1
|
Cornejo F, Cortés BI, Findlay GM, Cancino GI. LAR Receptor Tyrosine Phosphatase Family in Healthy and Diseased Brain. Front Cell Dev Biol 2021; 9:659951. [PMID: 34966732 PMCID: PMC8711739 DOI: 10.3389/fcell.2021.659951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Protein phosphatases are major regulators of signal transduction and they are involved in key cellular mechanisms such as proliferation, differentiation, and cell survival. Here we focus on one class of protein phosphatases, the type IIA Receptor-type Protein Tyrosine Phosphatases (RPTPs), or LAR-RPTP subfamily. In the last decade, LAR-RPTPs have been demonstrated to have great importance in neurobiology, from neurodevelopment to brain disorders. In vertebrates, the LAR-RPTP subfamily is composed of three members: PTPRF (LAR), PTPRD (PTPδ) and PTPRS (PTPσ), and all participate in several brain functions. In this review we describe the structure and proteolytic processing of the LAR-RPTP subfamily, their alternative splicing and enzymatic regulation. Also, we review the role of the LAR-RPTP subfamily in neural function such as dendrite and axon growth and guidance, synapse formation and differentiation, their participation in synaptic activity, and in brain development, discussing controversial findings and commenting on the most recent studies in the field. Finally, we discuss the clinical outcomes of LAR-RPTP mutations, which are associated with several brain disorders.
Collapse
Affiliation(s)
- Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Bastián I Cortés
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Greg M Findlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Gonzalo I Cancino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
2
|
Tomita H, Cornejo F, Aranda-Pino B, Woodard CL, Rioseco CC, Neel BG, Alvarez AR, Kaplan DR, Miller FD, Cancino GI. The Protein Tyrosine Phosphatase Receptor Delta Regulates Developmental Neurogenesis. Cell Rep 2021; 30:215-228.e5. [PMID: 31914388 DOI: 10.1016/j.celrep.2019.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 10/10/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022] Open
Abstract
PTPRD is a receptor protein tyrosine phosphatase that is genetically associated with neurodevelopmental disorders. Here, we asked whether Ptprd mutations cause aberrant neural development by perturbing neurogenesis in the murine cortex. We show that loss of Ptprd causes increases in neurogenic transit-amplifying intermediate progenitor cells and cortical neurons and perturbations in neuronal localization. These effects are intrinsic to neural precursor cells since acute Ptprd knockdown causes similar perturbations. PTPRD mediates these effects by dephosphorylating receptor tyrosine kinases, including TrkB and PDGFRβ, and loss of Ptprd causes the hyperactivation of TrkB and PDGFRβ and their downstream MEK-ERK signaling pathway in neural precursor cells. Moreover, inhibition of aberrant TrkB or MEK activation rescues the increased neurogenesis caused by knockdown or homozygous loss of Ptprd. These results suggest that PTPRD regulates receptor tyrosine kinases to ensure appropriate numbers of intermediate progenitor cells and neurons, suggesting a mechanism for its genetic association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Hideaki Tomita
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Begoña Aranda-Pino
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Cameron L Woodard
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Constanza C Rioseco
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Alejandra R Alvarez
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - David R Kaplan
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Freda D Miller
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Institute of Medical Science, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, ON, Canada; Department of Physiology, University of Toronto, Toronto M5S 1A8, ON, Canada
| | - Gonzalo I Cancino
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 1X8, ON, Canada; Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile.
| |
Collapse
|
3
|
Al-Ali H, Beckerman SR, Bixby JL, Lemmon VP. In vitro models of axon regeneration. Exp Neurol 2016; 287:423-434. [PMID: 26826447 DOI: 10.1016/j.expneurol.2016.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022]
Abstract
A variety of in vitro models have been developed to understand the mechanisms underlying the regenerative failure of central nervous system (CNS) axons, and to guide pre-clinical development of regeneration-promoting therapeutics. These range from single-cell based assays that typically focus on molecular mechanisms to organotypic assays that aim to recapitulate in vivo behavior. By utilizing a combination of models, researchers can balance the speed, convenience, and mechanistic resolution of simpler models with the biological relevance of more complex models. This review will discuss a number of models that have been used to build our understanding of the molecular mechanisms of CNS axon regeneration.
Collapse
Affiliation(s)
- Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Samuel R Beckerman
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - John L Bixby
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Molecular & Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Vance P Lemmon
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Center for Computational Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Missing-in-Metastasis regulates cell motility and invasion via PTPδ-mediated changes in SRC activity. Biochem J 2015; 465:89-101. [PMID: 25287652 DOI: 10.1042/bj20140573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MIM (Missing-in-Metastasis), also known as MTSS1 (metastasis suppressor 1), is a scaffold protein that is down-regulated in multiple metastatic cancer cell lines compared with non-metastatic counterparts. MIM regulates cytoskeletal dynamics and actin polymerization, and has been implicated in the control of cell motility and invasion. MIM has also been shown to bind to a receptor PTP (protein tyrosine phosphatase), PTPδ, an interaction that may provide a link between tyrosine-phosphorylation-dependent signalling and metastasis. We used shRNA-mediated gene silencing to investigate the consequences of loss of MIM on the migration and invasion of the MCF10A mammary epithelial cell model of breast cancer. We observed that suppression of MIM by RNAi enhanced migration and invasion of MCF10A cells, effects that were associated with increased levels of PTPδ. Furthermore, analysis of human clinical data indicated that PTPδ was elevated in breast cancer samples when compared with normal tissue. We demonstrated that the SRC protein tyrosine kinase is a direct substrate of PTPδ and, upon suppression of MIM, we observed changes in the phosphorylation status of SRC; in particular, the inhibitory site (Tyr527) was hypophosphorylated, whereas the activating autophosphorylation site (Tyr416) was hyperphosphorylated. Thus the absence of MIM led to PTPδ-mediated activation of SRC. Finally, the SRC inhibitor SU6656 counteracted the effects of MIM suppression on cell motility and invasion. The present study illustrates that both SRC and PTPδ have the potential to be therapeutic targets for metastatic tumours associated with loss of MIM.
