1
|
Pražák V, Vasishtan D, Grünewald K, Douglas RG, Ferreira JL. Molecular architecture of glideosome and nuclear F-actin in Plasmodium falciparum. EMBO Rep 2025; 26:1984-1996. [PMID: 40128412 PMCID: PMC12019134 DOI: 10.1038/s44319-025-00415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Actin-based motility is required for the transmission of malaria sporozoites. While this has been shown biochemically, filamentous actin has remained elusive and has not been directly visualised inside the parasite. Using focused ion beam milling and electron cryo-tomography, we studied dynamic actin filaments in unperturbed Plasmodium falciparum cells for the first time. This allowed us to dissect the assembly, path and fate of actin filaments during parasite gliding and determine a complete 3D model of F-actin within sporozoites. We observe micrometre long actin filaments, much longer than expected from in vitro studies. After their assembly at the parasite's apical end, actin filaments continue to grow as they are transported down the cell as part of the glideosome machinery, and are disassembled at the basal end in a rate-limiting step. Large pores in the IMC, constrained to the basal end, may facilitate actin exchange between the pellicular space and cytosol for recycling and maintenance of directional flow. The data also reveal striking actin bundles in the nucleus. Implications for motility and transmission are discussed.
Collapse
Affiliation(s)
- Vojtěch Pražák
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Daven Vasishtan
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Kay Grünewald
- Leibniz-Institut für Virologie (LIV), Hamburg, 20251, Germany
- Centre for Structural Systems Biology, Hamburg, 22607, Germany
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Universität Hamburg, Hamburg, 20148, Germany
| | - Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, 35392, Germany
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, 35392, Germany
| | - Josie L Ferreira
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Carlero D, Fukuda S, Bocanegra R, Ando T, Martin-Benito J, Ibarra B. Conformational Dynamics of Influenza A Virus Ribonucleoprotein Complexes during RNA Synthesis. ACS NANO 2024; 18. [PMID: 39013014 PMCID: PMC11295199 DOI: 10.1021/acsnano.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024]
Abstract
Viral ribonucleoproteins (vRNPs) are the cornerstones of viral proliferation, as they form the macromolecular complexes that are responsible for the transcription and replication of most single-stranded RNA viruses. The influenza A virus (IAV) polymerase catalyzes RNA synthesis within the context of vRNPs where genomic viral RNA (vRNA) is packaged by the viral nucleoprotein (NP). We used high-speed atomic force microscopy and electron microscopy to study the conformational dynamics of individual IAV recombinant RNPs (rRNPs) during RNA synthesis. The rRNPs present an annular organization that allows for the real-time tracking of conformational changes in the NP-vRNA template caused by the advancing polymerase. We demonstrate that the rRNPs undergo a well-defined conformational cycle during RNA synthesis, which can be interpreted in light of previous transcription models. We also present initial estimations of the average RNA synthesis rate in the rRNP and its dependence on the nucleotide concentration and stability of the nascent RNA secondary structures. Furthermore, we provide evidence that rRNPs can perform consecutive cycles of RNA synthesis, accounting for their ability to recycle and generate multiple copies of RNA.
Collapse
Affiliation(s)
- Diego Carlero
- Centro
Nacional de Biotecnología Campus de Cantoblanco, 28049, Madrid, Spain
| | - Shingo Fukuda
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Rebeca Bocanegra
- Instituto
Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049, Madrid, Spain
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| | - Toshio Ando
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Jaime Martin-Benito
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| | - Borja Ibarra
- Instituto
Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, 28049, Madrid, Spain
- IMDEA
Nanociencia & CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad
de Nanobiotecnología”, 28049, Madrid, Spain
| |
Collapse
|
3
|
Pražák V, Mironova Y, Vasishtan D, Hagen C, Laugks U, Jensen Y, Sanders S, Heumann JM, Bosse JB, Klupp BG, Mettenleiter TC, Grange M, Grünewald K. Molecular plasticity of herpesvirus nuclear egress analysed in situ. Nat Microbiol 2024; 9:1842-1855. [PMID: 38918469 PMCID: PMC7616147 DOI: 10.1038/s41564-024-01716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
The viral nuclear egress complex (NEC) allows herpesvirus capsids to escape from the nucleus without compromising the nuclear envelope integrity. The NEC lattice assembles on the inner nuclear membrane and mediates the budding of nascent nucleocapsids into the perinuclear space and their subsequent release into the cytosol. Its essential role makes it a potent antiviral target, necessitating structural information in the context of a cellular infection. Here we determined structures of NEC-capsid interfaces in situ using electron cryo-tomography, showing a substantial structural heterogeneity. In addition, while the capsid is associated with budding initiation, it is not required for curvature formation. By determining the NEC structure in several conformations, we show that curvature arises from an asymmetric assembly of disordered and hexagonally ordered lattice domains independent of pUL25 or other viral capsid vertex components. Our results advance our understanding of the mechanism of nuclear egress in the context of a living cell.
Collapse
Affiliation(s)
- Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yuliia Mironova
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Christoph Hagen
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ulrike Laugks
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Yannick Jensen
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Saskia Sanders
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - John M Heumann
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jens B Bosse
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- Hannover Medical School, Institute of Virology, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michael Grange
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Didcot, UK.
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute of Virology, Hamburg, Germany.
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Hamburg, Hamburg, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
4
|
Urzhumtseva L, Barchet C, Klaholz BP, Urzhumtsev AG. Program VUE: analysing distributions of cryo-EM projections using uniform spherical grids. J Appl Crystallogr 2024; 57:865-876. [PMID: 38846771 PMCID: PMC11151668 DOI: 10.1107/s1600576724002383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/12/2024] [Indexed: 06/09/2024] Open
Abstract
Three-dimensional cryo electron microscopy reconstructions are obtained by extracting information from a large number of projections of the object. These projections correspond to different 'views' or 'orientations', i.e. directions in which these projections show the reconstructed object. Uneven distribution of these views and the presence of dominating preferred orientations may distort the reconstructed spatial images. This work describes the program VUE (views on uniform grids for cryo electron microscopy), designed to study such distributions. Its algorithms, based on uniform virtual grids on a sphere, allow an easy calculation and accurate quantitative analysis of the frequency distribution of the views. The key computational element is the Lambert azimuthal equal-area projection of a spherical uniform grid onto a disc. This projection keeps the surface area constant and represents the frequency distribution with no visual bias. Since it has multiple tunable parameters, the program is easily adaptable to individual needs, and to the features of a particular project or of the figure to be produced. It can help identify problems related to an uneven distribution of views. Optionally, it can modify the list of projections, distributing the views more uniformly. The program can also be used as a teaching tool.
Collapse
Affiliation(s)
- Ludmila Urzhumtseva
- Architecture et Réactivité de l’ARN, UPR 9002 CNRS, IBMC, Université de Strasbourg, 15 rue R. Descartes, 67084 Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé de la Recherche Médicale (Inserm) U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Bruno P. Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé de la Recherche Médicale (Inserm) U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Alexandre G. Urzhumtsev
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre National de la Recherche Scientifique (CNRS) UMR 7104, Institut National de la Santé de la Recherche Médicale (Inserm) U964, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
- Université de Lorraine, Physics Department, 54506 Vandoeuvre-lès-Nancy, France
| |
Collapse
|
5
|
Yang Z, Zang D, Li H, Zhang Z, Zhang F, Han R. Self-supervised noise modeling and sparsity guided electron tomography volumetric image denoising. Ultramicroscopy 2024; 255:113860. [PMID: 37844382 DOI: 10.1016/j.ultramic.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Cryo-Electron Tomography (cryo-ET) is a revolutionary technique for visualizing macromolecular structures in near-native states. However, the physical limitations of imaging instruments lead to cryo-ET volumetric images with very low Signal-to-Noise Ratio (SNR) with complex noise, which has a side effect on the downstream analysis of the characteristics of observed macromolecules. Additionally, existing methods for image denoising are difficult to be well generalized to the complex noise in cryo-ET volumes. In this work, we propose a self-supervised deep learning model for cryo-ET volumetric image denoising based on noise modeling and sparsity guidance (NMSG), achieved by learning the noise distribution in noisy cryo-ET volumes and introducing sparsity guidance to ensure smoothness. Firstly, a Generative Adversarial Network (GAN) is utilized to learn noise distribution in cryo-ET volumes and generate noisy volumes pair from single volume. Then, a new loss function is devised to both ensure the recovery of ultrastructure and local smoothness. Experiments are done on five real cryo-ET datasets and three simulated cryo-ET datasets. The comprehensive experimental results demonstrate that our method can perform reliable denoising by training on single noisy volume, achieving better results than state-of-the-art single volume-based methods and competitive with methods trained on large-scale datasets.
