1
|
Nascimento RB, Mendes Ribeiro SM, Fagundes NCF, Normando D. Craniofacial Changes Among Children and Adolescents Submitted to Growth Hormone Therapy: A Systematic Review. Orthod Craniofac Res 2025. [PMID: 40264408 DOI: 10.1111/ocr.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
The aim of this systematic review was to investigate the association between craniofacial changes and growth hormone (GH) therapy among children and adolescents with GH deficiency or idiopathic short stature (ISS). The PRISMA guideline was followed to carry out all stages of this review. An electronic search was conducted in seven databases, without year or language restrictions. The study selection was carried out in two stages by two calibrated examiners. Studies exploring craniofacial changes among children and adolescents with GH deficiency or ISS undergoing GH therapy were included. After data extraction, the risk of bias was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal tool and the RoB 2.0 Checklist. The certainty of the evidence was assessed using the GRADE tool. Among the 4494 identified citations, seven studies met the eligibility criteria. These studies evaluated the impact of GHs on cephalometric measurements and dental age. No differences between immediate and delayed treatments were found in maxillary and mandibular dimensions. All selected articles showed a low risk of bias. A low certainty of evidence was observed for all outcomes assessed. GH therapy appears to result in a small increase in mandibular dimensions, although without clinical significance characteristic of adverse effects. Clinical trials and long-term follow-up studies of these patients are needed to develop accurate recommendations regarding the effects of GHs in the craniofacial region. Growth hormone may result in a slight increase in mandibular and maxillary dimensions, without significant adverse effects to general health. Controlled intervention studies with long-term follow-up are needed to establish more precise recommendations. Trial Registration: PROSPERO database (https://www.crd.york.ac.uk/prospero/): CRD42024511329.
Collapse
Affiliation(s)
| | | | | | - David Normando
- Department of Orthodontics, Post-Graduation Program in Dentistry, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Liu L, Yang S, Chai L, Zhang S, Liu D, Xu H, Zhao Y, Chen S, Jiang G, Li B. Nicotinic acetylcholine receptors regulate growth hormone in pituitary somatotrophs of tigers. Commun Biol 2025; 8:526. [PMID: 40164859 PMCID: PMC11958662 DOI: 10.1038/s42003-025-07980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The Felidae exhibits remarkable diversity in body size, with lengths ranging from 50 to 370 cm and weights from 1.1 to 423 kg. However, the underlying mechanisms driving this variation remain poorly understood. Here, we focused on the Siberian tiger (Panthera tigris altaica), the largest of the six extant tiger subspecies, and revealed the surprising expression of nicotinic acetylcholine receptors (nAChRs) in pituitary somatotrophs, which are crucial for regulating growth hormone (GH) secretion. Single-nucleus RNA sequencing of Siberian tiger pituitary cells exhibited the coexpression of CHRNA3, CHRNB4, and CHRNA5 genes in somatotrophs, a finding confirmed by electrophysiological experiments demonstrating the formation of functional nAChRs. Activation of these receptors elevated intracellular Ca2+ levels, thereby enhancing GH secretion in somatotrophs. Notably, nAChRs were absent in the pituitary glands of mice, domestic cats, and rats, both in early life and adulthood, despite high acetylcholine levels during early life. These results suggest that nAChRs in Siberian tiger somatotrophs play a pivotal role in GH release, offering new insights into the molecular mechanisms regulating body size in these terrestrial giants.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shipei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dan Liu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Haitao Xu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Yue Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shiyu Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.
| |
Collapse
|
3
|
Prihandini PW, Hariyono DNH, Sari APZNL, Tribudi YA, Ibrahim A, Luthfi M, Wiyono A, Irmawanti S, Aryogi A, Robba DK, Chanafi M, Kuswati K, Leondro H. Association between GH, PRL, LEP, and PIT-1 gene polymorphisms and growth traits in Indonesian Rambon indigenous cattle. Trop Anim Health Prod 2025; 57:56. [PMID: 39939484 DOI: 10.1007/s11250-025-04304-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
For further understanding of the genetic control mechanisms of growth and development in cattle and to explore genetic marking loci that were associated with growth characteristics, we recruited a total of 31 Rambon indigenous cattle from Indonesia to detect 20 SNPs in growth hormone (GH), prolactin (PRL), leptin (LEP), and pituitary-specific transcription factor (PIT-1) by using direct sequencing techniques. From the results, we found that only SNP g.10976A > C in the PIT-1 gene was a non-synonymous mutation, which changed the amino acid from aspartic acid to alanine. The allele and genotype frequencies of all loci varied. Interestingly, the genotype frequencies of SNP g.7875A > G and g.8010C > T in the PRL gene and g.10958A > G in the PIT-1 gene were not under the Hardy-Weinberg equilibrium (P < 0.05). Of the identified mutations, SNP g.12238G > A of the LEP gene was significantly associated with body length (P < 0.05); SNPs g.10976A > C and g.11398A > C in the PIT-1 gene was significantly associated with body weight, chest girth, and shoulder height (P < 0.05). Interestingly, the heterozygous animals for the associated SNPs gained higher growth performances than the homozygous counterparts. No SNPs within the GH and PRL genes were associated with any traits (P > 0.05). These data suggest specific roles for GH and PRL polymorphisms in bovine growth traits and could be potential candidates for marker-assisted selection in the Rambon cattle population.
Collapse
Affiliation(s)
- Peni Wahyu Prihandini
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia.
| | - Dwi Nur Happy Hariyono
- Department of Animal Science, Faculty of Agriculture, Universitas Khairun, Ternate, 97719, Indonesia
| | | | - Yuli Arif Tribudi
- Department of Animal Science, Faculty of Agriculture, Universitas Tanjungpura, Pontianak, 78121, Indonesia
| | - Alek Ibrahim
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Muchamad Luthfi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Agus Wiyono
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Sulistiyoningtiyas Irmawanti
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Aryogi Aryogi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Dewi Khosiya Robba
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Mochammad Chanafi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor, 16911, Indonesia
| | - Kuswati Kuswati
- Department of Animal Production, Faculty of Animal Science, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Henny Leondro
- Department of Animal Science, Universitas PGRI Kanjuruhan, Malang, Indonesia
| |
Collapse
|
4
|
Bioletto F, Varaldo E, Gasco V, Maccario M, Arvat E, Ghigo E, Grottoli S. Central and peripheral regulation of the GH/IGF-1 axis: GHRH and beyond. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09933-6. [PMID: 39579280 DOI: 10.1007/s11154-024-09933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The regulation of growth hormone (GH) synthesis and secretion by somatotroph cells of the anterior pituitary is a highly complex process, mediated by a variety of neuroendocrine and peripheral influences. In particular, a key role is played by the hypothalamic peptides growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the somatotroph axis with opposite actions, stimulating and inhibiting GH release, respectively. Since the discovery of GHRH about 50 years ago, many pathophysiological studies have explored the underlying intricate hormonal balance that regulates GHRH secretion and its interplay with the somatotroph axis. Various molecules and pathophysiological states have been shown to modulate the release of GH, GHRH, somatostatin and GH secretagogues. Collectively, the available evidence demonstrates how a vast number of neural and peripheral signals are conveyed and integrated to orchestrate a finely tuned response of the somatotroph axis that adapts to the body's varying needs for growth, metabolism, and repair. The present review aims to summarize the available evidence regarding the key regulators involved in the modulation of the somatotroph axis in humans, presenting detailed molecular insights on the signaling cascades at play. The interplay between different mechanisms governing somatotroph secretion is highlighted, underscoring the nuanced interdependence that maintains homeostasis and facilitates the body's ability to respond to internal and external stimuli.
Collapse
Affiliation(s)
- Fabio Bioletto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuele Varaldo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Gasco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Maccario
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuela Arvat
- Division of Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
5
|
Shao H, Guan R, Chen Z, Kong R, Zhang C, Gu H. Circular RNA circ_0022707 impedes the progression of preeclampsia via the miR-3135b/GHR/PI3K/Akt axis. Funct Integr Genomics 2024; 24:208. [PMID: 39499344 DOI: 10.1007/s10142-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Preeclampsia (PE) is a severe pregnancy complication linked to maternal and fetal health, yet its underlying causes and pathogenesis remain elusive. Circular RNA (circRNA), a form of non-coding RNA, is implicated in the progression of PE; nevertheless, the specific mechanism is not fully elucidated. This study aimed to identify and validate circRNAs that are pivotal in the pathophysiology of PE. Firstly, we constructed a ceRNA network using datasets from the GEO database and identified circ_0022707 as our study target. Then, using qRT-PCR analysis, we validated that circ_0022707 was downregulated in preeclamptic placentas compared to those of normal pregnant women. In situ hybridization assays revealed that circ_0022707 existed in placental villous trophoblast cells. Additionally, Pearson correlation analysis revealed a negative relationship between the expression of circ_0022707 and PE-related indicators (systolic and diastolic blood pressure, along with 24-h proteinuria levels). Furthermore, gain-of-function experiments confirmed that circ_0022707 could promote trophoblast cell proliferation and cell cycle progression while suppressing apoptosis. In vivo experiments using a preeclampsia-like mouse model also demonstrated that circ_0022707 administration could mitigate preeclampsia-like symptoms. Mechanistically, we confirmed that circ_0022707 functions through the miR-3135b/GHR/PI3K/Akt pathway in trophoblast cells. Overall, our study has provided insight into the important function of circ_002707 in the development of PE, enhancing our understanding of the disease's mechanism and proposing a viable therapeutic strategy for PE.