Collapse
|
5
|
The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 2014; 29:677-85. [PMID: 25189415 DOI: 10.1038/leu.2014.264] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/05/2014] [Accepted: 08/29/2014] [Indexed: 01/15/2023]
Abstract
To decipher the mutational pattern of primary CNS lymphoma (PCNSL), we performed whole-exome sequencing to a median coverage of 103 × followed by mutation verification in 9 PCNSL and validation using Sanger sequencing in 22 PCNSL. We identified a median of 202 (range: 139-251) potentially somatic single nucleotide variants (SNV) and 14 small indels (range: 7-22) with potentially protein-changing features per PCNSL. Mutations affected the B-cell receptor, toll-like receptor, and NF-κB and genes involved in chromatin structure and modifications, cell-cycle regulation, and immune recognition. A median of 22.2% (range: 20.0-24.7%) of somatic SNVs in 9 PCNSL overlaps with the RGYW motif targeted by somatic hypermutation (SHM); a median of 7.9% (range: 6.2-12.6%) affects its hotspot position suggesting a major impact of SHM on PCNSL pathogenesis. In addition to the well-known targets of aberrant SHM (aSHM) (PIM1), our data suggest new targets of aSHM (KLHL14, OSBPL10, and SUSD2). Among the four most frequently mutated genes was ODZ4 showing protein-changing mutations in 4/9 PCNSL. Together with mutations affecting CSMD2, CSMD3, and PTPRD, these findings may suggest that alterations in genes having a role in CNS development may facilitate diffuse large B-cell lymphoma manifestation in the CNS. This may point to intriguing mechanisms of CNS tropism in PCNSL.
Collapse
|
6
|
Tchetchelnitski V, van den Eijnden M, Schmidt F, Stoker AW. Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons. Int J Dev Neurosci 2014; 34:48-59. [PMID: 24491805 DOI: 10.1016/j.ijdevneu.2014.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/11/2022] Open
Abstract
Receptor-type protein tyrosine phosphatases (RPTPs) have been implicated as direct or indirect regulators of neurotrophin receptors (TRKs). It remains less clear if and how such RPTPs might regulate TRK proteins in vivo during development. Here we present a comparative expression profile of RPTP genes and Trk genes during early stages of murine, dorsal root ganglion maturation. We find little if any specific, temporal mRNA co-regulation between individual RPTP and Ntrk genes between E12.5 and E14.5. Moreover, a double fluorescent in-situ hybridization and immunofluorescence study of seven Rptp genes with Ntrks revealed widespread co-expression of RPTPs in individual neurons, but no tight correlation with Trk expression profiles. No Rptp is expressed in 100% of Ntrk1-expressing neurons, whereas at least 6 RPTPs are expressed in 100% of Ntrk2- and Ntrk3-expressing neurons. An exception is Ptpro, which showed very selective expression. Short hairpin RNA suppression of Ptprf, Ptprs or Ptpro in primary, E13.5 DRG neurons did not alter TRK signalling. We therefore propose that TRK signalling may not be simply dependent on rate-limiting regulation by individual RPTP subtypes during sensory neuron development. Instead, TRK signalling has the potential to be buffered by concurrent inputs from several RPTPs in individual neurons.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Animals
- Cells, Cultured
- Embryo, Mammalian
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Gene Expression Regulation, Developmental/physiology
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HEK293 Cells
- Humans
- Mice
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Regulatory-Associated Protein of mTOR
- Sensory Receptor Cells/metabolism
- Signal Transduction/genetics
- Transfection
Collapse
Affiliation(s)
- Viktoria Tchetchelnitski
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | - Fanny Schmidt
- MERCK SERONO SA.-Geneva, 9 Chemin des Mines, CH-1202 Geneve, Switzerland
| | - Andrew W Stoker
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
7
|
Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J, Westerman BA, van Arkel J, Ebus ME, Haneveld F, Lakeman A, Schild L, Molenaar P, Stroeken P, van Noesel MM, Ora I, Santo EE, Caron HN, Westerhout EM, Versteeg R. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 2012; 483:589-93. [PMID: 22367537 DOI: 10.1038/nature10910] [Citation(s) in RCA: 703] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 02/03/2012] [Indexed: 01/17/2023]
Abstract
Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.
Collapse
Affiliation(s)
- Jan J Molenaar
- Department of Oncogenomics, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mohamed AM, Chin-Sang ID. The C. elegans nck-1 gene encodes two isoforms and is required for neuronal guidance. Dev Biol 2011; 354:55-66. [PMID: 21443870 DOI: 10.1016/j.ydbio.2011.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/03/2011] [Accepted: 03/20/2011] [Indexed: 11/30/2022]
Abstract
The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C. elegans nck-1 encodes two isoforms: NCK-1A and a shorter isoform that lacks the first SH3 domain, NCK-1B. C. elegans nck-1 mutants exhibit defects in axon guidance and neuronal cell position, as well as defects in the excretory canal cell, gonad, and male mating. NCK-1 is broadly expressed in neurons and epithelial cells with NCK-1B being the most abundant isoform. NCK-1A and NCK-1B share a similar expression pattern in parts of the nervous system, but also have independent expression patterns in other tissues. Interestingly, NCK-1B is localized to the nuclei of many cells. Genetic rescue experiments show that NCK-1 functions cell autonomously and, in general, either NCK-1A or NCK-1B is sufficient to function in axon guidance. However, there appears to be specific roles for each isoform, for example NCK-1B is required for HSN cell migration while NCK-1A is required for efficient male mating. Genetic epistasis experiments show that NCK-1 functions redundantly with the LAR Receptor Tyrosine Phosphatase, PTP-3, and the Netrin receptor UNC-40.
Collapse
Affiliation(s)
- Ahmed M Mohamed
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
9
|
Kwon SK, Woo J, Kim SY, Kim H, Kim E. Trans-synaptic adhesions between netrin-G ligand-3 (NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol Chem 2010; 285:13966-78. [PMID: 20139422 PMCID: PMC2859559 DOI: 10.1074/jbc.m109.061127] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 01/12/2010] [Indexed: 01/15/2023] Open
Abstract
Synaptic cell adhesion molecules regulate various steps of synapse formation. The trans-synaptic adhesion between postsynaptic NGL-3 (for netrin-G ligand-3) and presynaptic LAR (for leukocyte antigen-related) regulates excitatory synapse formation in a bidirectional manner. However, little is known about the molecular details of the NGL-3-LAR adhesion and whether two additional LAR family proteins, protein-tyrosine phosphatase delta (PTPdelta), and PTPsigma, also interact with NGL-3 and are involved in synapse formation. We report here that the leucine-rich repeat (LRR) domain of NGL-3, containing nine LRRs, interacts with the first two fibronectin III (FNIII) domains of LAR to induce bidirectional synapse formation. Moreover, Gln-96 in the first LRR motif of NGL-3 is critical for LAR binding and induction of presynaptic differentiation. PTPdelta and PTPsigma also interact with NGL-3 via their first two FNIII domains. These two interactions promote synapse formation in a different manner; the PTPsigma-NGL-3 interaction promotes synapse formation in a bidirectional manner, whereas the PTPdelta-NGL-3 interaction instructs only presynaptic differentiation in a unidirectional manner. mRNAs encoding LAR family proteins display overlapping and differential expression patterns in various brain regions. These results suggest that trans-synaptic adhesion between NGL-3 and the three LAR family proteins regulates excitatory synapse formation in shared and distinct neural circuits.