Collapse
Affiliation(s)
- Zhidong Yang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Zang
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongjia Li
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao Zhang
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Renmin Han
- Research Center for Mathematics and Interdisciplinary Sciences, Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Eren E, Watts NR, Randazzo D, Palmer I, Sackett DL, Wingfield PT. Structural basis of microtubule depolymerization by the kinesin-like activity of HIV-1 Rev. Structure 2023; 31:1233-1246.e5. [PMID: 37572662 PMCID: PMC10592302 DOI: 10.1016/j.str.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
HIV-1 Rev is an essential regulatory protein that transports unspliced and partially spliced viral mRNAs from the nucleus to the cytoplasm for the expression of viral structural proteins. During its nucleocytoplasmic shuttling, Rev interacts with several host proteins to use the cellular machinery for the advantage of the virus. Here, we report the 3.5 Å cryo-EM structure of a 4.8 MDa Rev-tubulin ring complex. Our structure shows that Rev's arginine-rich motif (ARM) binds to both the acidic surfaces and the C-terminal tails of α/β-tubulin. The Rev-tubulin interaction is functionally homologous to that of kinesin-13, potently destabilizing microtubules at sub-stoichiometric levels. Expression of Rev in astrocytes and HeLa cells shows that it can modulate the microtubule cytoskeleton within the cellular environment. These results show a previously undefined regulatory role of Rev.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Davide Randazzo
- Light Imaging Section, Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira Palmer
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Zimmermann N, Noga A, Obbineni JM, Ishikawa T. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography. EMBO J 2023:e112466. [PMID: 37051721 DOI: 10.15252/embj.2022112466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Akira Noga
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
- VIT School for Agricultural Innovations and Advanced, Learning (VAIAL), VIT, Vellore, India
| | - Takashi Ishikawa
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| |
Collapse
|
8
|
Ferreira JL, Pražák V, Vasishtan D, Siggel M, Hentzschel F, Binder AM, Pietsch E, Kosinski J, Frischknecht F, Gilberger TW, Grünewald K. Variable microtubule architecture in the malaria parasite. Nat Commun 2023; 14:1216. [PMID: 36869034 PMCID: PMC9984467 DOI: 10.1038/s41467-023-36627-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023] Open
Abstract
Microtubules are a ubiquitous eukaryotic cytoskeletal element typically consisting of 13 protofilaments arranged in a hollow cylinder. This arrangement is considered the canonical form and is adopted by most organisms, with rare exceptions. Here, we use in situ electron cryo-tomography and subvolume averaging to analyse the changing microtubule cytoskeleton of Plasmodium falciparum, the causative agent of malaria, throughout its life cycle. Unexpectedly, different parasite forms have distinct microtubule structures coordinated by unique organising centres. In merozoites, the most widely studied form, we observe canonical microtubules. In migrating mosquito forms, the 13 protofilament structure is further reinforced by interrupted luminal helices. Surprisingly, gametocytes contain a wide distribution of microtubule structures ranging from 13 to 18 protofilaments, doublets and triplets. Such a diversity of microtubule structures has not been observed in any other organism to date and is likely evidence of a distinct role in each life cycle form. This data provides a unique view into an unusual microtubule cytoskeleton of a relevant human pathogen.
Collapse
Affiliation(s)
- Josie L Ferreira
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute for Virology (LIV), Hamburg, Germany
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Marc Siggel
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Franziska Hentzschel
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Annika M Binder
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Jan Kosinski
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
- German Center for Infection Research, DZIF Partner Site Heidelberg, Heidelberg, Germany
| | - Tim W Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany.
- Leibniz Institute for Virology (LIV), Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- University of Hamburg, Hamburg, Germany.
| |
Collapse
|
9
|
Abstract
Cryo-electron microscopy (cryo-EM) has become the mainstream technique for studying macromolecular structures. Determining the structures of protein complexes is more accessible to structural biologists than ever before. Nevertheless, obtaining high-resolution structures of molecular motors like dynein is still an extremely challenging goal due to their troublesome behaviors in ice, their exceedingly flexible conformations, and their intricate architectures. Dynein is a large molecular machine that drives the movement of many essential cellular cargos and is also the key force generator that powers ciliary motility. High-resolution structural information of dyneins in different states is critical for the in-depth mechanistic understanding of their roles in cells. Here, we summarize the cryo-EM approaches that we have used to study the structures of outer-arm dynein arrays bound to microtubule doublets. Our approaches can be applied to other similar structures and further optimized to deal with even more complicated targets.
Collapse
|
10
|
Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S, Desfosses A, Hopkins PCR, Templeton CM, Beuron F, Morris EP, Guettler S. Structural basis of tankyrase activation by polymerization. Nature 2022; 612:162-169. [PMID: 36418402 PMCID: PMC9712121 DOI: 10.1038/s41586-022-05449-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/13/2022] [Indexed: 11/25/2022]
Abstract
The poly-ADP-ribosyltransferase tankyrase (TNKS, TNKS2) controls a wide range of disease-relevant cellular processes, including WNT-β-catenin signalling, telomere length maintenance, Hippo signalling, DNA damage repair and glucose homeostasis1,2. This has incentivized the development of tankyrase inhibitors. Notwithstanding, our knowledge of the mechanisms that control tankyrase activity has remained limited. Both catalytic and non-catalytic functions of tankyrase depend on its filamentous polymerization3-5. Here we report the cryo-electron microscopy reconstruction of a filament formed by a minimal active unit of tankyrase, comprising the polymerizing sterile alpha motif (SAM) domain and its adjacent catalytic domain. The SAM domain forms a novel antiparallel double helix, positioning the protruding catalytic domains for recurring head-to-head and tail-to-tail interactions. The head interactions are highly conserved among tankyrases and induce an allosteric switch in the active site within the catalytic domain to promote catalysis. Although the tail interactions have a limited effect on catalysis, they are essential to tankyrase function in WNT-β-catenin signalling. This work reveals a novel SAM domain polymerization mode, illustrates how supramolecular assembly controls catalytic and non-catalytic functions, provides important structural insights into the regulation of a non-DNA-dependent poly-ADP-ribosyltransferase and will guide future efforts to modulate tankyrase and decipher its contribution to disease mechanisms.
Collapse
Affiliation(s)
- Nisha Pillay
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Laura Mariotti
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Mariola Zaleska
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Oviya Inian
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Matthew Jessop
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sam Hibbs
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Ambroise Desfosses
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Paul C R Hopkins
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Catherine M Templeton
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London, UK.
- Division of Cancer Biology, The Institute of Cancer Research (ICR), London, UK.
| |
Collapse
|
11
|
Calder LJ, Calcraft T, Hussain S, Harvey R, Rosenthal PB. Electron cryotomography of SARS-CoV-2 virions reveals cylinder-shaped particles with a double layer RNP assembly. Commun Biol 2022; 5:1210. [PMID: 36357779 PMCID: PMC9648435 DOI: 10.1038/s42003-022-04183-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
SARS-CoV-2 is a lipid-enveloped Betacoronavirus and cause of the Covid-19 pandemic. To study the three-dimensional architecture of the virus, we perform electron cryotomography (cryo-ET) on SARS-Cov-2 virions and three variants revealing particles of regular cylindrical morphology. The ribonucleoprotein particles packaging the genome in the virion interior form a dense, double layer assembly with a cylindrical shape related to the overall particle morphology. This organisation suggests structural interactions important to virus assembly.
Collapse
Affiliation(s)
- Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Thomas Calcraft
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Saira Hussain
- grid.451388.30000 0004 1795 1830Worldwide Influenza Centre, The Francis Crick Institute, NW1 1AT London, UK ,grid.451388.30000 0004 1795 1830RNA Virus Replication Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Ruth Harvey
- grid.451388.30000 0004 1795 1830Worldwide Influenza Centre, The Francis Crick Institute, NW1 1AT London, UK
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
| |
Collapse
|
12
|
Zhou K, Si Z, Ge P, Tsao J, Luo M, Zhou ZH. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nat Commun 2022; 13:5980. [PMID: 36216930 PMCID: PMC9549855 DOI: 10.1038/s41467-022-33664-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Like other negative-strand RNA viruses (NSVs) such as influenza and rabies, vesicular stomatitis virus (VSV) has a three-layered organization: a layer of matrix protein (M) resides between the glycoprotein (G)-studded membrane envelope and the nucleocapsid, which is composed of the nucleocapsid protein (N) and the encapsidated genomic RNA. Lack of in situ atomic structures of these viral components has limited mechanistic understanding of assembling the bullet-shaped virion. Here, by cryoEM and sub-particle reconstruction, we have determined the in situ structures of M and N inside VSV at 3.47 Å resolution. In the virion, N and M sites have a stoichiometry of 1:2. The in situ structures of both N and M differ from their crystal structures in their N-terminal segments and oligomerization loops. N-RNA, N-N, and N-M-M interactions govern the formation of the capsid. A double layer of M contributes to packaging of the helical nucleocapsid: the inner M (IM) joins neighboring turns of the N helix, while the outer M (OM) contacts G and the membrane envelope. The pseudo-crystalline organization of G is further mapped by cryoET. The mechanism of VSV assembly is delineated by the network interactions of these viral components.
