1
|
Zablotskii V, Gorobets O, Gorobets S, Polyakova T. Effects of Static and Low-Frequency Magnetic Fields on Gene Expression. J Magn Reson Imaging 2025. [PMID: 39887550 DOI: 10.1002/jmri.29726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Substantial research over the past two decades has established that magnetic fields affect fundamental cellular processes, including gene expression. However, since biological cells and subcellular components exhibit diamagnetic behavior and are therefore subjected to very small magnetic forces that cannot directly compete with the viscoelastic and bioelectric intracellular forces responsible for cellular machinery functions, it becomes challenging to understand cell-magnetic field interactions and to reveal the mechanisms through which these interactions differentially influence gene expression in cells. The limited understanding of the molecular mechanisms underlying biomagnetic effects has hindered progress in developing effective therapeutic applications of magnetic fields. This review examines the expanding body of literature on genetic events during static and low-frequency magnetic field exposure, focusing particularly on how changes in gene expression interact with cellular machinery. To address this, we conducted a systematic review utilizing extensive search strategies across multiple databases. We explore the intracellular mechanisms through which transcription functions may be modified by a magnetic field in contexts where other cellular signaling pathways are also activated by the field. This review summarizes key findings in the field, outlines the connections between magnetic fields and gene expression changes, identifies critical gaps in current knowledge, and proposes directions for future research. LEVEL OF EVIDENCE: NA TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Vitalii Zablotskii
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- International Magnetobiology Frontier Research Center (iMFRC), Science Island, Hefei, China
| | - Oksana Gorobets
- Faculty of Physics and Mathematics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Svitlana Gorobets
- Faculty of Biotechnology and Biotechnics, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - Tatyana Polyakova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Limatola N, Chun JT, Chiba K, Santella L. Dithiothreitol Affects the Fertilization Response in Immature and Maturing Starfish Oocytes. Biomolecules 2023; 13:1659. [PMID: 38002342 PMCID: PMC10669828 DOI: 10.3390/biom13111659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Immature starfish oocytes isolated from the ovary are susceptible to polyspermy due to the structural organization of the vitelline layer covering the oocyte plasma membrane, as well as the distribution and biochemical properties of the actin cytoskeleton of the oocyte cortex. After the resumption of the meiotic cycle of the oocyte triggered by the hormone 1-methyladenine, the maturing oocyte reaches fertilizable conditions to be stimulated by only one sperm with a normal Ca2+ response and cortical reaction. This cytoplasmic ripening of the oocyte, resulting in normal fertilization and development, is due to the remodeling of the cortical actin cytoskeleton and germinal vesicle breakdown (GVBD). Since disulfide-reducing agents such as dithiothreitol (DTT) are known to induce the maturation and GVBD of oocytes in many species of starfish, we analyzed the pattern of the fertilization response displayed by Astropecten aranciacus oocytes pre-exposed to DTT with or without 1-MA stimulation. Short treatment of A. aranciacus immature oocytes with DTT reduced the rate of polyspermic fertilization and altered the sperm-induced Ca2+ response by changing the morphology of microvilli, cortical granules, and biochemical properties of the cortical F-actin. At variance with 1-MA, the DTT treatment of immature starfish oocytes for 70 min did not induce GVBD. On the other hand, the DTT treatment caused an alteration in microvilli morphology and a drastic depolymerization of the cortical F-actin, which impaired the sperm-induced Ca2+ response at fertilization and the subsequent embryonic development.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo 112-8610, Japan;
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
3
|
Limatola N, Chun JT, Schneider SC, Schmitt JL, Lehn JM, Santella L. The Effect of Acidic and Alkaline Seawater on the F-Actin-Dependent Ca 2+ Signals Following Insemination of Immature Starfish Oocytes and Mature Eggs. Cells 2023; 12:740. [PMID: 36899875 PMCID: PMC10000582 DOI: 10.3390/cells12050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
In starfish, the addition of the hormone 1-methyladenine (1-MA) to immature oocytes (germinal vesicle, GV-stage) arrested at the prophase of the first meiotic division induces meiosis resumption (maturation), which makes the mature eggs able to respond to the sperm with a normal fertilization response. The optimal fertilizability achieved during the maturation process results from the exquisite structural reorganization of the actin cytoskeleton in the cortex and cytoplasm induced by the maturing hormone. In this report, we have investigated the influence of acidic and alkaline seawater on the structure of the cortical F-actin network of immature oocytes of the starfish (Astropecten aranciacus) and its dynamic changes upon insemination. The results have shown that the altered seawater pH strongly affected the sperm-induced Ca2+ response and the polyspermy rate. When immature starfish oocytes were stimulated with 1-MA in acidic or alkaline seawater, the maturation process displayed a strong dependency on pH in terms of the dynamic structural changes of the cortical F-actin. The resulting alteration of the actin cytoskeleton, in turn, affected the pattern of Ca2+ signals at fertilization and sperm penetration.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Suzanne C. Schneider
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
4
|
Limatola N, Chun JT, Santella L. Regulation of the Actin Cytoskeleton-Linked Ca 2+ Signaling by Intracellular pH in Fertilized Eggs of Sea Urchin. Cells 2022; 11:1496. [PMID: 35563801 PMCID: PMC9100012 DOI: 10.3390/cells11091496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
In sea urchin, the immediate contact of the acrosome-reacted sperm with the egg surface triggers a series of structural and ionic changes in the egg cortex. Within one minute after sperm fuses with the egg plasma membrane, the cell membrane potential changes with the concurrent increases in intracellular Ca2+ levels. The consequent exocytosis of the cortical granules induces separation of the vitelline layer from the egg plasma membrane. While these cortical changes are presumed to prevent the fusion of additional sperm, the subsequent late phase (between 1 and 4 min after fertilization) is characterized by reorganization of the egg cortex and microvilli (elongation) and by the metabolic shift to activate de novo protein and DNA syntheses. The latter biosynthetic events are crucial for embryonic development. Previous studies suggested that the early phase of fertilization was not a prerequisite for these changes in the second phase since the increase in the intracellular pH induced by the exposure of unfertilized sea urchin eggs to ammonia seawater could start metabolic egg activation in the absence of the cortical granule exocytosis. In the present study, we have demonstrated that the incubation of unfertilized eggs in ammonia seawater induced considerable elongations of microvilli (containing actin filaments) as a consequence of the intracellular pH increase, which increased the egg's receptivity to sperm and made the eggs polyspermic at fertilization despite the elevation of the fertilization envelope (FE). These eggs also displayed compromised Ca2+ signals at fertilization, as the amplitude of the cortical flash was significantly reduced and the elevated intracellular Ca2+ level declined much faster. These results have also highlighted the importance of the increased internal pH in regulating Ca2+ signaling and the microvillar actin cytoskeleton during the late phase of the fertilization process.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
