1
|
Shi J, Yu Y, Yuan H, Li Y, Xue Y. Mitochondrial dysfunction in AMI: mechanisms and therapeutic perspectives. J Transl Med 2025; 23:418. [PMID: 40211347 PMCID: PMC11987341 DOI: 10.1186/s12967-025-06406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/20/2025] [Indexed: 04/13/2025] Open
Abstract
Acute myocardial infarction (AMI) and the myocardial ischemia-reperfusion injury (MI/RI) that typically ensues represent a significant global health burden, accounting for a considerable number of deaths and disabilities. In the context of AMI, percutaneous coronary intervention (PCI) is the preferred treatment option for reducing acute ischemic damage to the heart. Despite the modernity of PCI therapy, pathological damage to cardiomyocytes due to MI/RI remains an important target for intervention that affects the long-term prognosis of patients. In recent years, mitochondrial dysfunction during AMI has been increasingly recognized as a critical factor in cardiomyocyte death. Damaged mitochondria play an active role in the formation of an inflammatory environment by triggering key signaling pathways, including those mediated by cyclic GMP-AMP synthase, NOD-like receptors and Toll-like receptors. This review emphasizes the dual role of mitochondria as both contributors to and regulators of inflammation. The aim is to explore the complex mechanisms of mitochondrial dysfunction in AMI and its profound impact on immune dysregulation. Specific interventions including mitochondrial-targeted antioxidants, membrane-stabilizing peptides, and mitochondrial transplantation therapies have demonstrated efficacy in preclinical AMI models.
Collapse
Affiliation(s)
- Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Zhang K, Wang L, Gao W, Guo R. Retinol-binding protein 4 in skeletal and cardiac muscle: molecular mechanisms, clinical implications, and future perspectives. Front Cell Dev Biol 2025; 13:1587165. [PMID: 40276651 PMCID: PMC12018443 DOI: 10.3389/fcell.2025.1587165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Retinol-binding protein 4 (RBP4) has emerged as a critical adipokine involved in the pathophysiology of metabolic and cardiovascular diseases. Beyond its classical role in retinol transport, RBP4 influences insulin resistance, inflammation, lipid metabolism, mitochondrial function, and cellular apoptosis in both skeletal and cardiac muscles. Elevated levels of RBP4 are associated with obesity, type 2 mellitus diabetes, and cardiovascular diseases, making it a potential biomarker and therapeutic target. This comprehensive review elucidates the molecular mechanisms by which RBP4 affects skeletal and cardiac muscle physiology. We discuss its clinical implications as a biomarker for disease risk and progression, explore therapeutic strategies targeting RBP4, and highlight future research directions. Understanding the multifaceted roles of RBP4 could pave the way for novel interventions against metabolic and cardiovascular disorders.
Collapse
Affiliation(s)
- Kangzhen Zhang
- Department of Geriatrics, Nanjing Central Hospital, Nanjing, China
| | - Lijuan Wang
- Department of General Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rong Guo
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Yang HM. Mitochondrial Dysfunction in Cardiovascular Diseases. Int J Mol Sci 2025; 26:1917. [PMID: 40076543 PMCID: PMC11900462 DOI: 10.3390/ijms26051917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondrial dysfunction is increasingly recognized as a central contributor to the pathogenesis of cardiovascular diseases (CVDs), including heart failure, ischemic heart disease, hypertension, and cardiomyopathy. Mitochondria, known as the powerhouses of the cell, play a vital role in maintaining cardiac energy homeostasis, regulating reactive oxygen species (ROS) production and controlling cell death pathways. Dysregulated mitochondrial function results in impaired adenosine triphosphate (ATP) production, excessive ROS generation, and activation of apoptotic and necrotic pathways, collectively driving the progression of CVDs. This review provides a detailed examination of the molecular mechanisms underlying mitochondrial dysfunction in CVDs, including mutations in mitochondrial DNA (mtDNA), defects in oxidative phosphorylation (OXPHOS), and alterations in mitochondrial dynamics (fusion, fission, and mitophagy). Additionally, the role of mitochondrial dysfunction in specific cardiovascular conditions is explored, highlighting its impact on endothelial dysfunction, myocardial remodeling, and arrhythmias. Emerging therapeutic strategies targeting mitochondrial dysfunction, such as mitochondrial antioxidants, metabolic modulators, and gene therapy, are also discussed. By synthesizing recent advances in mitochondrial biology and cardiovascular research, this review aims to enhance understanding of the role of mitochondria in CVDs and identify potential therapeutic targets to improve cardiovascular outcomes.
Collapse
Affiliation(s)
- Han-Mo Yang
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Yang X, Zhang Z, Ye F, Liu P, Peng B, Wang T. Association between oxidative balance score and cardiovascular diseases: mediating analysis of methylmalonic acid based on the NHANES database. Front Nutr 2024; 11:1476551. [PMID: 39588041 PMCID: PMC11587900 DOI: 10.3389/fnut.2024.1476551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/16/2024] [Indexed: 11/27/2024] Open
Abstract
Aim To explore the association between oxidative balance score (OBS) and cardiovascular diseases (CVD) in patients with hypertension, and further clarify the mediating role of methylmalonic acid (MMA) in the relationship between OBS and CVD risk. Methods We included 4,137 participants with hypertension from the 2011-2014 National Health and Nutrition Examination Survey cohort. The study endpoint was the incidence of CVD in patients with hypertension. OBS was calculated based on 16 dietary and 4 lifestyle components. Weighted multivariable logistic regression models were adopted to assess the associations between OBS and CVD risk, OBS and MMA levels, and MMA levels and CVD risk. Odds ratios (OR) and 95% confidence interval (CI) were estimated. We used distribution-of-product method to test for mediation effect, with a presence of mediation indicated by 95% CI that does not include 0 for the distribution-of-product method and 95% CI that does not include 1 for the indirect effect. Results Totally 812 developed CVD. In weighted multivariable logistic regression models, lower OBS category (OBS < 15.72) was associated with increased odds of CVD (OR = 1.53, 95%CI: 1.17-2.01) and MMA levels (OR = 1.32, 95%CI: 1.06-1.65), respectively, compared with higher OBS category as reference. A positive relationship between higher MMA levels (≥154.90 nmol/L) and CVD risk was observed (OR = 1.34, 95%CI: 1.07-1.68). Importantly, according to the distribution-of-product test, a potential mediating effect of MMA on the relationship between OBS and CVD was found (OR = 1.08, 95%CI: 1.01-1.19), with a 95% CI for distribution-of-product of 0.08 (95% CI: 0.01-0.17). The mediated proportion was 17.8%. Subgroup analysis revealed a mediating effect of MMA in individuals with dyslipidemia, with a mediated proportion of 14.9%. Conclusion MMA plays a critical mediating role in the pathway between OBS and CVD risk.
Collapse
Affiliation(s)
| | | | | | | | | | - Teng Wang
- Department of Cardiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
5
|
Rakhe N, Bhatt LK. Valosin-containing protein: A potential therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 101:102511. [PMID: 39313037 DOI: 10.1016/j.arr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Valosin-containing protein (VCP), also known as p97, plays a crucial role in various cellular processes, including protein degradation, endoplasmic reticulum-associated degradation, and cell cycle regulation. While extensive research has been focused on VCP's involvement in protein homeostasis and its implications in neurodegenerative diseases, emerging evidence suggests a potential link between VCP and cardiovascular health. VCP is a key regulator of mitochondrial function, and its overexpression or mutations lead to pathogenic diseases and cellular stress responses. The present review explores VCP's roles in numerous cardiovascular disorders including myocardial ischemia/reperfusion injury, cardiac hypertrophy, and heart failure. The review dwells on the roles of VCP in modifying mitochondrial activity, promoting S-nitrosylation, regulating mTOR signalling and demonstrating cardioprotective effects. Further research into VCP might lead to novel interventions for cardiovascular disease, particularly those involving ischemia/reperfusion injury and hypertrophy.
Collapse
Affiliation(s)
- Nameerah Rakhe
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
6
|
Wang Z, Ban J, Zhou Y, Qie R. Causal association between gastrointestinal diseases and coronary artery disease: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1458196. [PMID: 39473508 PMCID: PMC11518705 DOI: 10.3389/fendo.2024.1458196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Coronary artery disease (CAD) has been a dominating reason of mortality globally due to its complexity of etiology. A variety of gastrointestinal disorders (GDs) have been accounted to be related to CAD. Thus, this study aims to determine their causal relationship by two-sample Mendelian randomization (MR) analysis. METHODS Single-nucleotide polymorphisms (SNPs) relevant to 22 GDs were employed as instrumental variables from the genome-wide association summary (GWAS) datasets. Genetic associations with CAD and HF were acquired from UK Biobank, FinnGen, and other GWAS studies. We conducted a univariable MR (UVMR) analysis followed by a meta-analysis. A multivariable MR (MVMR) analysis was then performed with smoking and body mass index (BMI) as justifications. Also, a bi-directional MR analysis was leveraged to verify the reverse causal correlations. RESULTS Generally, UVMR analyses separately observed the causal effects of GDs on CAD and HF. Genetic liability to gastroesophageal reflux disease displayed a positive association with both CAD (OR=1.19; 95%CI: 1.01-1.41) and HF (OR=1.22; 95%CI: 1.00-1.49) risk; genetic liability to celiac disease separately attributed to CAD (OR=1.02; 95%CI: 1.01-1.03) and HF (OR=1.01; 95%CI: 1.00-1.02), which also maintained after MVMR analysis. Besides, we observed mutually causal associations between CAD and celiac disease. CONCLUSION Our work suggested that genetic susceptibility to some GDs might causally increase the risk of CAD and HF, emphasizing the importance of preventing CAD in patients with GDs.
Collapse
Affiliation(s)
- Zhuoxi Wang
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jifang Ban
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Rui Qie
- Preventive Treatment Center, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Chiari P, Fellahi JL. Myocardial protection in cardiac surgery: a comprehensive review of current therapies and future cardioprotective strategies. Front Med (Lausanne) 2024; 11:1424188. [PMID: 38962735 PMCID: PMC11220133 DOI: 10.3389/fmed.2024.1424188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiac surgery with cardiopulmonary bypass results in global myocardial ischemia-reperfusion injury, leading to significant postoperative morbidity and mortality. Although cardioplegia is the cornerstone of intraoperative cardioprotection, a number of additional strategies have been identified. The concept of preconditioning and postconditioning, despite its limited direct clinical application, provided an essential contribution to the understanding of myocardial injury and organ protection. Therefore, physicians can use different tools to limit perioperative myocardial injury. These include the choice of anesthetic agents, remote ischemic preconditioning, tight glycemic control, optimization of respiratory parameters during the aortic unclamping phase to limit reperfusion injury, appropriate choice of monitoring to optimize hemodynamic parameters and limit perioperative use of catecholamines, and early reintroduction of cardioprotective agents in the postoperative period. Appropriate management before, during, and after cardiopulmonary bypass will help to decrease myocardial damage. This review aimed to highlight the current advancements in cardioprotection and their potential applications during cardiac surgery.