Collapse
Affiliation(s)
- Kang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhu Si
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Peng Ge
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Departments of Chemistry and Biochemistry and Biological Chemistry, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Jun Tsao
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Al, 35294, USA
| | - Ming Luo
- The Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Wang J, Wu M, Chen Z, Wu L, Wang T, Cao D, Wang H, Liu S, Xu Y, Li F, Liu J, Chen N, Zhao S, Cheng J, Wang S, Hua T. The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands. Nat Commun 2022; 13:2855. [PMID: 35606397 PMCID: PMC9126879 DOI: 10.1038/s41467-022-30595-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/04/2022] [Indexed: 01/22/2023] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) respond to the neurotransmitter acetylcholine and play important roles in human nervous system. Muscarinic receptor 4 (M4R) is a promising drug target for treating neurological and mental disorders, such as Alzheimer's disease and schizophrenia. However, the lack of understanding on M4R's activation by subtype selective agonists hinders its therapeutic applications. Here, we report the structural characterization of M4R selective allosteric agonist, compound-110, as well as agonist iperoxo and positive allosteric modulator LY2119620. Our cryo-electron microscopy structures of compound-110, iperoxo or iperoxo-LY2119620 bound M4R-Gi complex reveal their different interaction modes and activation mechanisms of M4R, and the M4R-ip-LY-Gi structure validates the cooperativity between iperoxo and LY2119620 on M4R. Through the comparative structural and pharmacological analysis, compound-110 mostly occupies the allosteric binding pocket with vertical binding pose. Such a binding and activation mode facilitates its allostersic selectivity and agonist profile. In addition, in our schizophrenia-mimic mouse model study, compound-110 shows antipsychotic activity with low extrapyramidal side effects. Thus, this study provides structural insights to develop next-generation antipsychotic drugs selectively targeting on mAChRs subtypes.
Collapse
Affiliation(s)
- Jingjing Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Tian Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Dongmei Cao
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Na Chen
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China.
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
14
|
Heymann BJ. Bsoft: Image Processing for Structural Biology. Bio Protoc 2022; 12:e4393. [PMID: 35800093 PMCID: PMC9081485 DOI: 10.21769/bioprotoc.4393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Bsoft is a software package primarily developed for processing electron micrographs, with the goal of determining the structures of biologically relevant molecules, molecular assemblies, and parts of cells. However, it incorporates many ways to deal with images, from the mundane to very sophisticated algorithms. This article is an introduction into its use, illustrating that it is an extensive toolbox, for manipulating and understanding images. Bsoft has over 150 programs, allowing the user an infinite number of ways to process images. These programs can be executed on the command line, or through the interactive program called brun. The main visualization program is bshow, providing numerous ways to manipulate and interpret images. The primary aim is to provide the user with powerful capabilities, including processing large numbers of images. An important additional aim is to make it as accessible as possible, making it easier to deal with image formats and features, and enhance productivity.
Collapse
Affiliation(s)
- Bernard J. Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick Office of Scientific Operations, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA,
*For correspondence:
| |
Collapse
|
15
|
Higher-order structures of the foot-and-mouth disease virus RNA-dependent RNA polymerase required for genome replication. Commun Biol 2022; 5:61. [PMID: 35039618 PMCID: PMC8764057 DOI: 10.1038/s42003-021-02989-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Replication of many positive-sense RNA viruses occurs within intracellular membrane-associated compartments. These are thought to provide a favourable environment for replication to occur, concentrating essential viral structural and nonstructural components, as well as protecting these components from host-cell pathogen recognition and innate immune responses. However, the details of the molecular interactions and dynamics within these structures is very limited. One of the key components of the replication machinery is the RNA-dependent RNA polymerase, RdRp. This enzyme has been shown to form higher-order fibrils in vitro. Here, using the RdRp from foot-and-mouth disease virus (termed 3Dpol), we report fibril structures, solved at ~7-9 Å resolution by cryo-EM, revealing multiple conformations of a flexible assembly. Fitting high-resolution coordinates led to the definition of potential intermolecular interactions. We employed mutagenesis using a sub-genomic replicon system to probe the importance of these interactions for replication. We use these data to propose models for the role of higher-order 3Dpol complexes as a dynamic scaffold within which RNA replication can occur. Loundras et al. report on the fibril components of the RNA-dependent RNA polymerase RdRp from foot-and-mouth disease virus. They demonstrate that higher-order fibril-based interactions create multiple complex structures within which RNA replication can occur.
Collapse
|
16
|
Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem J 2021; 478:4169-4185. [PMID: 34783343 PMCID: PMC8786306 DOI: 10.1042/bcj20210708] [Citation(s) in RCA: 567] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
We describe new tools for the processing of electron cryo-microscopy (cryo-EM) images in the fourth major release of the RELION software. In particular, we introduce VDAM, a variable-metric gradient descent algorithm with adaptive moments estimation, for image refinement; a convolutional neural network for unsupervised selection of 2D classes; and a flexible framework for the design and execution of multiple jobs in pre-defined workflows. In addition, we present a stand-alone utility called MDCatch that links the execution of jobs within this framework with metadata gathering during microscope data acquisition. The new tools are aimed at providing fast and robust procedures for unsupervised cryo-EM structure determination, with potential applications for on-the-fly processing and the development of flexible, high-throughput structure determination pipelines. We illustrate their potential on 12 publicly available cryo-EM data sets.
Collapse
Affiliation(s)
- Dari Kimanius
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Liyi Dong
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Grigory Sharov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Takanori Nakane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | | |
Collapse
|
17
|
Eren E, Watts NR, Sackett DL, Wingfield PT. Conformational changes in tubulin upon binding cryptophycin-52 reveal its mechanism of action. J Biol Chem 2021; 297:101138. [PMID: 34461087 PMCID: PMC8456064 DOI: 10.1016/j.jbc.2021.101138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
Cryptophycin-52 (Cp-52) is potentially the most potent anticancer drug known, with IC50 values in the low picomolar range, but its binding site on tubulin and mechanism of action are unknown. Here, we have determined the binding site of Cp-52, and its parent compound, cryptophycin-1, on HeLa tubulin, to a resolution of 3.3 Å and 3.4 Å, respectively, by cryo-EM and characterized this binding further by molecular dynamics simulations. The binding site was determined to be located at the tubulin interdimer interface and partially overlap that of maytansine, another cytotoxic tubulin inhibitor. Binding induces curvature both within and between tubulin dimers that is incompatible with the microtubule lattice. Conformational changes occur in both α-tubulin and β-tubulin, particularly in helices H8 and H10, with distinct differences between α and β monomers and between Cp-52-bound and cryptophycin-1-bound tubulin. From these results, we have determined: (i) the mechanism of action of inhibition of both microtubule polymerization and depolymerization, (ii) how the affinity of Cp-52 for tubulin may be enhanced, and (iii) where linkers for targeted delivery can be optimally attached to this molecule.
Collapse
Affiliation(s)
- Elif Eren
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, Maryland, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, NICHD, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Brilot AF, Lyon AS, Zelter A, Viswanath S, Maxwell A, MacCoss MJ, Muller EG, Sali A, Davis TN, Agard DA. CM1-driven assembly and activation of yeast γ-tubulin small complex underlies microtubule nucleation. eLife 2021; 10:e65168. [PMID: 33949948 PMCID: PMC8099430 DOI: 10.7554/elife.65168] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Microtubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae, γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies, which associate helically to template MT growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here, we combine crosslinking mass spectrometry, X-ray crystallography, and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding site in the human γTuRC structure at the interface between GCP2 and GCP6 allows for the interpretation of significant structural changes arising from CM1 helix binding to metazoan γTuRC.
Collapse
Affiliation(s)
- Axel F Brilot
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Andrew S Lyon
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Alex Zelter
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Shruthi Viswanath
- Department of Bioengineering and Therapeutic Sciences, University of California at San FranciscoSan FranciscoUnited States
| | - Alison Maxwell
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Michael J MacCoss
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Eric G Muller
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California at San FranciscoSan FranciscoUnited States
| | - Trisha N Davis
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - David A Agard
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
19
|
Below 3 Å structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Sci Rep 2021; 11:8395. [PMID: 33863933 PMCID: PMC8052451 DOI: 10.1038/s41598-021-87183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the structural analysis of protein complexes by cryo-electron microscopy (cryo-EM) single particle analysis (SPA) has had great impact as a biophysical method. Many results of cryo-EM SPA are based on data acquired on state-of-the-art cryo-electron microscopes customized for SPA. These are currently only available in limited locations around the world, where securing machine time is highly competitive. One potential solution for this time-competitive situation is to reuse existing multi-purpose equipment, although this comes with performance limitations. Here, a multi-purpose TEM with a side entry cryo-holder was used to evaluate the potential of high-resolution SPA, resulting in a 3 Å resolution map of apoferritin with local resolution extending to 2.6 Å. This map clearly showed two positions of an aromatic side chain. Further, examination of optimal imaging conditions depending on two different multi-purpose electron microscope and camera combinations was carried out, demonstrating that higher magnifications are not always necessary or desirable. Since automation is effectively a requirement for large-scale data collection, and augmenting the multi-purpose equipment is possible, we expanded testing by acquiring data with SerialEM using a β-galactosidase test sample. This study demonstrates the possibilities of more widely available and established electron microscopes, and their applications for cryo-EM SPA.