5
|
Limatola N, Chun JT, Cherraben S, Schmitt JL, Lehn JM, Santella L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021; 10:3573. [PMID: 34944081 PMCID: PMC8700669 DOI: 10.3390/cells10123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sawsen Cherraben
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
6
|
Effect of electromagnetic radiation on the liver structure and ultrastructure of in utero irradiated rats. ACTA VET BRNO 2021. [DOI: 10.2754/avb202190030315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to observe the influence of electromagnetic radiation (EMR) on the structure and ultrastructure of the rat’s liver. The pregnant rats used in the experiment were exposed to a pulsed microwave radiation (frequency of 2.45 GHz; mean power density of 2.8 mW/cm2) daily for 2 h, throughout their pregnancy. After delivery, the offspring was not exposed to EMR. Samples of the liver of 5-week-old offspring were subjected to histopathological evaluation. They were processed for light and transmission electron microscopy. Our results indicated that EMR did not cause pronounced changes in the structure of the liver of the investigated offspring. The size and shape of liver lobuli was preserved and the amount of connective tissue in the liver parenchyma did not increase. However, electron microscopy revealed changes in the shape and number of microvilli at the vascular pole of hepatocytes, and formation of vesicles of various shapes and sizes. The endothelial cells were swollen with larger fenestrations compared to the control group. The spaces of Disse were irregular and dilated. Even though these changes were only mild, further studies are needed to determine the effect of EMR and clarify its potential risk during pregnancy.
Collapse
|
7
|
Limatola N, Chun JT, Santella L. Fertilization and development of Arbacia lixula eggs are affected by osmolality conditions. Biosystems 2021; 206:104448. [PMID: 34058296 DOI: 10.1016/j.biosystems.2021.104448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
The sea urchin Arbacia lixula coexist with Paracentrotus lividus in the Mediterranean, but the two sea urchin species are quite different from each other. Concerning the female gamete, A. lixula eggs are much darker than those of P. lividus due to the characteristic pigmentation. Upon insemination, the fertilization envelope formed by A. lixula eggs is remarkably thinner than that of P. livius eggs, which implies that the cortical organization of the eggs in the two species may be quite different. In this communication, we examined the phenotypic plasticity of A. lixula eggs in the changing osmolality. The plasma membrane, cortical actin cytoskeleton and vesicles are extensively altered in the eggs exposed to 40% seawater for 15 min. When fertilized, the Ca2+ response in these eggs was significantly compromised and the sperm often failed to enter the eggs. Remarkably, the pattern of the Ca2+ response was restored when these eggs were transferring back to the natural seawater before fertilization, while the actin cytoskeleton partially reverted to the original state. Nonetheless, these eggs restored in seawater failed to regain the innate sperm receptivity that allows only one sperm to enter in natural seawater. Thus, the ability to guide monospermic fertilization is lost by water entry into the eggs, and the eggs incorporated either multiple or no sperm. On the other hand, eggs briefly exposed to hypertonic seawater exhibited no evident morphological anomaly. Nonetheless, the monospermic eggs that experienced a brief exposure (15 min) to hypertonic seawater prior to fertilization in natural seawater displayed a subtly altered sperm-induced Ca2+ response and morpho-functional anomaly around the pluteus stage. Our results suggest that A. lixula eggs attain only a limited extent of cytological plasticity, and that the osmolality shock affects the physical nature of the egg surface which in turn affects the developmental programming.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
8
|
Mandal M, Ghosh B, Rajput M, Chatterjee J. Impact of intercellular connectivity on epithelial mesenchymal transition plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118784. [DOI: 10.1016/j.bbamcr.2020.118784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
9
|
Hunley C, Uribe D, Marucho M. A multi-scale approach to describe electrical impulses propagating along actin filaments in both intracellular and in vitro conditions. RSC Adv 2018; 8:12017-12028. [PMID: 30761211 PMCID: PMC6369918 DOI: 10.1039/c7ra12799e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An accurate and efficient characterization of the polyelectrolyte properties for cytoskeleton filaments are key to the molecular understanding of electrical signal propagation, bundle and network formation, as well as their potential nanotechnological applications. In this article, we introduce an innovative multi-scale approach able to account for the atomistic details of a protein molecular structure, its biological environment, and their impact on electrical impulses propagating along wild type actin filaments. The formulation includes non-trivial contributions to the ionic electrical conductivity and capacitance coming from the diffuse part of the electrical double layer of G-actins. We utilize this monomer characterization in a non-linear inhomogeneous transmission line prototype model to account for the monomer–monomer interactions, dissipation and damping perturbations along the filament length. A novel, simple, accurate, approximate analytic expression has been obtained for the transmission line model. Our results reveal the propagation of electrical signal impulses in the form of solitons for the range of voltage stimulus and electrolyte solutions typically present for intracellular and in vitro conditions. The approach predicts a lower electrical conductivity with higher linear capacitance and non-linear accumulation of charge for intracellular conditions. Our results show a significant influence of the voltage input on the electrical impulse shape, attenuation and kern propagation velocity. The filament is able to sustain the soliton propagation at almost constant kern velocity for the in vitro condition, whereas the intracellular condition displays a remarkable deceleration. Additionally, the solitons are narrower and travel faster at higher voltage input. As a unique feature, this multi-scale theory is able to account for molecular structure conformation (mutation) and biological environment (protonations/deprotonations) changes often present in pathological conditions. It is also applicable to other highly charged rod-like polyelectrolytes with relevance in biomedicine and biophysics. An innovative analytic solution accounting for the molecular structure, its biological environment, and their impact on electrical impulses along microfilaments.![]()
