1
|
van der Ham M, Hoytema van Konijnenburg E, van Rossum W, Gerrits J, van Hasselt P, Prinsen H, Jans J, Schlotawa L, Laugwitz L, de Sain-van der Velden M. Profiling and semi-quantitation of urine sulfatides by UHPLC-Orbitrap-HRMS. Anal Chim Acta 2025; 1350:343824. [PMID: 40155161 DOI: 10.1016/j.aca.2025.343824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Sulfatides are a class of sphingolipids which are abundant in the myelin sheet and oligodendrocytes, therefore they play a crucial role in the nervous system. Abnormal sulfatide excretion has been linked to several neurodegenerative disorders including metachromatic leukodystrophy (MLD) and multiple sulfatase deficiency (MSD). In MLD and MSD, sulfatide catabolism is impaired due to the reduced lysosomal arylsulfatase A (ARSA) activity resulting in an accumulation of sulfatides, which can be useful in a diagnostic setting. The current study aims to develop a method for semi-quantitation of urine sulfatides as a diagnostic tool for MLD and MSD. RESULTS We developed a sensitive and accurate method for identifying 48 urinary molecular sulfatide species by UHPLC-Orbitrap-HRMS analysis. Newborns were classified according to their gestational age. The proportion of sulfatides bearing saturated fatty acids attached to d18:1 and d18:0 sulfatide backbone was higher in newborns and increased with prematurity. The 5 most abundant sulfatide species in all samples (controls, MLD and MSD) were C22:0, C24:0, C22:0-OH, C24:0-OH and C24:1-OH fatty acid attached to d18:1 sulfatide backbone. The top discriminant feature between MLD patients and controls was d18:1/C26:1-OH. Total semi-quantitation of 6 sulfatide species (5 most abundant sulfatides + d18:1/C26:1-OH) shows that overall excretion gradually decreases with age and all MLD patients were successfully discriminated from their age-matched controls. While sulfatide excretion was increased in the severe MSD patients (n = 2), it was normal in the attenuated MSD patients, who had high residual ARSA activity. SIGNIFICANCE This study proves the feasibility of diagnosing MLD and severe MSD based on sulfatide excretion in urine. We established (gestational) age-specific cut-offs of the total sulfatide excretion and composition. Interpretation of the composition (e.g. by calculation the ratio (d18:1/C22:0+d18:1/C24:0)/(d18:1/C22:0-OH + d18:1/C24:0-OH)) may reduce false positives, especially when sampling at young age.
Collapse
Affiliation(s)
- Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Eva Hoytema van Konijnenburg
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter van Rossum
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Peter van Hasselt
- Section of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Judith Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Lars Schlotawa
- Department of Paediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology - Translational Neuroinflammaton and Automated Microscopy, Göttingen, Germany
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; Neuropediatrics, General Paediatrics, Diabetology, Endocrinology and Social Paediatrics, University of Tübingen, University Hospital Tübingen, Tübingen, Germany
| | | |
Collapse
|
2
|
Sanner A, Hardt R, Matzner U, Winter D. Data-Independent Acquisition-Parallel Reaction Monitoring Acquisition Reveals Age-Dependent Alterations of the Lysosomal Proteome in a Mouse Model of Metachromatic Leukodystrophy. Anal Chem 2024; 96:19567-19575. [PMID: 39620638 DOI: 10.1021/acs.analchem.4c04378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
For the reproducible analysis of peptides by mass spectrometry-based proteomics, data-independent acquisition (DIA) and parallel/multiple reaction monitoring (PRM/MRM) deliver unrivalled performance with respect to sensitivity and reproducibility. Both approaches, however, come with distinct advantages and shortcomings. While DIA enables unbiased whole proteome analysis, it shows limitations with respect to dynamic range and the quantification of low-abundant proteins. PRM, on the other hand, is ideally suited to reproducibly quantify selected proteins even if they are low-abundant, but no knowledge of the remaining sample is obtained. Here, we combine both methods into a mixed DIA-PRM acquisition approach, merging their benefits while operating at reduced machine run times and needed sample amounts. We demonstrate the feasibility of DIA-PRM by merging a scheduled PRM assay for 103 peptides, representing 59 low-abundant lysosomal hydrolases, with a DIA data acquisition scheme. After benchmarking DIA-PRM with mouse embryonic fibroblast (MEF) whole cell lysates, we use the approach to investigate age-related proteomic changes in brain tissues of a mouse model of metachromatic leukodystrophy (MLD). This revealed an MLD-related progressive increase in distinct classes of lysosomal hydrolases as well as alterations of proteins related to myelin and cellular metabolism. All data are available via ProteomeXchange with PXD052313.