Collapse
Affiliation(s)
- Pascal Chiari
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Fellahi
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
8
|
Wang H, Slotabec L, Didik S, Li Z, Leng L, Zhao B, Bucala R, Li J. A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation. Metabolism 2024; 153:155792. [PMID: 38232801 PMCID: PMC10932879 DOI: 10.1016/j.metabol.2024.155792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Macrophage migration inhibitory factor (MIF) is an innate cytokine that regulates both inflammatory and homeostatic responses. MIF is expressed by cardiomyocytes, where it exerts a protective action against ischemia-reperfusion (I/R) injury by activating AMP-activated protein kinase (AMPK). This effect is attenuated in the senescent heart due to an intrinsic, age-related reduction in MIF expression. We hypothesized that treating the aged heart with the small molecule MIF agonist (MIF20) can reinforce protective MIF signaling in cardiomyocytes, leading to a beneficial effect against I/R stress. The administration of MIF20 at the onset of reperfusion was found to not only decrease myocardial infarct size but also preserves systolic function in the aged heart. Protection from I/R injury was reduced in mice with cardiomyocyte-specific Mif deletion, consistent with the mechanism of action of MIF20 to allosterically increase MIF affinity for its cognate receptor CD74. We further found MIF20 to contribute to the maintenance of mitochondrial fitness and to preserve the contractile properties of aged cardiomyocytes under hypoxia/reoxygenation. MIF20 augments protective metabolic responses by reducing the NADH/NAD ratio, leading to a decrease in the accumulation of reactive oxygen species (ROS) in the aged myocardium under I/R stress. We also identify alterations in the expression levels of the downstream effectors PDK4 and LCAD, which participate in the remodeling of the cardiac metabolic profile. Data from this study demonstrates that pharmacologic augmentation of MIF signaling provides beneficial homeostatic actions on senescent myocardium under I/R stress.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America
| | - Steven Didik
- Department of Surgery, University of South Florida, FL 33612, United States of America
| | - Zehui Li
- Department of Surgery, University of South Florida, FL 33612, United States of America
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, United States of America
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, United States of America.
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, United States of America
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, United States of America; G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, United States of America.
| |
Collapse
|
9
|
Zhu Q, Combs ME, Bowles DE, Gross RT, Mendiola Pla M, Mack CP, Taylor JM. GRAF1 Acts as a Downstream Mediator of Parkin to Regulate Mitophagy in Cardiomyocytes. Cells 2024; 13:448. [PMID: 38474413 PMCID: PMC10930636 DOI: 10.3390/cells13050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiomyocytes rely on proper mitochondrial homeostasis to maintain contractility and achieve optimal cardiac performance. Mitochondrial homeostasis is controlled by mitochondrial fission, fusion, and mitochondrial autophagy (mitophagy). Mitophagy plays a particularly important role in promoting the degradation of dysfunctional mitochondria in terminally differentiated cells. However, the precise mechanisms by which this is achieved in cardiomyocytes remain opaque. Our study identifies GRAF1 as an important mediator in PINK1-Parkin pathway-dependent mitophagy. Depletion of GRAF1 (Arhgap26) in cardiomyocytes results in actin remodeling defects, suboptimal mitochondria clustering, and clearance. Mechanistically, GRAF1 promotes Parkin-LC3 complex formation and directs autophagosomes to damaged mitochondria. Herein, we found that these functions are regulated, at least in part, by the direct binding of GRAF1 to phosphoinositides (PI(3)P, PI(4)P, and PI(5)P) on autophagosomes. In addition, PINK1-dependent phosphorylation of Parkin promotes Parkin-GRAF1-LC3 complex formation, and PINK1-dependent phosphorylation of GRAF1 (on S668 and S671) facilitates the clustering and clearance of mitochondria. Herein, we developed new phosphor-specific antibodies to these sites and showed that these post-translational modifications are differentially modified in human hypertrophic cardiomyopathy and dilated cardiomyopathy. Furthermore, our metabolic studies using serum collected from isoproterenol-treated WT and GRAF1CKO mice revealed defects in mitophagy-dependent cardiomyocyte fuel flexibility that have widespread impacts on systemic metabolism. In summary, our study reveals that GRAF1 co-regulates actin and membrane dynamics to promote cardiomyocyte mitophagy and that dysregulation of GRAF1 post-translational modifications may underlie cardiac disease pathogenesis.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Matthew E. Combs
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
| | - Dawn E. Bowles
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Ryan T. Gross
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC 27710, USA; (D.E.B.); (R.T.G.); (M.M.P.)
| | - Christopher P. Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joan M. Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; (Q.Z.); (M.E.C.); (C.P.M.)
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
11
|
Bryson TD, Zurek M, Moore C, Taube D, Datta I, Levin A, Harding P. Prostaglandin E2 affects mitochondrial function in adult mouse cardiomyocytes and hearts. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102614. [PMID: 38471265 PMCID: PMC11180573 DOI: 10.1016/j.plefa.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Prostaglandin E2 (PGE2) signals differently through 4 receptor subtypes (EP1-EP4) to elicit diverse physiologic/pathologic effects. We previously reported that PGE2 via its EP3 receptor reduces cardiac contractility and male mice with cardiomyocyte-specific deletion of the EP4 receptor (EP4 KO) develop dilated cardiomyopathy. The aim of this study was to identify pathways responsible for this phenotype. We performed ingenuity pathway analysis (IPA) and found that genes differentiating WT mice and EP4 KO mice were significantly overrepresented in mitochondrial (adj. p value = 6.28 × 10-26) and oxidative phosphorylation (adj. p value = 1.58 × 10-27) pathways. Electron microscopy from the EP4 KO hearts show substantial mitochondrial disarray and disordered cristae. Not surprisingly, isolated adult mouse cardiomyocytes (AVM) from these mice have reduced ATP levels compared to their WT littermates and reduced expression of key genes involved in the electron transport chain (ETC) in older mice. Moreover, treatment of AVM from C57Bl/6 mice with PGE2 or the EP3 agonist sulprostone resulted in changes of various genes involved in the ETC, measured by the Mitochondrial Energy Metabolism RT2-profiler assay. Lastly, the EP4 KO mice have reduced expression of superoxide dismuatse-2 (SOD2), whereas treatment of AVM with PGE2 or sulprostone increase superoxide production, suggesting increased oxidative stress levels in these EP4 KO mice. Altogether the current study supports the premise that PGE2 acting via its EP4 receptor is protective, while signaling through its other receptors, likely EP3, is deleterious.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Dinoprostone/metabolism
- Mice
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/agonists
- Mice, Knockout
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Oxidative Phosphorylation/drug effects
- Mitochondria/metabolism
- Mitochondria/drug effects
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Matthew Zurek
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Carlin Moore
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - David Taube
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA
| | - Indrani Datta
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Albert Levin
- Department of Public Health Sciences, Henry Ford Health, Detroit, MI, USA
| | - Pamela Harding
- Hypertension & Vascular Research Division, Department of Internal Medicine, Henry Ford Health, Detroit, MI, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Chang YY, Wei AC. Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS One 2024; 19:e0297664. [PMID: 38295140 PMCID: PMC10830027 DOI: 10.1371/journal.pone.0297664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The effects of coronavirus disease 2019 (COVID-19) primarily concern the respiratory tract and lungs; however, studies have shown that all organs are susceptible to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 may involve multiorgan damage from direct viral invasion through angiotensin-converting enzyme 2 (ACE2), through inflammatory cytokine storms, or through other secondary pathways. This study involved the analysis of publicly accessible transcriptome data from the Gene Expression Omnibus (GEO) database for identifying significant differentially expressed genes related to COVID-19 and an investigation relating to the pathways associated with mitochondrial, cardiac, hepatic, and renal toxicity in COVID-19. Significant differentially expressed genes were identified and ranked by statistical approaches, and the genes derived by biological meaning were ranked by feature importance; both were utilized as machine learning features for verification. Sample set selection for machine learning was based on the performance, sample size, imbalanced data state, and overfitting assessment. Machine learning served as a verification tool by facilitating the testing of biological hypotheses by incorporating gene list adjustment. A subsequent in-depth study for gene and pathway network analysis was conducted to explore whether COVID-19 is associated with cardiac, hepatic, and renal impairments via mitochondrial infection. The analysis showed that potential cardiac, hepatic, and renal impairments in COVID-19 are associated with ACE2, inflammatory cytokine storms, and mitochondrial pathways, suggesting potential medical interventions for COVID-19-induced multiorgan damage.
Collapse
Affiliation(s)
- Yu-Yu Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Piao L, Fang Y, Fisher M, Hamanaka RB, Ousta A, Wu R, Mutlu GM, Garcia AJ, Archer SL, Sharp WW. Dynamin-related protein 1 is a critical regulator of mitochondrial calcium homeostasis during myocardial ischemia/reperfusion injury. FASEB J 2024; 38:e23379. [PMID: 38133921 PMCID: PMC12027350 DOI: 10.1096/fj.202301040rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Dynamin-related protein 1 (Drp1) is a cytosolic GTPase protein that when activated translocates to the mitochondria, meditating mitochondrial fission and increasing reactive oxygen species (ROS) in cardiomyocytes. Drp1 has shown promise as a therapeutic target for reducing cardiac ischemia/reperfusion (IR) injury; however, the lack of specificity of some small molecule Drp1 inhibitors and the reliance on the use of Drp1 haploinsufficient hearts from older mice have left the role of Drp1 in IR in question. Here, we address these concerns using two approaches, using: (a) short-term (3 weeks), conditional, cardiomyocyte-specific, Drp1 knockout (KO) and (b) a novel, highly specific Drp1 GTPase inhibitor, Drpitor1a. Short-term Drp1 KO mice exhibited preserved exercise capacity and cardiac contractility, and their isolated cardiac mitochondria demonstrated increased mitochondrial complex 1 activity, respiratory coupling, and calcium retention capacity compared to controls. When exposed to IR injury in a Langendorff perfusion system, Drp1 KO hearts had preserved contractility, decreased reactive oxygen species (ROS), enhanced mitochondrial calcium capacity, and increased resistance to mitochondrial permeability transition pore (MPTP) opening. Pharmacological inhibition of Drp1 with Drpitor1a following ischemia, but before reperfusion, was as protective as Drp1 KO for cardiac function and mitochondrial calcium homeostasis. In contrast to the benefits of short-term Drp1 inhibition, prolonged Drp1 ablation (6 weeks) resulted in cardiomyopathy. Drp1 KO hearts were also associated with decreased ryanodine receptor 2 (RyR2) protein expression and pharmacological inhibition of the RyR2 receptor decreased ROS in post-IR hearts suggesting that changes in RyR2 may have a role in Drp1 KO mediated cardioprotection. We conclude that Drp1-mediated increases in myocardial ROS production and impairment of mitochondrial calcium handling are key mechanisms of IR injury. Short-term inhibition of Drp1 is a promising strategy to limit early myocardial IR injury which is relevant for the therapy of acute myocardial infarction, cardiac arrest, and heart transplantation.