Collapse
Affiliation(s)
- Christian Hunley
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| | - Diego Uribe
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| | - Marcelo Marucho
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249-5003
| |
Collapse
|
10
|
Sadri M, Abdolmaleki P, Abrun S, Beiki B, Samani FS. Static Magnetic Field Effect on Cell Alignment, Growth, and Differentiation in Human Cord-Derived Mesenchymal Stem Cells. Cell Mol Bioeng 2017; 10:249-262. [PMID: 31719863 DOI: 10.1007/s12195-017-0482-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 02/25/2017] [Indexed: 10/19/2022] Open
Abstract
This investigation is performed to evaluate the impact of static magnetic field on the Cell growth alignment, and differentiation potential in Human Mesenchymal Stem cells derived from human newborn cords. In vitro-cultured mesenchymal stem cells derived from human newborn cords were exposed to SMF up to 24 mT and compared with the control (unexposed) cultures. Viability was assessed via Trypan Blue staining and MTT assay. Cell cycle progression was studied after flow cytometry data analysis. Sox-2, Nanong, and Oct-4 Primers used for RT-PCR experiment. Morphological studies showed that the exposed cells were significantly aligned in parallel bundles in a correlation with the magnetic field lines. Viability measurements showed a significant reduction in cell viability which was noted after exposure to static magnetic field and initiated 36 h after the end of exposure time. Flow cytometric data analysis confirmed a decrease in G1 phase cell population within the treated and cultured groups compared with the corresponding control samples. However, the induced changes were recovered in the cell cultures after the post-exposure culture recovery time which may be attributed to the cellular repair mechanisms. Furthermore, the proliferation rate and Oct-4 gene expression were reduced due to the 18 mT static magnetic field exposure. The significant proliferation rate decrease accompanied by the Sox-2, Nanong, and Oct-4 gene expression decline, suggested the differentiation inducing effects of SMF exposure. Exposure to Static Magnetic fields up to 24 mT affects mesenchymal stem cell alignment and proliferation rate as well as mRNA expression of Sox-2, Nanong, and Oct-4 genes, therefore can be considered as a new differentiation inducer in addition to the other stimulators.
Collapse
Affiliation(s)
- Maryam Sadri
- 1Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran
| | - Parviz Abdolmaleki
- 1Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 1415-154, Tehran, Iran
| | - Saeid Abrun
- 2Department of Hematology, Faculty of Biological Sciences, Tarbiat Modares University (TMU), P.O. Box 14115-175, Tehran, Iran.,Royan Stem Cell Technology Company (Cord Blood Bank), Tehran, Iran
| | - Bahareh Beiki
- Royan Stem Cell Technology Company (Cord Blood Bank), Tehran, Iran
| | - Fazel Sahraneshin Samani
- 4Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
11
|
Halberg KA, Rainey SM, Veland IR, Neuert H, Dornan AJ, Klämbt C, Davies SA, Dow JAT. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules. Nat Commun 2016; 7:11266. [PMID: 27072072 PMCID: PMC4833865 DOI: 10.1038/ncomms11266] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Multicellular organisms rely on cell adhesion molecules to coordinate cell–cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most abundantly expressed in the adult renal (Malpighian) tubule rather than in neuronal tissues. The role Fas2 serves in this epithelium is unknown. Here we show that Fas2 is essential to brush border maintenance in renal tubules of Drosophila. Fas2 is dynamically expressed during tubule morphogenesis, localizing to the brush border whenever the tissue is transport competent. Genetic manipulations of Fas2 expression levels impact on both microvilli length and organization, which in turn dramatically affect stimulated rates of fluid secretion by the tissue. Consequently, we demonstrate a radically different role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border. In Drosophila, Fasciclin 2 (Fas2) has been mainly studied in the nervous system, yet this adhesion protein is more abundant in the adult renal tubule. Here the authors show that Fas2 is essential for brush border maintenance in renal tubules through regulation of microvilli length and organization.
Collapse
Affiliation(s)
- Kenneth A Halberg
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,Section for Cell &Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Stephanie M Rainey
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK.,MRC-University of Glasgow Centre for Virus Research, Henry Wellcome Building, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Iben R Veland
- Cancer Research UK
- Beatson Institute, Garscube Estate, Switchback road, Glasgow G61 1BD, UK.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen DK-2100, Denmark
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Anthony J Dornan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Badestrasse 9, 48149 Münster, Germany
| | - Shireen-Anne Davies
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Davidson Building Room 324, Glasgow G12 8QQ, UK
| |
Collapse
|
12
|
Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infect Immun 2014; 82:2860-71. [PMID: 24778113 DOI: 10.1128/iai.01681-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microvilli are membrane extensions on the apical surface of polarized epithelia, such as intestinal enterocytes and tubule and duct epithelia. One notable exception in mucosal epithelia is M cells, which are specialized for capturing luminal microbial particles; M cells display a unique apical membrane lacking microvilli. Based on studies of M cell uptake under different ionic conditions, we hypothesized that microvilli may augment the mucosal barrier by providing an increased surface charge density from the increased membrane surface and associated glycoproteins. Thus, electrostatic charges may repel microbes from epithelial cells bearing microvilli, while M cells are more susceptible to microbial adhesion. To test the role of microvilli in bacterial adhesion and uptake, we developed polarized intestinal epithelial cells with reduced microvilli ("microvillus-minus," or MVM) but retaining normal tight junctions. When tested for interactions with microbial particles in suspension, MVM cells showed greatly enhanced adhesion and uptake of particles compared to microvillus-positive cells. This preference showed a linear relationship to bacterial surface charge, suggesting that microvilli resist binding of microbes by using electrostatic repulsion. Moreover, this predicts that pathogen modification of electrostatic forces may contribute directly to virulence. Accordingly, the effacement effector protein Tir from enterohemorrhagic Escherichia coli O157:H7 expressed in epithelial cells induced a loss of microvilli with consequent enhanced microbial binding. These results provide a new context for microvillus function in the host-pathogen relationship, based on electrostatic interactions.