Collapse
|
20
|
Hempel C, Kapishnikov S, Perez-Berna AJ, Werner S, Guttmann P, Pereiro E, Qvortrup K, Andresen TL. The need to freeze-Dehydration during specimen preparation for electron microscopy collapses the endothelial glycocalyx regardless of fixation method. Microcirculation 2020; 27:e12643. [PMID: 32542908 DOI: 10.1111/micc.12643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The endothelial glycocalyx covers the luminal surface of the endothelium and plays key roles in vascular function. Despite its biological importance, ideal visualization techniques are lacking. The current study aimed to improve the preservation and subsequent imaging quality of the endothelial glycocalyx. METHODS In mice, the endothelial glycocalyx was contrasted with a mixture of lanthanum and dysprosium (LaDy). Standard chemical fixation was compared with high-pressure frozen specimens processed with freeze substitution. Also, isolated brain microvessels and cultured endothelial cells were high-pressure frozen and by transmission soft x-rays, imaged under cryogenic conditions. RESULTS The endothelial glycocalyx was in some tissues significantly more voluminous from chemically fixed specimens compared with high-pressure frozen specimens. LaDy labeling introduced excessive absorption contrast, which impeded glycocalyx measurements in isolated brain microvessels when using transmission soft x-rays. In non-contrasted vessels, the glycocalyx was not resolved. LaDy-contrasted, cultured brain endothelial cells allowed to assess glycocalyx volume in vitro. CONCLUSIONS Both chemical and cryogenic fixation followed by dehydration lead to substantial collapse of the glycocalyx. Cryogenic fixation without freeze substitution could be a way forward although transmission soft x-ray tomography based solely on amplitude contrast seems unsuitable.
Collapse
Affiliation(s)
- Casper Hempel
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.,Centre for Medical Parasitology, Department for Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Kapishnikov
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Stephan Werner
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Peter Guttmann
- Department X-Ray microscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Barcelona, Spain
| | - Klaus Qvortrup
- Core Facility for Integrated Microscopy (CFIM), University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Liu K, Wu L, Yuan S, Wu M, Xu Y, Sun Q, Li S, Zhao S, Hua T, Liu ZJ. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 2020; 585:135-140. [PMID: 32610344 DOI: 10.1038/s41586-020-2492-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Abstract
Chemokines and their receptors mediate cell migration, which influences multiple fundamental biological processes and disease conditions such as inflammation and cancer1. Although ample effort has been invested into the structural investigation of the chemokine receptors and receptor-chemokine recognition2-4, less is known about endogenous chemokine-induced receptor activation and G-protein coupling. Here we present the cryo-electron microscopy structures of interleukin-8 (IL-8, also known as CXCL8)-activated human CXC chemokine receptor 2 (CXCR2) in complex with Gi protein, along with a crystal structure of CXCR2 bound to a designed allosteric antagonist. Our results reveal a unique shallow mode of binding between CXCL8 and CXCR2, and also show the interactions between CXCR2 and Gi protein. Further structural analysis of the inactive and active states of CXCR2 reveals a distinct activation process and the competitive small-molecule antagonism of chemokine receptors. In addition, our results provide insights into how a G-protein-coupled receptor is activated by an endogenous protein molecule, which will assist in the rational development of therapeutics that target the chemokine system for better pharmacological profiles.
Collapse
Affiliation(s)
- Kaiwen Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Qianqian Sun
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shu Li
- The Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
22
|
Joseph AP, Lagerstedt I, Jakobi A, Burnley T, Patwardhan A, Topf M, Winn M. Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps. J Chem Inf Model 2020; 60:2552-2560. [PMID: 32043355 PMCID: PMC7254831 DOI: 10.1021/acs.jcim.9b01103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is a powerful technique for determining structures of multiple conformational or compositional states of macromolecular assemblies involved in cellular processes. Recent technological developments have led to a leap in the resolution of many cryo-EM data sets, making atomic model building more common for data interpretation. We present a method for calculating differences between two cryo-EM maps or a map and a fitted atomic model. The proposed approach works by scaling the maps using amplitude matching in resolution shells. To account for variability in local resolution of cryo-EM data, we include a procedure for local amplitude scaling that enables appropriate scaling of local map contrast. The approach is implemented as a user-friendly tool in the CCP-EM software package. To obtain clean and interpretable differences, we propose a protocol involving steps to process the input maps and output differences. We demonstrate the utility of the method for identifying conformational and compositional differences including ligands. We also highlight the use of difference maps for evaluating atomic model fit in cryo-EM maps.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ingvar Lagerstedt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Arjen Jakobi
- Kavli Institute of Nanoscience Delft (KIND), Department of Bionanoscienes, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
23
|
Yoke H, Ueno H, Narita A, Sakai T, Horiuchi K, Shingyoji C, Hamada H, Shinohara K. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. PLoS Genet 2020; 16:e1008664. [PMID: 32203505 PMCID: PMC7147805 DOI: 10.1371/journal.pgen.1008664] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/10/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Motile cilia/flagella are essential for swimming and generating extracellular fluid flow in eukaryotes. Motile cilia harbor a 9+2 arrangement consisting of nine doublet microtubules with dynein arms at the periphery and a pair of singlet microtubules at the center (central pair). In the central system, the radial spoke has a T-shaped architecture and regulates the motility and motion pattern of cilia. Recent cryoelectron tomography data reveal three types of radial spokes (RS1, RS2, and RS3) in the 96 nm axoneme repeat unit; however, the molecular composition of the third radial spoke, RS3 is unknown. In human pathology, it is well known mutation of the radial spoke head-related genes causes primary ciliary dyskinesia (PCD) including respiratory defect and infertility. Here, we describe the role of the primary ciliary dyskinesia protein Rsph4a in the mouse motile cilia. Cryoelectron tomography reveals that the mouse trachea cilia harbor three types of radial spoke as with the other vertebrates and that all triplet spoke heads are lacking in the trachea cilia of Rsph4a-deficient mice. Furthermore, observation of ciliary movement and immunofluorescence analysis indicates that Rsph4a contributes to the generation of the planar beating of motile cilia by building the distal architecture of radial spokes in the trachea, the ependymal tissues, and the oviduct. Although detailed mechanism of RSs assembly remains unknown, our results suggest Rsph4a is a generic component of radial spoke heads, and could explain the severe phenotype of human PCD patients with RSPH4A mutation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Kariya, Aichi, Japan
| | - Akihiro Narita
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Sakai
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Kahoru Horiuchi
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Chikako Shingyoji
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Hiroshi Hamada
- Center for Biosystems Dynamics Research, RIKEN, Kobe, Japan
| | - Kyosuke Shinohara
- Department of Biotechnology & Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
24
|
Kepsutlu B, Wycisk V, Achazi K, Kapishnikov S, Pérez-Berná AJ, Guttmann P, Cossmer A, Pereiro E, Ewers H, Ballauff M, Schneider G, McNally JG. Cells Undergo Major Changes in the Quantity of Cytoplasmic Organelles after Uptake of Gold Nanoparticles with Biologically Relevant Surface Coatings. ACS NANO 2020; 14:2248-2264. [PMID: 31951375 DOI: 10.1021/acsnano.9b09264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we use cryo soft X-ray tomography (cryo-SXT), which delivers 3D ultrastructural volumes of intact cells without chemical fixation or staining, to gain insight about nanoparticle uptake for nanomedicine. We initially used dendritic polyglycerol sulfate (dPGS) with potential diagnostic and therapeutic applications in inflammation. Although dPGS-coated gold nanoparticle (dPGS-AuNP) uptake followed a conventional endocytic/degradative pathway in human lung epithelial cell lines (A549), with cryo-SXT, we detected ∼5% of dPGS-AuNPs in the cytoplasm, a level undetectable by confocal light microscopy. We also observed ∼5% of dPGS-AuNPs in a rarely identified subcellular site, namely, lipid droplets, which are important for cellular energy metabolism. Finally, we also found substantial changes in the quantity of cytoplasmic organelles upon dPGS-AuNP uptake over the 1-6 h incubation period; the number of small vesicles and mitochondria significantly increased, and the number of multivesicular bodies and the number and volume of lipid droplets significantly decreased. Although nearly all organelle numbers at 6 h were still significantly different from controls, most appeared to be returning to normal levels. To test for generality, we also examined cells after uptake of gold nanoparticles coated with a different agent, polyethylenimine (PEI), used for nucleic acid delivery. PEI nanoparticles did not enter lipid droplets, but they induced similar, albeit less pronounced, changes in the quantity of cytoplasmic organelles. We confirmed these changes in organelle quantities for both nanoparticle coatings by confocal fluorescence microscopy. We suggest this cytoplasmic remodeling could reflect a more common cellular response to coated gold nanoparticle uptake.