Collapse
Affiliation(s)
- Lin Piao
- Section of Emergency Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Yong‐Hu Fang
- Section of Emergency Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Michael Fisher
- Section of Emergency Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Robert B. Hamanaka
- Section of Pulmonary and Critical Care, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Alaa Ousta
- Department of Emergency MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Rongxue Wu
- Section of Cardiology, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
| | - Gökhan M. Mutlu
- Section of Pulmonary and Critical Care, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
- Institute for Integrative PhysiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Alfredo J. Garcia
- Section of Emergency Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
- Institute for Integrative PhysiologyUniversity of ChicagoChicagoIllinoisUSA
- The University of Chicago Neuroscience Institute, University of ChicagoChicagoIllinoisUSA
| | | | - Willard W. Sharp
- Section of Emergency Medicine, Department of MedicineUniversity of ChicagoChicagoIllinoisUSA
- Institute for Integrative PhysiologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
14
|
Sánchez-Pérez P, Mata A, Torp MK, López-Bernardo E, Heiestad CM, Aronsen JM, Molina-Iracheta A, Jiménez-Borreguero LJ, García-Roves P, Costa ASH, Frezza C, Murphy MP, Stenslokken KO, Cadenas S. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3. Free Radic Biol Med 2023; 205:244-261. [PMID: 37295539 DOI: 10.1016/j.freeradbiomed.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
Collapse
Affiliation(s)
- Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - May-Kristin Torp
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Elia López-Bernardo
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Christina M Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway; Bjørknes College, 0456, Oslo, Norway
| | | | - Luis J Jiménez-Borreguero
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Servicio de Cardiología, Hospital Universitario de La Princesa, 28006, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo García-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Kåre-Olav Stenslokken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| |
Collapse
|
15
|
Main EN, Cruz TM, Bowlin GL. Mitochondria as a therapeutic: a potential new frontier in driving the shift from tissue repair to regeneration. Regen Biomater 2023; 10:rbad070. [PMID: 37663015 PMCID: PMC10468651 DOI: 10.1093/rb/rbad070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Fibrosis, or scar tissue development, is associated with numerous pathologies and is often considered a worst-case scenario in terms of wound healing or the implantation of a biomaterial. All that remains is a disorganized, densely packed and poorly vascularized bundle of connective tissue, which was once functional tissue. This creates a significant obstacle to the restoration of tissue function or integration with any biomaterial. Therefore, it is of paramount importance in tissue engineering and regenerative medicine to emphasize regeneration, the successful recovery of native tissue function, as opposed to repair, the replacement of the native tissue (often with scar tissue). A technique dubbed 'mitochondrial transplantation' is a burgeoning field of research that shows promise in in vitro, in vivo and various clinical applications in preventing cell death, reducing inflammation, restoring cell metabolism and proper oxidative balance, among other reported benefits. However, there is currently a lack of research regarding the potential for mitochondrial therapies within tissue engineering and regenerative biomaterials. Thus, this review explores these promising findings and outlines the potential for mitochondrial transplantation-based therapies as a new frontier of scientific research with respect to driving regeneration in wound healing and host-biomaterial interactions, the current successes of mitochondrial transplantation that warrant this potential and the critical questions and remaining obstacles that remain in the field.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Thaiz M Cruz
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152, USA
| |
Collapse
|
16
|
Rios L, Pokhrel S, Li SJ, Heo G, Haileselassie B, Mochly-Rosen D. Targeting an allosteric site in dynamin-related protein 1 to inhibit Fis1-mediated mitochondrial dysfunction. Nat Commun 2023; 14:4356. [PMID: 37468472 PMCID: PMC10356917 DOI: 10.1038/s41467-023-40043-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
The large cytosolic GTPase, dynamin-related protein 1 (Drp1), mediates both physiological and pathological mitochondrial fission. Cell stress triggers Drp1 binding to mitochondrial Fis1 and subsequently, mitochondrial fragmentation, ROS production, metabolic collapse, and cell death. Because Drp1 also mediates physiological fission by binding to mitochondrial Mff, therapeutics that inhibit pathological fission should spare physiological mitochondrial fission. P110, a peptide inhibitor of Drp1-Fis1 interaction, reduces pathology in numerous models of neurodegeneration, ischemia, and sepsis without blocking the physiological functions of Drp1. Since peptides have pharmacokinetic limitations, we set out to identify small molecules that mimic P110's benefit. We map the P110-binding site to a switch I-adjacent grove (SWAG) on Drp1. Screening for SWAG-binding small molecules identifies SC9, which mimics P110's benefits in cells and a mouse model of endotoxemia. We suggest that the SWAG-binding small molecules discovered in this study may reduce the burden of Drp1-mediated pathologies and potentially pathologies associated with other members of the GTPase family.
Collapse
Affiliation(s)
- Luis Rios
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sin-Jin Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Bachelor Program of Biotechnology and Food Nutrition, National Taiwan University, Taipei City, Taiwan
| | - Gwangbeom Heo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Ray R, Ghosh S, Panja P, Jana NR. Rapid Mitochondria Targeting by Arginine-Terminated, Sub-10 nm Nanoprobe via Direct Cell Membrane Penetration. ACS APPLIED BIO MATERIALS 2023. [PMID: 37196150 DOI: 10.1021/acsabm.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although mitochondria have been identified as a potential therapeutic target for the treatment of various diseases, inefficient drug targeting to mitochondria is a major limitation for related therapeutic applications. In the current approach, drug loaded nanoscale carriers are used for mitochondria targeting via endocytic uptake. However, these approaches show poor therapeutic performance due to inefficient drug delivery to mitochondria. Here, we report a designed nanoprobe that can enter the cell via a nonendocytic approach and label mitochondria within 1 h. The designed nanoprobe is <10 nm in size and terminated with arginine/guanidinium that offers direct membrane penetration followed by mitochondria targeting. We found five specific criteria that need to be adjusted in a nanoscale material for mitochondria targeting via the nonendocytic approach. They include <10 nm size, functionalization with arginine/guanidinium, cationic surface charge, colloidal stability, and low cytotoxicity. The proposed design can be adapted for mitochondria delivery of drugs for efficient therapeutic performance.
Collapse
Affiliation(s)
- Reeddhi Ray
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santu Ghosh
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Prasanta Panja
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
18
|
Mohan UP, Pichiah PBT, Arunachalam S. Adriamycin downregulates the expression of KLF4 in cardiomyocytes in vitro and contributes to impaired cardiac energy metabolism in Adriamycin-induced cardiomyopathy. 3 Biotech 2023; 13:162. [PMID: 37152000 PMCID: PMC10160296 DOI: 10.1007/s13205-023-03584-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
Adriamycin is a well-known anthracycline chemotherapeutic agent widely used in treating a variety of malignancies. However, Adriamycin's clinical use is limited due to its adverse side-effects, most importantly cardiomyopathy. Adriamycin-induced cardiotoxicity reportedly includes mitochondrial dysfunction. We hypothesize that modulation of KLF4, a key regulator of cardiac mitochondrial homeostasis might play a role in the development of Adriamycin-induced cardiomyopathy. Therefore, in the current work, we evaluated the interaction of Adriamycin with KLF4 and its subsequent downstream targets. Molecular docking revealed that Adriamycin interacts strongly with KLF4 at residues Thr 448, Arg 452, Ser 444 falls within C2H2 motif which is the active site. Quantitative real-time PCR also revealed that KLF4 is downregulated by Adriamycin in cardiomyocytes in vitro. The expression of KLF4 is downregulated in a dose-dependent manner, with a 0.12 ± 0.09-fold (p ≤ 0.05, n = 3) downregulation at a low dosage and 0.21 ± 0.02-fold (p ≤ 0.05, n = 3) downregulation at high dosage. Deficiency of KLF4 leads to an impairment of PPARγ that consequently supresses the proteins/enzymes involved in the fatty acid metabolism. Adriamycin-mediated suppression of KLF4 also affected the expression of PPARα in vitro. PPARα dysfunction is likely to cause defects in β-oxidation which ultimately results in impaired ATP synthesis. Cardiac cells are thus forced to switch over the substrate from free fatty acid to glucose. Moreover, Adriamycin elevates the expression of PPARβ due to downregulation of KLF4 leads to increased myocardial glucose utilization. Thus, a change in substrate preference affects the flexibility of metabolic network culminating in diminished energy production and other regulatory activities, altogether contributing to the development of cardiomyopathy. Thus, we conclude that the effect of Adriamycin on KLF4 disrupts mitochondrial homeostasis and lipid/glucose homeostasis resulting in a reduction of ATP synthesis which ultimately results in dilated cardiomyopathy.
Collapse
Affiliation(s)
- Uma Priya Mohan
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| | - P. B. Tirupathi Pichiah
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024 India
| | - Sankarganesh Arunachalam
- Centre for Cardiovascular and Adverse Drug Reactions, Department of Biotechnology, School of Bio, Chemical and Processing Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar Dt., Tamilnadu, 626126 India
| |
Collapse
|
19
|
Ko TK, Tan DJY. Is Disrupted Mitophagy a Central Player to Parkinson's Disease Pathology? Cureus 2023; 15:e35458. [PMID: 36860818 PMCID: PMC9969326 DOI: 10.7759/cureus.35458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2023] [Indexed: 02/27/2023] Open
Abstract
Whilst the pathophysiology at a cellular level has been defined, the cause of Parkinson's disease (PD) remains poorly understood. This neurodegenerative disorder is associated with impaired dopamine transmission in the substantia nigra, and protein accumulations known as Lewy bodies are visible in affected neurons. Cell culture models of PD have indicated impaired mitochondrial function, so the focus of this paper is on the quality control processes involved in and around mitochondria. Mitochondrial autophagy (mitophagy) is the process through which defective mitochondria are removed from the cell by internalisation into autophagosomes which fuse with a lysosome. This process involves many proteins, notably including PINK1 and parkin, both of which are known to be coded on genes associated with PD. Normally in healthy individuals, PINK1 associates with the outer mitochondrial membrane, which then recruits parkin, activating it to attach ubiquitin proteins to the mitochondrial membrane. PINK1, parkin, and ubiquitin cooperate to form a positive feedback system which accelerates the deposition of ubiquitin on dysfunctional mitochondria, resulting in mitophagy. However, in hereditary PD, the genes encoding PINK1 and parkin are mutated, resulting in proteins that are less efficient at removing poorly performing mitochondria, leaving cells more vulnerable to oxidative stress and ubiquitinated inclusion bodies, such as Lewy bodies. Current research that looks into the connection between mitophagy and PD is promising, already yielding potentially therapeutic compounds; until now, pharmacological support for the mitophagy process has not been part of the therapeutic arsenal. Continued research in this area is warranted.