Collapse
Affiliation(s)
- Seok-Kyu Kwon
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| | - Jooyeon Woo
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| | - Soo-Young Kim
- the Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Hyun Kim
- the Department of Anatomy and Division of Brain Korea 21 Biomedical Science, College of Medicine, Korea University, 126-1, 5-Ka, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Eunjoon Kim
- From the National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, and Department of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701 and
| |
Collapse
|
10
|
Fry EJ, Chagnon MJ, López-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia 2010; 58:423-33. [PMID: 19780196 DOI: 10.1002/glia.20934] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Receptor protein tyrosine phosphatase sigma (RPTPsigma) plays a role in inhibiting axon growth during development. It has also been shown to slow axon regeneration after peripheral nerve injury and inhibit axon regeneration in the optic nerve. Here, we assessed the ability of the corticospinal tract (CST) axons to regenerate after spinal hemisection and contusion injury in RPTPsigma deficient (RPTPsigma(-/-)) mice. We show that damaged CST fibers in RPTPsigma(-/-) mice regenerate and appear to extend for long distances after a dorsal hemisection or contusion injury of the thoracic spinal cord. In contrast, no long distance axon regeneration of CST fibers is seen after similar lesions in wild-type mice. In vitro experiments indicate that cerebellar granule neurons from RPTPsigma(-/-) mice have reduced sensitivity to the inhibitory effects of chondroitin sulfate proteoglycan (CSPG) substrate, but not myelin, which may contribute to the growth of CST axons across the CSPG-rich glial scar. Our data suggest that RPTPsigma may function to prevent axonal growth after injury in the adult mammalian spinal cord and could be a target for promoting long distance regeneration after spinal cord injury.
Collapse
Affiliation(s)
- Elizabeth J Fry
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
Zougman A, Pilch B, Podtelejnikov A, Kiehntopf M, Schnabel C, Kumar C, Mann M. Integrated Analysis of the Cerebrospinal Fluid Peptidome and Proteome. J Proteome Res 2008; 7:386-99. [DOI: 10.1021/pr070501k] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Major DL, Brady-Kalnay SM. Rho GTPases regulate PTPmu-mediated nasal neurite outgrowth and temporal repulsion of retinal ganglion cell neurons. Mol Cell Neurosci 2007; 34:453-67. [PMID: 17234431 PMCID: PMC1855295 DOI: 10.1016/j.mcn.2006.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 09/25/2006] [Accepted: 11/30/2006] [Indexed: 01/01/2023] Open
Abstract
Members of the receptor protein tyrosine phosphatase (RPTP) subfamily of cell adhesion molecules (CAMs) mediate neurite outgrowth and growth cone repulsion. PTPmu is a growth permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGCs. In this manuscript, we demonstrate that the distinct PTPmu-dependent phenotypes of nasal outgrowth and temporal repulsion are regulated by Rho GTPases. The role of Rho GTPases in the regulation of nasal outgrowth and temporal repulsion was tested by utilizing dominant negative and constitutively active forms of Rac1, RhoA and Cdc42 in Bonhoeffer stripe assays. Nasal neurite outgrowth on PTPmu was blocked by Cdc42-DN. Temporal repulsion to a PTPmu substrate was substantially reduced by addition of Cdc42-DN. The molecule that regulates the switch between permissive versus repulsive responses to PTPmu is Rac1 for temporal neurons. Inhibition of Rac1 is required for repulsion of temporal neurons. Interestingly, adding Rac1-CA to temporal RGC neurons converted PTPmu-dependent repulsion to a permissive response. In addition, adding exogenous Rac1-DN to nasal neurons induced a phenotype switch from a permissive to repulsive response to PTPmu. Together these data suggest that Cdc42 activity is required for both permissive and repulsive responses to PTPmu. However, the key to PTPmu-dependent repulsion is inhibition of Rac1 activity in temporal RGC neurons.
Collapse
Affiliation(s)
| | - Susann M. Brady-Kalnay
- *Corresponding author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106-4960, Phone: (216) 368-0330, Fax: (216) 368-3055,
| |
Collapse
|
13
|
Siu R, Fladd C, Rotin D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol Cell Biol 2006; 27:208-19. [PMID: 17060446 PMCID: PMC1800655 DOI: 10.1128/mcb.00707-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase sigma (PTPsigma) belongs to the LAR family of receptor tyrosine phosphatases and was previously shown to negatively regulate axon growth. The substrate for PTPsigma and the effector(s) mediating this inhibitory effect were unknown. Here we report the identification of N-cadherin as an in vivo substrate for PTPsigma. Using brain lysates from PTPsigma knockout mice, in combination with substrate trapping, we identified a hyper-tyrosine-phosphorylated protein of approximately 120 kDa in the knockout animals (relative to sibling controls), which was identified by mass spectrometry and immunoblotting as N-cadherin. beta-Catenin also precipitated in the complex and was also a substrate for PTPsigma. Dorsal root ganglion (DRG) neurons, which highly express endogenous N-cadherin and PTPsigma, exhibited a faster growth rate in the knockout mice than in the sibling controls when grown on laminin or N-cadherin substrata. However, when N-cadherin function was disrupted by an inhibitory peptide or lowering calcium concentrations, the differential growth rate between the knockout and sibling control mice was greatly diminished. These results suggest that the elevated tyrosine phosphorylation of N-cadherin in the PTPsigma(-/-) mice likely disrupted N-cadherin function, resulting in accelerated DRG nerve growth. We conclude that N-cadherin is a physiological substrate for PTPsigma and that N-cadherin (and likely beta-catenin) participates in PTPsigma-mediated inhibition of axon growth.
Collapse
Affiliation(s)
- Roberta Siu
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Ontario, Canada
| | | | | |
Collapse
|
14
|
Gonzalez-Brito MR, Bixby JL. Differential activities in adhesion and neurite growth of fibronectin type III repeats in the PTP-delta extracellular domain. Int J Dev Neurosci 2006; 24:425-9. [PMID: 17034983 PMCID: PMC1702485 DOI: 10.1016/j.ijdevneu.2006.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 08/29/2006] [Indexed: 01/01/2023] Open
Abstract
The full-length extracellular domain (ECD) of protein tyrosine phosphatase delta (PTP-delta) functions as a ligand to promote cell adhesion and neurite outgrowth; this ECD contains three immunoglobulin (Ig) repeats and eight fibronectin type III (FN III) repeats. However, it is not known which regions of the ECD regulate its ligand functions. Therefore, we constructed and expressed a fusion protein of the PTP-delta ECD lacking FN III repeats 4-8, and tested this protein for neuronal adhesion and neurite-promoting ability. Compared to the full-length isoform, the truncated ECD was poorer at promoting adhesion, but a more potent promoter of neurite growth. The results suggest that distal FN III repeats of PTP-delta are important in adhesive functions, but dispensable for neurite outgrowth promotion. As the predominant isoform of PTP-delta during neural development (type D) also lacks distal FN III repeats, the functional properties we observe may be relevant to periods of axon extension, suggesting that splice variants of receptor PTPs play distinct roles in neural development.