Collapse
Affiliation(s)
- Burcu Kepsutlu
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Virginia Wycisk
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Katharina Achazi
- Organische Chemie, Institut für Chemie und Biochemie , Freie Universität Berlin , Takustrasse 3 , D-14195 Berlin , Germany
| | - Sergey Kapishnikov
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Ana Joaquina Pérez-Berná
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Peter Guttmann
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| | - Antje Cossmer
- Division 1.1 - Inorganic Trace Analysis , Federal Institute for Materials Research and Testing (BAM) , Richard-Willstätter-Str. 11 , 12489 Berlin , Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source , MISTRAL Beamline Experiments Division , Cerdanyola del Vallès , 08290 Barcelona , Spain
| | - Helge Ewers
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Chemistry and Biochemisty, Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , Thielallee 63 , 14195 Berlin , Germany
| | - Matthias Ballauff
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - Gerd Schneider
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
- Institute of Physics , Humboldt Universität zu Berlin , Newtonstraße 15 , 12489 Berlin , Germany
| | - James G McNally
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH , Wilhelm-Conrad-Röntgen Campus, Albert-Einstein-Str. 15 , 12489 Berlin , Germany
| |
Collapse
|
25
|
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M, Shen L, Brust CA, Nikas SP, Song F, Song X, Yuan S, Sun Q, Wu Y, Jiang S, Grim TW, Benchama O, Stahl EL, Zvonok N, Zhao S, Bohn LM, Makriyannis A, Liu ZJ. Activation and Signaling Mechanism Revealed by Cannabinoid Receptor-G i Complex Structures. Cell 2020; 180:655-665.e18. [PMID: 32004463 DOI: 10.1016/j.cell.2020.01.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.
Collapse
Affiliation(s)
- Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | | | - Yuxia Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Meng Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ling Shen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Christina A Brust
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Spyros P Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Feng Song
- School of Life Science, Dezhou University, Dezhou 253023, Shandong Province, China
| | - Xiyong Song
- Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Shuguang Yuan
- The Research Center for Computer-aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qianqian Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Othman Benchama
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Nikolai Zvonok
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, Scripps Research, Jupiter, FL 33458, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Center for Drug Discovery and Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
26
|
Heymann JB. Protocols for Processing and Interpreting cryoEM Data Using Bsoft: A Case Study of the Retinal Adhesion Protein, Retinoschisin. Bio Protoc 2020; 10:e3491. [PMID: 33654723 DOI: 10.21769/bioprotoc.3491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 11/02/2022] Open
Abstract
The goal of cryoEM is to determine the structures of biomolecules from electron micrographs. In many cases the processing is straightforward and can be handled with routine protocols. In other cases, the properties and behavior of the specimen require adaptions to properly interpret the data. Here I describe the protocols for examining the higher order assemblies of the retinal adhesion protein, retinoschisin (RS1), using the Bsoft package. The protocols for micrograph preprocessing, 2D classification and 3D alignment and reconstruction follow the usual patterns for the majority of cryoEM specimens. The interpretation of the results is specific to the branched network of RS1 filaments. The 2D class averages are used to determine the relative positions of the RS1 molecules, thus defining the interacting interfaces in the network. The major interface of the linear filament is then further examined by reconstructing the "unit cell" and fitting the molecular models.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science 2019; 364:552-557. [PMID: 31073061 DOI: 10.1126/science.aaw5188] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Muscarinic acetylcholine receptors are G protein-coupled receptors that respond to acetylcholine and play important signaling roles in the nervous system. There are five muscarinic receptor subtypes (M1R to M5R), which, despite sharing a high degree of sequence identity in the transmembrane region, couple to different heterotrimeric GTP-binding proteins (G proteins) to transmit signals. M1R, M3R, and M5R couple to the Gq/ 11 family, whereas M2R and M4R couple to the Gi/ o family. Here, we present and compare the cryo-electron microscopy structures of M1R in complex with G11 and M2R in complex with GoA The M1R-G11 complex exhibits distinct features, including an extended transmembrane helix 5 and carboxyl-terminal receptor tail that interacts with G protein. Detailed analysis of these structures provides a framework for understanding the molecular determinants of G-protein coupling selectivity.
Collapse
Affiliation(s)
- Shoji Maeda
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Khayat R, Wen K, Alimova A, Gavrilov B, Katz A, Galarza JM, Gottlieb P. Structural characterization of the PCV2d virus-like particle at 3.3 Å resolution reveals differences to PCV2a and PCV2b capsids, a tetranucleotide, and an N-terminus near the icosahedral 3-fold axes. Virology 2019; 537:186-197. [PMID: 31505320 PMCID: PMC6958667 DOI: 10.1016/j.virol.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Porcine circovirus 2 (PCV2) has a major impact on the swine industry. Eight PCV2 genotypes (a-h) have been identified using capsid sequence analysis. PCV2d has been designated as the emerging genotype. The cryo-electron microscopy molecular envelope of PCV2d virus-like particles identifies differences between PCV2a, b and d genotypes that accompany the emergence of PCV2b from PCV2a, and PCV2d from PCV2b. These differences indicate that sequence analysis of genotypes is insufficient, and that it is important to determine the PCV2 capsid structure as the virus evolves. Structure-based sequence comparison demonstrate that each genotype possesses a unique combination of amino acids located on the surface of the capsid that undergo substitution. We also demonstrate that the capsid N-terminus moves in response to increasing amount of nucleic acid packaged into the capsid. Furthermore, we model a tetranucleotide between the 5- and 2-fold axes of symmetry that appears to be responsible for capsid stability.
Collapse
Affiliation(s)
- Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA; Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | | | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, Sofia, 1113, Bulgaria
| | - Al Katz
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jose M Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY, 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, City College of New York, NY, 10031, USA
| |
Collapse
|
29
|
Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, Weinstein H. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca 2+-bound nhTMEM16. Nat Commun 2019; 10:4972. [PMID: 31672969 PMCID: PMC6823365 DOI: 10.1038/s41467-019-12865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/01/2019] [Indexed: 12/05/2022] Open
Abstract
Both lipid and ion translocation by Ca2+-regulated TMEM16 transmembrane proteins utilizes a membrane-exposed hydrophilic groove. Several conformations of the groove are observed in TMEM16 protein structures, but how these conformations form, and what functions they support, remains unknown. From analyses of atomistic molecular dynamics simulations of Ca2+-bound nhTMEM16 we find that the mechanism of a conformational transition of the groove from membrane-exposed to occluded from the membrane involves the repositioning of transmembrane helix 4 (TM4) following its disengagement from a TM3/TM4 interaction interface. Residue L302 is a key element in the hydrophobic TM3/TM4 interaction patch that braces the open-groove conformation, which should be changed by an L302A mutation. The structure of the L302A mutant determined by cryogenic electron microscopy (cryo-EM) reveals a partially closed groove that could translocate ions, but not lipids. This is corroborated with functional assays showing severely impaired lipid scrambling, but robust channel activity by L302A. A membrane-exposed groove in Ca2+-gated TMEM16 scramblases forms the translocation pathway for ions and lipids. Here authors combine molecular dynamics with cryo-EM and functional assays to uncover the conformational transitions of the groove leading to a non-selective ion channel pore.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Byoung-Cheol Lee
- Research Group for the Neurovascular Unit, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA. .,Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Malhotra S, Träger S, Dal Peraro M, Topf M. Modelling structures in cryo-EM maps. Curr Opin Struct Biol 2019; 58:105-114. [PMID: 31394387 DOI: 10.1016/j.sbi.2019.05.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022]
Abstract
Recent advances in structure determination of sub-cellular structures using cryo-electron microscopy and tomography have enabled us to understand their architecture in a more detailed manner and gain insight into their function. The choice of approach to use for atomic model building, fitting, refinement and validation in the 3D map resulting from these experiments depends primarily on the resolution of the map and the prior information on the corresponding model. Here, we survey some of such methods and approaches and highlight their uses in specific recent examples.
Collapse
Affiliation(s)
- Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sylvain Träger
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
31
|
Malay AD, Miyazaki N, Biela A, Chakraborti S, Majsterkiewicz K, Stupka I, Kaplan CS, Kowalczyk A, Piette BMAG, Hochberg GKA, Wu D, Wrobel TP, Fineberg A, Kushwah MS, Kelemen M, Vavpetič P, Pelicon P, Kukura P, Benesch JLP, Iwasaki K, Heddle JG. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 2019; 569:438-442. [PMID: 31068697 DOI: 10.1038/s41586-019-1185-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
Abstract
Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.