Collapse
Affiliation(s)
- Tsz Ki Ko
- Otolaryngology, College of Life Sciences, Leicester Medical School, George Davies Centre, Leicester, GBR
| | | |
Collapse
|
20
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
21
|
Li G, Gu J, Zhou X, Wu T, Li X, Hua R, Hai Z, Xiao Y, Su J, Yeung WSB, Liu K, Guo C, Wang T. Mitochondrial stress response gene Clpp deficiency impairs oocyte competence and deteriorate cyclophosphamide-induced ovarian damage in young mice. Front Endocrinol (Lausanne) 2023; 14:1122012. [PMID: 37033217 PMCID: PMC10081448 DOI: 10.3389/fendo.2023.1122012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Chemotherapy is extensively used to treat cancers and is often associated with ovarian damage and leads to premature ovarian insufficiency and infertility, while the role of mitochondria during ovarian damage with chemotherapy remains unknown. This study used a mouse model with oocyte-specific deletion of mitochondrial stress response gene Caseinolytic peptidase P (Clpp) to investigate mitochondrial homeostasis in oocytes from mice receiving a chemotherapeutic drug cyclophosphamide (CTX). We found that oocyte-specific deletion of Clpp reduced fecundity of the mice at advanced age. The deletion led to meiotic defects with elevated abnormal spindle rate and aneuploidy rate with impaired mitochondrial function in the MII oocytes from 8-week-old mice. Upon CTX treatment at 8-week-old, the oocyte competence and folliculogenesis from the oocyte-specific Clpp knockout mice was further deteriorated with dramatic impairment of mitochondrial distribution and function including elevated ROS level, decreased mitochondrial membrane potential, respiratory chain activity and ATP production. Taken together, the results indicate that that ClpP was required for oocyte competence during maturation and early folliculogenesis, and its deficiency deteriorate cyclophosphamide-induced ovarian damage.
Collapse
Affiliation(s)
- Guangxin Li
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingkai Gu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaomei Zhou
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ting Wu
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xian Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Renwu Hua
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhuo Hai
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuan Xiao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiaping Su
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Willian S. B. Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Kui Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of HongKong, Hong Kong, Hong Kong SAR, China
| | - Chenxi Guo
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| | - Tianren Wang
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Tianren Wang, ; Chenxi Guo,
| |
Collapse
|
22
|
Gao Z, Bao J, Hu Y, Tu J, Ye L, Wang L. Sodium-glucose Cotransporter 2 Inhibitors and Pathological Myocardial Hypertrophy. Curr Drug Targets 2023; 24:1009-1022. [PMID: 37691190 PMCID: PMC10879742 DOI: 10.2174/1389450124666230907115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new type of oral hypoglycemic drugs that exert a hypoglycemic effect by blocking the reabsorption of glucose in the proximal renal tubules, thus promoting the excretion of glucose from urine. Their hypoglycemic effect is not dependent on insulin. Increasing data shows that SGLT2 inhibitors improve cardiovascular outcomes in patients with type 2 diabetes. Previous studies have demonstrated that SGLT2 inhibitors can reduce pathological myocardial hypertrophy with or without diabetes, but the exact mechanism remains to be elucidated. To clarify the relationship between SGLT2 inhibitors and pathological myocardial hypertrophy, with a view to providing a reference for the future treatment thereof, this study reviewed the possible mechanisms of SGLT2 inhibitors in attenuating pathological myocardial hypertrophy. We focused specifically on the mechanisms in terms of inflammation, oxidative stress, myocardial fibrosis, mitochondrial function, epicardial lipids, endothelial function, insulin resistance, cardiac hydrogen and sodium exchange, and autophagy.
Collapse
Affiliation(s)
- Zhicheng Gao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yilan Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junjie Tu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lihong Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Wal P, Aziz N, Singh YK, Wal A, Kosey S, Rai AK. Myocardial Infarction as a Consequence of Mitochondrial Dysfunction. Curr Cardiol Rev 2023; 19:23-30. [PMID: 37157208 PMCID: PMC10636795 DOI: 10.2174/1573403x19666230508114311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023] Open
Abstract
Acute myocardial infarction is an event of myocardial necrosis caused by unstable ischemic syndrome. Myocardial infarction (MI) occurs when blood stops flowing to the cardiac tissue or myocardium and the heart muscle gets damaged due to poor perfusion and reduced oxygen supply. Mitochondria can serve as the arbiter of cell fate in response to stress. Oxidative metabolism is the function of mitochondria within the cell. Cardiac cells being highly oxidative tissue generates about 90% of their energy through oxidative metabolism. In this review, we focused on the role of mitochondria in energy generation in myocytes as well as its consequences on heart cells causing cell damage. The role of mitochondrial dysfunction due to oxidative stress, production of reactive oxygen species, and anaerobic production of lactate as a failure of oxidative metabolism are also discussed.
Collapse
Affiliation(s)
- Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Namra Aziz
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Yash Kumar Singh
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Ankita Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan, India
| | - Awani Kumar Rai
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Bhauti, Kanpur, UP-209305, India
| |
Collapse
|
24
|
Chen Q, Akande O, Lesnefsky EJ, Quader M. Influence of sex on global myocardial ischemia tolerance and mitochondrial function in circulatory death donor hearts. Am J Physiol Heart Circ Physiol 2023; 324:H57-H66. [PMID: 36426883 PMCID: PMC9762969 DOI: 10.1152/ajpheart.00478.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Donation after circulatory death (DCD) donor hearts are not routinely used for heart transplantation (HTx) because of ischemic damage, which is inherent to the DCD process. HTx outcomes are suboptimal in males who received female donor hearts. The exact mechanism for suboptimal outcomes from female donor hearts has not been defined. Differential susceptibility to ischemia tolerance, which would play a significant role in DCD donation, could be a reason but has not been studied. We studied the influence of sex on global myocardial ischemia tolerance and mitochondrial function. Sprague-Dawley rats of both sexes were assigned to DCD (n = 32) or control beating-heart donor (CBD, n = 28) groups. DCD hearts underwent 25 min of in vivo global myocardial ischemia and 90 min of ex vivo Krebs-Henseleit buffer perfusion at 37°C. CBD hearts were procured without ischemia. Infarct size was determined in hearts following 90 min of reperfusion, and in another set of hearts, mitochondrial function (oxidative-phosphorylation) was studied following 60 min of reperfusion. Infarct size was increased 3.3-fold in male and 3.1-fold in female DCD hearts compared with CBD hearts. However, infarct size (%) was comparable in female and male DCD hearts (male: 25.4 ± 3.7 vs. female 19.0 ± 3.3, P = NS). Oxidative phosphorylation was similarly decreased in male and female DCD hearts' mitochondria compared with CBD hearts' mitochondria. Thus, neither infarct size nor mitochondrial dysfunction was higher in female DCD hearts. These results suggest that the susceptibility to ischemia is not the reason for suboptimal HTx outcomes with female donor hearts.NEW & NOTEWORTHY The current study shows cardiac injury is not increased in female DCD hearts following global ischemia-reperfusion compared with male DCD hearts. In addition, mitochondrial dysfunction with DCD ischemia-reperfusion is comparable in both sexes. Sex-specific immune responses and hormone receptor modulation may contribute to suboptimal outcomes in male HTx recipients with female donor hearts.
Collapse
Affiliation(s)
- Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Oluwatoyin Akande
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
- Cardiology Section, Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| | - Mohammed Quader
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
- Division of Cardiothoracic Surgery, Virginia Commonwealth University, Richmond, Virginia
- Cardiothoracic Surgery Section, Surgical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, Virginia
| |
Collapse
|
25
|
Lazzeroni D, Villatore A, Souryal G, Pili G, Peretto G. The Aging Heart: A Molecular and Clinical Challenge. Int J Mol Sci 2022; 23:16033. [PMID: 36555671 PMCID: PMC9783309 DOI: 10.3390/ijms232416033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is associated with an increasing burden of morbidity, especially for cardiovascular diseases (CVDs). General cardiovascular risk factors, ischemic heart diseases, heart failure, arrhythmias, and cardiomyopathies present a significant prevalence in older people, and are characterized by peculiar clinical manifestations that have distinct features compared with the same conditions in a younger population. Remarkably, the aging heart phenotype in both healthy individuals and patients with CVD reflects modifications at the cellular level. An improvement in the knowledge of the physiological and pathological molecular mechanisms underlying cardiac aging could improve clinical management of older patients and offer new therapeutic targets.
Collapse
Affiliation(s)
| | - Andrea Villatore
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Arrhythmology and Cardiac Electrophysiology, Ospedale San Raffaele, 20132 Milan, Italy
| | - Gaia Souryal
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Gianluca Pili
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Giovanni Peretto
- School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Arrhythmology and Cardiac Electrophysiology, Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
26
|
Wang X, Li W, Xiang M. Increased serum methylmalonic acid levels were associated with the presence of cardiovascular diseases. Front Cardiovasc Med 2022; 9:966543. [PMID: 36299874 PMCID: PMC9588910 DOI: 10.3389/fcvm.2022.966543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Functional vitamin B12 deficiency is common in cardiovascular diseases (CVDs), such as heart failure and myocardial infarction. Methylmalonic acid (MMA) is a specific and sensitive marker of vitamin B12 deficiency. However, there are scarce data in regard to the relationship between MMA and CVDs. Materials and methods In this cross-sectional study, we analyzed data of 5,313 adult participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Associations between MMA and other variables were assessed with linear regression models. Univariable and multivariable logistic regression models were employed to explore the association between MMA and CVDs. Results The weighted prevalence of CVDs was 8.8% in the general population of the USA. Higher MMA levels were found in participants with CVDs (p < 0.001). Linear regression models revealed positive associations between serum MMA level and age (p < 0.001), glycohemoglobin (p = 0.023), fasting glucose (p = 0.044), mean cell volume (p = 0.038), and hypertension (p = 0.003). In the multivariable logistic model adjusting for age, gender, ethnicity, smoking, hypertension, glycohemoglobin, body mass index (BMI), low-density lipoprotein-cholesterol (LDL-C), renal dysfunction and vitamin B12, serum MMA (adjusted odds ratio, 3.08; 95% confidence interval: 1.63-5.81, p = 0.002, per ln nmol/L increment) was associated with CVDs. Conclusion Our study demonstrated that elevated serum MMA levels were independently associated with the presence of CVDs and may be used to predict the occurrence of CVDs.