Collapse
Affiliation(s)
| | - John L. Bixby
- Molecular & Cellular Pharmacology
- Neurological Surgery, and
- Neuroscience Program The Miami Project to Cure Paralysis University of Miami Miller School of Medicine Lois Pope LIFE Center, Room 4-17 1095 NW 14th Terrace, Miami, Florida 33136
- Address correspondence to: John L. Bixby, The Miami Project to Cure Paralysis, LPLC 4-17, University of Miami School of Medicine, 1095 NW 14 Terrace, Miami, FL 33136, Phone number: 305-243-4874, Fax number: 305-243-3921, e-mail:
| |
Collapse
|
15
|
Marlo JE, Desai CJ. Loss of phosphatase activity in Ptp69D alleles supporting axon guidance defects. J Cell Biochem 2006; 98:1296-307. [PMID: 16514605 DOI: 10.1002/jcb.20862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PTP69D is a receptor protein tyrosine phosphatase that was identified as a key regulator of neuromuscular axon guidance in Drosophila, and has subsequently been shown to play a similar role in the central nervous system and retina. Three Ptp69D alleles with mutations involving catalytically important residues exhibit a high degree of phenotypic variation with viability of mutant adult flies ranging from 0 to 96%, and ISNb motor nerve defects ranging from 11 to 57% [Desai and Purdy, 2003]. To determine whether mutations in Ptp69D affecting axon guidance and viability demonstrate losses of phosphatase activity and whether differences in catalytic potential underlie phenotypic variability, we expressed full-length wild-type and mutant PTP69D protein in Schneider 2 cells, and assessed phosphatase activity using the fluorogenic substrate 6,8-difluoro-4-methylumbelliferone phosphate (DiFMUP). Detailed biochemical characterization of wild-type PTP69D, including an examination of sensitivity to various inhibitors, in vitro catalytic efficiency, and the pH-k(cat) profile of the enzyme, suggests a common tyrosine phosphatase reaction mechanism despite lack of sequence conservation in the WPD loop. Analysis of mutant proteins revealed that every mutant had less than 1% activity relative to the wild-type enzyme, and these rates did not differ significantly from one another. These results indicate that mutations in Ptp69D resulting in axon guidance defects and lethality significantly compromise catalytic activity, yet the range of biological activity exhibited by Ptp69D mutants cannot be explained by differences in catalytic activity, as gauged by their ability to hydrolyze the substrate DiFMUP.
Collapse
Affiliation(s)
- Joy E Marlo
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
16
|
Chilton JK. Molecular mechanisms of axon guidance. Dev Biol 2006; 292:13-24. [PMID: 16476423 DOI: 10.1016/j.ydbio.2005.12.048] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/19/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
In order to form a functional nervous system, neurones extend axons, often over long distances, to reach their targets. This process is controlled by extracellular receptors and their ligands, several families of which have been identified. These proteins may act to either repel or attract growth cones and a given receptor may transduce either type of signal, depending on the cellular context. In addition to these archetypal axon guidance molecules, it is becoming apparent that molecules previously known for their role in patterning can also direct axonal outgrowth. The growth cone receptors do not act in isolation and combine with members of the same or other families to produce a graded response or even a complete reversal in its polarity. These signals can be further combined and/or modulated by processing of the molecule both directly at the cell surface and by the network of intracellular signalling pathways which are activated. The result is a sophisticated and dynamic set of cues that enable a growth cone to successfully navigate to its destination, modulating its response to changing environmental cues along its pathway.
Collapse
Affiliation(s)
- John K Chilton
- Institute of Biomedical and Clinical Science, Peninsula Medical School, John Bull Building, Tamar Science Park, Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
17
|
Stepanek L, Stoker AW, Stoeckli E, Bixby JL. Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci 2006; 25:3813-23. [PMID: 15829633 PMCID: PMC6724933 DOI: 10.1523/jneurosci.4531-04.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Receptor-type protein tyrosine phosphatases (RPTPs) are required for appropriate growth of axons during nervous system development in Drosophila. In the vertebrate, type IIa RPTPs [protein tyrosine phosphatase (PTP)-delta, PTP-sigma, and LAR (leukocyte common-antigen-related)] and the type III RPTP, PTP receptor type O (PTPRO), have been implicated in the regulation of axon growth, but their roles in developmental axon guidance are unclear. PTPRO, PTP-delta, and PTP-sigma are each expressed in chick motor neurons during the period of axonogenesis. To examine potential roles of RPTPs in axon growth and guidance in vivo, we used double-stranded RNA (dsRNA) interference combined with in ovo electroporation to knock down RPTP expression levels in the embryonic chick lumbar spinal cord. Although most branches of the developing limb nerves appeared grossly normal, a dorsal nerve identified as the anterior iliotibialis was clearly affected by dsRNA knock-down of RPTPs. In experimental embryos treated with dsRNA targeting PTP-delta, PTP-sigma, or PTPRO, this nerve showed abnormal fasciculation, was reduced in size, or was missing entirely; interference with PTPRO produced the most severe phenotypes. Control embryos electroporated with vehicle, or with dsRNA targeting choline acetyltransferase or axonin-1, did not exhibit this phenotype. Surprisingly, embryos electroporated with dsRNA targeting PTP-delta together with PTPRO, or all three RPTPs combined, had less severe phenotypes than embryos treated with PTPRO alone. This result suggests that competition between type IIa and type III RPTPs can regulate motor axon outgrowth, consistent with findings in Drosophila. Our results indicate that RPTPs, and especially PTPRO, are required for axon growth and guidance in the developing vertebrate limb.
Collapse
Affiliation(s)
- Laurie Stepanek
- Neuroscience Program, Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
18
|
Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O'connell S, Cowan CW, Hu L, Goldberg JL, Debant A, Corfas G, Krull CE, Greenberg ME. Eph-Dependent Tyrosine Phosphorylation of Ephexin1 Modulates Growth Cone Collapse. Neuron 2005; 46:191-204. [PMID: 15848799 DOI: 10.1016/j.neuron.2005.01.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 12/03/2004] [Accepted: 01/18/2005] [Indexed: 11/18/2022]
Abstract
Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1's GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.