Collapse
|
13
|
Janmey PA, Slochower DR, Wang YH, Wen Q, Cēbers A. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids. SOFT MATTER 2014; 10:1439-49. [PMID: 24651463 PMCID: PMC4009494 DOI: 10.1039/c3sm50854d] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-mediated effects on four structurally unrelated biopolymers of similar charge density: F-actin, vimentin, Pf1 virus, and DNA, and explores the possible biological and pathophysiological consequences of the polyelectrolyte properties of biological filaments.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
14
|
Vandrangi P, Lo DD, Kozaka R, Ozaki N, Carvajal N, Rodgers VGJ. Electrostatic properties of confluent Caco-2 cell layer correlates to their microvilli growth and determines underlying transcellular flow. Biotechnol Bioeng 2013; 110:2742-8. [PMID: 23613195 DOI: 10.1002/bit.24939] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/07/2013] [Accepted: 04/11/2013] [Indexed: 01/10/2023]
Abstract
Recently, Rajapaksa et al. (2010) showed that the rate of uptake of potential vaccine delivery nanoparticles in the mucosal layer is a function of the electrostatic properties of the corresponding solvent. This fundamentally implies that the dominant driving forces that may be capitalized on for mucosal vaccine strategies are electrostatic in nature. We hypothesize that the driving force normal to the cell (in the direction from apical to basolateral across the cell) is of particular importance. In addition, it has been theoretically shown that the electrostatic properties of mucosal cells are directly related to their development of brush border. Here we correlate the development of brush border on a human mucosal epithelial model (Caco-2) cultured in DMEM on 3.0 µm pore sized polycarbonate membranes to their corresponding electrostatic properties characterized by measuring their normal zeta potential. Properties of normal streaming potential, hydraulic permeability, and brush border development (as determined by size and number) were monitored for 2, 6, and 16 days (after cells were confluent). Human endothelial cells (HECs), which lack brush border, were used as the control. Our results demonstrate that normal zeta potential of Caco-2 cells significantly changed from -5.7 ± 0.11 mV to -3.4 ± 0.11 mV for a period between 2 and 16 days, respectively. The zeta potential of the control cell line, HECs, stayed constant (statistically not different, P > 0.05) for the duration of the experiments. Our results show that the calculated increase in surface area of the Caco-2 cells with microvilli from 6 to 16 days was directly proportional to the corresponding measured zeta potential difference. These results imply that microvilli alter the electrostatic local environment around Caco-2 cells and, hence, enhance the normal electrostatic selective transport of solute across the mucosal barrier.
Collapse
Affiliation(s)
- P Vandrangi
- Department of Bioengineering, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
15
|
Igamberdiev AU. Biomechanical and coherent phenomena in morphogenetic relaxation processes. Biosystems 2012; 109:336-45. [DOI: 10.1016/j.biosystems.2012.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/04/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023]
|
16
|
Abstract
It is becoming evident that failure in the removal of dying cells causes and/or promotes the onset of chronic diseases. Impairment of phagocytosis of apoptotic cells can be due not only to genetic or molecular malfunctioning but also to external/environmental factors. Two of these environmental factors have been recently reported to down regulate the clearance of apoptotic cells: cigarette smoke and static magnetic fields. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function. Human macrophages interacting with carbonyl or cigarette smoke modified extracellular matrix (ECM) proteins dramatically down regulated their ability to phagocytose apoptotic neutrophils. It was postulated that changes in the ECM environment as a result of cigarette smoke affect the ability of macrophages to remove apoptotic cells. This decreased phagocytic activity was as a result of sequestration of receptors involved in the uptake of apoptotic cells towards that of recognition of carbonyl adducts on the modified ECM proteins leading to increased macrophage adhesion. Downregulation of the phagocytosis of apoptotic cells was also described when performed in presence of static magnetic fields (SMFs) of moderate intensity. SMFs have been reported to perturb distribution of membrane proteins and glycoproteins, receptors, cytoskeleton and trans-membrane fluxes of different ions, especially calcium [Ca(2+)]i, that in turn, interfere with many different physiological activities, including phagocytosis. The effects of cigarette smoke and SMF on the phagocytosis of dying cells will be here discussed.
Collapse
Affiliation(s)
- Luciana Dini
- Department Biological and Environmental Science and Technology, University of the Salento, Lecce, Italy.
| |
Collapse
|
17
|
Lange K. Fundamental role of microvilli in the main functions of differentiated cells: Outline of an universal regulating and signaling system at the cell periphery. J Cell Physiol 2010; 226:896-927. [PMID: 20607764 DOI: 10.1002/jcp.22302] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Strasák L, Bártová E, Krejci J, Fojt L, Vetterl V. Effects of ELF-EMF on brain proteins in mice. Electromagn Biol Med 2009; 28:96-104. [PMID: 19337900 DOI: 10.1080/15368370802711870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Effect of electromagnetic low frequency fields was studied on mice. We analyzed level of protein in brain of mouse. The levels of c-Jun and c-Fos in brains were measured using Western-blot techniques. Female and male laboratory mice were exposed for 4 days to magnetic field (Bm = 2 mT, f = 50 Hz). The exposure took place in cylindrical coil at laboratory temperature. After the experiment they were sacrificed and the level of protein c-Jun and c-Fos in different parts of brain were estimated. The expression of c-Fos was not affected by magnetic field on the other hand the expression of c-Jun decreased after magnetic field exposure. The results did not depend on sex of mice.