Collapse
|
27
|
Belosludtseva NV, Starinets VS, Mikheeva IB, Belosludtsev MN, Dubinin MV, Mironova GD, Belosludtsev KN. Effect of Chronic Treatment with Uridine on Cardiac Mitochondrial Dysfunction in the C57BL/6 Mouse Model of High-Fat Diet-Streptozotocin-Induced Diabetes. Int J Mol Sci 2022; 23:10633. [PMID: 36142532 PMCID: PMC9502122 DOI: 10.3390/ijms231810633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Long-term hyperglycemia in diabetes mellitus is associated with complex damage to cardiomyocytes and the development of mitochondrial dysfunction in the myocardium. Uridine, a pyrimidine nucleoside, plays an important role in cellular metabolism and is used to improve cardiac function. Herein, the antidiabetic potential of uridine (30 mg/kg/day for 21 days, i.p.) and its effect on mitochondrial homeostasis in the heart tissue were examined in a high-fat diet-streptozotocin-induced model of diabetes in C57BL/6 mice. We found that chronic administration of uridine to diabetic mice normalized plasma glucose and triglyceride levels and the heart weight/body weight ratio and increased the rate of glucose utilization during the intraperitoneal glucose tolerance test. Analysis of TEM revealed that uridine prevented diabetes-induced ultrastructural abnormalities in mitochondria and sarcomeres in ventricular cardiomyocytes. In diabetic heart tissue, the mRNA level of Ppargc1a decreased and Drp1 and Parkin gene expression increased, suggesting the disturbances of mitochondrial biogenesis, fission, and mitophagy, respectively. Uridine treatment of diabetic mice restored the mRNA level of Ppargc1a and enhanced Pink1 gene expression, which may indicate an increase in the intensity of mitochondrial biogenesis and mitophagy, and as a consequence, mitochondrial turnover. Uridine also reduced oxidative phosphorylation dysfunction and suppressed lipid peroxidation, but it had no significant effect on the impaired calcium retention capacity and potassium transport in the heart mitochondria of diabetic mice. Altogether, these findings suggest that, along with its hypoglycemic effect, uridine has a protective action against diabetes-mediated functional and structural damage to cardiac mitochondria and disruption of mitochondrial quality-control systems in the diabetic heart.
Collapse
Affiliation(s)
- Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Maxim N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| | - Galina D. Mironova
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
| | - Konstantin N. Belosludtsev
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Russia
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola 424001, Russia
| |
Collapse
|
28
|
Deng X, Ye F, Zeng L, Luo W, Tu S, Wang X, Zhang Z. Dexmedetomidine Mitigates Myocardial Ischemia/Reperfusion-Induced Mitochondrial Apoptosis through Targeting lncRNA HCP5. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1529-1551. [PMID: 35931662 DOI: 10.1142/s0192415x22500641] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our study aimed to explore the function and mechanism of Dexmedetomidine (Dex) in regulating myocardial ischemia/reperfusion (I/R)-induced mitochondrial apoptosis through lncRNA HCP5. We demonstrated Dex suppressed I/R-induced myocardial infarction and mitochondrial apoptosis in vivo. Dex induced the expression of lncRNA HCP5 and MCL1, inhibited miR-29a expression and activated the JAK2/STAT3 signaling. Dex attenuated hypoxia/reoxygenation (H/R)-induced mitochondrial apoptosis by upregulating lncRNA HCP5 in cardiomyocytes. Overexpression of lncRNA HCP5 sponged miR-29a to suppress H/R-induced mitochondrial apoptosis. Knockdown of miR-29a also alleviated cardiomyocyte apoptosis by upregulating MCL1. Overexpression of lncRNA HCP5 activated the JAK2/STAT3 signaling through sponging miR-29a and enhancing MCL1 expression in cardiomyocytes. Dex mitigated myocardial I/R-induced mitochondrial apoptosis through the lncRNA HCP5/miR-29a/MCL1 axis and activation of the JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Xu Deng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Fei Ye
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Lixiong Zeng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Wenzhi Luo
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Shan Tu
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Xiaoyan Wang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| | - Zhihui Zhang
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, P. R. China
| |
Collapse
|
29
|
Wu T, Tong M, Chu A, Wu K, Niu X, Zhang Z. PM2.5-Induced Programmed Myocardial Cell Death via mPTP Opening Results in Deteriorated Cardiac Function in HFpEF Mice. Cardiovasc Toxicol 2022; 22:746-762. [PMID: 35593990 DOI: 10.1007/s12012-022-09753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/06/2022] [Indexed: 11/03/2022]
Abstract
PM2.5 exposure can induce or exacerbate heart failure and is associated with an increased risk of heart failure hospitalization and mortality; however, the underlying mechanisms remain unclear. This study focuses on the potential mechanisms underlying PM2.5 induction of cardiomyocyte programmed necrosis as well as its promotion of cardiac function impairment in a mouse model of heart failure with preserved ejection fraction (HFpEF). HFpEF mice were exposed to concentrated ambient PM2.5 (CAP) (CAP group) or filtered air (FA) (FA group) for 6 weeks. Changes in myocardial pathology and cardiac function were documented for comparisons between the two groups. In vitro experiments were performed to measure oxidative stress and mitochondrial permeability transition pore (mPTP) dynamics in H9C2 cells following 24 h exposure to PM2.5. Additionally, co-immunoprecipitation was conducted to detect p53 and cyclophilin D (CypD) interactions. The results showed exposure to CAP promoted cardiac function impairment in HFpEF mice. Myocardial pathology analysis and in vitro experiments demonstrated that PM2.5 led to mitochondrial damage in cardiomyocytes and, eventually, their necrosis. Moreover, our experiments also suggested that PM2.5 increases mitochondrial reactive oxygen species (ROS), induces DNA oxidative damage, and decreases the inner mitochondrial membrane potential (ΔΨm). This indicates the presence of mPTP opening. Co-immunoprecipitation results showed a p53/CypD interaction in the myocardial tissue of HFpEF mice in the CAP group. Inhibition of CypD by cyclosporin A was found to reverse PM2.5-induced mPTP opening and H9C2 cell death. In conclusion, PM2.5 induces mPTP opening to stimulate mitochondria-mediated programmed necrosis of cardiomyocytes, and it might exacerbate cardiac function impairment in HFpEF mice.
Collapse
Affiliation(s)
- Tingting Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Minghui Tong
- The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Aiai Chu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Kaiyue Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200030, China
| | - Xiaowei Niu
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Zheng Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
30
|
Miyahara S, Jenke A, Yazdanyar M, Kistner J, Immohr MB, Sugimura Y, Aubin H, Kamiya H, Okita Y, Lichtenberg A, Akhyari P. The combination approach with Rho-kinase inhibition and mechanical circulatory support in myocardial ischemia-reperfusion injury: Rho-kinase inhibition and ventricular unloading. Asian Cardiovasc Thorac Ann 2022; 30:894-905. [PMID: 35837687 PMCID: PMC9513506 DOI: 10.1177/02184923221114457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background It remains unclear whether the Rho-kinase (ROCK) inhibition in combination
with mechanical circulatory support (MCS) had a synergic protective effect
on myocardial ischemia (MI)/reperfusion injury in therapeutic strategies for
acute myocardial infarction (AMI). We report the results of an approach
using a rat model consisting of a miniaturized cardiopulmonary bypass (CPB)
and AMI. Methods A total of 25 male Wistar rats were randomized into 5 groups: (1) Sham: a
suture was passed under the left anterior descending artery (LAD) creating
no MI. A vehicle solution (0.9% saline) was injected intraperitoneally. (2)
Myocardial ischemia (MI) + vehicle (MI + V): LAD was ligated for 30 min and
reperfused for 120 min, followed by administration of vehicle solution. (3)
MI + fasudil (MI + F): the work sequence of group 2, but the selective ROCK
inhibitor fasudil (10 mg/kg) was administered instead. (4) MI + V + CPB: CPB
was initiated 15 min after the ligation of the LAD to the end of the
reperfusion, in addition to the work sequence in group 2. (5) In the
MI + F + CPB group, the work sequence of group 4, but with fasudil
administration (10 mg/kg). Results Measurements of cardiac function through conductance catheter indicated that
the drop of + dP/dt after reperfusion was moderately limited in MI + F + CPB
(vs. MI + V, dP/dt p = 0.22). The preload recruitable
stroke work was moderately improved in the MI + F + CPB
(p = 0.23) compared with the corresponding control animals
(MI + V). Phosphorylated protein kinase B expression in the MI + V + CPB and
MI + F + CPB was higher than that in MI + V (p = 0.33). Conclusion Therefore, fasudil administration with MCS resulted in a moderately better
left ventricular performance.