Collapse
Affiliation(s)
- Mustafa Sahin
- Neurobiology Program, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sajnani G, Aricescu AR, Jones EY, Gallagher J, Alete D, Stoker A. PTPσ promotes retinal neurite outgrowth non-cell-autonomously. ACTA ACUST UNITED AC 2005; 65:59-71. [PMID: 16003721 DOI: 10.1002/neu.20175] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The receptor-like protein tyrosine phosphatase (RPTP) PTPsigma controls the growth and targeting of retinal axons, both in culture and in ovo. Although the principal actions of PTPsigma have been thought to be cell-autonomous, the possibility that RPTPs related to PTPsigma also have non-cell-autonomous signaling functions during axon development has also been supported genetically. Here we report that a cell culture substrate made from purified PTPsigma ectodomains supports retinal neurite outgrowth in cell culture. We show that a receptor for PTPsigma must exist on retinal axons and that binding of PTPsigma to this receptor does not require the known, heparin binding properties of PTPsigma. The neurite-promoting potential of PTPsigma ectodomains requires a basic amino acid domain, previously demonstrated in vitro as being necessary for ligand binding by PTPsigma. Furthermore, we demonstrate that heparin and oligosaccharide derivatives as short as 8mers, can specifically block neurite outgrowth on the PTPsigma substrate, by competing for binding to this same domain. This is the first direct evidence of a non-cell-autonomous, neurite-promoting function of PTPsigma and of a potential role for heparin-related oligosaccharides in modulating neurite promotion by an RPTP.
Collapse
Affiliation(s)
- Gustavo Sajnani
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
20
|
Ensslen-Craig SE, Brady-Kalnay SM. Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev Biol 2004; 275:12-22. [PMID: 15464569 DOI: 10.1016/j.ydbio.2004.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/05/2004] [Accepted: 08/08/2004] [Indexed: 01/06/2023]
Abstract
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
21
|
Chagnon MJ, Uetani N, Tremblay ML. Functional significance of the LAR receptor protein tyrosine phosphatase family in development and diseases. Biochem Cell Biol 2004; 82:664-75. [PMID: 15674434 DOI: 10.1139/o04-120] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The protein tyrosine phosphatases (PTPs) have emerged as critical players in diverse cellular functions. The focus of this review is the leukocyte common antigen-related (LAR) subfamily of receptor PTPs (RPTPs). This subfamily is composed of three vertebrate homologs, LAR, RPTP-sigma, and RPTP-delta, as well as few invertebrates orthologs such as Dlar. LAR-RPTPs have a predominant function in nervous system development that is conserved throughout evolution. Proteolytic cleavage of LAR-RPTP proproteins results in the noncovalent association of an extracellular domain resembling cell adhesion molecules and intracellular tandem PTPs domains, which is likely regulated via dimerization. Their receptor-like structures allow them to sense the extracellular environment and transduce signals intracellularly via their cytosolic PTP domains. Although many interacting partners of the LAR-RPTPs have been identified and suggest a role for the LAR-RPTPs in actin remodeling, very little is known about the mechanisms of action of RPTPs. LAR-RPTPs recently raised a lot of interest when they were shown to regulate neurite growth and nerve regeneration in transgenic animal models. In addition, LAR-RPTPs have also been implicated in metabolic regulation and cancer. This RPTP subfamily is likely to become important as drug targets in these various human pathologies, but further understanding of their complex signal transduction cascades will be required.Key words: protein tyrosine phosphatase, LAR, signal transduction, nervous system development.
Collapse
Affiliation(s)
- Mélanie J Chagnon
- McGill Cancer Centre and Department of Biochemistry, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Room 701, Montréal, QC H3G 1Y6, Canada
| | | | | |
Collapse
|
22
|
Ensslen SE, Brady-Kalnay SM. PTPmu signaling via PKCdelta is instructive for retinal ganglion cell guidance. Mol Cell Neurosci 2004; 25:558-71. [PMID: 15080886 DOI: 10.1016/j.mcn.2003.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/24/2003] [Accepted: 12/03/2003] [Indexed: 01/03/2023] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPmu mediates distinct cellular responses in nasal and temporal retinal ganglion cell (RGC) axons. PTPmu is permissive for nasal RGC neurite outgrowth and inhibitory to temporal RGCs. In addition, PTPmu causes preferential temporal growth cone collapse. Previous studies demonstrated that PTPmu associates with the scaffolding protein RACK1 and the protein kinase C-delta (PKCdelta) isoform in chick retina and that PKCdelta activity is required for PTPmu-mediated RGC outgrowth. Using in vitro stripe and collapse assays, we find that PKCdelta activity is required for both inhibitory and permissive responses of RGCs to PTPmu, with higher levels of PKCdelta activation associated with temporal growth cone collapse and repulsion. A potential mechanism for differential PKCdelta activation is due to the gradient of PTPmu expression in the retina. PTPmu is expressed in a high temporal, low nasal step gradient in the retina. In support of this, overexpression of exogenous PTPmu in nasal neurites results in a phenotypic switch from permissive to repulsive in response to PTPmu. Together, these results suggest that the differential expression of PTPmu within the retina is instructive for RGC guidance and that the magnitude of PKCdelta activation in response to PTPmu signaling results in the distinct cellular behaviors of nasal and temporal RGCs.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
23
|
Butler CD, Schnetz SA, Yu EY, Davis JB, Temple K, Silver J, Malouf AT. Keratan sulfate proteoglycan phosphacan regulates mossy fiber outgrowth and regeneration. J Neurosci 2004; 24:462-73. [PMID: 14724244 PMCID: PMC6729989 DOI: 10.1523/jneurosci.3040-03.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have examined the role of chondroitin sulfate proteoglycans (CSPGs) and keratan sulfate proteoglycans (KSPGs) in directing mossy fiber (MF) outgrowth and regeneration in rat hippocampal slice cultures. MFs normally exhibit a very specific innervation pattern that is restricted to the stratum lucidum (SL). In addition, MFs in hippocampal slice cultures will regenerate this specific innervation pattern after transection. CSPGs are one of the best characterized inhibitory axon guidance molecules in the CNS and are widely expressed in all areas of the hippocampus except SL. KSPGs are also widely expressed in the hippocampus, but their role in axon outgrowth has not been extensively studied in the CNS where phosphacan is the only protein that appears to contain KS-GAGs. Cultured hippocampal slices were treated with either chondroitin ABC lyase or keratanases to reduce the inhibitory axon guidance properties of CS and KS proteoglycans, respectively. The ability of transected MFs to regenerate their normal innervation pattern after digestion of CS and KS-GAGS sugars with these enzymes was examined. Only keratanase treatment resulted in misrouting of MFs. Identifying the mechanism by which keratanase produced MF misrouting is complicated by the presence of splice variants of the phosphacan gene that include the extracellular form of phosphacan and the transmembrane receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). Both forms of phosphacan are made by astrocytes, suggesting that keratanase alters MF outgrowth by modifying astrocyte function.