Collapse
Affiliation(s)
- Anne Sanner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Robert Hardt
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Matzner
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
3
|
Hammoud M, Rodrigues AMS, Assiri I, Sabir E, Lafhal K, Najeh S, Jakani M, Imad N, Bourrahouat A, Ait Sab I, Elqadiry R, Nassih H, Outzourit A, Elamiri M, Maoulainine F, Slitine Elidrissi N, Bennaoui F, Bourous M, Mrhar S, Essaadouni L, Stien D, Rada N, Bouskraoui M, Houël E, Fdil N. Sphingolipidoses in Morocco: Chemical profiling for an affordable and rapid diagnosis strategy. Prostaglandins Other Lipid Mediat 2023; 168:106751. [PMID: 37295489 DOI: 10.1016/j.prostaglandins.2023.106751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/28/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Sphingolipidoses are a group of metabolic diseases in which lysosomal hydrolases dysfunction disrupt normal sphingolipids' metabolism, leading to excess accumulation in cellular compartments and excretion in urine. These pathologies represent a significant burden among Moroccan population, for which an easy access to enzymatic assays and genetic tests is not guaranteed. Parallel analytical methods thus have to be developed for preliminary screening. In this study, 107 patients were addressed to the metabolic platform of the Marrakesh Faculty of Medicine for diagnosis confirmation. Thin-Layer Chromatography was used as a first step to perform chemical profiling of the patients' urinary lipids, allowing 36% of the patients to be efficiently oriented towards the adequate enzymatic assay. UPLC-MS/MS analyses of urinary sulfatides excreted in urines patient had been used to control the reliability of TLC analysis and to obtain more accurate information related to the sulfatides isoforms. This analytical process combining TLC with UPLC-MS/MS has enabled rapid and appropriate patient management in a reduced time and with reduced resources.
Collapse
Affiliation(s)
- M Hammoud
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - A M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - I Assiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - Es Sabir
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - K Lafhal
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - S Najeh
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - M Jakani
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco
| | - N Imad
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Bourrahouat
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - I Ait Sab
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - R Elqadiry
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - H Nassih
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - A Outzourit
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Elamiri
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco
| | - F Maoulainine
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - N Slitine Elidrissi
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - F Bennaoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bourous
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - S Mrhar
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - L Essaadouni
- Internal Medicine Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - D Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France
| | - N Rada
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - M Bouskraoui
- Paediatrics' Department, Mohammed VI Hospital University, Marrakesh, Morocco
| | - E Houël
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer 66650, France.
| | - N Fdil
- Metabolic platform, Biochemistry Laboratory, Team for Childhood, Health and Development, Faculty of Medicine, Cadi Ayyad University, B.P. 7010, Marrakesh, Morocco; Moroccan Association for Inherited Metabolic Diseases, Morocco.
| |
Collapse
|
4
|
A Type 3 Gaucher-Like Disease Due To Saposin C Deficiency in Two Emirati Families Caused by a Novel Splice Site Variant in the PSAP Gene. J Mol Neurosci 2022; 72:1322-1333. [DOI: 10.1007/s12031-022-01987-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/20/2022] [Indexed: 10/18/2022]
|
5
|
Measurement of recombinant human arylsulfatase A and leukocyte sulfatase activities by analytical isotachophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:109-113. [PMID: 31195190 DOI: 10.1016/j.jchromb.2019.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023]
Abstract
Metachromatic Leukodystrophy (MLD) and Multiple Sulfatase Deficiency (MSD) are rare and ultra-rare lysosomal storage diseases. Due to enzyme defects, patients are unable to split the sulfategroup from the respective substrates. In MSD all sulfatases are affected due to a defect of the Sulfatase Modifying Factor 1 (SUMF1) gene coding for the formylglycine generating enzyme (FGE) necessary for the modification of the active site of sulfatases. In MLD mutations in the arylsulfatase A (ARSA) gene cause ARSA deficiency with subsequent accumulation of 3-sulfogalactocerebroside especially in oligodendrocytes. The clinical consequence is demyelination and a devastating neurological disease. Enzyme replacement therapy (ERT) with recombinant human arylsulfatase A (rhARSA), gene therapy, and stem cell transplantation are suggested as new therapeutic options. The aim of our study was to characterize rhARSA concerning its substrate specificity using analytical isotachophoresis (ITP). Substrate specificity could be demonstrated by sulfate splitting from the natural substrates 3-sulfogalactocerebroside and ascorbyl-2-sulfate and the artificial substrate p-nitrocatecholsulfate, whereas galactose-6-sulfate, a substrate of galactose-6‑sulfurylase, was totally resistant. In contrast, leukocyte extracts of healthy donors were able to split sulfate also from galactose-6-sulfate. The ITP method allows therefore a rapid and simple differentiation between samples of MLD and MSD patients and healthy donors. Therefore, the isotachophoretic diagnostic assay from leukocyte extracts described here provides a fast and efficient way for the diagnosis of MLD and MSD patients and an elegant system to differentiate between these diseases in one assay.