Collapse
Affiliation(s)
- Shunsuke Miyahara
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander Jenke
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Mariam Yazdanyar
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Julia Kistner
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Moritz Benjamin Immohr
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yukiharu Sugimura
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Hiroyuki Kamiya
- Department of Cardiac Surgery, 38051Asahikawa Medical University, Asahikawa, Japan
| | - Yutaka Okita
- Department of Surgery, Division of Cardiovascular Surgery, 38303Kobe University Graduate School of Medicine, Kobe, Japan
| | - Artur Lichtenberg
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, 9170Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Li QH, Ge ZW, Xiang Y, Tian D, Tang Y, Zhang YC. Upregulation of microRNA-34a enhances myocardial ischemia-reperfusion injury via the mitochondrial apoptotic pathway. Free Radic Res 2022; 56:229-244. [PMID: 35703738 DOI: 10.1080/10715762.2021.1953004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mitochondrial oxidative injury can result in many cardiovascular diseases including cardiac ischemia-reperfusion (I/R) injury. This study was designed to investigate whether microRNA-34a (miR-34a) influences cardiac I/R or hypoxia/reoxygenation (H/R) injury by regulating the mitochondrial apoptotic pathway from oxidative injury.In vivo, myocardial infarction size was examined by Evan blue/TTC staining. Apoptosis was assessed by TUNEL assay. Heart function was measured by echocardiography. Lactate dehydrogenase (LDH) and creatine kinase (CK) were evaluated. In vitro, H9c2 cardiomyocytes were exposed to H/R stimulation. Cell viability was assessed by the CCK-8 assay and apoptosis was detected by Annexin V/PI staining. Mitochondrial superoxide, mitochondrial membrane potential (MMP) and ATP production was evaluated by detection kits, and related proteins were detected by western blotting analysis. We observed that the level of miR-34a was significantly upregulated in I/R rats compared to the sham group. Injection of adenovirus inhibiting miR-34a into the left ventricular anterior wall improved heart function and decreased I/R injury. H9c2 cardiomyocytes exposed to H/R stimulation displayed an obvious increase in miR-34a expression. In addition, miR-34a inhibitor alleviated, whereas miR-34a mimic aggravated H/R-induced mitochondrial injury. Bcl-2 was identified as a target gene of miR-34a by dual-luciferase reporter gene detection. Knockdown of Bcl-2 abolished the cardioprotection of the miR-34a inhibitor in H9c2 cells. In summary,our study demonstrates that inhibition of miR-34a exhibits therapeutic potential in treatment of myocardial I/R injury by restraining mitochondrial apoptosis.
Collapse
Affiliation(s)
- Qian-Hui Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhuo-Wang Ge
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ding Tian
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ya-Chen Zhang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Bio-active components in medicinal plants: A mechanistic review of their effects on fish growth and physiological parameters. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
World population is increasing at a tremendous rate so is the demand for animal-based protein. Aquaculture is a promising industry that has the potential to supply high quality protein for mankind with minimum environmental impact. In the past decade, aquaculture practices have been shifting from extensive to intensive culture. To achieve maximum production per unit area, high stocking densities are maintained in intensive aquaculture. If not managed properly, this may lead to stress in fish. Fish under stress condition show decreased growth, suppressed appetite, weakened immunity and increased susceptibility to infections. Chemicals, vaccines and antibiotics are used for the treatment of diseased fish. Use of synthetic chemicals, vaccines and antibiotics is not sustainable because pathogens develop resistance against them and they have high residues. Moreover, certain chemicals used for the treatment of fish diseases are not safe for humans therefore, are banned in some countries. Plant parts and their extracts are used in traditional medicines to cure many diseases and to improve health of mankind. In aquaculture industry, use of plants and their derivatives in fish feed to improve health status of fish is increasing. Several plants improve growth and overall health status of fish, some provide protection against pathogens by improving the immune system while others increase appetite by direct action on neuro-endocrine axis of fish. This review provides an in depth and up to date information about use of medicinal plants and their derivatives to improve growth and physiological status of fish and their possible mechanism of action.
Collapse
|
33
|
Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun 2022; 613:127-132. [PMID: 35550199 DOI: 10.1016/j.bbrc.2022.04.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
Activation of calpain1 (CPN1) contributes to mitochondrial dysfunction during cardiac ischemia (ISC) - reperfusion (REP). Blockade of electron transport using amobarbital (AMO) protects mitochondria during ISC-REP, indicating that the electron transport chain (ETC) is a key source of mitochondrial injury. We asked if AMO treatment can decrease CPN1 activation as a potential mechanism of mitochondrial protection during ISC-REP. Buffer-perfused adult rat hearts underwent 25 min global ISC and 30 min REP. AMO (2.5 mM) or vehicle was administered for 1 min before ISC to block electron flow in the ETC. Hearts in the time control group were untreated and buffer perfused without ISC. Hearts were collected at the end of perfusion and used for mitochondrial isolation. ISC-REP increased both the cleavage of spectrin (indicating cytosolic CPN1 activation) in cytosol and the truncation of AIF (apoptosis inducing factor, indicating mitochondrial CPN1 activation) in subsarcolemmal mitochondria compared to time control. Thus, ISC-REP activated both cytosolic and mitochondrial CPN1. AMO treatment prevented the cleavage of spectrin and AIF during ISC-REP, suggesting that the transient blockade of electron transport during ISC decreases CPN1 activation. AMO treatment decreased the activation of PARP [poly(ADP-ribose) polymerase] downstream of AIF that triggers caspase-independent apoptosis. AMO treatment also decreased the release of cytochrome c from mitochondria during ISC-REP that prevented caspase 3 activation. These results support that the damaged ETC activates CPN1 in cytosol and mitochondria during ISC-REP, likely via calcium overload and oxidative stress. Thus, AMO treatment to mitigate mitochondrial-driven cardiac injury can decrease both caspase-dependent and caspase-independent programmed cell death during ISC-REP.
Collapse
Affiliation(s)
- Qun Chen
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Jeremy Thompson
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Hu
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Edward J Lesnefsky
- Departments of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Departments of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Richmond Department of Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| |
Collapse
|
34
|
Chandra Shekar K, Yannopoulos D, Kosmopoulos M, Riess ML. Differential Effects of Reperfusion on Cardiac Mitochondrial Subpopulations in a Preclinical Porcine Model of Acute Myocardial Infarction. Front Cell Dev Biol 2022; 10:843733. [PMID: 35356287 PMCID: PMC8959812 DOI: 10.3389/fcell.2022.843733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myocardial infarction (AMI) leads to localized cardiac ischemia and can be fatal if untreated. Despite being treatable, the threat of ischemia-reperfusion (IR) injury remains high. Mitochondria are central to both propagation and mitigation of IR injury, and cardiac mitochondria are categorized into two major subtypes-subsarcolemmal and interfibrillar mitochondria (SSM and IFM, respectively). We hypothesized that, in our pre-clinical porcine model of AMI, SSM and IFM are differentially affected by reperfusion. AMI was induced in female pigs by balloon occlusion of the left anterior descending artery for 45 min, followed by 4 h of reperfusion. At the end of reperfusion, animals were euthanized. Cardiac SSM and IFM from the affected ischemic area and a nearby non-ischemic area were isolated to compare mitochondrial function using substrates targeting mitochondrial electron transport chain complexes I and II. Despite detecting overall significant differences in mitochondrial function including yield, mitochondrial S3 and S4 respirations, and calcium retention, consistent individual functional differences in the two mitochondrial subpopulations were not observed, both between the two mitochondrial subtypes, as well as between the ischemic and non-ischemic tissue. Nonetheless, this study describes the mitochondrial subtype response within the initial few hours of reperfusion in a clinically relevant model of AMI, which provides valuable information needed to develop novel mitochondrially targeted therapies for AMI.
Collapse
Affiliation(s)
- Kadambari Chandra Shekar
- Integrative Biology and Physiology, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Demetris Yannopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Marinos Kosmopoulos
- Department of Cardiology, Division of Medicine, University of Minnesota at Twin Cities, St. Paul, MN, United States
| | - Matthias L. Riess
- Anesthesiology, TVHS VA Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
35
|
Shakeri F, Bibak B, Safdari MR, Keshavarzi Z, Jamialahmadi T, Sathyapalan T, Sahebkar A. Cellular and molecular mechanisms of curcumin on thyroid gland disorders. Curr Med Chem 2022; 29:2878-2890. [PMID: 35142266 DOI: 10.2174/0929867329666220210145033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022]
Abstract
There is growing literature on the positive therapeutic potentials of curcumin. Curcumin or diferuloylmethane is a polyphenol obtained from the plant Curcuma longa. Curcumin has been used widely in Ayurvedic and Chinese medicine for various conditions. The role of curcumin on thyroid glands has been shown by its effects on various biological pathways, including anti-inflammatory, antioxidant, anti-proliferative, apoptosis, angiogenesis, cell cycle and metastasis. We reviewed the recent literature on curcumin applications for thyroid dysfunction, including hyperthyroidism and hypothyroidism, and discussed the molecular mechanisms of these effects. This review aims to summarize the wealth of research related to the thyroid gland therapeutic effect of curcumin.
Collapse
Affiliation(s)
- Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Safdari
- Department of Orthopedic Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Grass M, McDougal AD, Blazeski A, Kamm RD, García-Cardeña G, Dewey CF. A computational model of cardiomyocyte metabolism predicts unique reperfusion protocols capable of reducing cell damage during ischemia/reperfusion. J Biol Chem 2022; 298:101693. [PMID: 35157851 PMCID: PMC9062261 DOI: 10.1016/j.jbc.2022.101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
If a coronary blood vessel is occluded and the neighboring cardiomyocytes deprived of oxygen, subsequent reperfusion of the ischemic tissue can lead to oxidative damage due to excessive generation of reactive oxygen species. Cardiomyocytes and their mitochondria are the main energy producers and consumers of the heart, and their metabolic changes during ischemia seem to be a key driver of reperfusion injury. Here, we hypothesized that tracking changes in cardiomyocyte metabolism, such as oxygen and ATP concentrations, would help in identifying points of metabolic failure during ischemia and reperfusion. To track some of these changes continuously from the onset of ischemia through reperfusion, we developed a system of differential equations representing the chemical reactions involved in the production and consumption of 67 molecular species. This model was validated and used to identify conditions present during periods of critical transition in ischemia and reperfusion that could lead to oxidative damage. These simulations identified a range of oxygen concentrations that lead to reverse mitochondrial electron transport at complex I of the respiratory chain and a spike in mitochondrial membrane potential, which are key suspects in the generation of reactive oxygen species at the onset of reperfusion. Our model predicts that a short initial reperfusion treatment with reduced oxygen content (5% of physiological levels) could reduce the cellular damage from both of these mechanisms. This model should serve as an open-source platform to test ideas for treatment of the ischemia reperfusion process by following the temporal evolution of molecular concentrations in the cardiomyocyte.