Collapse
Affiliation(s)
- Ali D Malay
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan.,Biomacromolecules Research Team, Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| | - Naoyuki Miyazaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Artur Biela
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Soumyananda Chakraborti
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Majsterkiewicz
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Izabela Stupka
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Craig S Kaplan
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Agnieszka Kowalczyk
- Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.,Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland
| | | | - Georg K A Hochberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Di Wu
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Tomasz P Wrobel
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - Adam Fineberg
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Manish S Kushwah
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Mitja Kelemen
- Jožef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | | | | - Philipp Kukura
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Kenji Iwasaki
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, Saitama, Japan. .,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
32
|
Abstract
We report a complete 3D structural model of typical epithelial primary cilia based on structural maps of full-length primary cilia obtained by serial section electron tomography. Our data demonstrate the architecture of primary cilia differs extensively from the commonly acknowledged 9+0 paradigm. The axoneme structure is relatively stable but gradually evolves from base to tip with a decreasing number of microtubule complexes (MtCs) and a reducing diameter. The axonemal MtCs are cross-linked by previously unrecognized fibrous protein networks. Such an architecture explains why primary cilia can elastically withstand liquid flow for mechanosensing. The nine axonemal MtCs in a cilium are found to differ significantly in length indicating intraflagellar transport processes in primary cilia may be more complicated than that reported for motile cilia. The 3D maps of microtubule doublet-singlet transitions generally display longitudinal gaps at the inner junction between the A- and B-tubules, which indicates the inner junction protein is a major player in doublet-singlet transitions. In addition, vesicles releasing from kidney primary cilia were observed in the structural maps, supporting that ciliary vesicles budding may serve as ectosomes for cell-cell communication.
Collapse
|
33
|
Riedel C, Lamp B, Chen HW, Heimann M, Rümenapf T. Fluorophore labelled BVDV: a novel tool for the analysis of infection dynamics. Sci Rep 2019; 9:5972. [PMID: 30979966 PMCID: PMC6461705 DOI: 10.1038/s41598-019-42540-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 11/10/2022] Open
Abstract
Genetic labelling of viruses with a fluorophore allows to study their life cycle in real time, without the need for fixation or staining techniques. Within the family Flaviviridae, options for genetic labelling of non-structural proteins exist. Yet, no system to genetically label structural proteins has been put forward to date. Taking advantage of a previously described site within the structural protein E2, a fluorophore was introduced into a cytopathogenic (cpe) BVDV-1 virus (BVDVE2_fluo). This insertion was well tolerated, resulting in a 2-fold drop in titer compared to the parental virus, and remained stably integrated into the genome for more than 10 passages. The fluorophore E2 fusion protein was readily detectable in purified virus particles by Western blot and fluorescence microscopy and the particle integrity and morphology was confirmed by cryo electron microscopy. The same integration site could also be used to label the related Classical swine fever virus. Also, BVDVE2_fluo particles bound to fluorophore labelled CD46 expressing cells could be resolved in fluorescence microscopy. This underlines the applicability of BVDVE2_fluo as a tool to study the dynamics of the whole life cycle of BVDV in real time.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Benjamin Lamp
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hann-Wei Chen
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Manuela Heimann
- Institute of Anatomy, Faculty of Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
34
|
Bowler M, Kong D, Sun S, Nanjundappa R, Evans L, Farmer V, Holland A, Mahjoub MR, Sui H, Loncarek J. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun 2019; 10:993. [PMID: 30824690 PMCID: PMC6397210 DOI: 10.1038/s41467-018-08216-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Centrioles are vital cellular structures that form centrosomes and cilia. The formation and function of cilia depends on a set of centriole's distal appendages. In this study, we use correlative super resolution and electron microscopy to precisely determine where distal appendage proteins localize in relation to the centriole microtubules and appendage electron densities. Here we characterize a novel distal appendage protein ANKRD26 and detail, in high resolution, the initial steps of distal appendage assembly. We further show that distal appendages undergo a dramatic ultra-structural reorganization before mitosis, during which they temporarily lose outer components, while inner components maintain a nine-fold organization. Finally, using electron tomography we reveal that mammalian distal appendages associate with two centriole microtubule triplets via an elaborate filamentous base and that they appear as almost radial finger-like protrusions. Our findings challenge the traditional portrayal of mammalian distal appendage as a pinwheel-like structure that is maintained throughout mitosis.
Collapse
Affiliation(s)
- Mathew Bowler
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
- Optical Microscopy and Analysis Laboratory, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
| | - Dong Kong
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
| | - Shufeng Sun
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
| | - Rashmi Nanjundappa
- Department of Medicine (Nephrology Division), Washington University, St Louis, 63110, MO, USA
| | - Lauren Evans
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Veronica Farmer
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, 37235, TN, USA
| | - Andrew Holland
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, 63110, MO, USA
- Department of Cell Biology and Physiology, Washington University, St Louis, 12201, MO, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY, 12201, USA
- Department of Biomedical Sciences, School of Public Health, University of Albany, Albany, NY, 12201, USA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI/CCR, Frederick, Maryland, 21702, USA.
| |
Collapse
|
35
|
Cui Y, Zhou K, Strugatsky D, Wen Y, Sachs G, Zhou ZH, Munson K. pH-dependent gating mechanism of the Helicobacter pylori urea channel revealed by cryo-EM. SCIENCE ADVANCES 2019; 5:eaav8423. [PMID: 30906870 PMCID: PMC6426461 DOI: 10.1126/sciadv.aav8423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The urea channel of Helicobacter pylori (HpUreI) is an ideal drug target for preventing gastric cancer but incomplete understanding of its gating mechanism has hampered development of inhibitors for the eradication of H. pylori. Here, we present the cryo-EM structures of HpUreI in closed and open conformations, both at a resolution of 2.7 Å. Our hexameric structures of this small membrane protein (~21 kDa/protomer) resolve its periplasmic loops and carboxyl terminus that close and open the channel, and define a gating mechanism that is pH dependent and requires cooperativity between protomers in the hexamer. Gating is further associated with well-resolved changes in the channel-lining residues that modify the shape and length of the urea pore. Site-specific mutations in the periplasmic domain and urea pore identified key residues important for channel function. Drugs blocking the urea pore based on our structures should lead to a new strategy for H. pylori eradication.
Collapse
Affiliation(s)
- Yanxiang Cui
- California NanoSystems Institute, University California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kang Zhou
- California NanoSystems Institute, University California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - David Strugatsky
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Wen
- David Geffen School of Medicine, University of California Los Angeles and Greater West Los Angeles Health Care System, Los Angeles, CA 90095, USA
| | - George Sachs
- David Geffen School of Medicine, University of California Los Angeles and Greater West Los Angeles Health Care System, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University California Los Angeles, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Keith Munson
- David Geffen School of Medicine, University of California Los Angeles and Greater West Los Angeles Health Care System, Los Angeles, CA 90095, USA
| |
Collapse
|
36
|
Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy. Proc Natl Acad Sci U S A 2019; 116:4804-4809. [PMID: 30808803 PMCID: PMC6421404 DOI: 10.1073/pnas.1810690116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Correlative light and electron cryo-microscopy (cryo-CLEM) combines information from the specific labeling of fluorescence cryo-microscopy (cryo-FM) with the high resolution in environmental context of electron cryo-microscopy (cryo-EM). Exploiting super-resolution methods for cryo-FM is advantageous, as it enables the identification of rare events within the environmental background of cryo-EM at a sensitivity and resolution beyond that of conventional methods. However, due to the need for relatively high laser intensities, current super-resolution cryo-CLEM methods require cryo-protectants or support films which can severely reduce image quality in cryo-EM and are not compatible with many samples, such as mammalian cells. Here, we introduce cryogenic super-resolution optical fluctuation imaging (cryo-SOFI), a low-dose super-resolution imaging scheme based on the SOFI principle. As cryo-SOFI does not require special sample preparation, it is fully compatible with conventional cryo-EM specimens, and importantly, it does not affect the quality of cryo-EM imaging. By applying cryo-SOFI to a variety of biological application examples, we demonstrate resolutions up to ∼135 nm, an improvement of up to three times compared with conventional cryo-FM, while maintaining the specimen in a vitrified state for subsequent cryo-EM. Cryo-SOFI presents a general solution to the problem of specimen devitrification in super-resolution cryo-CLEM. It does not require a complex optical setup and can easily be implemented in any existing cryo-FM system.
Collapse
|
37
|
Lecorre F, Lai-Kee-Him J, Blanc S, Zeddam JL, Trapani S, Bron P. The cryo-electron microscopy structure of Broad Bean Stain Virus suggests a common capsid assembly mechanism among comoviruses. Virology 2019; 530:75-84. [PMID: 30782565 DOI: 10.1016/j.virol.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/31/2023]
Abstract
The Broad bean stain virus (BBSV) is a member of the genus Comovirus infecting Fabaceae. The virus is transmitted through seed and by plant weevils causing severe and widespread disease worldwide. BBSV has a bipartite, positive-sense, single-stranded RNA genome encapsidated in icosahedral particles. We present here the cryo-electron microscopy reconstruction of the BBSV and an atomic model of the capsid proteins refined at 3.22 Å resolution. We identified residues involved in RNA/capsid interactions revealing a unique RNA genome organization. Inspection of the small coat protein C-terminal domain highlights a maturation cleavage between Leu567 and Leu568 and interactions of the C-terminal stretch with neighbouring small coat proteins within the capsid pentameric turrets. These interactions previously proposed to play a key role in the assembly of the Cowpea mosaic virus suggest a common capsid assembly mechanism throughout all comovirus species.