Collapse
Affiliation(s)
- Christy D Butler
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003; 26:509-63. [PMID: 12677003 DOI: 10.1146/annurev.neuro.26.010302.081139] [Citation(s) in RCA: 570] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The guidance of axons during the establishment of the nervous system is mediated by a variety of extracellular cues that govern cytoskeletal dynamics in axonal growth cones. A large number of these guidance cues and their cell-surface receptors have now been identified, and the intracellular signaling pathways by which these cues induce cytoskeletal rearrangements are becoming defined. This review summarizes our current understanding of the major families of axon guidance cues and their receptors, with a particular emphasis on receptor signaling mechanisms. We also discuss recent advances in understanding receptor cross talk and how the activities of guidance cues and their receptors are modulated during neural development.
Collapse
Affiliation(s)
- Andrea B Huber
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
25
|
Van der Zee CEEM, Man TY, Van Lieshout EMM, Van der Heijden I, Van Bree M, Hendriks WJAJ. Delayed peripheral nerve regeneration and central nervous system collateral sprouting in leucocyte common antigen-related protein tyrosine phosphatase-deficient mice. Eur J Neurosci 2003; 17:991-1005. [PMID: 12653975 DOI: 10.1046/j.1460-9568.2003.02516.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cell adhesion molecule-like receptor-type protein tyrosine phosphatases have been shown to be important for neurite outgrowth and neural development in several animal models. We have previously reported that in leucocyte common antigen-related (LAR) phosphatase deficient (LAR-deltaP) mice the number and size of basal forebrain cholinergic neurons, and their innervation of the hippocampal area, is reduced. In this study we compared the sprouting response of LAR-deficient and wildtype neurons in a peripheral and a central nervous system lesion model. Following sciatic nerve crush lesion, LAR-deltaP mice showed a delayed recovery of sensory, but not of motor, nerve function. In line with this, neurofilament-200 immunostaining revealed a significant reduction in the number of newly outgrowing nerve sprouts in LAR-deltaP animals. Morphometric analysis indicated decreased axonal areas in regenerating LAR-deltaP nerves when compared to wildtypes. Nonlesioned nerves in wildtype and LAR-deltaP mice did not differ regarding myelin and axon areas. Entorhinal cortex lesion resulted in collateral sprouting of septohippocampal cholinergic fibres into the dentate gyrus outer molecular layer in both genotype groups. However, LAR-deltaP mice demonstrated less increase in acetylcholinesterase density and fibre number at several time points following the lesion, indicating a delayed collateral sprouting response. Interestingly, a lesion-induced reduction in number of (septo-entorhinal) basal forebrain choline acetyltransferase-positive neurons occurred in both groups, whereas in LAR-deltaP mice the average cell body size was reduced as well. Thus, regenerative and collateral sprouting is significantly delayed in LAR-deficient mice, reflecting an important facilitative role for LAR in peripheral and central nervous system axonal outgrowth.
Collapse
Affiliation(s)
- C E E M Van der Zee
- Department of Cell Biology, Nijmegen Center for Molecular Life Sciences, UMC Radboud, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Beltran PJ, Bixby JL, Masters BA. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003; 456:384-95. [PMID: 12532410 DOI: 10.1002/cne.10532] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Competition and cooperation between type II and type III receptor protein tyrosine phosphatases (RPTPs) regulate axon extension and pathfinding in Drosophila. The first step to investigate whether RPTPs influence axon growth in the more complex vertebrate nervous system is to identify which neurons express a particular RPTP. We studied the expression of mouse PTPRO, a type III RPTP with an extracellular region containing eight fibronectin type III domains, during embryogenesis and after birth. Mouse PTPRO mRNA is expressed exclusively in two cell types: neurons and kidney podocytes. Maximal expression in the brain was coincident with mid to late gestation and axonogenesis in the brain. We cloned two cDNAs, including a splice variant without sequence coding of 28 amino acids within the juxtamembrane domain that was found mostly in kidney. In situ hybridization detected mPTPRO mRNA in the cerebral cortex, olfactory bulb and nucleus, hippocampus, motor neurons, and the spinal cord midline. In addition, mPTPRO mRNA was found throughout dorsal root, cranial, and sympathetic ganglia and within kidney glomeruli. Mouse PTPRO mRNA was observed in neuron populations expressing TrkA, the high-affinity nerve growth factor receptor, or TrkC, the neurotrophin-3 receptor, and immunoreactive mPTPRO and TrkC colocalized in large dorsal root ganglia proprioceptive neurons. Our results suggest that mPTPRO is involved in the differentiation and axonogenesis of central and peripheral nervous system neurons, where it is in a position to modulate intracellular responses to neurotrophin-3 and/or nerve growth factor.
Collapse
Affiliation(s)
- Pedro J Beltran
- The Neuroscience Program and Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
27
|
Cao X, Shoichet MS. Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience 2003; 122:381-9. [PMID: 14614904 DOI: 10.1016/j.neuroscience.2003.08.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurotrophic factors direct axonal growth toward the target tissue by a concentration gradient, which is mediated through different tyrosine kinase cell surface receptors. In this study, well-defined concentration gradients of neurotrophic factors (NFs) allowed us to study the synergistic effect of different NFs (e.g. nerve growth factor [NGF], neurotrophin-3 [NT-3] and brain-derived neurotrophic factor [BDNF]) for axonal guidance of embryonic lumbar dorsal root ganglion cells (DRGs). Effective guidance of DRG axons was achieved with a minimum NGF concentration gradient of 133 ng/ml/mm alone, or combined NGF and NT-3 concentration gradients of 80 ng/ml/mm each. Interestingly, the combined concentration gradients of NGF and BDNF did not show any significant synergism at the concentration gradients studied. The synergism observed between NGF and NT-3 indicates that axons may be guided over a 12.5 mm distance, which is significantly greater than that of 7.5 mm calculated by us for NGF alone or that of 2 mm observed by others.
Collapse
Affiliation(s)
- X Cao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | | |
Collapse
|
28
|
Sajnani-Perez G, Chilton JK, Aricescu AR, Haj F, Stoker AW. Isoform-specific binding of the tyrosine phosphatase PTPsigma to a ligand in developing muscle. Mol Cell Neurosci 2003; 22:37-48. [PMID: 12595237 DOI: 10.1016/s1044-7431(02)00026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PTPsigma is a receptor tyrosine phosphatase that is expressed widely in the developing nervous system and that controls the growth and retinotopic mapping of retinal axons. PTPsigma is also expressed in motor neurons where its function is unclear. Given that invertebrate relatives of PTPsigma can control motor axon guidance, target contact, and synaptogenesis, we have asked if extracellular ligands exist for cPTPsigma, the avian PTPsigma orthologue, in the neuromuscular system. Of the two major isoforms cPTPsigma1 and cPTPsigma2, only the shorter cPTPsigma1 isoform is expressed in developing spinal motor neurons and their axons. We show that ectodomains of cPTPsigma1, but not of cPTPsigma2, bind specifically to developing skeletal myotubes. The putative myotube ligand is not related to the previously described binding of cPTPsigma to heparan sulfates within the proteoglycans agrin and collagen XVIII, since heparinase treatment of myotubes does not alter cPTPsigma1 binding and since most mutations that abolish binding of cPTPsigma1 to heparin do not affect myotube binding. The expression of cPTPsigma1 in motor axons and its direct binding to target myotubes suggest an isoform-specific role for axonally expressed cPTPsigma1 during establishment or maintenance of neuromuscular contacts.