Collapse
Affiliation(s)
- Ludĕk Strasák
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
19
|
Dini L, Dwikat M, Panzarini E, Vergallo C, Tenuzzo B. Morphofunctional study of 12-O-tetradecanoyl-13-phorbol acetate (TPA)-induced differentiation of U937 cells under exposure to a 6 mT static magnetic field. Bioelectromagnetics 2009; 30:352-64. [PMID: 19189300 DOI: 10.1002/bem.20474] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Luciana Dini
- Department of Biological and Environmental Science and Technology (Disteba), University of Salento, Via per Monteroni, Lecce, Italy.
| | | | | | | | | |
Collapse
|
20
|
Shaw JA, Macey DJ, Brooker LR, Stockdale EJ, Saunders M, Clode PL. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2009; 15:154-165. [PMID: 19284897 DOI: 10.1017/s1431927609090230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cusp epithelium is a specialized branch of the superior epithelium that surrounds the developing teeth of chitons and is responsible for delivering the elements required for the formation of biominerals within the major lateral teeth. These biominerals are deposited within specific regions of the tooth in sequence, making it possible to conduct a row by row examination of cell development in the cusp epithelium as the teeth progress from the unmineralized to the mineralized state. Cusp epithelium from the chiton Acanthopleura hirtosa was prepared using conventional chemical and microwave assisted tissue processing, for observation by light microscopy, conventional transmission electron microscopy (TEM) and energy filtered TEM. The onset of iron mineralization within the teeth, initiated at row 13, is associated with a number of dramatic changes in the ultrastructure of the apical cusp cell epithelium. Specifically, the presence of ferritin containing siderosomes, the position and number of mitochondria, and the structure of the cell microvilli are each linked to aspects of the mineralization process. These changes in tissue development are discussed in context with their influence over the physiological conditions within both the cells and extracellular compartment of the tooth at the onset of iron mineralization.
Collapse
Affiliation(s)
- Jeremy A Shaw
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Kimura T, Takahashi K, Suzuki Y, Konishi Y, Ota Y, Mori C, Ikenaga T, Takanami T, Saito R, Ichiishi E, Awaji S, Watanabe K, Higashitani A. The effect of high strength static magnetic fields and ionizing radiation on gene expression and DNA damage inCaenorhabditis elegans. Bioelectromagnetics 2008; 29:605-14. [DOI: 10.1002/bem.20425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Pritchard S, Votta BJ, Kumar S, Guilak F. Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes. Osteoarthritis Cartilage 2008; 16:1466-73. [PMID: 18495501 PMCID: PMC3217044 DOI: 10.1016/j.joca.2008.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/04/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Articular chondrocytes respond to osmotic stress with transient changes in cell volume and the intracellular concentration of calcium ion ([Ca(2+)](i)). The goal of this study was to examine the hypothesis that interleukin-1 (IL-1), a pro-inflammatory cytokine associated with osteoarthritis, influences osmotically induced Ca(2+) signaling. METHODS Fluorescence ratio imaging was used to measure [Ca(2+)](i) and cell volume in response to hypo- or hyper-osmotic stress in isolated porcine chondrocytes, with or without pre-exposure to 10-ng/ml IL-1alpha. Inhibitors of IL-1 (IL-1 receptor antagonist, IL-1Ra), Ca(2+) mobilization (thapsigargin, an inhibitor of Ca-ATPases), and cytoskeletal remodeling (toxin B, an inhibitor of the Rho family of small GTPases) were used to determine the mechanisms involved in increased [Ca(2+)](i), F-actin remodeling, volume adaptation and active volume recovery. RESULTS In response to osmotic stress, chondrocytes exhibited transient increases in [Ca(2+)](i), generally followed by decaying oscillations. Pre-exposure to IL-1 significantly inhibited regulatory volume decrease (RVD) following hypo-osmotic swelling and reduced the change in cell volume and the time to peak [Ca(2+)](i) in response to hyper-osmotic stress, but did not affect the peak magnitudes of [Ca(2+)](i) in those cells that did respond. Co-treatment with IL-1Ra, thapsigargin, or toxin B restored these responses to control levels. The effects were associated with alterations in F-actin organization. CONCLUSIONS IL-1 alters the normal volumetric and Ca(2+) signaling response of chondrocytes to osmotic stress through mechanisms involving F-actin remodeling via small Rho GTPases. These findings provide further insights into the mechanisms by which IL-1 may interfere with normal physiologic processes in the chondrocyte, such as the adaptation or regulatory responses to mechanical or osmotic loading.