Collapse
Affiliation(s)
- François Lecorre
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Joséphine Lai-Kee-Him
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France
| | - Stéphane Blanc
- INRA, Virus Insect Plant Laboratory, Joint Research Unit UMR 385 BGPI, Campus International de Baillarguet, Montpellier, France
| | - Jean-Louis Zeddam
- IRD, Cirad, Montpellier University, Joint Research Unit UMR 186 IPME, Montpellier, France.
| | - Stefano Trapani
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| | - Patrick Bron
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Univ. Montpellier, 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
38
|
Amado E, Muth G, Arechaga I, Cabezón E. The FtsK-like motor TraB is a DNA-dependent ATPase that forms higher-order assemblies. J Biol Chem 2019; 294:5050-5059. [PMID: 30723158 DOI: 10.1074/jbc.ra119.007459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/01/2019] [Indexed: 11/06/2022] Open
Abstract
TraB is an FtsK-like DNA translocase responsible for conjugative plasmid transfer in mycelial Streptomyces Unlike other conjugative systems, which depend on a type IV secretion system, Streptomyces requires only TraB protein to transfer the plasmid as dsDNA. The γ-domain of this protein specifically binds to repeated 8-bp motifs on the plasmid sequence, following a mechanism that is reminiscent of the FtsK/SpoIIIE chromosome segregation system. In this work, we purified and characterized the enzymatic activity of TraB, revealing that it is a DNA-dependent ATPase that is highly stimulated by dsDNA substrates. Interestingly, we found that unlike the SpoIIIE protein, the γ-domain of TraB does not confer sequence-specific ATPase stimulation. We also found that TraB binds G-quadruplex DNA structures with higher affinity than TraB-recognition sequences (TRSs). An EM-based structural analysis revealed that TraB tends to assemble as large complexes comprising four TraB hexamers, which might be a prerequisite for DNA translocation across cell membranes. In summary, our findings shed light on the molecular mechanism used by the DNA-translocating motor TraB, which may be shared by other membrane-associated machineries involved in DNA binding and translocation.
Collapse
Affiliation(s)
- Eric Amado
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Günther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, 72074 Tuebingen, Germany
| | - Ignacio Arechaga
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| | - Elena Cabezón
- From the Departamento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas, Santander, Spain and
| |
Collapse
|
39
|
Falzone ME, Rheinberger J, Lee BC, Peyear T, Sasset L, Raczkowski AM, Eng ET, Di Lorenzo A, Andersen OS, Nimigean CM, Accardi A. Structural basis of Ca 2+-dependent activation and lipid transport by a TMEM16 scramblase. eLife 2019; 8:e43229. [PMID: 30648972 PMCID: PMC6355197 DOI: 10.7554/elife.43229] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.
Collapse
Affiliation(s)
- Maria E Falzone
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
| | - Jan Rheinberger
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Byoung-Cheol Lee
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Structure and Function on Neural NetworkKorea Brain Research InstituteDeaguRepublic of Korea
| | - Thasin Peyear
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Linda Sasset
- Department of PathologyWeill Cornell Medical CollegeNew YorkUnited States
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | - Edward T Eng
- Simons Electron Microscopy CenterNew York Structural Biology CenterNew YorkUnited States
| | | | - Olaf S Andersen
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Crina M Nimigean
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| | - Alessio Accardi
- Department of BiochemistryWeill Cornell Medical CollegeNew YorkUnited States
- Department of AnesthesiologyWeill Cornell Medical CollegeNew YorkUnited States
- Department of Physiology and BiophysicsWeill Cornell Medical CollegeNew YorkUnited States
| |
Collapse
|
40
|
Marabini R, Kazemi M, Sorzano COS, Carazo JM. Map challenge: Analysis using a pair comparison method based on Fourier shell correlation. J Struct Biol 2018; 204:527-542. [PMID: 30273658 DOI: 10.1016/j.jsb.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
This document presents the analysis performed over the Map Challenge dataset using a new algorithm which we refer to as Pair Comparison Method. The new algorithm, which is described in detail in the text, is able to sort reconstructions based on a figure of merit and assigns a level of significance to the sorting. That is, it shows how likely the sorting is due to chance or if it reflects real differences.
Collapse
Affiliation(s)
- R Marabini
- Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - M Kazemi
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, The University of Melbourne, VIC 3010, Australia
| | - C O S Sorzano
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), C/ Darwin, 3, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
41
|
McCraw DM, Gallagher JR, Torian U, Myers ML, Conlon MT, Gulati NM, Harris AK. Structural analysis of influenza vaccine virus-like particles reveals a multicomponent organization. Sci Rep 2018; 8:10342. [PMID: 29985483 PMCID: PMC6037804 DOI: 10.1038/s41598-018-28700-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Influenza virus continues to be a major health problem due to the continually changing immunodominant head regions of the major surface glycoprotein, hemagglutinin (HA). However, some emerging vaccine platforms designed by biotechnology efforts, such as recombinant influenza virus-like particles (VLPs) have been shown to elicit protective antibodies to antigenically different influenza viruses. Here, using biochemical analyses and cryo-electron microscopy methods coupled to image analysis, we report the composition and 3D structural organization of influenza VLPs of the 1918 pandemic influenza virus. HA molecules were uniformly distributed on the VLP surfaces and the conformation of HA was in a prefusion state. Moreover, HA could be bound by antibody targeting conserved epitopes in the stem region of HA. Taken together, our analysis suggests structural parameters that may be important for VLP biotechnology such as a multi-component organization with (i) an outer component consisting of prefusion HA spikes on the surfaces, (ii) a VLP membrane with HA distribution permitting stem epitope display, and (iii) internal structural components.
Collapse
Affiliation(s)
- Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Mallory L Myers
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Michael T Conlon
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Neetu M Gulati
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Heymann JB. Single particle reconstruction and validation using Bsoft for the map challenge. J Struct Biol 2018; 204:90-95. [PMID: 29981840 DOI: 10.1016/j.jsb.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022]
Abstract
The Bsoft package is aimed at processing electron micrographs for the determination of the three-dimensional structures of biological specimens. Recent advances in hardware allow us to solve structures to near atomic resolution using single particle analysis (SPA). The Map Challenge offered me an opportunity to test the ability of Bsoft to produce reconstructions from cryo-electron micrographs at the best resolution. I also wanted to understand what needed to be done to work towards full automation with validation. Here, I present two cases for the Map Challenge using Bsoft: ß-galactosidase and GroEL. I processed two independent subsets in each case with resolution-limited alignment. In both cases the reconstructions approached the expected resolution within a few iterations of alignment. I further validated the results by coherency-testing: i.e., that the reconstructions from real particles give better resolutions than reconstructions from the same number of aligned noise images. The key operations requiring attention for full automation are: particle picking, faster accurate alignment, proper mask generation, appropriate map sharpening, and understanding the amount of data needed to reach a desired resolution.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
43
|
Tenthorey JL, Haloupek N, López-Blanco JR, Grob P, Adamson E, Hartenian E, Lind NA, Bourgeois NM, Chacón P, Nogales E, Vance RE. The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 2018; 358:888-893. [PMID: 29146805 PMCID: PMC5842810 DOI: 10.1126/science.aao1140] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Robust innate immune detection of rapidly evolving pathogens is critical for host defense. Nucleotide-binding domain leucine-rich repeat (NLR) proteins function as cytosolic innate immune sensors in plants and animals. However, the structural basis for ligand-induced NLR activation has so far remained unknown. NAIP5 (NLR family, apoptosis inhibitory protein 5) binds the bacterial protein flagellin and assembles with NLRC4 to form a multiprotein complex called an inflammasome. Here we report the cryo-electron microscopy structure of the assembled ~1.4-megadalton flagellin-NAIP5-NLRC4 inflammasome, revealing how a ligand activates an NLR. Six distinct NAIP5 domains contact multiple conserved regions of flagellin, prying NAIP5 into an open and active conformation. We show that innate immune recognition of multiple ligand surfaces is a generalizable strategy that limits pathogen evolution and immune escape.
Collapse
Affiliation(s)
- Jeannette L Tenthorey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicole Haloupek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - José Ramón López-Blanco
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Patricia Grob
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Elise Adamson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas A Lind
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Natasha M Bourgeois
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Pablo Chacón
- Departamento de Química Física Biológica, Instituto de Química Física 'Rocasolano', Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.,Cancer Research Laboratory and Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Kim MS, Chuenchor W, Chen X, Cui Y, Zhang X, Zhou ZH, Gellert M, Yang W. Cracking the DNA Code for V(D)J Recombination. Mol Cell 2018; 70:358-370.e4. [PMID: 29628308 DOI: 10.1016/j.molcel.2018.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/25/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
Abstract
To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.