Collapse
MESH Headings
- Animals
- Axons/enzymology
- Axons/ultrastructure
- Binding Sites/genetics
- Collagen/genetics
- Collagen/metabolism
- Collagen Type XVIII
- Endostatins
- Fetus
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Growth Cones/enzymology
- Growth Cones/ultrastructure
- Heparan Sulfate Proteoglycans/metabolism
- Immunoglobulins/metabolism
- Ligands
- Mice
- Motor Neurons/cytology
- Motor Neurons/enzymology
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/enzymology
- Neuromuscular Junction/cytology
- Neuromuscular Junction/embryology
- Neuromuscular Junction/enzymology
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary/physiology
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/metabolism
- Receptor-Like Protein Tyrosine Phosphatases, Class 2
- Spinal Cord/cytology
- Spinal Cord/embryology
- Spinal Cord/enzymology
Collapse
Affiliation(s)
- Gustavo Sajnani-Perez
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
29
|
Enhanced rate of nerve regeneration and directional errors after sciatic nerve injury in receptor protein tyrosine phosphatase sigma knock-out mice. J Neurosci 2002. [PMID: 12097500 DOI: 10.1523/jneurosci.22-13-05481.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The receptor protein tyrosine phosphatase sigma (PTPsigma) is a member of the mammalian leukocyte common antigen-related (LAR) family. Its expression is developmentally regulated in neuronal tissues. The Drosophila homolog of the mammalian LAR family of phosphatases (DLAR) controls axon guidance during Drosophila embryogenesis. We have demonstrated previously that mice deficient in PTPsigma have CNS and peripheral nervous system abnormalities. The sciatic nerve in the PTPsigma(-/-) mice demonstrates an increased number of small diameter fibers and slower nerve conduction velocities compared with PTPsigma(+/+) or PTPsigma(+/-) controls. To study whether peripheral nerve regeneration is affected by PTPsigma activity, we assessed nerve regeneration in the PTPsigma(-/-) mouse after three standard models of sciatic nerve injury. We report that after sciatic nerve crush injury, nerve regeneration was significantly faster in the PTPsigma(-/-) animals, as determined by histologic, electrophysiologic, and neuromuscular testing. After sciatic nerve transection with immediate microsurgical repair or allografting, PTPsigma(-/-) nerve fibers demonstrated errors in directional growth compared with controls. We propose that PTPsigma regulates the axonal regeneration rate and guidance of regenerating fibers.
Collapse
|
30
|
Abstract
Chick PTPsigma (cPTPsigma), also known as CRYPalpha, is a receptor-like protein tyrosine phosphatase found on axons and growth cones. Putative ligands for cPTPsigma are distributed within basement membranes and on glial end feet of the retina, optic nerve, and optic tectum, suggesting that cPTPsigma signaling is occurring along the whole retinotectal pathway. We have shown previously that cPTPsigma plays a role in supporting the retinal phase of axon outgrowth. Here we have now addressed the role of cPTPsigma within retinal axons as they undergo growth and topographic targeting in the optic tectum. With the use of retroviruses, a secretable cPTPsigma ectodomain was ectopically expressed in ovo in the developing chick optic tectum, with the aim of directly disrupting the function of endogenous cPTPsigma. In ovo, the secreted ectodomains accumulated at tectal sites in which cPTPsigma ligands are also specifically found, suggesting that they are binding to these endogenous ligands. Anterograde labeling of retinal axons entering these optic tecta revealed abnormal axonal phenotypes. These included the premature stalling and arborization of fibers, excessive pretectal arbor formation, and diffuse termination zones. Most of the defects were rostral of the predicted termination zone, indicating that cPTPsigma function is necessary for sustaining the growth of retinal axons over the optic tectum and for directing axons to their correct sites of termination. This demonstrates that regulation of cPTPsigma signaling in retinal axons is required for their topographic mapping, the first evidence of this function for a receptor-like protein tyrosine phosphatase in the retinotectal projection.
Collapse
|
31
|
Protein tyrosine phosphatase-mu differentially regulates neurite outgrowth of nasal and temporal neurons in the retina. J Neurosci 2002. [PMID: 11978837 DOI: 10.1523/jneurosci.22-09-03615.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cell adhesion molecules play an important role in the development of the visual system. The receptor-type protein tyrosine phosphatase, PTPmu is a cell adhesion molecule that mediates cell aggregation and may signal in response to adhesion. PTPmu is expressed in the chick retina during development and promotes neurite outgrowth from retinal ganglion cell (RGC) axons in vitro (Burden-Gulley and Brady-Kalnay, 1999). The axons of RGC neurons form the optic nerve, which is the sole output from the retina to the optic tectum in the chick. In this study, we observed that PTPmu expression in RGC axons occurs as a step gradient, with temporal axons expressing the highest level of PTPmu. PTPmu expression in the optic tectum occurred as a smooth descending gradient from anterior to posterior regions during development. Because temporal RGC axons innervate anterior tectal regions, PTPmu may regulate the formation of topographic projections to the tectum. In agreement with this hypothesis, a differential response of RGC neurites to a PTPmu substrate was also observed: RGCs of temporal retina were unable to extend neurites on PTPmu compared with neurites of nasal retina. When given a choice between PTPmu and a second substrate, the growth cones of temporal neurites clustered at the PTPmu border and stalled, thus avoiding additional growth on the PTPmu substrate. In contrast, PTPmu was permissive for growth of nasal neurites. Finally, application of soluble PTPmu to retinal cultures resulted in the collapse of temporal but not nasal growth cones. Therefore, PTPmu may specifically signal to temporal RGC axons to cease their forward growth after reaching the anterior tectum, thus allowing for subsequent innervation of deeper tectal layers.