Collapse
Affiliation(s)
- Huijing Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Rui Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, People's Republic of China
| | - Ruijiao Kong
- Department of Laboratory and Diagnosis, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Caihong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Hang Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Duran-Ortiz S, Young JA, List EO, Basu R, Krejsa J, Kearns JK, Berryman DE, Kopchick JJ. GHR disruption in mature adult mice alters xenobiotic metabolism gene expression in the liver. Pituitary 2023; 26:437-450. [PMID: 37353704 DOI: 10.1007/s11102-023-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Lifelong reduction of growth hormone (GH) action extends lifespan and improves healthspan in mice. Moreover, congenital inactivating mutations of GH receptor (GHR) in mice and humans impart resistance to age-associated cancer, diabetes, and cognitive decline. To investigate the consequences of GHR disruption at an adult age, we recently ablated the GHR at 6-months of age in mature adult (6mGHRKO) mice. We found that both, male and female 6mGHRKO mice have reduced oxidative damage, with males 6mGHRKO showing improved insulin sensitivity and cancer resistance. Importantly, 6mGHRKO females have an extended lifespan compared to controls. OBJECTIVE AND METHODS To investigate the possible mechanisms leading to health improvements, we performed RNA sequencing using livers from male and female 6mGHRKO mice and controls. RESULTS We found that disrupting GH action at an adult age reduced the gap in liver gene expression between males and females, making gene expression between sexes more similar. However, there was still a 6-fold increase in the number of differentially expressed genes when comparing male 6mGHRKO mice vs controls than in 6mGHRKO female vs controls, suggesting that GHR ablation affects liver gene expression more in males than in females. Finally, we found that lipid metabolism and xenobiotic metabolism pathways are activated in the liver of 6mGHRKO mice. CONCLUSION The present study shows for the first time the specific hepatic gene expression profile, cellular pathways, biological processes and molecular mechanisms that are driven by ablating GH action at a mature adult age in males and females. Importantly, these results and future studies on xenobiotic metabolism may help explain the lifespan extension seen in 6mGHRKO mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, OH, USA
| | - Jonathan A Young
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Jackson Krejsa
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - John K Kearns
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
7
|
Hu B, Zhao C, Pan X, Wei H, Mo G, Xian M, Luo W, Nie Q, Li H, Zhang X. Local GHR roles in regulation of mitochondrial function through mitochondrial biogenesis during myoblast differentiation. Cell Commun Signal 2023; 21:148. [PMID: 37337300 DOI: 10.1186/s12964-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Myoblast differentiation requires metabolic reprogramming driven by increased mitochondrial biogenesis and oxidative phosphorylation. The canonical GH-GHR-IGFs axis in liver exhibits a great complexity in response to somatic growth. However, the underlying mechanism of whether local GHR acts as a control valve to regulate mitochondrial function through mitochondrial biogenesis during myoblast differentiation remains unknown. METHODS We manipulated the GHR expression in chicken primary myoblast to investigate its roles in mitochondrial biogenesis and function during myoblast differentiation. RESULTS We reported that GHR is induced during myoblast differentiation. Local GHR promoted mitochondrial biogenesis during myoblast differentiation, as determined by the fluorescence intensity of Mito-Tracker Green staining and MitoTimer reporter system, the expression of mitochondrial biogenesis markers (PGC1α, NRF1, TFAM) and mtDNA encoded gene (ND1, CYTB, COX1, ATP6), as well as mtDNA content. Consistently, local GHR enhanced mitochondrial function during myoblast differentiation, as determined by the oxygen consumption rate, mitochondrial membrane potential, ATP level and ROS production. We next revealed that the regulation of mitochondrial biogenesis and function by GHR depends on IGF1. In terms of the underlying mechanism, we demonstrated that IGF1 regulates mitochondrial biogenesis via PI3K/AKT/CREB pathway. Additionally, GHR knockdown repressed myoblast differentiation. CONCLUSIONS In conclusion, our data corroborate that local GHR acts as a control valve to enhance mitochondrial function by promoting mitochondrial biogenesis via IGF1-PI3K/AKT/CREB pathway during myoblast differentiation. Video Abstract.
Collapse
Affiliation(s)
- Bowen Hu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Changbin Zhao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haohui Wei
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guodong Mo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingjian Xian
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongmei Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Kumar N, Singh DK, Chandan NK, Thorat ST, Patole PB, Gite A, Reddy KS. Nano‑zinc enhances gene regulation of non‑specific immunity and antioxidative status to mitigate multiple stresses in fish. Sci Rep 2023; 13:5015. [PMID: 36977939 PMCID: PMC10050481 DOI: 10.1038/s41598-023-32296-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The toxicity of ammonia surged with arsenic pollution and high temperature (34 °C). As climate change enhances the pollution in water bodies, however, the aquatic animals are drastically affected and extinct from nature. The present investigation aims to mitigate arsenic and ammonia toxicity and high-temperature stress (As + NH3 + T) using zinc nanoparticles (Zn-NPs) in Pangasianodon hypophthalmus. Zn-NPs were synthesized using fisheries waste to developing Zn-NPs diets. The four isonitrogenous and isocaloric diets were formulated and prepared. The diets containing Zn-NPs at 0 (control), 2, 4 and 6 mg kg-1 diets were included. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were noticeably improved using Zn-NPs diets in fish reared under with or without stressors. Interestingly, lipid peroxidation was significantly reduced, whereas vitamin C and acetylcholine esterase were enhanced with supplementation of Zn-NPs diets. Immune-related attributes such as total protein, globulin, albumin, myeloperoxidase (MPO), A:G ratio, and NBT were also improved with Zn-NPs at 4 mg kg-1 diet. The immune-related genes such as immunoglobulin (Ig), tumor necrosis factor (TNFα), and interleukin (IL1b) were strengthening in the fish using Zn-NPs diets. Indeed, the gene regulations of growth hormone (GH), growth hormone regulator (GHR1), myostatin (MYST) and somatostatin (SMT) were significantly improved with Zn-NPs diets. Blood glucose, cortisol and HSP 70 gene expressions were significantly upregulated by stressors, whereas the dietary Zn-NPs downregulated the gene expression. Blood profiling (RBC, WBC and Hb) was reduced considerably with stressors (As + NH3 + T), whereas Zn-NPs enhanced the RBC, WBC, and Hb count in fish reread in control or stress conditions. DNA damage-inducible protein gene and DNA damage were significantly reduced using Zn-NPs at 4 mg kg-1 diet. Moreover, the Zn-NPs also enhanced the arsenic detoxification in different fish tissues. The present investigation revealed that Zn-NPs diets mitigate ammonia and arsenic toxicity, and high-temperature stress in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Kolkata Center, Kolkata, 700091, India
| | | | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
9
|
Kumar N, Kumar S, Singh AK, Gite A, Patole PB, Thorat ST. Exploring mitigating role of zinc nanoparticles on arsenic, ammonia and temperature stress using molecular signature in fish. J Trace Elem Med Biol 2022; 74:127076. [PMID: 36126543 DOI: 10.1016/j.jtemb.2022.127076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The pollution and climate change in aquatic ecosystems are major problems threatening the aquatic organisms for existence in the recent timeline, which promotes the extinction of the fish species. However, the present study dealt with zinc nanoparticles (Zn-NPs) in mitigating arsenic, ammonia and high temperature stresses in Pangasianodon hypophthalmus. MATERIALS AND METHODS To studying different gene expressions, an experiment was conducted to mitigate the multiple stressors using dietary Zn-NPs at 0, 2, 4, and 6 mg kg-1 diets. In the present investigation, the gene expressions studies were performed for growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill tissue as well as myostatin (MYST) and somatostatin (SMT) in the muscle tissue. The anti-oxidative genes CAT, SOD and GPx in liver and gill tissues were also analysed. Expression studies for stress responsive heat shock protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS), immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were performed. At the end of the experiment the fish were infected with Aeromonas hydrophila to evaluate the immunomodulatory role of Zn-NPs. RESULTS In the present investigation, the growth hormone regulator 1 (GHR1), growth hormone regulator β (GHRβ), growth hormone (GR) in liver and gill as well as myostatin (MYST) and somatostatin (SMT) in muscle were noticeably altered, whereas, Zn-NPs at 4 mg kg-1 diet improved gene expressions. The anti-oxidant gene viz. CAT, SOD and GPx in liver and gill tissues were upregulated by stressors such as As, NH3, NH3+T. As+T and As+NH3+T. Therefore, anti-oxidant genes were noticeably improved with dietary Zn-NPs diet. The stress protein gene (HSP70), DNA damage inducible protein, inducible nitric oxide synthase (iNOS) was significantly upregulated, whereas, Zn-NPs diet was applied to the corrected gene regulation. Similarly, immune related genes such as interleukin (IL), tumour necrosis factor (TNFα), toll like receptor (TLR) and immunoglobulin were highly affected by stressors. Dietary Zn-NPs at 4 mg kg-1 diet was improved all the immune related gene expression and mitigate arsenic, ammonia and high temperature stress in fish. CONCLUSION The present investigation revealed that Zn-NPs at 4.0 mg kg-1 diet has enormous potential to modulates arsenic, ammonia and high temperature stress, and protect against pathogenic infections in fish.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India.
| | - Satish Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune 413115, India
| | | |
Collapse
|
10
|
Gupta P, Kumar S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus 2022; 14:e28787. [PMID: 36225400 PMCID: PMC9533189 DOI: 10.7759/cureus.28787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
11
|
Young JA, Zhu S, List EO, Duran-Ortiz S, Slama Y, Berryman DE. Musculoskeletal Effects of Altered GH Action. Front Physiol 2022; 13:867921. [PMID: 35665221 PMCID: PMC9160929 DOI: 10.3389/fphys.2022.867921] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH’s effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.
