradiation to reach occlusion than WKY rats (SHRSP vs. WKY, 5.1+/-0.3 vs. 8.1+/-0.6), indicating enhanced thrombotic response in SHRSP rats. Further, acetylcholine administration significantly increased the number of laser pulses until occlusion in WKY but not in SHRSP rats. This suggests an impaired thrombotic reaction in acetylcholine-treated WKY but not in SHRSP rats. Platelet reactivity in vitro was measured in native blood by a shear-induced haemostasis test (haemostatometry). Indexes of this test (H1/H2), which inversely correlated with platelet reactivity, were significantly greater in SHRSP than in WKY rats (SHRSP vs. WKY, H1: 1815+/-192 vs. 763+/-75; H2: 7547+/-723 vs. 3536+/-264). This suggests reduced platelet reactivity in SHRSP compared with WKY rats. Thus, the present findings show increased thrombotic tendency in SHRSP rats in vivo despite reduced platelet reactivity in vitro. To explain this contradiction, we suggest that an increased in vivo thrombotic tendency may be due to impaired nitric oxide (NO) release from endothelial cells in SHRSP rats, and that a reduced platelet reactivity in vitro may be due to an adaptation of SHRSP rats to survive at extremely high blood pressure.
Collapse
Affiliation(s)
- T Yamashita
- Laboratory of Physiology, Faculty of Nutrition and High Technology Research Centre, Kobegakuin University, Arise 518, Igawadani-cho, Kobe 651-2180, Japan.
| | | | | | | | | | | |
Collapse
|