Collapse
|
6
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
7
|
Quantification of plasma sulfatides by mass spectrometry: Utility for metachromatic leukodystrophy. Anal Chim Acta 2016; 955:79-85. [PMID: 28088283 DOI: 10.1016/j.aca.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
Abstract
Impaired sulfatide catabolism is the primary biochemical insult in patients with the inherited neurodegenerative disease, metachromatic leukodystrophy (MLD), and sulfatide elevation in body fluids is useful in the diagnostic setting. Here we used mass spectrometry to quantify fourteen species of sulfatide, in addition to the deacetylated derivative, lyso-sulfatide, using high pressure liquid chromatography-electrospray ionisation-tandem mass spectrometry in both positive and negative ion mode. A single phase extraction of 0.01 mL of MLD plasma identified all 14 sulfatide species in the positive ion mode but none in the negative ion mode. Interrogation of seven major and seven hydroxylated molecular species, as well as lyso-sulfatide, identified the C18 isoform as the most informative for MLD. The C18 produced a linear response and was below the limit of quantification (<10 pmol mL-1) in control plasma with concentrations in MLD plasma ranging from 12 to 196 pmol mL-1. Serial plasma samples from an MLD patient post-therapeutic bone marrow transplant proved similar to non-disease controls with C18 sulfatide concentrations below the limit of quantification, as did samples from three individuals with an arylsulfatase A pseudodeficiency - a population variant which appears deficient upon enzymatic assay, without manifestation of disease. These findings emphasise the utility of the C18 sulfatide species for the diagnosis of MLD and biochemical monitoring of MLD patients. Extension of this approach to a newborn screening card correctly identified an MLD patient at birth with elevated C18 sulfatide at levels almost double that present in the newborn card from his unaffected sibling, suggesting the methodology may have applicability for newborn screening.
Collapse
|
8
|
Pintado-Sierra M, García-Álvarez I, Bribián A, Medina-Rodríguez EM, Lebrón-Aguilar R, Garrido L, de Castro F, Fernández-Mayoralas A, Quintanilla-López JE. A comprehensive profiling of sulfatides in myelin from mouse brain using liquid chromatography coupled to high-resolution accurate tandem mass spectrometry. Anal Chim Acta 2016; 951:89-98. [PMID: 27998489 DOI: 10.1016/j.aca.2016.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022]
Abstract
Sulfatides are sulfoglycolipids found in the myelin sheath. The composition ratio of sulfatide molecular species changes with age, and it has also been associated with the pathogenesis of various human central nervous system diseases. However, profiling sulfatides in biological samples is difficult, due to the great variety of molecular species. In this work, a new, easy and reliable liquid chromatography-electrospray tandem mass spectrometry (LC-ESI(+)-MS/MS) method has been developed to profile sulfatide content in biological samples of myelin. The 'wrong-way-round' ionization effect has been described for this type of molecules for the first time, making it possible to correctly identify as many as 37 different sulfatides in mouse brain myelin samples, including molecules with different fatty acid chain lengths and varying degrees of unsaturation and hydroxylation. A chemometric analysis of their relative abundances showed that the main difference among individuals of different ages was the content of sulfatides with odd-numbered fatty acid chains, in addition to hydroxylated species.