Collapse
Affiliation(s)
- Min-Sung Kim
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA; Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xing Zhang
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Braunger K, Pfeffer S, Shrimal S, Gilmore R, Berninghausen O, Mandon EC, Becker T, Förster F, Beckmann R. Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 2018. [PMID: 29519914 DOI: 10.1126/science.aar7899] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein synthesis, transport, and N-glycosylation are coupled at the mammalian endoplasmic reticulum by complex formation of a ribosome, the Sec61 protein-conducting channel, and oligosaccharyltransferase (OST). Here we used different cryo-electron microscopy approaches to determine structures of native and solubilized ribosome-Sec61-OST complexes. A molecular model for the catalytic OST subunit STT3A (staurosporine and temperature sensitive 3A) revealed how it is integrated into the OST and how STT3-paralog specificity for translocon-associated OST is achieved. The OST subunit DC2 was placed at the interface between Sec61 and STT3A, where it acts as a versatile module for recruitment of STT3A-containing OST to the ribosome-Sec61 complex. This detailed structural view on the molecular architecture of the cotranslational machinery for N-glycosylation provides the basis for a mechanistic understanding of glycoprotein biogenesis at the endoplasmic reticulum.
Collapse
Affiliation(s)
- Katharina Braunger
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Stefan Pfeffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Otto Berninghausen
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, Netherlands.
| | - Roland Beckmann
- Department of Biochemistry, Gene Center and Center for Integrated Protein Science Munich, University of Munich, 81377 Munich, Germany.
| |
Collapse
|
46
|
Yoder N, Yoshioka C, Gouaux E. Gating mechanisms of acid-sensing ion channels. Nature 2018; 555:397-401. [PMID: 29513651 PMCID: PMC5966032 DOI: 10.1038/nature25782] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Abstract
Acid-sensing ion channels (ASICs) are trimeric, proton-gated and sodium-selective members of the epithelial sodium channel/degenerin (ENaC/DEG) superfamily of ion channels and are expressed throughout vertebrate central and peripheral nervous systems. Gating of ASICs occurs on a millisecond time scale and the mechanism involves three conformational states: high pH resting, low pH open and low pH desensitized. Existing X-ray structures of ASIC1a describe the conformations of the open and desensitized states, but the structure of the high pH resting state and detailed mechanisms of the activation and desensitization of the channel have remained elusive. Here we present structures of the high pH resting state of homotrimeric chicken (Gallus gallus) ASIC1a, determined by X-ray crystallography and single particle cryo-electron microscopy, and present a comprehensive molecular mechanism for proton-dependent gating in ASICs. In the resting state, the position of the thumb domain is further from the three-fold molecular axis, thereby expanding the 'acidic pocket' in comparison to the open and desensitized states. Activation therefore involves 'closure' of the thumb into the acidic pocket, expansion of the lower palm domain and an iris-like opening of the channel gate. Furthermore, we demonstrate how the β11-β12 linkers that demarcate the upper and lower palm domains serve as a molecular 'clutch', and undergo a simple rearrangement to permit rapid desensitization.
Collapse
Affiliation(s)
- Nate Yoder
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health and Science University, 2730 SW Moody Ave, Portland, Oregon 97201, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.,Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| |
Collapse
|
47
|
Aleksandrova N, Gutsche I, Kandiah E, Avilov SV, Petoukhov MV, Seiradake E, McCarthy AA. Robo1 Forms a Compact Dimer-of-Dimers Assembly. Structure 2018; 26:320-328.e4. [PMID: 29307485 PMCID: PMC5807052 DOI: 10.1016/j.str.2017.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/28/2017] [Accepted: 12/04/2017] [Indexed: 01/27/2023]
Abstract
Roundabout (Robo) receptors provide an essential repulsive cue in neuronal development following Slit ligand binding. This important signaling pathway can also be hijacked in numerous cancers, making Slit-Robo an attractive therapeutic target. However, little is known about how Slit binding mediates Robo activation. Here we present the crystal structure of Robo1 Ig1-4 and Robo1 Ig5, together with a negative stain electron microscopy reconstruction of the Robo1 ectodomain. These results show how the Robo1 ectodomain is arranged as compact dimers, mainly mediated by the central Ig domains, which can further interact in a "back-to-back" fashion to generate a tetrameric assembly. We also observed no change in Robo1 oligomerization upon interaction with the dimeric Slit2-N ligand using fluorescent imaging. Taken together with previous studies we propose that Slit2-N binding results in a conformational change of Robo1 to trigger cell signaling.
Collapse
Affiliation(s)
- Nataliia Aleksandrova
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Irina Gutsche
- University Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
| | - Eaazhisai Kandiah
- University Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, 38044 Grenoble, France
| | - Sergiy V Avilov
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Maxim V Petoukhov
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 85, Hamburg 22607, Germany; Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Leninsky Prospect 59, 119333 Moscow, Russian Federation; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky Prospect 31, 119071 Moscow, Russian Federation; N.N. Semenov Institute of Chemical Physics of Russian Academy of Sciences, Kosygina Street 4, 119991 Moscow, Russian Federation
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, 38042 Grenoble, France.
| |
Collapse
|
48
|
Kasinath V, Faini M, Poepsel S, Reif D, Feng XA, Stjepanovic G, Aebersold R, Nogales E. Structures of human PRC2 with its cofactors AEBP2 and JARID2. Science 2018; 359:940-944. [PMID: 29348366 PMCID: PMC5840869 DOI: 10.1126/science.aar5700] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
Transcriptionally repressive histone H3 lysine 27 methylation by Polycomb repressive complex 2 (PRC2) is essential for cellular differentiation and development. Here we report cryo-electron microscopy structures of human PRC2 in a basal state and two distinct active states while in complex with its cofactors JARID2 and AEBP2. Both cofactors mimic the binding of histone H3 tails. JARID2, methylated by PRC2, mimics a methylated H3 tail to stimulate PRC2 activity, whereas AEBP2 interacts with the RBAP48 subunit, mimicking an unmodified H3 tail. SUZ12 interacts with all other subunits within the assembly and thus contributes to the stability of the complex. Our analysis defines the complete architecture of a functionally relevant PRC2 and provides a structural framework to understand its regulation by cofactors, histone tails, and RNA.
Collapse
Affiliation(s)
- Vignesh Kasinath
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Poepsel
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dvir Reif
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Xinyu Ashlee Feng
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Goran Stjepanovic
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Eva Nogales
- QB3 Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Chittori S, Hong J, Saunders H, Feng H, Ghirlando R, Kelly AE, Bai Y, Subramaniam S. Structural mechanisms of centromeric nucleosome recognition by the kinetochore protein CENP-N. Science 2017; 359:339-343. [PMID: 29269420 DOI: 10.1126/science.aar2781] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/12/2017] [Indexed: 11/02/2022]
Abstract
Accurate chromosome segregation requires the proper assembly of kinetochore proteins. A key step in this process is the recognition of the histone H3 variant CENP-A in the centromeric nucleosome by the kinetochore protein CENP-N. We report cryo-electron microscopy (cryo-EM), biophysical, biochemical, and cell biological studies of the interaction between the CENP-A nucleosome and CENP-N. We show that human CENP-N confers binding specificity through interactions with the L1 loop of CENP-A, stabilized by electrostatic interactions with the nucleosomal DNA. Mutational analyses demonstrate analogous interactions in Xenopus, which are further supported by residue-swapping experiments involving the L1 loop of CENP-A. Our results are consistent with the coevolution of CENP-N and CENP-A and establish the structural basis for recognition of the CENP-A nucleosome to enable kinetochore assembly and centromeric chromatin organization.
Collapse
Affiliation(s)
- Sagar Chittori
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Hayden Saunders
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892, USA
| | - Alexander E Kelly
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA.
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Heymann JB. Guidelines for using Bsoft for high resolution reconstruction and validation of biomolecular structures from electron micrographs. Protein Sci 2017; 27:159-171. [PMID: 28891250 DOI: 10.1002/pro.3293] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Cryo-electron microscopy (cryoEM) is becoming popular as a tool to solve biomolecular structures with the recent availability of direct electron detectors allowing automated acquisition of high resolution data. The Bsoft software package, developed over 20 years for analyzing electron micrographs, offers a full workflow for validated single particle analysis with extensive functionality, enabling customization for specific cases. With the increasing use of cryoEM and its automation, proper validation of the results is a bigger concern. The three major validation approaches, independent data sets, resolution-limited processing, and coherence testing, can be incorporated into any Bsoft workflow. Here, the main workflow is divided into four phases: (i) micrograph preprocessing, (ii) particle picking, (iii) particle alignment and reconstruction, and (iv) interpretation. Each of these phases represents a conceptual unit that can be automated, followed by a check point to assess the results. The aim in the first three phases is to reconstruct one or more validated maps at the best resolution possible. Map interpretation then involves identification of components, segmentation, quantification, and modeling. The algorithms in Bsoft are well established, with future plans focused on ease of use, automation and institutionalizing validation.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory for Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, 20892
| |
Collapse
|