Collapse
Affiliation(s)
- Jonathan A. Young
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Shouan Zhu
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Ohio Musculoskeletal and Neurological Institute, Heritage College of Osteopathic Medicine, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | | | - Yosri Slama
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Darlene E. Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- *Correspondence: Darlene E. Berryman,
| |
Collapse
|
12
|
Sato T, Goto-Inoue N, Kimishima M, Toyoharu J, Minei R, Ogura A, Nagoya H, Mori T. A novel ND1 mitochondrial DNA mutation is maternally inherited in growth hormone transgenesis in amago salmon (Oncorhynchus masou ishikawae). Sci Rep 2022; 12:6720. [PMID: 35469048 PMCID: PMC9038734 DOI: 10.1038/s41598-022-10521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
Growth hormone (GH) transgenesis can be used to manipulate the growth performance of fish and mammals. In this study, homozygous and hemizygous GH-transgenic amago salmon (Oncorhynchus masou ishikawae) derived from a single female exhibited hypoglycemia. Proteomic and signal network analyses using iTRAQ indicated a decreased NAD+/NADH ratio in transgenic fish, indicative of reduced mitochondrial ND1 function and ROS levels. Mitochondrial DNA sequencing revealed that approximately 28% of the deletion mutations in the GH homozygous- and hemizygous-female-derived mitochondrial DNA occurred in ND1. These fish also displayed decreased ROS levels. Our results indicate that GH transgenesis in amago salmon may induce specific deletion mutations that are maternally inherited over generations and alter energy production.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Masaya Kimishima
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan
| | - Jike Toyoharu
- Research Institute of Medical Research Support Center Electron Microscope Laboratory, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Ryuhei Minei
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Atsushi Ogura
- Department of Computer Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, 526-0829, Japan
| | - Hiroyuki Nagoya
- National Research Institute of Aquaculture, Fisheries Research and Education Agency, Minamiise, 516-0193, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, Nihon University College of Bioresource Sciences, Kameino 1866, Fujisawa, 252-0880, Japan.
| |
Collapse
|
13
|
Duran‐Ortiz S, List EO, Ikeno Y, Young J, Basu R, Bell S, McHugh T, Funk K, Mathes S, Qian Y, Kulkarni P, Yakar S, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 2021; 20:e13506. [PMID: 34811874 PMCID: PMC8672790 DOI: 10.1111/acel.13506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.
Collapse
Affiliation(s)
- Silvana Duran‐Ortiz
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Edward O. List
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies San Antonio Texas USA
| | - Jonathan Young
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Reetobrata Basu
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Stephen Bell
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Todd McHugh
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Kevin Funk
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Samuel Mathes
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yanrong Qian
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Prateek Kulkarni
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Shoshana Yakar
- Department of Molecular Pathobiology David B. Kriser Dental Center New York University College of Dentistry New York New York USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| | - John J. Kopchick
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| |
Collapse
|
14
|
Yan H, Wang H, Yin Y, Zou J, Xiao F, Yi L, He Y, He B. GHR is involved in gastric cell growth and apoptosis via PI3K/AKT signalling. J Cell Mol Med 2021; 25:2450-2458. [PMID: 33492754 PMCID: PMC7933969 DOI: 10.1111/jcmm.16160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.
Collapse
Affiliation(s)
- Hong‐Zhu Yan
- Department of PathologySeventh People's Hospital of Shanghai University of TCMShanghaiChina
| | - Hua‐Feng Wang
- Department of PathologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueling Yin
- Department of PathologyHaiyang People's HospitalHaiyangChina
| | - Jue Zou
- Department of PathologySeventh People's Hospital of Shanghai University of TCMShanghaiChina
| | - Feng Xiao
- Department of PathologySeventh People's Hospital of Shanghai University of TCMShanghaiChina
| | - Li‐Na Yi
- Department of PathologySeventh People's Hospital of Shanghai University of TCMShanghaiChina
| | - Ying He
- Department of UltrasoundThe Tumor Hospital of Nantong UniversityNantongChina
| | - Bo‐Sheng He
- Department of RadiologyAffiliated Hospital 2 of Nantong UniversityNantongChina
- Clinical Medicine Research CenterAffiliated Hospital 2 of Nantong UniversityNantongChina
| |
Collapse
|
15
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
16
|
Sun M, Moreno IY, Dang M, Coulson-Thomas VJ. Meibomian Gland Dysfunction: What Have Animal Models Taught Us? Int J Mol Sci 2020; 21:E8822. [PMID: 33233466 PMCID: PMC7700490 DOI: 10.3390/ijms21228822] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Studies have estimated that currently 344 million people worldwide and 16.4 million adults in the US have some form of dry eye disease (DED). It is believed that approximately 70% of DED cases are due to some form of evaporative dry eye, for which Meibomian gland dysfunction (MGD) is the major cause. Unfortunately, currently there is no effective treatment for MGD, and solely palliative care is available. Given the importance of MGD in DED, there has been a growing interest in studying Meibomian gland development, homeostasis and pathology, and, also, in developing therapies for treating and/or preventing MGD. For such, animal models have shown to be a vital tool. Much of what is known today about the Meibomian gland and MGD was learnt from these important animal models. In particular, canine and rabbit models have been essential for studying the physiopathology and progression of DED, and the mouse model, which includes different knockout strains, has enabled the identification of specific pathways potentially involved in MGD. Herein, we provide a bibliographic review on the various animal models that have been used to study Meibomian gland development, Meibomian gland homeostasis and MGD, primarily focusing on publications between 2000 and 2020.
Collapse
|
17
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Maasalu K, Kõks S. Alternative splicing of leptin receptor overlapping transcript in osteosarcoma. Exp Biol Med (Maywood) 2020; 245:1437-1443. [PMID: 32787464 DOI: 10.1177/1535370220949139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Osteosarcoma (OS, also known as osteogenic sarcoma) is the most common primary malignancy of bone in children and adolescents. The molecular mechanisms of OS are extremely complicated and its molecular mediators remain to be elucidated. We sequenced total RNA from 18 OS bone samples (paired normal-tumor biopsies). We found statistically significant (FDR <0.05) 26 differentially expressed transcript variants of LEPROT gene with different expressions in normal and tumor samples. These findings contribute to the understanding of molecular mechanisms of OS development and provide encouragement to pursue further research.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan D Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
18
|
Zhu W, He Y, Ruan Z, Zhang X, Liao L, Gao Y, Lin N, Chen X, Liang R, Liu WS. Identification of the cDNA Encoding the Growth Hormone Receptor ( GHR) and the Regulation of GHR and IGF-I Gene Expression by Nutritional Status in Reeves' Turtle ( Chinemys reevesii). Front Genet 2020; 11:587. [PMID: 32582298 PMCID: PMC7296147 DOI: 10.3389/fgene.2020.00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Chinemys reevesii (Reeves’ turtle) is a slow-growing reptile that is distributed widely across China. Prior to this study, the cDNA sequence of the growth hormone receptor (GHR) in the Reeve’s turtle, or how periods of starvation might influence the gene expression of GHR and insulin-like growth factor I (IGF-I) in this species, were unknown. Here, we identified the full-length sequence of the cDNA encoding GHR in Reeves’ turtle by using RT-PCR and RACE. The full-length GHR cDNA was identified to be 3936 base-pairs in length, with a 1848 base-pair open reading frame (ORF) that encodes a 615 amino acid protein. Analysis showed that GHR mRNA was detectable in a wide range of tissues; the highest and lowest levels of expression were detected in the liver and the gonad, respectively. IGF-I was also expressed in a range of tissues, but not in the gonad; the highest levels of IGF-I expression were detected in the liver. After 4 weeks of fasting, the expression levels of GHR and IGF-I in the liver had decreased significantly; however, these gradually returned to normal after refeeding. We report the first cloned cDNA sequence for the GHR gene in the Reeve’s turtle. Our findings provide a foundation from which to investigate the specific function of the GHR in Reeve’s turtle, and serve as a reference for studying the effects of different nutrient levels on GHR expression in this species.