Collapse
Affiliation(s)
- M Pintado-Sierra
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - I García-Álvarez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - A Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - E M Medina-Rodríguez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - R Lebrón-Aguilar
- Instituto de Química-Física 'Rocasolano' (CSIC), Serrano 119, 28006, Madrid, Spain
| | - L Garrido
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - F de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - A Fernández-Mayoralas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
9
|
Kuchař L, Asfaw B, Rybová J, Ledvinová J. Tandem Mass Spectrometry of Sphingolipids: Applications for Diagnosis of Sphingolipidoses. Adv Clin Chem 2016; 77:177-219. [PMID: 27717417 DOI: 10.1016/bs.acc.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, mass spectrometry (MS) has become the dominant technology in lipidomic analysis. It is widely used in diagnosis and research of lipid metabolism disorders including those characterized by impairment of lysosomal functions and storage of nondegraded-degraded substrates. These rare diseases, which include sphingolipidoses, have severe and often fatal clinical consequences. Modern MS methods have contributed significantly to achieve a definitive diagnosis, which is essential in clinical practice to begin properly targeted patient care. Here we summarize MS and tandem MS methods used for qualitative and quantitative analysis of sphingolipids (SL) relative to the diagnostic process for sphingolipidoses and studies focusing on alterations in cell functions due to these disorders. This review covers the following topics: Tandem MS is sensitive and robust in determining the composition of sphingolipid classes in various biological materials. Its ability to establish SL metabolomic profiles using MS bench-top analyzers, significantly benefits the first stages of a diagnosis as well as metabolic studies of these disorders. It can thus contribute to a better understanding of the biological significance of SL.
Collapse
Affiliation(s)
- L Kuchař
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | - B Asfaw
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Rybová
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Ledvinová
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
10
|
Spacil Z, Babu Kumar A, Liao HC, Auray-Blais C, Stark S, Suhr TR, Scott CR, Turecek F, Gelb MH. Sulfatide Analysis by Mass Spectrometry for Screening of Metachromatic Leukodystrophy in Dried Blood and Urine Samples. Clin Chem 2015; 62:279-86. [PMID: 26585924 DOI: 10.1373/clinchem.2015.245159] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by deficiency in arylsulfatase A activity, leading to accumulation of sulfatide substrates. Diagnostic and monitoring procedures include demonstration of reduced arylsulfatase A activity in peripheral blood leukocytes or detection of sulfatides in urine. However, the development of a screening test is challenging because of instability of the enzyme in dried blood spots (DBS), the widespread occurrence of pseudodeficiency alleles, and the lack of available urine samples from newborn screening programs. METHODS We measured individual sulfatide profiles in DBS and dried urine spots (DUS) from MLD patients with LC-MS/MS to identify markers with the discriminatory power to differentiate affected individuals from controls. We also developed a method for converting all sulfatide molecular species into a single species, allowing quantification in positive-ion mode upon derivatization. RESULTS In DBS from MLD patients, we found up to 23.2-fold and 5.1-fold differences in total sulfatide concentrations for early- and late-onset MLD, respectively, compared with controls and pseudodeficiencies. Corresponding DUS revealed up to 164-fold and 78-fold differences for early- and late-onset MLD patient samples compared with controls. The use of sulfatides converted to a single species simplified the analysis and increased detection sensitivity in positive-ion mode, providing a second option for sulfatide analysis. CONCLUSIONS This study of sulfatides in DBS and DUS suggests the feasibility of the mass spectrometry method for newborn screening of MLD and sets the stage for a larger-scale newborn screening pilot study.