Collapse
Affiliation(s)
- Matthias Grass
- Department of Mechanical Engineering, ETH Zurich, Zurich, Switzerland; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony D McDougal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adriana Blazeski
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Guillermo García-Cardeña
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Program in Human Biology and Translational Medicine, Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - C Forbes Dewey
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
37
|
Kien B, Kolleritsch S, Kunowska N, Heier C, Chalhoub G, Tilp A, Wolinski H, Stelzl U, Haemmerle G. Lipid droplet-mitochondria coupling via Perilipin 5 augments respiratory capacity but is dispensable for FA oxidation. J Lipid Res 2022; 63:100172. [PMID: 35065923 PMCID: PMC8953689 DOI: 10.1016/j.jlr.2022.100172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
|
38
|
Gander J, Carrard J, Gallart-Ayala H, Borreggine R, Teav T, Infanger D, Colledge F, Streese L, Wagner J, Klenk C, Nève G, Knaier R, Hanssen H, Schmidt-Trucksäss A, Ivanisevic J. Metabolic Impairment in Coronary Artery Disease: Elevated Serum Acylcarnitines Under the Spotlights. Front Cardiovasc Med 2021; 8:792350. [PMID: 34977199 PMCID: PMC8716394 DOI: 10.3389/fcvm.2021.792350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Coronary artery disease (CAD) remains the leading cause of death worldwide. Expanding patients' metabolic phenotyping beyond clinical chemistry investigations could lead to earlier recognition of disease onset and better prevention strategies. Additionally, metabolic phenotyping, at the molecular species level, contributes to unravel the roles of metabolites in disease development. In this cross-sectional study, we investigated clinically healthy individuals (n = 116, 65% male, 70.8 ± 8.7 years) and patients with CAD (n = 54, 91% male, 67.0 ± 11.5 years) of the COmPLETE study. We applied a high-coverage quantitative liquid chromatography-mass spectrometry approach to acquire a comprehensive profile of serum acylcarnitines, free carnitine and branched-chain amino acids (BCAAs), as markers of mitochondrial health and energy homeostasis. Multivariable linear regression analyses, adjusted for confounders, were conducted to assess associations between metabolites and CAD phenotype. In total, 20 short-, medium- and long-chain acylcarnitine species, along with L-carnitine, valine and isoleucine were found to be significantly (adjusted p ≤ 0.05) and positively associated with CAD. For 17 acylcarnitine species, associations became stronger as the number of affected coronary arteries increased. This implies that circulating acylcarnitine levels reflect CAD severity and might play a role in future patients' stratification strategies. Altogether, CAD is characterized by elevated serum acylcarnitine and BCAA levels, which indicates mitochondrial imbalance between fatty acid and glucose oxidation.
Collapse
Affiliation(s)
- Joséphine Gander
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rébecca Borreggine
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Flora Colledge
- Division of Sports Science, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jonathan Wagner
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christopher Klenk
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Gilles Nève
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Raphael Knaier
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Arno Schmidt-Trucksäss
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Julijana Ivanisevic
| |
Collapse
|
39
|
Kajjumba GW, Attene-Ramos M, Marti EJ. Toxicity of lanthanide coagulants assessed using four in vitro bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149556. [PMID: 34399349 DOI: 10.1016/j.scitotenv.2021.149556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Rare earth element (REE) coagulants are prime contenders in wastewater treatment plants to remove phosphorus; unlike typical coagulants, they are not affected by pH. However, the use of REEs in wastewater treatment could mean increased human exposure to lanthanides (Ln) through wastewater effluent discharge to the environment or through water reuse. Information on the toxicity of lanthanides is scarce and, where available, there are conflicting views. Using in vitro bioassays, we assessed lanthanide toxicity by evaluating four relevant endpoints: the change in mitochondrial membrane potential (Δψm), intracellular adenosine triphosphate (I-ATP), genotoxicity, and cell viability. At less than 5000 μmol-Ln3+/L, lanthanides increased the Δψm, while above 5000 μmol-Ln3+/L, the Δψm level plummeted. The measure of I-ATP indicated constant levels of ATP up to 250 μmol-Ln3+/L, above which the I-ATP decreased steadily; the concentration of La, Ce, Gd, and Lu that triggered half of the cells to become ATP-inactive is 794, 1505, 1488, 1115 μmol-Ln3+/L, respectively. Although La and Lu accelerated cell death in shorter studies (24 h), chronic studies using three cell growth cycles showed cell recovery. Lanthanides exhibited antagonistic toxicity at less than 1000 μmol-Ln3+/L. However, the introduction of heavy REEs in a solution amplified lanthanide toxicity. Tested lanthanides appear to pose little risk, which could pave the way for lanthanide application in wastewater treatment.
Collapse
Affiliation(s)
- George William Kajjumba
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, USA.
| | - Matias Attene-Ramos
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, DC, USA
| | - Erica J Marti
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, USA.
| |
Collapse
|
40
|
Souza SSD, Castro JDS, Campos DF, Pereira RS, Bataglion GA, Silva GSD, Almeida-Val VMFD. Temporal exposure to malathion: Biochemical changes in the Amazonian fish tambaqui, Colossoma macropomum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105997. [PMID: 34688140 DOI: 10.1016/j.aquatox.2021.105997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/14/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The main toxicity mechanism of organophosphate insecticides such as malathion is the acetylcholinesterase enzyme inhibition. However, fish responses to organophosphates may vary depending on the activation of different defense mechanisms as well as the length of exposure. As such, the evaluation of acetylcholinesterase activity, in combination with the evaluation of biotransformation and antioxidants enzymes levels, is useful for indicating damage in fish exposed to this insecticide. Moreover, evaluating mitochondrial activity might evidence how the hierarchic responses occur in relation to the length of time that the fish is exposed. Therefore, the aim of our study is to evaluate whether the length of exposure to malathion differentially affects the biochemical responses of tambaqui. Our hypothesis is that the physiological alterations due to exposure are time dependent. Fish were exposed to sublethal concentrations of the insecticide during 6, 12, 24, 36, and 48 h. Contrary to expectations, there was no acetylcholinesterase activity inhibition during the experiment, which indicates an absence of neurotoxicity. Phase II biotransformation mechanism was activated early, especially in the liver. Oxidative damage was evident in the first hours of exposure and was concurrent with the activation of antioxidant enzymes. Mitochondrial bioenergetics were differentially affected by the length of exposure. The data suggest that the tambaqui regulates mitochondrial respiration differently over time, seeking to maintain homeostasis and ATP demand, and ensures the activation of response mechanisms, thus minimizing oxidative damage and avoiding the neurotoxicity of malathion.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil.
| | - Jonatas da Silva Castro
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil
| | - Derek Felipe Campos
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil
| | - Rogério Santos Pereira
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil
| | - Giovana Anceski Bataglion
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil; Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Research in the Amazon (INPA), Manaus, AM, Brazil; Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | |
Collapse
|
41
|
Joshi PK, Patel SC, Shreya D, Zamora DI, Patel GS, Grossmann I, Rodriguez K, Soni M, Sange I. Hereditary Hemochromatosis: A Cardiac Perspective. Cureus 2021; 13:e20009. [PMID: 34987900 PMCID: PMC8716004 DOI: 10.7759/cureus.20009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/21/2022] Open
Abstract
Hereditary hemochromatosis (HH) is a common genetic metabolic disorder characterized by excessive iron absorption and elevated serum iron levels, which accumulate in various organs, such as the heart, pancreas, gonads, and damage these organs. There are only a few articles and clinical studies describing the characteristics of cardiac involvement in HH along with the significance of early diagnosis and management in preventing complications. In this review article, we have reviewed multiple pieces of literature and gathered available information regarding the subject. We compiled the data to investigate the importance of early detection of symptoms, regular monitoring, and prompt management with strict adherence to reverse or prevent complications. This article has reviewed different aspects of cardiac hemochromatosis, such as pathogenesis, clinical presentation, diagnosis, and management. Recognition of early symptoms, diagnosis of cardiac involvement with various modalities, and implementation of early treatment are essentially the foundation of better outcomes in HH.
Collapse
|
42
|
Morio A, Tsutsumi R, Satomi S, Kondo T, Miyoshi H, Kato T, Kuroda M, Kitamura T, Hara K, Saeki N, Sakaue H, Tsutsumi YM. Leucine imparts cardioprotective effects by enhancing mTOR activity and mitochondrial fusion in a myocardial ischemia/reperfusion injury murine model. Diabetol Metab Syndr 2021; 13:139. [PMID: 34801078 PMCID: PMC8606064 DOI: 10.1186/s13098-021-00755-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Coronary artery disease is a leading cause of morbidity and mortality among patients with diabetes. Previously, we demonstrated that branched-chain amino acids (BCAAs) showed cardioprotective effects against cardiac ischemia/reperfusion (I/R) injury. A recent study suggested that leucine (Leu), a BCAA, is a key amino acid involved in mammalian target of rapamycin (mTOR) activity and mitochondrial function. However, whether Leu has cardioprotective effects on diabetic hearts is unclear. In this study, we examined the preconditioning effect of Leu treatment on high-fat diet (HFD)-induced obese mouse which simulate prediabetic heart. METHODS In vivo mice models of I/R injury were divided into the following groups: control, mTOR+/-, and high-fat diet (HFD)-induced obese groups. Mice were randomly administered with Leu, the mTOR inhibitor rapamycin (Rap), or Leu with Rap. Isolated rat cardiomyocytes were subjected to simulated I/R injury. Biochemical and mitochondrial functional assays were performed to evaluate the changes in mTOR activity and mitochondrial dynamics caused by Leu treatment. RESULTS Leu-treated mice showed a significant reduction in infarct size when compared with the control group (34.8% ± 3.8% vs. 43.1% ± 2.4%, n = 7, p < 0.05), whereas Rap-treated mice did not show the protective effects of Leu. This preconditioning effect of Leu was attenuated in mTOR+/- mice. Additionally, Leu increased the percentage of fused mitochondria and the mitochondrial volume, and decreased the number of mitochondria per cell in isolated cardiomyocytes. In HFD-induced obese mice, Leu treatment significantly reduced infarct size (41.0% ± 1.1% vs. 51.0% ± 1.4%, n = 7, p < 0.05), which was not induced by ischemic preconditioning, and this effect was inhibited by Rap. Furthermore, we observed enhanced mTOR protein expression and mitochondrial fusion with decreased reactive oxygen species production with Leu treatment in HFD-induced obese mice, but not in mTOR+/- mice. CONCLUSIONS Leu treatment improved the damage caused by myocardial I/R injury by promoting mTOR activity and mitochondrial fusion on prediabetic hearts in mice.