Collapse
Affiliation(s)
- Scott Pritchard
- Department of Surgery, Duke University Medical Center Durham, North Carolina, 27710 USA,Department of Biomedical Engineering, Duke University Medical Center Durham, North Carolina, 27710 USA
| | - Bartholomew J. Votta
- Department of Musculoskeletal Disease GlaxoSmithKline, Inc. 1250 S. Collegeville Rd, P.O. Box 5089 Collegeville, PA 19426-0989 USA
| | - Sanjay Kumar
- Department of Musculoskeletal Disease GlaxoSmithKline, Inc. 1250 S. Collegeville Rd, P.O. Box 5089 Collegeville, PA 19426-0989 USA
| | - Farshid Guilak
- Department of Surgery, Duke University Medical Center Durham, North Carolina, 27710 USA,Department of Biomedical Engineering, Duke University Medical Center Durham, North Carolina, 27710 USA
| |
Collapse
|
23
|
HENLEY WILLIAMF, NEVES RICHARDJ, CACECI THOMAS, SAACKE RICHARDG. Anatomical descriptions and comparison of the reproductive tracts ofUtterbackia imbecillisandVillosa iris(Bivalvia: Unionidae). INVERTEBR REPROD DEV 2007. [DOI: 10.1080/07924259.2007.9652221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kroupová J, Bártová E, Fojt L, Strasák L, Kozubek S, Vetterl V. Low-frequency magnetic field effect on cytoskeleton and chromatin. Bioelectrochemistry 2007; 70:96-100. [PMID: 16713375 DOI: 10.1016/j.bioelechem.2006.03.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Indexed: 12/13/2022]
Abstract
The effect of magnetic fields on the living systems is studied in vivo or in vitro in very broad spectrum of organisms, cells and tissues. The mechanism of their acting is not known until now. We studied low-frequency magnetic field effect on cytoskeleton and on the structure of chromatin in human cells. We used cell line of small lung carcinoma (A549) and the effects of magnetic field on cytoskeleton and higher-order chromatin structure were analyzed 96 h of magnetic field exposure. Magnetic field generated by the cylindrical soil was homogenous and the cells were cultivated at 37 degrees C in humidified atmosphere containing 5% CO(2). Magnetic field induction was B(m)=2 mT and the net frequency f=50 Hz. In such affected and control cells the F-actin was estimated using FITC-conjugated Phalloidin and mitochondria were studied using MitoTracker (Molecular Probes). Images of cytoskeleton and genetic loci were acquired using confocal microscopy and analysis was performed by FISH 2.0 software. Slight morphological changes of F-actin filaments and mitochondria were observed in affected cells and nuclear condensation was found. These effects could be related to the process of cell death apoptosis probably induced by magnetic field. The studies aimed at centromeric heterochromatin (9cen) did not show statistically significant changes. Therefore, we suggest that magnetic field has no influence on higher order chromatin structure but certain changes could be observed on the level of cytoskeleton. However, these statements need a thorough verification. Our preliminary experiments will be extended and the effect of magnetic field on another structures of cytoskeleton and cell nuclei will be further studied.
Collapse
Affiliation(s)
- Jana Kroupová
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
25
|
Lange K, Gartzke J. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling. J Cell Physiol 2006; 209:270-87. [PMID: 16823881 DOI: 10.1002/jcp.20717] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling.
Collapse
|
26
|
Wang JW, Jiang YN, Huang CY, Huang PY, Huang MC, Cheng WTK, Shen CKJ, Ju YT. Proliferin enhances microvilli formation and cell growth of neuroblastoma cells. Neurosci Res 2006; 56:80-90. [PMID: 16876275 DOI: 10.1016/j.neures.2006.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 05/15/2006] [Accepted: 05/29/2006] [Indexed: 11/19/2022]
Abstract
Proliferins (also termed mitogen-regulated proteins; MRP/PLFs) belong to the prolactin gene family. Mrp/Plfs are involved in angiogenesis of the uterus and placenta and maximally expressed during midgestation and decline through the remainder of the gestation period in mouse placenta. The tissue expressions of Mrp/Plfs are mainly documented in placenta, hair follicles of skin and in wound healing. In this report, we demonstrate that Plf1, Plf1 minus exon3, Plf2 and Mrp3 but not Mrp4 are expressed in mouse whole brain by diagnostic RT-PCR and Western blotting. The expression levels of Mrp/Plf mRNAs in mouse brains were low during the neonatal period, but higher in embryonic and adult stages, indicating Mrp/Plfs expression profiles are different in mouse brain and placenta. Interestingly, endogenous Mrp/Plfs were detected using immunostaining both in mouse brain sections and the neuroblastoma cell line, Neuro-2a cells. The function of PLF1 was explored by expressing exogenous PLF1 in Neuro-2a cells. This resulted in increased microvilli. Neuro-2a cells with stable expression of PLF1 had increased proliferation compared with normal and stable expressing EGFP cells when cell reached saturation density. Together these data, strongly suggest that MRP/PLFs mediate microvilli formation and contribute to cell proliferation of neuroblastoma cells.
Collapse
Affiliation(s)
- Jyhi-Wai Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Teodori L, Albertini MC, Uguccioni F, Falcieri E, Rocchi MBL, Battistelli M, Coluzza C, Piantanida G, Bergamaschi A, Magrini A, Mucciato R, Accorsi A. Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry A 2006; 69:75-85. [PMID: 16419064 DOI: 10.1002/cyto.a.20208] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is common knowledge that static magnetic fields (SMF) do not interact with living cells; thus, fewer studies of SMF compared with variable magnetic fields are carried out. However, evidence demonstrated that SMF affect cellular structures. To investigate the effect of exposure to increasing doses of SMF on cell morphology, human glioblastoma cells were exposed to SMF ranging between 80 and 3,000 G (8 and 300 mT). METHODS Cell morphology of human glioblastoma cells, derived from a primary culture, was studied by electron and optic microscopy. FITC-phalloidin staining of actin filaments was also investigated. Finally, cell surface structure changes were detected by atomic force microscopy. RESULTS Scanning electron microscopy demonstrated a dose-dependent cell shape modification, progressive cell detachment, loss of the long villi, and appearance of membrane roughness and blebs. FITC-phalloidin staining confirmed the villi retention and cell dimension decrease. At 3,000 G, the appearance of apoptotic morphology was also observed by transmission electron microscopy. Cell exposed to SMF showed different orientation and alignment when compared with nonexposed cells. The atomic force microscopy of the exposed cells' membrane surfaces demonstrated the disappearance of the ordered surface ripples and furrows typical of the unexposed cells, and the occurrence of surface membrane corrugation at increasing dose exposure CONCLUSIONS Our experimental procedures demonstrated that exposure to SMF affects not only cell size, shape, and orientation but also human glioblastoma cells' membrane surfaces.