Collapse
Affiliation(s)
- Wenlu Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuohao Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Liangyuan Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yicong Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Nani Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiancan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Rui Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Bracke N, Janssens Y, Wynendaele E, Tack L, Maes A, van de Wiele C, Sathekge M, de Spiegeleer B. Blood-brain barrier transport kinetics of NOTA-modified proteins: the somatropin case. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:105-114. [PMID: 29697217 DOI: 10.23736/s1824-4785.18.03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Chemical modifications such as PEG, polyamine and radiolabeling on proteins can alter their pharmacokinetic behavior and their blood-brain barrier (BBB) transport characteristics. NOTA, i.e. 1,4,7-triazacyclononane-1,4,7-triacetic acid, is a bifunctional chelating agent that has attracted the interest of the scientific community for its high complexation constant with metals like gallium. Until now, the comparative BBB transport characteristics of NOTA-modified proteins versus unmodified proteins are not yet described. METHODS Somatropin (i.e. recombinant human growth hormone), NOTA-conjugated somatropin and gallium-labelled NOTA-conjugated somatropin were investigated for their brain penetration characteristics (multiple time regression and capillary depletion [CD]) in an in vivo mice model to determine the blood-brain transfer properties. RESULTS The three compounds showed comparable initial brain influx, with Kin=0.38±0.14 µL/(g×min), 0.36±0.16 µL/(g×min) and 0.28±0.18 µL/(g×min), respectively. CD indicated that more than 80% of the influxed compounds reached the brain parenchyma. All three compounds were in vivo stable in serum and brain during the time frame of the experiments. CONCLUSIONS Our results show that modification of NOTA as well as gallium chelation onto proteins, in casu somatropin, does not lead to a significantly changed pharmacokinetic profile at the blood-brain barrier.
Collapse
Affiliation(s)
- Nathalie Bracke
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Yorick Janssens
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Liesa Tack
- Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Alex Maes
- Faculty of Medicine, Catholic University of Leuven, Leuven, Belgium
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
| | | | - Mike Sathekge
- Department of Nuclear Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
20
|
Liang Y, Guo H, Liu B, Zhu K, Jiang S, Zhang D. Genomic structure and characterization of growth hormone receptors from golden pompano Trachinotus ovatus and their expression regulation by feed types. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1845-1865. [PMID: 31321605 DOI: 10.1007/s10695-019-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
In this study, sequence analysis showed that ToGHR1 and ToGHR2 encoded polypeptides of 577 and 588 amino acids, respectively. Bioinformatics analysis showed that both ToGHR1 and ToGHR2 contain FN3 domains and transmembrane domains, which have glycosylation and phosphorylation sites. The exons of ToGHR1 and exons 4-10 of ToGHR2 are homologous to exons 2 and 4-9 in Homo sapiens genes, respectively. Only 3 SSR sites in ToGHR1 have SSR polymorphisms, and ToGHR2 has no SSR polymorphisms. ToGHR1 and ToGHR2 have high homology with GHR1 and GHR2 of many fish by BLAST. qRT-PCR was used to examine the expression profile of ToGHR mRNA in 12 normal liver and intestine tissue samples from 3 feed-type groups. The results showed that ToGHR is expressed in all 12 tissues, especially liver and muscle tissues, which showed higher ToGHR expression than that in other tissues (p < 0.05). Experiments on feed-type groups may indicate that high levels of LC-PUFA in squid bait can promote ToGHR1 expression and simultaneously inhibit ToGHR2 expression in the liver tissue. In addition, the high levels of LC-PUFA in food could inhibit intestinal ToGHR1 expression, and the intermediate levels may promote intestinal ToGHR1 expression. However, the unsaturated fatty acid content in the food does not affect the expression of intestinal ToGHR2.
Collapse
Affiliation(s)
- Yinyin Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China.
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China.
| |
Collapse
|
21
|
Zhao XY, Zhao SS, Zheng GD, Zhou JG, Zou SM. Functional conservation and divergence of duplicated the suppressor of cytokine signaling 1 in blunt snout bream (Megalobrama amblycephala). Gen Comp Endocrinol 2019; 284:113243. [PMID: 31408625 DOI: 10.1016/j.ygcen.2019.113243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/13/2019] [Accepted: 08/09/2019] [Indexed: 02/01/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS1) is an essential feedback regulator extensively involved in many different cytokine signaling pathways, such as regulation of the immune system and growth of organism. However, the molecular and functional information on socs1 genes in freshwater fish is unclear. In the present paper, we identified and characterized the full-length closely related but distinct socs1 genes (socs 1a and -1b) in blunt snout bream (Megalobrama amblycephala). The bioinformatic analysis results showed that duplicated socs1s shared majority conserved motifs with other vertebrates. Both socs1a and -1b mRNAs were detected throughout embryogenesis, and gradually increase and then constantly expressed after 16 hpf. Whole-mount in situ hybridization demonstrated that socs1a and socs1b mRNAs were detected in the brain at 12hpf and 24hpf, and in the notochord and brain at 36hpf. In adult fish, the socs1a mRNA were strongly expressed in the heart, eye, kidney, spleen and gonad, but were found to be relatively low in the intestine and liver. On the other hand, the expression of socs1b mRNA was significantly high in the muscle, eye and spleen, and relatively low in the intestine, liver, skin and heart. The results of hGH treatment experiment showed that socs1a and 1b mRNAs were upregulated markedly in the kidney, muscle and liver. Overexpression of socs1s significantly inhibit the GH and JAK/STAT factor stat3 and the inhibitory effect of SOCS1s on GH may be involved in JAK-STAT signaling pathway. These results indicate that SOCS1 plays an important role in regulating growth and development.
Collapse
Affiliation(s)
- Xin-Yu Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Shan-Shan Zhao
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China
| | - Jian-Guang Zhou
- Yangtze River Fisheries Research Institute, CAFS, Fishery Products Quality Safety Risk Assessment Laboratory (Wuhan) of Minstry of Agriculture and Rural Affaris of the P.R. China, Wuhan 430223, China.
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai 201306, China.
| |
Collapse
|
22
|
Liu Q, Yan H, Hu P, Liu W, Shen X, Cui X, Wu Y, Yuan Z, Zhang L, Zhang Y, Song C, Liu Y. Growth and survival of Takifugu rubripes larvae cultured under different light conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1533-1549. [PMID: 31001755 DOI: 10.1007/s10695-019-00639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
We assessed the effects of light intensity and spectrum on the growth and survival of Takifugu rubripes larvae from 30 to 69 days after hatching. Five lighting regimes were applied using 0.5, 1.5, and 3.0 W m-2 full spectrum white (W0.5, W1.5, W3.0), 0.5 W m-2 yellow (Y0.5), and 0.5 W m-2 blue light (B0.5). At the end of the experiment, body length, wet weight, and specific growth rate from day 0 to day 39 were significantly greater in larvae reared under W3.0 than under B0.5 (P ˂ 0.05). No significant differences were observed among W0.5, W1.5, and W3.0, or among W0.5, Y0.5, and B0.5 (P > 0.05). Survival rate was significantly higher in larvae reared under W1.5 than W0.5 (P ˂ 0.05), but no significant differences were observed among W0.5, Y0.5, and B0.5 (P > 0.05). Additionally, light conditioning did not affect the total thickness of the retina. Although the ratio of the thickness of the retinal pigment epithelium layer/total thickness (TT) was significantly higher in larvae exposed to W3.0 compared with those exposed to other light conditions, and the thickness of the outer nuclear layer/TT was significantly lower in larvae exposed to W3.0 compared with those exposed to W0.5 (P < 0.05), no relationship was confirmed between the structure of the retina and the growth performance of the T. rubripes larvae. Expression patterns of two stress-related and seven growth-related genes were also compared with the biometric parameters investigated in the experimental groups. No significant differences in the aanat1a, crh, ss1, igf1, or igf2 expression were observed among the five treatments. Pomc expression was significantly lower in larvae exposed to W1.5 than the larvae exposed to W0.5, and it was significantly lower in larvae exposed to Y0.5 than in larvae exposed to W0.5 or B0.5 (P < 0.05). Significant differences were also found in the expression of gh, with the highest levels being observed under W3.0, while the lowest levels were observed in B0.5 (P < 0.05). Ghrh expression was significantly higher in W3.0 (P < 0.05). These results should be considered when designing rearing protocols for fugu larvae in aquaculture systems.
Collapse
Affiliation(s)
- Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Pengfei Hu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Wenlei Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yumeng Wu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Zhen Yuan
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yanxiang Zhang
- Dalian Fugu Foods Co., Ltd, No. 888, Bishui Road, Economic Development Zone, Dalian, 116400, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Ying Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
23
|
Amenyogbe E, Chen G, Wang Z. Identification, characterization, and expressions profile analysis of growth hormone receptors (GHR1 and GHR2) in Hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus polyphekadion ♂). Genomics 2019; 112:1-9. [PMID: 31121246 DOI: 10.1016/j.ygeno.2019.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 01/31/2023]
Abstract
Growth hormone is an essential hormone that plays essential roles in growth, metabolism, cellular differentiation, immunity and reproduction in fish, by means of the growth hormone receptors. The encoding cDNA growth hormone receptors (GHR1 and GHR2) were cloned and characterized from Hybrid grouper (Epinephelus fuscoguttatus♀ × Epinephelus polyphekadion♂). Sequence analysis of the cloned GHR1 was observed as containing 2176, which comprised an ORF of 1842 bp, 5 UTR of 6 bp and 3 UTR of 328 bp, with 612 amino acids encoding proteins, while GHR2 was observed as containing 1824 bp that encompassed an ORF of 708 bp, 5 UTR of 48 bp and 3 UTR of 1068 bp with 235 amino acids encoding proteins. Relative mRNA expression of GHR1 and GHR2 in the liver and muscle was found to be highest respectively. Our findings provide vital statistics of GHRs likely to play a significant role in the growth of the fish.