Collapse
|
32
|
Harrington RJ, Gutch MJ, Hengartner MO, Tonks NK, Chisholm AD. TheC. elegansLAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development 2002; 129:2141-53. [PMID: 11959824 DOI: 10.1242/dev.129.9.2141] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Receptor-like protein-tyrosine phosphatases (RPTPs) form a diverse family of cell surface molecules whose functions remain poorly understood. The LAR subfamily of RPTPs has been implicated in axon guidance and neural development. Here we report the molecular and genetic analysis of the C. elegans LAR subfamily member PTP-3. PTP-3 isoforms are expressed in many tissues in early embryogenesis, and later become localized to neuronal processes and to epithelial adherens junctions. Loss of function in ptp-3 causes low-penetrance defects in gastrulation and epidermal development similar to those of VAB-1 Eph receptor tyrosine kinase mutants. Loss of function in ptp-3 synergistically enhances phenotypes of mutations in the C. elegans Eph receptor VAB-1 and a subset of its ephrin ligands, but does not show specific interactions with several other RTKs or morphogenetic mutants. The genetic interaction of vab-1 and ptp-3 suggests that LAR-like RPTPs and Eph receptors have related and partly redundant functions in C. elegans morphogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Base Sequence
- Caenorhabditis elegans/enzymology
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/growth & development
- Caenorhabditis elegans Proteins
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cloning, Molecular
- Ephrins
- Evolution, Molecular
- Gene Expression Regulation, Developmental
- Genes, Helminth
- Helminth Proteins/genetics
- Helminth Proteins/physiology
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Morphogenesis
- Mutation
- Phenotype
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Robert J Harrington
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
33
|
Aricescu AR, McKinnell IW, Halfter W, Stoker AW. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase sigma. Mol Cell Biol 2002; 22:1881-92. [PMID: 11865065 PMCID: PMC135600 DOI: 10.1128/mcb.22.6.1881-1892.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RPTPsigma is a cell adhesion molecule-like receptor protein tyrosine phosphatase involved in nervous system development. Its avian orthologue, known as cPTPsigma or CRYPalpha, promotes intraretinal axon growth and controls the morphology of growth cones. The molecular mechanisms underlying the functions of cPTPsigma are still to be determined, since neither its physiological ligand(s) nor its substrates have been described. Nevertheless, a major class of ligand(s) is present in the retinal basal lamina and glial endfeet, the potent native growth substrate for retinal axons. We demonstrate here that cPTPsigma is a heparin-binding protein and that its basal lamina ligands include the heparan sulfate proteoglycans (HSPGs) agrin and collagen XVIII. These molecules interact with high affinity with cPTPsigma in vitro, and this binding is totally dependent upon their heparan sulfate chains. Using molecular modelling and site-directed mutagenesis, a binding site for heparin and heparan sulfate was identified in the first immunoglobulin-like domain of cPTPsigma. HSPGs are therefore a novel class of heterotypic ligand for cPTPsigma, suggesting that cPTPsigma signaling in axons and growth cones is directly responsive to matrix-associated cues.
Collapse
Affiliation(s)
- A Radu Aricescu
- Neural Development Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| | | | | | | |
Collapse
|
34
|
Rosdahl JA, Mourton TL, Brady-Kalnay SM. Protein kinase C delta (PKCdelta) is required for protein tyrosine phosphatase mu (PTPmu)-dependent neurite outgrowth. Mol Cell Neurosci 2002; 19:292-306. [PMID: 11860281 DOI: 10.1006/mcne.2001.1071] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein tyrosine phosphatase mu (PTPmu) is an adhesion molecule in the immunoglobulin superfamily and is expressed in the developing nervous system. We have shown that PTPmu can promote neurite outgrowth of retinal ganglion cells and it regulates neurite outgrowth mediated by N-cadherin (S. M. Burden-Gulley and S. M. Brady-Kalnay, 1999, J. Cell Biol. 144, 1323-1336). We previously demonstrated that PTPmu binds to the scaffolding protein RACK1 in yeast and mammalian cells (T. Mourton et al., 2001, J. Biol. Chem. 276, 14896-14901). RACK1 is a receptor for activated protein kinase C (PKC). In this article, we demonstrate that PKC is involved in PTPmu-dependent signaling. PTPmu, RACK1, and PKCdelta exist in a complex in cultured retinal cells and retinal tissue. Using pharmacologic inhibition of PKC, we demonstrate that PKCdelta is required for neurite outgrowth of retinal ganglion cells on a PTPmu substrate. These results suggest that PTPmu signaling via RACK1 requires PKCdelta activity to promote neurite outgrowth.
Collapse
Affiliation(s)
- Jullia A Rosdahl
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4960, USA
| | | | | |
Collapse
|
35
|
Maurel-Zaffran C, Suzuki T, Gahmon G, Treisman JE, Dickson BJ. Cell-autonomous and -nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 2001; 32:225-35. [PMID: 11683993 DOI: 10.1016/s0896-6273(01)00471-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During Drosophila visual system development, photoreceptors R7 and R8 project axons to targets in distinct layers of the optic lobe. We show here that the LAR receptor tyrosine phosphatase is required in the eye for correct targeting of R7 axons. In LAR mutants, R7 axons initially project to their correct target layer, but then retract to the R8 target layer. This targeting defect can be fully rescued by transgenic expression of LAR in R7, and partially rescued by expression of LAR in R8. The phosphatase domains of LAR are required for its activity in R7, but not in R8. These data suggest that LAR can act both as a receptor in R7, and as a ligand provided by R8. Genetic interactions implicate both Enabled and Trio in LAR signal transduction.
Collapse
Affiliation(s)
- C Maurel-Zaffran
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
36
|
Stepanek L, Sun QL, Wang J, Wang C, Bixby JL. CRYP-2/cPTPRO is a neurite inhibitory repulsive guidance cue for retinal neurons in vitro. J Cell Biol 2001; 154:867-78. [PMID: 11514594 PMCID: PMC2196468 DOI: 10.1083/jcb.200105019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are implicated as regulators of axon growth and guidance. Genetic deletions in the fly have shown that type III RPTPs are important in axon pathfinding, but nothing is known about their function on a cellular level. Previous experiments in our lab have identified a type III RPTP, CRYP-2/cPTPRO, specifically expressed during the period of axon outgrowth in the chick brain; cPTPRO is expressed in the axons and growth cones of retinal and tectal projection neurons. We constructed a fusion protein containing the extracellular domain of cPTPRO fused to the Fc portion of mouse immunoglobulin G-1, and used it to perform in vitro functional assays. We found that the extracellular domain of cPTPRO is an antiadhesive, neurite inhibitory molecule for retinal neurons. In addition, cPTPRO had potent growth cone collapsing activity in vitro, and locally applied gradients of cPTPRO repelled growing retinal axons. This chemorepulsive effect could be regulated by the level of cGMP in the growth cone. Immunohistochemical examination of the retina indicated that cPTPRO has at least one heterophilic binding partner in the retina. Taken together, our results indicate that cPTPRO may act as a guidance cue for retinal ganglion cells during vertebrate development.
Collapse
Affiliation(s)
- L Stepanek
- Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Receptor-like protein tyrosine phosphatases (RPTPs) continue to emerge as important signalling molecules in axons and their growth cones. Recent findings show that Drosophila RPTPs play key roles in guiding retinal axons and in preventing midline crossing of longitudinal axons. Vertebrate RPTPs are now implicated in controlling axon outgrowth, and preliminary evidence suggests that they too may influence axon guidance.
Collapse
Affiliation(s)
- A W Stoker
- Neural Development Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|