Collapse
Affiliation(s)
- Laura Teodori
- Unità di Biotecnologie, Sezione di Tossicologia e Scienze Biomediche, ENEA Centro ricerche Casaccia, Via Anguillarese 301, 00060 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wieraszko A. Amplification of evoked potentials recorded from mouse hippocampal slices by very low repetition rate pulsed magnetic fields. Bioelectromagnetics 2005; 25:537-44. [PMID: 15376238 DOI: 10.1002/bem.20044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The influence of low repetition rate pulsed magnetic fields (LRMF) on the evoked potential (population spike) recorded from mouse hippocampal slices was investigated. LRMF were applied according to two protocols. In protocol A, LRMF applied with a constant strength (15 mT) and frequency ranging from 0.03 to 0.5 Hz resulted in an amplification of the potential. Although the frequency of 0.16 Hz was the most effective, enhancing the population spike by over 280%, it also caused an increase in spontaneous activity, seizures, and cessation of neuronal activity in 50% of the slices. In protocol B, LRMF were applied with a variable intensity (9-15 mT) and in cycles of different duration ranging from 5 to 20 min. While an increase in the amplitude of the population spike was observed in all slices exposed to LRMF applied according to protocol B, the longest exposure was the most effective. Neither seizures nor an increase in the spontaneous activity were observed in this group of the slices. These results support and extend our previous data and characterize further the relation between the pattern of applied magnetic fields and their influence on the nervous system.
Collapse
Affiliation(s)
- Andrzej Wieraszko
- Department of Biology/Program in Neuroscience, The College of Staten Island/CUNY, Staten Island, NY 10314, USA.
| |
Collapse
|
29
|
Dini L, Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 2005; 36:195-217. [PMID: 15725590 DOI: 10.1016/j.micron.2004.12.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/07/2004] [Accepted: 12/09/2004] [Indexed: 01/16/2023]
Abstract
The interaction of static magnetic fields (SMFs) with living organisms is a rapidly growing field of investigation. However, despite the increasing number of studies on the effects of the interaction of SMFs with living organisms, many gaps in our knowledge still remain. One reason why it is extremely important to deeply understand the true mode of action of MFs on living organisms, is the need to protect human health in consideration of the probable future introduction of new technologies such as magnetically levitated trains and the therapeutical use of MFs (e.g. magnetic resonance imaging, MRI, coupling of MF exposure with chemotherapy). The lack of knowledge of the morphological modifications brought about by exposure to moderate-intensity SMFs prompted us to investigate the bioeffects of 6mT SMFs on different cell types, by means of light and electron microscopy, confocal laser scanning microscopy and immuno- or cytochemistry. In the present article we report our own and other data from the literature on the morphological studies of the bioeffects of moderate-intensity SMFs. We focus on morphological modifications related to cell shape, cell surface, cytoskeleton, and plasma membrane expression of molecules and carbohydrate residues. The effects of exposure to moderate-intensity SMF for 24 or 48 h, on apoptosis, on apoptotic related gene products, on macrophagic differentiation and on phagocytosis of apoptotic cells in primary cell cultures (transformed or stabilized cell lines) will be also discussed. Moderate-intensity (6mT) SMFs induced modifications of cell shape, cell surface and cytoskeleton, progressively achieved during the entire period of exposure. In general, at the end of the exposure period, the cells had a less flat shape due to partial detachment from the culture dishes or a more round-elongated shape (in relation to adhesion growth or in suspension growth respectively) with many irregular lamellar microvilli, while the morphology of the organelles remained unmodified. In parallel with cell shape changes, the microfilaments and microtubules, as well as the quantity and distribution of surface ConA-FITC and Ricinus Comm.-FITC labelling sites, were modified in a time-dependent manner. Apoptosis was influenced in a cell type-dependent manner: for some cells spontaneous apoptosis decreased while, for others, it increased to about 20% after 24h of continuous exposure. The induction of apoptosis was likely due to the increment of [Ca(2+)]i during exposure. Cell proliferation was only slightly affected. Indeed, in addition to the cell type, the time of exposure was also an important factor in the intensity of the effects produced. Both apoptotic rate and cell and surface shape were influenced by exposure to SMFs when simultaneously administered with apoptogenic drugs. Apoptotic cells were cleared by an efficient and fast process of phagocytosis mediated by specific epitopes, externalized during the formation of the apoptotic cells, on the dead cells and by specific receptors on the phagocytes (both "professional" and "nonprofessional"). The recognition of apoptotic lymphocytes as well as of control cells exposed for at least 24h to 6mT SMF by liver sinusoidal cells was influenced by the cell surface modifications which both apoptotic or normal exposed cells underwent during the induction of apoptosis or SMF exposure. The degree of macrophagic differentiation of human pro-monocytic U937 cells induced by phorbol ester was decreased by exposure to 6mT SMFs, with a consequent fall in cell adhesion and increased polarization of pseudopodia and cytoplasmic protrusions. Differentiation alone, or in combination with exposure to SMFs, affects distribution and quantity of cell surface carbohydrate residues, surface expression of markers of macrophage differentiation, and phagocytic capability. The increasing amount of data reporting on the bioeffects of SMFs is leading researchers to an understanding of how important it is to fully understand the mode of action of MFs on living organisms. Indeed, even if the perturbations of biological systems by SMFs are sublethal at shorter times of exposure, these perturbations could, especially at longer times of exposure, evolve into a progressive accumulation of modifications, whose ultimate effects still need to be clarified.
Collapse
Affiliation(s)
- Luciana Dini
- Department of Biological and Enviromental Science and Technology, University of Lecce, Via per Monteroni, 73100 Lecce, Italy.
| | | |
Collapse
|
30
|
Abstract
Many abiotic and other signals are transduced in eukaryotic cells by changes in the level of free calcium via pumps, channels and stores. We suggest here that ion condensation should also be taken into account. Calcium, like other counterions, is condensed onto linear polymers at a critical value of the charge density. Such condensation resembles a phase transition and has a topological basis in that it is promoted by linear as opposed to spherical assemblies of charges. Condensed counterions are delocalised and can diffuse in the so-called near region along the polymers. It is generally admitted that cytoskeletal filaments, proteins colocalised with these filaments, protein filaments distinct from cytoskeletal filaments, and filamentous assemblies of other macromolecules, constitute an intracellular macromolecular network. Here we draw attention to the fact that this network has physicochemical characteristics that enable counterion condensation. We then propose a model in which the feedback relationships between the condensation/decondensation of calcium and the activation of calcium-dependent kinases and phosphatases control the charge density of the filaments of the intracellular macromolecular network. We show how condensation might help mediate free levels of calcium both locally and globally. In this model, calcium condensation/decondensation on the macromolecular network creates coherent patterns of protein phosphorylation that integrate signals. This leads us to hypothesize that the process of ion condensation operates in signal transduction, that it can have an integrative role and that the macromolecular network serves as an integrative receptor.