Collapse
Affiliation(s)
- Eric Amenyogbe
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China.
| | - Zhongliang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Laboratory of Fish Aquaculture, Zhanjiang 524025, China
| |
Collapse
|
24
|
Mun SH, You JH, Oh HJ, Lee CH, Baek HJ, Lee YD, Kwon JY. Expression Patterns of Growth Related Genes in Juvenile Red Spotted Grouper ( Epinephelus akaara) with Different Growth Performance after Size Grading. Dev Reprod 2019; 23:35-42. [PMID: 31049470 PMCID: PMC6487320 DOI: 10.12717/dr.2019.23.1.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 11/18/2022]
Abstract
Fish shows great difference in growth rate between individuals during larval
development and early growth. This difference seriously reduces the production
efficiency in fish culture. Growth hormone (GH)/Insulin-like growth factor 1
(IGF1) system is said to play some pivotal roles in fish growth. In this study,
we investigated differences of GH, IGF1 and GHR gene expressions in juvenile red
spotted grouper (Epinephelus akaara) with different growth
performance. Red spotted groupers were reared under the same environmental
condition (water temperature 24±1℃, natural light) for 96 days
after hatching. They were divided into 3 groups by size (fast growing, middle
growing and slow growing groups: FGG, MGG, and SGG, respectively). RNA was
extracted from the brain, liver and muscle tissues from each group, and target
gene expression was examined by real-time PCR. In the brain with pituitary
gland, expression of GH gene in FGG was significantly higher than the expression
in SGG, but the expression of IGF1 and GHR genes in the muscle was highest in
SGG. Difference of GHR and IGF1 mRNA in the liver between groups with different
growth performance was less clear than that in other tissues, although level of
IGF1 mRNA was higher in SGG than in MGG. These results suggest that hormonal
governing of growth is not the same in fast growing and slow growing fish, and
size grading could cause a shift of hormonal state and growth pattern in this
species.
Collapse
Affiliation(s)
- Seong Hee Mun
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Jin Ho You
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | - Hyeon Ji Oh
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| | | | - Hea Ja Baek
- Dept. of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Don Lee
- Dept. of Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Joon Yeong Kwon
- Dept. of Aquatic Life Medical Science, Sunmoon University, Asan 31460, Korea
| |
Collapse
|
25
|
Yuan C, Freeman BT, McArdle TJ, Jung JP, Ogle BM. Conserved pathway activation following xenogeneic, heterotypic fusion. FASEB J 2019; 33:6767-6777. [PMID: 30807240 DOI: 10.1096/fj.201801700r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fusion between cells of different organisms (i.e., xenogeneic hybrids) can occur, and for humans this may occur in the course of tissue transplantation, animal handling, and food production. Previous work shows that conferred advantages are rare in xenogeneic hybrids, whereas risks of cellular dysregulation are high. Here, we explore the transcriptome of individual xenogeneic hybrids of human mesenchymal stem cells and murine cardiomyocytes soon after fusion and ask whether the process is stochastic or involves conserved pathway activation. Toward this end, single-cell RNA sequencing was used to analyze the transcriptomes of hybrid cells with respect to the human and mouse genomes. Consistent with previous work, hybrids possessed a unique transcriptome distinct from either fusion partner but were dominated by the cardiomyocyte transcriptome. New in this work is the documentation that a few genes that were latent in both fusion partners were consistently expressed in hybrids. Specifically, human growth hormone 1, murine ribosomal protein S27, and murine ATP synthase H+ transporting, mitochondrial Fo complex subunit C2 were expressed in nearly all hybrids. The consistent activation of latent genes between hybrids suggests conserved signaling mechanisms that either cause or are the consequence of fusion of these 2 cell types and might serve as a target for limiting unwanted xenogeneic fusion in the future.-Yuan, C., Freeman, B. T., McArdle, T. J., Jung, J. P., Ogle, B. M. Conserved pathway activation following xenogeneic, heterotypic fusion.
Collapse
Affiliation(s)
- Ce Yuan
- Bioinformatics and Computational Biology Program, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Stem Cell Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Brian T Freeman
- Stem Cell Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tanner J McArdle
- Stem Cell Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jangwook P Jung
- Stem Cell Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Brenda M Ogle
- Stem Cell Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.,Lillehei Heart Institute, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA; and.,Institute for Engineering in Medicine, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Stevenson MJ, Uyeda KS, Harder NHO, Heffern MC. Metal-dependent hormone function: the emerging interdisciplinary field of metalloendocrinology. Metallomics 2019; 11:85-110. [PMID: 30270362 PMCID: PMC10249669 DOI: 10.1039/c8mt00221e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
For over 100 years, there has been an incredible amount of knowledge amassed concerning hormones in the endocrine system and their central role in human health. Hormones represent a diverse group of biomolecules that are released by glands, communicate signals to their target tissue, and are regulated by feedback loops to maintain organism health. Many disease states, such as diabetes and reproductive disorders, stem from misregulation or dysfunction of hormones. Increasing research is illuminating the intricate roles of metal ions in the endocrine system where they may act advantageously in concert with hormones or deleteriously catalyze hormone-associated disease states. As the critical role of metal ions in the endocrine system becomes more apparent, it is increasingly important to untangle the complex mechanisms underlying the connections between inorganic biochemistry and hormone function to understand and control endocrinological phenomena. This tutorial review harmonizes the interdisciplinary fields of endocrinology and inorganic chemistry in the newly-termed field of "metalloendocrinology". We describe examples linking metals to both normal and aberrant hormone function with a focus on highlighting insight to molecular mechanisms. Hormone activities related to both essential metal micronutrients, such as copper, iron, zinc, and calcium, and disruptive nonessential metals, such as lead and cadmium are discussed.
Collapse
Affiliation(s)
- Michael J Stevenson
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
27
|
Li R, Hong P, Lan H, Zheng X. Growth Hormone Did Not Activate Its Intracellular Signaling Molecules in Rats' Liver Hepatocytes During Early Life Period. Int J Endocrinol Metab 2018; 16:e61385. [PMID: 30214460 PMCID: PMC6119208 DOI: 10.5812/ijem.61385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/26/2018] [Accepted: 06/02/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although growth hormone (GH) has essential roles in the growth of animals, it has no growth-promoting effect during infancy period. The molecular mechanism underlying lack of growth-promoting effect of GH during infancy period remains unclear. Important signaling pathways are mediated by GH, including Janus kinase 2 (JAK2), extracellular signal-regulated kinase 1/2 (ERK1/2), signal transducers, and activators of transcription 5, 3, and 1 (STATs 5, 3 and 1). OBJECTIVES This study explored the underlying molecular mechanisms driving to the lack of growth-promoting effect of GH in the early stage of life by in vivo assessment of intracellular signal response (STAT5/ 3/ 1, JAK2 and ERK1/ 2) to GH at different physiological stages. METHODS In this study, five age groups of rats (1-, 4-day-old, and 1-, 2-, 3-week-old) were selected. The rats were anesthetized using pentobarbital (100 mg/kg) and then received the rat GH (2mg/kg) via inferior vena cava injection. The control rats were injected with normal saline during the same period. The intracellular signal response to GH was assessed by Western blot analysis. RESULTS JAK2 and STAT5 were expressed in 1-day and 4-day-old newborn rats and their expression levels were comparable with the levels of the 1-, 2-, and 3-week-old rats; however, JAK2/STAT5 phosphorylation was not observed in 1-day-old and 4-day-old newborn rats after stimulation with GH in the liver. Similar to JAK2 and STAT5, we did not detect STAT3/1 activation during infancy stages although basic STAT3 and STAT1 were also expressed in hepatocytes from newborn rats. In addition we detected ERK1/2 activation in 4-day-old, 1-, 2-, and 3-week-old rats but not in 1-day-old rats. CONCLUSIONS JAK2, STAT5, STAT3, STAT1, and ERK1/2 were not simultaneously activated by GH in newborn rats; this finding may be one of the underlying mechanism of GH insensitivity in newborn rats.