Collapse
Affiliation(s)
- Atsushi Morio
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Shiho Satomi
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Takashi Kondo
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Hirotsugu Miyoshi
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Takahiro Kato
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tadahiro Kitamura
- Laboratory of Metabolic Signal, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512, Japan
| | - Kenta Hara
- Kita Harima Medical Center, 926-250 Ichiba, Ono, Hyogo, 675-1392, Japan
| | - Noboru Saeki
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yasuo M Tsutsumi
- Department of Anesthesiology and Critical Care, Hiroshima University, 1-2-3 Kasumi, Minami, Hiroshima, 734-8551, Japan.
| |
Collapse
|
43
|
Shaoqing L, Ting Z, Hao L, He Z, Wang Y, Ming Z. Nicorandil, an ATP-sensitive potassium channel activation, attenuates myocardial injury in rats with ischemic cardiomyopathy. Med Mol Morphol 2021; 55:41-46. [PMID: 34773514 DOI: 10.1007/s00795-021-00306-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Ischemic cardiomyopathy is a common but underestimated cause of heart failure. This study investigated the myocardial-protective effects of nicorandil on rats with ischemic cardiomyopathy. In the present study, ischemic cardiomyopathy rats model were used to evaluate the effects of nicorandil. Cardiac ultrasonography was employed to examine the changes of heart structure and heart function. Electron microscopy was employed to observe the changes of pathological ultrastructure of the myocardium. Western blot and enzyme-linked immunosorbent assays were employed to detect protein levels and Mitochondrial Ca2+ concentration. The heart color ultrasound and myocardial pathology of the rats in the nicorandil group were improved significantly, the mitochondrial Ca2+ concentration was decreased, the expressions of MFN-1, OPA-1, and Bcl were increased, and the expressions of the mitochondrial mitotic proteins DRP-1, VDAC1, CytC, and Bax were decreased in ICM rats' heart treatment with nicorandil, compared with ICM rats. Nicorandil can reduce myocardial pathological damage in ICM rats, which may be caused by promoting the opening of mitochondrial ATP-sensitive potassium channel and inducing the changes of mitochondrial dynamics to induce the reduction of myocardial cell apoptosis.
Collapse
Affiliation(s)
- Li Shaoqing
- Cangzhou Central Hospital, Cangzhou, 061000, Hebei, China
| | - Zhao Ting
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Liu Hao
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, People's Republic of China
| | - Zhihui He
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, People's Republic of China
| | - Yu Wang
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, People's Republic of China. .,, No. 22 Holin He Street, Tongliao, 028002, Inner Mongolia, China.
| | - Zhao Ming
- Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia, People's Republic of China. .,Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, People's Republic of China. .,, No. 1472 Holin He Street, Tongliao, 028002, Inner Mongolia, China.
| |
Collapse
|
44
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
45
|
Angelini A, Saha PK, Jain A, Jung SY, Mynatt RL, Pi X, Xie L. PHDs/CPT1B/VDAC1 axis regulates long-chain fatty acid oxidation in cardiomyocytes. Cell Rep 2021; 37:109767. [PMID: 34610308 PMCID: PMC8658754 DOI: 10.1016/j.celrep.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and β-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA β-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall L Mynatt
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Kaundal RK, Kalvala AK, Kumar A. Neurological Implications of COVID-19: Role of Redox Imbalance and Mitochondrial Dysfunction. Mol Neurobiol 2021; 58:4575-4587. [PMID: 34110602 PMCID: PMC8190166 DOI: 10.1007/s12035-021-02412-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 or COVID-19 has been declared as a pandemic disease by the World Health Organization (WHO). Globally, this disease affected 159 million of the population and reported ~ 3.3 million deaths to the current date (May 2021). There is no definitive treatment strategy that has been identified, although this disease has prevailed in its current form for the past 18 months. The main challenges in the (SARS-CoV)-2 infections are in identifying the heterogeneity in viral strains and the plausible mechanisms of viral infection to human tissues. In parallel to the investigations into the patho-mechanism of SARS-CoV-2 infection, understanding the fundamental processes underlying the clinical manifestations of COVID-19 is very crucial for designing effective therapies. Since neurological symptoms are very apparent in COVID-19 infected patients, here, we tried to emphasize the involvement of redox imbalance and subsequent mitochondrial dysfunction in the progression of the COVID-19 infection. It has been articulated that mitochondrial dysfunction is very apparent and also interlinked to neurological symptoms in COVID-19 infection. Overall, this article provides an in-depth overview of redox imbalance and mitochondrial dysfunction involvement in aggravating COVID-19 infection and its probable contribution to the neurological manifestation of the disease.
Collapse
Affiliation(s)
- Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
- Icahn School of Medicine At Mount Sinai, 1470 Madison Ave, New York, NY, USA
| | - Anil K Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, North America, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Kolkata, India.
| |
Collapse
|
47
|
Ji X, Bradley JL, Zheng G, Ge W, Xu J, Hu J, He F, Shabnam R, Peberdy MA, Ornato JP, Chen Q, Lesnefsky EJ, Tang W. Cerebral and myocardial mitochondrial injury differ in a rat model of cardiac arrest and cardiopulmonary resuscitation. Biomed Pharmacother 2021; 140:111743. [PMID: 34020243 DOI: 10.1016/j.biopha.2021.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Brain mitochondria are more sensitive to global ischemia compared to heart mitochondria. Complex I in the electron transport chain (ETC) is sensitive to ischemic injury and is a major control point of the rate of ADP stimulated oxygen consumption. The purpose of this study was to explore whether changes in cerebral and myocardial mitochondria differ after cardiac arrest. Animals were randomized into 4 groups (n = 6): 1) Sham 2) VF 3) VF+CPR 4) ROSC 1hr. Ventricular Fibrillation (VF) was induced through a guide wire advanced from the right jugular vein into the ventricle and untreated for 8 min. Resuscitation was attempted with a 4J defibrillation after 8 min of cardiopulmonary resuscitation (CPR). Brain mitochondria and cardiac mitochondrial subpopulations were isolated. Calcium retention capacity was measured to assess susceptibility to mitochondrial permeability transition pore opening. ADP stimulated oxygen consumption and ETC activity assays were performed. Brain mitochondria are far more sensitive to injury during cardiac arrest and resuscitation compared to cardiac mitochondria. Complex I is highly sensitive to injury in brain mitochondria. With markedly decreased calcium retention capacity, mitochondria contribute to cerebral reperfusion injury. Therapeutic preservation of cerebral mitochondrial activity and mitochondrial function during cardiac arrest may improve post-resuscitation neurologic function.
Collapse
Affiliation(s)
- Xianfei Ji
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jennifer L Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Guanghui Zheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Weiwei Ge
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jing Xu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Juntao Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Fenglian He
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | | | - Mary Ann Peberdy
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph P Ornato
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA; Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, USA; McGuire Research Institute, Richmond, VA, USA.
| | - Wanchun Tang
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
48
|
Wagalgave SM, Birajdar SS, Malegaonkar JN, Bhosale SV. Patented AIE materials for biomedical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:199-223. [PMID: 34782106 DOI: 10.1016/bs.pmbts.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years aggregation induced emission (AIE) concept has attracted researcher's interest worldwide. Several organic building blocks are developed as AIE materials. This chapter discusses the patented AIE material and their utilization related in biological, medicinal and biotechnology fields. It is demonstrated that AIE chromophores such as tetraphenylethylene (TPE) as well as other AIE building blocks became important fluorescent emissive bioactive materials. Such emissive materials are widely employed as bioprobes for the detection of mitochondria, cellular imaging and tracking, protein carrier detection of S-phase DNA, detection of d-glucose, visualization of cancer treatment, drug screening, image-guided therapy, bacterial imaging, photodynamic therapy and drug screening. Such AIE materials upon imaging in cellular environment displays significant enhancement of fluorescence emission. Such patented AIE chromophores has a great potential for bioimaging and biomedical applications. In this chapter we compile some patented representative examples to explore their bioimaging/medicinal imaging applications since lot of new inventions are reported every day.
Collapse
Affiliation(s)
- Sopan M Wagalgave
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Shailesh S Birajdar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jotiram N Malegaonkar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sidhanath Vishwanath Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
49
|
Sirtuins and Renal Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081198. [PMID: 34439446 PMCID: PMC8388938 DOI: 10.3390/antiox10081198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure is a major health problem that is increasing worldwide. To improve clinical outcomes, we need to understand the basic mechanisms of kidney disease. Aging is a risk factor for the development and progression of kidney disease. Cells develop an imbalance of oxidants and antioxidants as they age, resulting in oxidative stress and the development of kidney damage. Calorie restriction (CR) is recognized as a dietary approach that promotes longevity, reduces oxidative stress, and delays the onset of age-related diseases. Sirtuins, a type of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, are considered to be anti-aging molecules, and CR induces their expression. The sirtuin family consists of seven enzymes (Sirt1–7) that are involved in processes and functions related to antioxidant and oxidative stress, such as DNA damage repair and metabolism through histone and protein deacetylation. In fact, a role for sirtuins in the regulation of antioxidants and redox substances has been suggested. Therefore, the activation of sirtuins in the kidney may represent a novel therapeutic strategy to enhancing resistance to many causative factors in kidney disease through the reduction of oxidative stress. In this review, we discuss the relationship between sirtuins and oxidative stress in renal disease.
Collapse
|
50
|
Zampino M, Spencer RG, Fishbein KW, Simonsick EM, Ferrucci L. Cardiovascular Health and Mitochondrial Function: Testing an Association. J Gerontol A Biol Sci Med Sci 2021; 76:361-367. [PMID: 33249505 DOI: 10.1093/gerona/glaa297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although mitochondrial dysfunction appears to be a contributing factor in the pathogenesis of cardiovascular and metabolic diseases, empirical data on this association are still lacking. This study evaluated whether mitochondrial oxidative capacity, as assessed by phosphorus magnetic resonance spectroscopy, was associated with cardiovascular risk, as estimated by the Framingham Risk Score (FRS), and with a clinical history of cardiovascular disease (CVD), in community-dwelling adults. METHOD A total of 616 subjects from the Baltimore Longitudinal Study of Aging (mean age 66 years) underwent a comprehensive clinical evaluation. Mitochondrial oxidative capacity in skeletal muscle was assessed as post-exercise phosphocreatine recovery time constant by phosphorus magnetic resonance spectroscopy. Multivariate regression models were employed to determine the cross-sectional association of mitochondrial oxidative capacity with FRS and history of CVD. RESULTS Decreased mitochondrial oxidative capacity was strongly associated with higher FRS independent of age, body composition, and physical activity. Lower oxidative capacity was also associated with a history of positive of CVD and higher number of CVD events. CONCLUSIONS We speculate that the observed association could reflect the effect of an excessive production of oxidative species by dysfunctional mitochondria. Furthermore, decreased energy production could hamper the functionality of heart and vessels. In turn, a malfunctioning cardiovascular apparatus could fail to deliver the oxygen necessary for optimal mitochondrial energy production, therefore creating a vicious cycle. Longitudinal studies are necessary to ascertain the directionality of the association and the eventual presence of common pathogenetic roots. In conclusion, mitochondria could represent an important target for intervention in cardiovascular health.
Collapse
Affiliation(s)
- Marta Zampino
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| | - Richard G Spencer
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| | - Kenneth W Fishbein
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| | - Eleanor M Simonsick
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| | - Luigi Ferrucci
- National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland
| |
Collapse
|