Collapse
Affiliation(s)
- Camille Ripoll
- Laboratoire Assemblages Moléculaires: Modélisation et Imagerie SIMS, FRE CNRS 2829, Faculté des Sciences de l'Université de Rouen, Mont Saint Aignan, France.
| | | | | |
Collapse
|
31
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common lethal genetic disorder, characterized by the progressive development of fluid-filled cysts in the kidney, pancreas and liver, and anomalies of the cardiovascular system. Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2) respectively, account for almost all cases of ADPKD. However, the mechanisms by which abnormalities in PKD1 and PKD2 lead to aberrant kidney development remain unknown. Recent progress in the understanding of ADPKD has focused on primary cilia, which act as sensory transducers in renal epithelial cells. New evidence shows that a mechanosensitive signal, cilia bending, activates the PC1-PC2 channel complex. When working properly, this functional complex elicits a transient Ca(2+) influx, which is coupled to the release of Ca(2+) from intracellular stores.
Collapse
Affiliation(s)
- Horacio F Cantiello
- Renal Unit, Massachusetts General Hospital East, 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
32
|
Haupt H, Scheibe F, Mazurek B. Therapeutic efficacy of magnesium in acoustic trauma in the guinea pig. ORL J Otorhinolaryngol Relat Spec 2003; 65:134-9. [PMID: 12925813 DOI: 10.1159/000072250] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Accepted: 03/21/2003] [Indexed: 11/19/2022]
Abstract
Comparative functional and morphological tests were performed in two groups of impulse noise-exposed guinea pigs treated either with magnesium (Mg) or isotonic saline as a placebo to extend the knowledge on the therapeutic efficacy of Mg in acoustic trauma demonstrated recently. The permanent threshold shifts were significantly lower in the Mg than in the placebo group as measured by auditory brainstem response audiometry, distortion product otoacoustic emissions and compound action potentials (CAPs) 1 week after exposure. This also applies to the damage to hair cell stereocilia tested with scanning electron microscopy. There were frequency-related differences in the individual functional responses. The CAP threshold shifts reflected the morphological damage most obviously.
Collapse
Affiliation(s)
- Heidemarie Haupt
- Department of Otorhinolaryngology, Charité Hospital, Humboldt University, Schumannstrasse 20-21, DE-10177 Berlin, Germany
| | | | | |
Collapse
|
33
|
Gartzke J, Lange K. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 2002; 283:C1333-46. [PMID: 12372794 DOI: 10.1152/ajpcell.00167.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Collapse
Affiliation(s)
- Joachim Gartzke
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany.
| | | |
Collapse
|
34
|
Lange K. Role of microvillar cell surfaces in the regulation of glucose uptake and organization of energy metabolism. Am J Physiol Cell Physiol 2002; 282:C1-26. [PMID: 11742794 DOI: 10.1152/ajpcell.2002.282.1.c1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental evidence suggesting a type of glucose uptake regulation prevailing in resting and differentiated cells was surveyed. This type of regulation is characterized by transport-limited glucose metabolism and depends on segregation of glucose transporters on microvilli of differentiated or resting cells. Earlier studies on glucose transport regulation and a recently presented general concept of influx regulation for ions and metabolic substrates via microvillar structures provide the basic framework for this theory. According to this concept, glucose uptake via transporters on microvilli is regulated by changes in the structural organization of the microfilament bundle, which is acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. Both microvilli formation and the switch of glucose metabolism from "metabolic regulation" to "transport limitation" occur during differentiation. The formation of microvillar cell surfaces creates the essential preconditions to establish the characteristic functions of specialized tissue cells including the coordination between glycolysis and oxidative phosphorylation, regulation of cellular functions by external signals, and Ca(2+) signaling. The proposed concept integrates various aspects of glucose uptake regulation into a ubiquitous cellular mechanism involved in regulation of transmembrane ion and substrate fluxes.
Collapse
|
35
|
Lange K, Gartzke J. Microvillar cell surface as a natural defense system against xenobiotics: a new interpretation of multidrug resistance. Am J Physiol Cell Physiol 2001; 281:C369-85. [PMID: 11443036 DOI: 10.1152/ajpcell.2001.281.2.c369] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phenomenon of multidrug resistance (MDR) is reinterpreted on the basis of the recently proposed concept of microvillar signaling. According to this notion, substrate and ion fluxes across the surface of differentiated cells occur via transporters and ion channels that reside in membrane domains at the tips of microvilli (MV). The flux rates are regulated by the actin-based cytoskeletal core structure of MV, acting as a diffusion barrier between the microvillar tip compartment and the cytoplasm. The expression of this diffusion barrier system is a novel aspect of cell differentiation and represents a functional component of the natural defense system of epithelial cells against environmental hazardous ions and lipophilic compounds. Because of the specific organization of epithelial Ca(2+) signaling and the secretion, lipophilic compounds associated with the plasma membrane are transferred from the basal to the apical cell surface by a lipid flow mechanism. Drug release from the apical pole occurs by either direct secretion from the cell surface or metabolization by the microvillar cytochrome P-450 system and efflux of the metabolites and conjugation products through the large multifunctional anion channels localized in apical MV. The natural microvillar defense system also provides a mechanistic basis of acquired MDR in tumor cells. The microvillar surface organization is lost in rapidly growing cells such as tumor or embryonic cells but is restored during exposure of tumor cells to cytotoxins by induction of a prolonged G(0)/G(1) resting phase.
Collapse
Affiliation(s)
- K Lange
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany
| | | |
Collapse
|