Collapse
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Pan Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Corresponding author: Hainan Lan, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail: ; Xin Zheng, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China. Tel: +86-043184517235, Fax: +86-431-84533462, E-mail:
| |
Collapse
|
28
|
Abstract
Growth hormone (GH) research and its clinical application for the treatment of growth disorders span more than a century. During the first half of the 20th century, clinical observations and anatomical and biochemical studies formed the basis of the understanding of the structure of GH and its various metabolic effects in animals. The following period (1958-1985), during which pituitary-derived human GH was used, generated a wealth of information on the regulation and physiological role of GH - in conjunction with insulin-like growth factors (IGFs) - and its use in children with GH deficiency (GHD). The following era (1985 to present) of molecular genetics, recombinant technology and the generation of genetically modified biological systems has expanded our understanding of the regulation and role of the GH-IGF axis. Today, recombinant human GH is used for the treatment of GHD and various conditions of non-GHD short stature and catabolic states; however, safety concerns still accompany this therapeutic approach. In the future, new therapeutics based on various components of the GH-IGF axis might be developed to further improve the treatment of such disorders. In this Review, we describe the history of GH research and clinical use with a particular focus on disorders in childhood.
Collapse
Affiliation(s)
- Michael B Ranke
- Department of Pediatric Endocrinology, University Children's Hospital, Tübingen, Germany
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Wang K, Wu P, Yang Q, Chen D, Zhou J, Jiang A, Ma J, Tang Q, Xiao W, Jiang Y, Zhu L, Li X, Tang G. Detection of Selection Signatures in Chinese Landrace and Yorkshire Pigs Based on Genotyping-by-Sequencing Data. Front Genet 2018; 9:119. [PMID: 29686696 PMCID: PMC5900008 DOI: 10.3389/fgene.2018.00119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/26/2018] [Indexed: 12/20/2022] Open
Abstract
The domestic pigs have been undergone intense selection pressures for these development of interested traits following domestication and modern breeding. This has altered many traits in most of pig breeds, such as growth rate, body weight, fertility, and immunity. Thus, the objectives of this study were to (1) detect these selection signatures and identify the candidate genes that show evidences of recent artificial selection at the level of whole genome, (2) be beneficial to understand the relationship between genomic structure and phenotypic diversity, and (3) highlight the key roles of these candidate genes in growth and development in the two breeds. The data consisted of total raw number of 345570 single nucleotide polymorphisms (SNPs) in 1200 individuals from the Chinese Landrace pigs (L, n = 600) and Yorkshire pigs (Y, n = 600). Based on these SNPs data, two complementary methods, population differentiation (Fst) and composite likelihood ratio test (CLR), were carried out to detect the selection signatures in this study. A total of 540 potential selection regions (50 kb) which contained 111 candidate genes were detected for Landrace-Yorkshire pair (L-Y) by Fst. In addition, 73 and 125 candidate genes were found for Landrace pigs and Yorkshire pigs by CLR test based on 321 and 628 potential selection regions, respectively. Some candidate genes are associated with important traits and signaling pathways including the ACACA, MECR, COL11A1, GHR, IGF1R, IGF2R, IFNG, and MTOR gene. The ACACA and MECR gene are related to fatty acid biosynthesis. The COL11A1 gene is essential for the development of the normal differentiation. The GHR, IGF1R, and IGF2R gene are significant candidate genes which play major roles in the growth and development in animals. The IFNG gene is associated with some aspects of immune response. The MTOR gene regulates many signaling pathways and signaling transduction pathway.
Collapse
Affiliation(s)
- Kai Wang
- *Correspondence: Kai Wang, Guoqing Tang,
| | | | | | | | | | | | | | | | | | | | | | | | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Troike KM, Henry BE, Jensen EA, Young JA, List EO, Kopchick JJ, Berryman DE. Impact of Growth Hormone on Regulation of Adipose Tissue. Compr Physiol 2017. [PMID: 28640444 DOI: 10.1002/cphy.c160027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017.
Collapse
Affiliation(s)
- Katie M Troike
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Brooke E Henry
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Elizabeth A Jensen
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Jonathan A Young
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Edison Biotechnology Institute, Konneker Research Labs, Ohio University, Athens, Ohio, USA
| | - Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
32
|
Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of Growth Hormone in Breast Cancer. Endocrinology 2017; 158:1543-1555. [PMID: 28379395 DOI: 10.1210/en.2016-1928] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Sushmita B Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| |
Collapse
|
33
|
Liao S, Vickers MH, Evans A, Stanley JL, Baker PN, Perry JK. Comparison of pulsatile vs. continuous administration of human placental growth hormone in female C57BL/6J mice. Endocrine 2016; 54:169-181. [PMID: 27515803 DOI: 10.1007/s12020-016-1060-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/12/2016] [Indexed: 01/14/2023]
Abstract
Exogenous growth hormone has different actions depending on the method of administration. However, the effects of different modes of administration of the placental variant of growth hormone on growth, body composition and glucose metabolism have not been investigated. In this study, we examined the effect of pulsatile vs. continuous administration of recombinant variant of growth hormone in a normal mouse model. Female C57BL/6J mice were randomized to receive vehicle or variant of growth hormone (2 or 5 mg/kg per day) by daily subcutaneous injection (pulsatile) or osmotic pump for 6 days. Pulsatile treatment with 2 and 5 mg/kg per day significantly increased body weight. There was also an increase in liver, kidney and spleen weight via pulsatile treatment, whereas continuous treatment did not affect body weight or organ size. Pulsatile treatment with 5 mg/kg per day significantly increased fasting plasma insulin concentration, whereas with continuous treatment, fasting insulin concentration was not significantly different from the vehicle-treated control. However, a dose-dependent increase in fasting insulin concentration and decrease in insulin sensitivity, as assessed by HOMA, was observed with both modes of treatment. At 5 mg/kg per day, hepatic growth hormone receptor expression was increased compared to vehicle-treated animals, by both modes of administration. Pulsatile variant of growth hormone did not alter the plasma insulin-like growth factor-1 concentration, whereas a slight decrease was observed with continuous variant of growth hormone treatment. Neither pulsatile nor continuous treatment affected hepatic insulin-like growth factor-1 mRNA expression. Our findings suggest that pulsatile variant of growth hormone treatment was more effective in stimulating growth but caused marked hyperinsulinemia in mice.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Angharad Evans
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Joanna L Stanley
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Philip N Baker
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Gravida: National Centre for Growth and Development, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand.
- Gravida: National Centre for Growth and Development, Auckland, New Zealand.
| |
Collapse
|
34
|
Mechanisms of cortisol action in fish hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:136-145. [DOI: 10.1016/j.cbpb.2016.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
|
35
|
Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory. Sci Rep 2016; 6:30174. [PMID: 27460882 PMCID: PMC4962052 DOI: 10.1038/srep30174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R2 of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.
Collapse
|
36
|
Amyloid formation of growth hormone in presence of zinc: Relevance to its storage in secretory granules. Sci Rep 2016; 6:23370. [PMID: 27004850 PMCID: PMC4804206 DOI: 10.1038/srep23370] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022] Open
Abstract
Amyloids are cross-β-sheet fibrillar aggregates, associated with various human diseases and native functions such as protein/peptide hormone storage inside secretory granules of neuroendocrine cells. In the current study, using amyloid detecting agents, we show that growth hormone (GH) could be stored as amyloid in the pituitary of rat. Moreover, to demonstrate the formation of GH amyloid in vitro, we studied various conditions (solvents, glycosaminoglycans, salts and metal ions) and found that in presence of zinc metal ions (Zn(II)), GH formed short curvy fibrils. The amyloidogenic nature of these fibrils was examined by Thioflavin T binding, Congo Red binding, transmission electron microscopy and X-ray diffraction. Our biophysical studies also suggest that Zn(II) initiates the early oligomerization of GH that eventually facilitates the fibrillation process. Furthermore, using immunofluorescence study of pituitary tissue, we show that GH in pituitary significantly co-localizes with Zn(II), suggesting the probable role of zinc in GH aggregation within secretory granules. We also found that GH amyloid formed in vitro is capable of releasing monomers. The study will help to understand the possible mechanism of GH storage, its regulation and monomer release from the somatotrophs of anterior pituitary.
Collapse
|
37
|
Liao S, Vickers MH, Stanley JL, Ponnampalam AP, Baker PN, Perry JK. The Placental Variant of Human Growth Hormone Reduces Maternal Insulin Sensitivity in a Dose-Dependent Manner in C57BL/6J Mice. Endocrinology 2016; 157:1175-86. [PMID: 26671184 DOI: 10.1210/en.2015-1718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human placental GH variant (GH-V) is secreted continuously from the syncytiotrophoblast layer of the placenta during pregnancy and is thought to play a key role in the maternal adaptation to pregnancy. Maternal GH-V concentrations are closely related to fetal growth in humans. GH-V has also been proposed as a potential candidate to mediate insulin resistance observed later in pregnancy. To determine the effect of maternal GH-V administration on maternal and fetal growth and metabolic outcomes during pregnancy, we examined the dose-response relationship for GH-V administration in a mouse model of normal pregnancy. Pregnant C57BL/6J mice were randomized to receive vehicle or GH-V (0.25, 1, 2, or 5 mg/kg · d) by osmotic pump from gestational days 12.5 to 18.5. Fetal linear growth was slightly reduced in the 5 mg/kg dose compared with vehicle and the 0.25 mg/kg groups, respectively, whereas placental weight was not affected. GH-V treatment did not affect maternal body weights or food intake. However, treatment with 5 mg/kg · d significantly increased maternal fasting plasma insulin concentrations with impaired insulin sensitivity observed at day 18.5 as assessed by homeostasis model assessment. At 5 mg/kg · d, there was also an increase in maternal hepatic GH receptor/binding protein (Ghr/Ghbp) and IGF binding protein 3 (Igfbp3) mRNA levels, but GH-V did not alter maternal plasma IGF-1 concentrations or hepatic Igf-1 mRNA expression. Our findings suggest that at higher doses, GH-V treatment can cause hyperinsulinemia and is a likely mediator of the insulin resistance associated with late pregnancy.
Collapse
Affiliation(s)
- Shutan Liao
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Mark H Vickers
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Joanna L Stanley
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Anna P Ponnampalam
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Philip N Baker
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| | - Jo K Perry
- Liggins Institute (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), University of Auckland, Auckland 1023, New Zealand; Gravida: National Centre for Growth and Development (S.L., M.H.V., J.L.S., A.P.P., P.N.B., J.K.P.), Auckland 1142, New Zealand; and The First Affiliated Hospital (S.L.), Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
38
|
Lisa C, Albera A, Carnier P, Stasio LD. Variability in Candidate Genes Revealed Associations with Meat Traits in the Piemontese Cattle Breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2013.e46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Growth Hormone Influence on the Morphology and Size of the Mouse Meibomian Gland. J Ophthalmol 2016; 2016:5728071. [PMID: 26981277 PMCID: PMC4769763 DOI: 10.1155/2016/5728071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Purpose. We hypothesize that growth hormone (GH) plays a significant role in the regulation of the meibomian gland. To test our hypothesis, we examined the influence of GH on mouse meibomian gland structure. Methods. We studied four groups of mice, including (1) bovine (b) GH transgenic mice with excess GH; (2) GH receptor (R) antagonist (A) transgenic mice with decreased GH; (3) GHR knockout (−/−) mice with no GH activity; and (4) wild type (WT) control mice. After mouse sacrifice, eyelids were processed for morphological and image analyses. Results. Our results show striking structural changes in the GH-deficient animals. Many of the GHR−/− and GHA meibomian glands featured hyperkeratinized and thickened ducts, acini inserting into duct walls, and poorly differentiated acini. In contrast, the morphology of WT and bGH meibomian glands appeared similar. The sizes of meibomian glands of bGH mice were significantly larger and those of GHA and GHR−/− mice were significantly smaller than glands of WT mice. Conclusions. Our findings support our hypothesis that the GH/IGF-1 axis plays a significant role in the control of the meibomian gland. In addition, our data show that GH modulates the morphology and size of this tissue.
Collapse
|
40
|
Yamaguchi Y, Takagi W, Kuraku S, Moriyama S, Bell JD, Seale AP, Lerner DT, Grau EG, Hyodo S. Discovery of conventional prolactin from the holocephalan elephant fish, Callorhinchus milii. Gen Comp Endocrinol 2015; 224:216-27. [PMID: 26320855 DOI: 10.1016/j.ygcen.2015.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 11/17/2022]
Abstract
The conventional prolactin (PRL), also known as PRL1, is an adenohypophysial hormone that critically regulates various physiological events in reproduction, metabolism, growth, osmoregulation, among others. PRL1 shares its evolutionary origin with PRL2, growth hormone (GH), somatolactin and placental lactogen, which together form the GH/PRL hormone family. Previously, several bioassays implied the existence of PRL1 in elasmobranch pituitaries. However, to date, all attempts to isolate PRL1 from chondrichthyans have been unsuccessful. Here, we cloned PRL1 from the pituitary of the holocephalan elephant fish, Callorhinchus milii, as the first report of chondrichthyan PRL1. The putative mature protein of elephant fish PRL1 (cmPRL1) consists of 198 amino acids, containing two conserved disulfide bonds. The orthologous relationship of cmPRL1 to known vertebrate PRL1s was confirmed by the analyses of molecular phylogeny and gene synteny. The cmPRL1 gene was similar to teleost PRL1 genes in gene synteny, but was distinct from amniote PRL1 genes, which most likely arose in an early amphibian by duplication of the ancestral PRL1 gene. The mRNA of cmPRL1 was predominantly expressed in the pituitary, but was considerably less abundant than has been previously reported for bony fish and tetrapod PRL1s; the copy number of cmPRL1 mRNA in the pituitary was less than 1% and 0.1% of that of GH and pro-opiomelanocortin mRNAs, respectively. The cells expressing cmPRL1 mRNA were sparsely distributed in the rostral pars distalis. Our findings provide a new insight into the studies on molecular and functional evolution of PRL1 in vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA.
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo 650-0047, Japan.
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.
| | - Justin D Bell
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia.
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA.
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
41
|
[Laron syndrome: Presentation, treatment and prognosis]. Presse Med 2015; 45:40-5. [PMID: 26564390 DOI: 10.1016/j.lpm.2015.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 12/16/2014] [Accepted: 02/17/2015] [Indexed: 11/23/2022] Open
Abstract
Laron syndrome is a rare cause of short stature due to an abnormality of growth hormone receptor (GHR). It is characterized by poor phenotype-genotype correlation and geographic predilection essentially in the Mediterranean rim, the Middle East and Indian subcontinent. This syndrome corresponds to an endogenous and exogenous complete insensitivity of GH and manifests by early hypoglycemia, an extremely severe short stature and dysmorphic features contrasting with high levels of circulating GH. To date, treatment with recombinant IGF1 is the only treatment option that has improved the terrible prognosis in these patients but does not actually realize the conditions for genuine replacement therapy.
Collapse
|
42
|
Lan H, Zheng X, Khan MA, Li S. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. Int J Biochem Cell Biol 2015; 68:101-8. [DOI: 10.1016/j.biocel.2015.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/23/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
|
43
|
Abstract
PURPOSE Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate signal transducers and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study was to test these hypotheses. METHODS We studied cell signaling, proliferation, and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH's growth promoting actions, may play a role in this effect. RESULTS We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts and is not mediated by IGF-1. CONCLUSIONS HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation.
Collapse
|
44
|
Zhao JL, Si YF, He F, Wen HS, Li JF, Ren YY, Zhao ML, Huang ZJ, Chen SL. Polymorphisms and DNA methylation level in the CpG site of the GHR1 gene associated with mRNA expression, growth traits and hormone level of half-smooth tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:853-865. [PMID: 25893903 DOI: 10.1007/s10695-015-0052-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
The objectives of the present study were to estimate the GHR1 gene mutations and methylation status of CpGs, and whether those mutations and methylation were involved in the regulation of GHR1 gene expression, hormone level and growth traits in half-smooth tongue sole (Cynoglossus semilaevis). Identification of single-nucleotide polymorphisms was performed on 43 male fish. Through polymerase chain reaction-single-strand conformation polymorphism and sequencing, two SNPs were found. SNP1 [c.G1357A (p.Val376Ile)] creating one CpG site located in exon 8 was named L1 locus, and SNP2 (c.G1479A) located in exon 9 was named L2 locus. Individuals were divided into three genotypes, AA, AG and GG according to L1 locus (GG genotype had one more CpG site because of the mutation), and into two genotypes, AA- and GG-based on L2 locus. The results showed that only L1 locus was significantly associated with body weight (P < 0.01), gonad weight (P ≤ 0.05), triiodothyronine (T3) level (P ≤ 0.05) and mRNA expression (P < 0.01). At L1 locus, newly created CpG site in GG genotype was highly methylated (93.3 %), while there was no difference of methylation level in the other two CpG sites among three genotypes. AA genotype and AG genotype having higher T3 level were significantly different (P ≤ 0.05) from GG genotype. There were significant differences among body weights of AA, AG and GG genotypes (P < 0.01). Gonad weights of AA genotype and AG genotype were significantly lower than GG genotype. The GHR1 mRNA expression of GG genotype was significantly lower than AA and AG genotypes (P < 0.01). These implied that mutations and methylation status of GHR1 gene might influence the hormone level, growth traits and gene expression in male half-smooth tongue sole and the L1 locus could be regarded as a potential candidate genetic and epigenetic marker in half-smooth tongue sole selection.
Collapse
Affiliation(s)
- J L Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zadjali F, Santana-Farre R, Mirecki-Garrido M, Ellis E, Norstedt G, Fernandez-Perez L, Flores-Morales A. Liver X receptor agonist downregulates growth hormone signaling in the liver. Horm Mol Biol Clin Investig 2015; 8:471-8. [PMID: 25961345 DOI: 10.1515/hmbci.2011.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/09/2011] [Indexed: 12/13/2022]
Abstract
Liver X receptor (LXR) agonists have been shown to influence the development of hyperlipidemia and atherosclerosis in mouse models. It has also been demonstrated that some LXR agonists can cause hepatic steatosis in experimental animals. Growth hormone (GH) is known to regulate hepatic metabolism and the absence of hepatic GH receptors (GHR) leads to hepatic steatosis. In this study, we analyzed whether the actions of LXR agonists could involve interference with GH signaling. We showed that LXR agonists impair GH signaling in hepatocytes. LXR agonist treatment attenuated GH induction of suppressor of cytokine signaling 2 (SOCS2), SOCS3, and CIS mRNA levels in BRL-4 cells. Likewise, the activity of a luciferase reporter vector driven by the GH response element (GHRE) of the SOCS2 gene was inhibited by simultaneous treatment with an LXR agonist. The inhibitory effect of LXR agonists on GH signals can be mimicked by overexpression of the LXR regulated factors, sterol regulatory element binding protein 1 (SREBP1) and SREBP2, in hepatic cells. In both cases total and phosphorylated signal transducers and activators of transcription 5b (STAT5b) protein levels were significantly reduced. DNA binding assays demonstrated that SREBP1 binds to an E-box within a previously defined GHRE in the SOCS2 gene promoter, but does not compete with STAT5b binding to a nearby site in the same promoter construct. Taken together, our findings indicate that the inhibitory effects of LXR agonists on GH signaling are mediated by SREBP1, through the downregulation of STAT5b gene transcription and stimulation of STAT5b protein degradation. The findings provide a new insight into the understanding of the molecular actions of LXR agonists, which may be of relevance to their pharmacological actions.
Collapse
|
46
|
Liu L, Wang Q, Cheng J, Fu Y, Jiang D, Xie J. Molecular characterization of a bipartite double-stranded RNA virus and its satellite-like RNA co-infecting the phytopathogenic fungus Sclerotinia sclerotiorum. Front Microbiol 2015; 6:406. [PMID: 25999933 PMCID: PMC4422086 DOI: 10.3389/fmicb.2015.00406] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 11/13/2022] Open
Abstract
A variety of mycoviruses have been found in Sclerotinia sclerotiorum. In this study, we report a novel mycovirus S. sclerotiorum botybirnavirus 1 (SsBRV1) that was originally isolated from the hypovirulent strain SCH941 of S. sclerotiorum. SsBRV1 has rigid spherical virions that are ∼38 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 6.4, 6.0, and 1.7 kbp, respectively) were packaged in the virions. dsRNA1 encodes a cap-pol fusion protein, and dsRNA2 encodes a polyprotein with unknown functions but contributes to the formation of virus particles. The dsRNA3 is dispensable and may be a satellite-like RNA of SsBRV1. Although phylogenetic analysis of the RdRp domain demonstrated that SsBRV1 is related to Botrytis porri RNA virus 1 (BpRV1) and Ustilago maydis dsRNA virus-H1, the structure proteins of SsBRV1 do not have any significant sequence similarities with other known viral proteins with the exception of those of BpRV1. SsBRV1 carrying dsRNA3 seems to have no obvious effects on the colony morphology, but can significantly reduce the growth rate and virulence of S. sclerotiorum. These findings provide new insights into the virus taxonomy, virus evolution and the interactions between SsBRV1 and the fungal hosts.
Collapse
Affiliation(s)
- Lijiang Liu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Qihua Wang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Yanping Fu
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology and The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
47
|
Quinnies KM, Bonthuis PJ, Harris EP, Shetty SR, Rissman EF. Neural growth hormone: regional regulation by estradiol and/or sex chromosome complement in male and female mice. Biol Sex Differ 2015; 6:8. [PMID: 25987976 PMCID: PMC4434521 DOI: 10.1186/s13293-015-0026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sex differences in pituitary growth hormone (GH) are well documented and coordinate maturation and growth. GH and its receptor are also produced in the brain where they may impact cognitive function and synaptic plasticity, and estradiol produces Gh sex differences in rat hippocampus. In mice, circulating estradiol increases Gh mRNA in female but not in male medial preoptic area (mPOA); therefore, additional factors regulate sexually dimorphic Gh expression in the brain. Thus, we hypothesized that sex chromosomes interact with estradiol to promote sex differences in GH. Here, we assessed the contributions of both estradiol and sex chromosome complement on Gh mRNA levels in three large brain regions: the hippocampus, hypothalamus, and cerebellum. METHODS We used the four core genotypes (FCG) mice, which uncouple effects of sex chromosomes and gonadal sex. The FCG model has a deletion of the sex-determining region on the Y chromosome (Sry) and transgenic insertion of Sry on an autosome. Adult FCG mice were gonadectomized and given either a blank Silastic implant or an implant containing 17β-estradiol. Significant differences in GH protein and mRNA were attributed to estradiol replacement, gonadal sex, sex chromosome complement, and their interactions, which were assessed by ANOVA and planned comparisons. RESULTS Estradiol increased Gh mRNA in the cerebellum and hippocampus, regardless of sex chromosome complement or gonadal sex. In contrast, in the hypothalamus, females had higher Gh mRNA than males, and XY females had more Gh mRNA than XY males and XX females. This same pattern was observed for GH protein. Because the differences in Gh mRNA in the hypothalamus did not replicate prior studies using other mouse models and tissue from mPOA or arcuate nucleus, we examined GH protein in the arcuate, a subdivision of the hypothalamus. Like the previous reports, and in contrast to the entire hypothalamus, a sex chromosome complement effect showed that XX mice had more GH than XY in the arcuate. CONCLUSIONS Sex chromosome complement regulates GH in some but not all brain areas, and within the hypothalamus, sex chromosomes have cell-specific actions on GH. Thus, sex chromosome complement and estradiol both contribute to GH sex differences in the brain.
Collapse
Affiliation(s)
- Kayla M Quinnies
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Paul J Bonthuis
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132-3401 USA
| | - Erin P Harris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Savera Rj Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Emilie F Rissman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
48
|
Wirostko B, Rafii M, Sullivan DA, Morelli J, Ding J. Novel Therapy to Treat Corneal Epithelial Defects: A Hypothesis with Growth Hormone. Ocul Surf 2015; 13:204-212.e1. [PMID: 26045234 DOI: 10.1016/j.jtos.2014.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 10/23/2022]
Abstract
Impaired corneal wound healing that occurs with ocular surface disease, trauma, systemic disease, or surgical intervention can lead to persistent corneal epithelial defects (PCED), which result in corneal scarring, ulceration, opacification, corneal neovascularization, and, ultimately, visual compromise and vision loss. The current standard of care can include lubricants, ointments, bandage lenses, amniotic membranes, autologous serum eye drops, and corneal transplants. Various inherent problems exist with application and administration of these treatments, which often may not result in a completely healed surface. A topically applicable compound capable of promoting corneal epithelial cell proliferation and/or migration would be ideal to accelerate healing. We hypothesize that human growth hormone (HGH) is such a compound. In a recent study, HGH was shown to activate signal transducer and activators of transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial migration in a co-culture system of corneal epithelial cells and fibroblasts. These effects require an intact communication between corneal epithelia and fibroblasts. Further, HGH promotes corneal wound healing in a rabbit debridement model, thus demonstrating the effectiveness of HGH in vivo as well. In conclusion, HGH may represent an exciting and effective topical therapeutic to promote corneal wound healing.
Collapse
Affiliation(s)
- Barbara Wirostko
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT; Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - MaryJane Rafii
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Julia Morelli
- Jade Therapeutics, Inc., University of Utah Research Park, Salt Lake City, UT
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, MA.
| |
Collapse
|
49
|
nee Pathak ND, Kumar P, Lal B. Endocrine regulation of testosterone production by Leydig cells in the catfish, Clarias batrachus: Probable mediators of growth hormone. Anim Reprod Sci 2015; 154:158-65. [DOI: 10.1016/j.anireprosci.2015.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022]
|
50
|
Celik O, Akhan SE, Hatipoglu E, Kadioglu P. Increased incidence of pelvic organ prolapse in women with acromegaly. Eur J Obstet Gynecol Reprod Biol 2014; 183:44-7. [PMID: 25461351 DOI: 10.1016/j.ejogrb.2014.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/22/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To evaluate gynecological problems of female patients with acromegaly and the relationship of these problems with the activity of the disease. STUDY DESIGN Thirty-four women with acromegaly and 27 age- and body mass index-matched female healthy controls (HC) were included in the study. Demographic features, medical history, hormonal status and disease activity were obtained. A detailed gynecological examination was performed. RESULTS The incidence of pelvic organ prolapse (POP) was higher in patients with acromegaly (53%, n=18) compared to the HC (15%, n=4) (p=0.003). Limiting the analysis to only cases with previous pregnancy, POP was seen in 18 (60%) of 30 cases with acromegaly and in 4 (20%) of 20 of the HC (p=0.005). Additionally, in cases with prior vaginal delivery, POP was present in 18 (60%) of 30 cases with acromegaly and in 4 (24%) of 17 of the HC (p=0.02). The frequency of POP was similar in patients with controlled and uncontrolled acromegaly (p=0.3). CONCLUSION Acromegaly may facilitate occurrence of pelvic organ prolapse and may cause additional health issues in female cases.
Collapse
Affiliation(s)
- Ozlem Celik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Suleyman Engin Akhan
- Department of Gynecology and Obstetrics, Istanbul Medical School, University of Istanbul, Istanbul, Turkey
| | - Esra Hatipoglu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey
| | - Pinar Kadioglu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cerrahpasa Medical School, University of Istanbul, Istanbul, Turkey.
| |
Collapse
|