Collapse
Affiliation(s)
| | | | | | - Christiane Auray-Blais
- Clinical Research Center, Centre Hospitalier Universitaire de Sherbrooke, and Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samantha Stark
- National Referral Laboratory, Genetics and Molecular Pathology, South Australia Pathology, Women's and Children's Hospital, Adelaide, Australia
| | | | | | | | - Michael H Gelb
- Department of Chemistry, Department of Biochemistry, University of Washington, Seattle, WA;
| |
Collapse
|
11
|
Ben Halim N, Dorboz I, Kefi R, Kharrat N, Eymard-Pierre E, Nagara M, Romdhane L, Ben Alaya-Bouafif N, Rebai A, Miladi N, Boespflug-Tanguy O, Abdelhak S. Determination of arylsulfatase A pseudodeficiency allele and haplotype frequency in the Tunisian population. Neurol Sci 2015; 37:403-9. [PMID: 26577183 DOI: 10.1007/s10072-015-2417-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/02/2015] [Indexed: 01/09/2023]
Abstract
Arylsulfatase A (ASA) is a lysosomal enzyme involved in the catabolism of cerebroside sulfate. ASA deficiency is associated with metachromatic leukodystrophy (MLD). Low ASA activities have also been reported in a more common condition with no apparent clinical consequences termed ASA pseudo-deficiency (ASA-PD) which is associated with two linked mutations in the ASA gene (c.1049A>G and c.*96A>G). This study aimed to investigate the frequency of the two ASA-PD variants and their linkage disequilibrium (LD) among Tunisians. ASA-PD variants were detected in 129 healthy Tunisians and their frequencies were compared to those described worldwide. The frequency of the PD allele was estimated at 17.4% for the overall sample, with c.1049A>G and c.*96A>G frequencies of 25.6 and 17.4%, respectively. This study also revealed a high LD between the two ASA-PD variants (r(2) = 0.61). Inter-population analysis revealed similarities in the ASA-PD genetic structure between Tunisians and populations from Middle East with c.*96A>G frequencies being the highest in the world. A significant North vs. South genetic differentiation in the ASA-PD frequency was also observed in Tunisian population who seems genetically intermediate between Africans, Middle-Easterners and Europeans. This is the first report on the allele frequency of the ASA-PD in North Africa, revealing a relatively high frequency of the PD allele among Tunisians. This study gives also evidence on the importance of discriminating ASA-PD allele from pathological mutations causing MLD and supporting enzymatic activity testing with both sulfatiduria determination and genetic testing in the differential diagnosis of MLD in the Tunisian population.
Collapse
Affiliation(s)
- Nizar Ben Halim
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, 1002, Tunis, Belvédère, Tunisia.
| | - Imen Dorboz
- Child Neurological Diseases Unit, Faculty of Medicine, 1007, Tunis, Tunisia.,INSERM U676, 75935, Paris Cedex 19, France
| | - Rym Kefi
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, 1002, Tunis, Belvédère, Tunisia
| | - Najla Kharrat
- Bioinformatics Unit, Centre of Biotechnology of Sfax, 3018, Sfax, Tunisia
| | - Eleonore Eymard-Pierre
- Faculté de Médecine, INSERM UMR 931, GReD, 63000, Clermont-Ferrand, France.,Department of Genetics and Cytogenetics, CHU de Clermont-Ferrand, 63003, Clermont-Ferrand Cedax 1, France
| | - Majdi Nagara
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, 1002, Tunis, Belvédère, Tunisia
| | - Lilia Romdhane
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, 1002, Tunis, Belvédère, Tunisia
| | | | - Ahmed Rebai
- Bioinformatics Unit, Centre of Biotechnology of Sfax, 3018, Sfax, Tunisia
| | - Najoua Miladi
- Child Neurological Diseases Unit, Faculty of Medicine, 1007, Tunis, Tunisia
| | - Odile Boespflug-Tanguy
- INSERM U676, 75935, Paris Cedex 19, France.,Assistance Publique des Hôpitaux de Paris (APHP), Centre de Reference « leucodystrophies », Hôpital Robert Debré, 75019, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Sonia Abdelhak
- Laboratoire de Génomique Biomédicale et Oncogénétique, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, 1002, Tunis, Belvédère, Tunisia
| |
Collapse
|
12
|
Mirzaian M, Kramer G, Poorthuis BJHM. Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry. J Lipid Res 2015; 56:936-43. [PMID: 25632048 DOI: 10.1194/jlr.m057232] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulfatides are found in brain as components of myelin, oligodendrocytes, and neurons but are also present in various visceral tissues. Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A, leading to severe white matter disease due to the accumulation of sulfatides and lysosulfatides. To study the physiological role of sulfatides, accessible and sensitive quantitative methods are required. We developed a sensitive LC/MS/MS method to quantify total sulfatide and lysosulfatide content as well as individual molecular species in urine and plasma from MLD patients and plasma and tissues from an MLD mouse model. Our results demonstrate that the method can quantify a wide range of sulfatide concentrations and can be used to quantify total sulfatide content and levels of individual molecular species of sulfatides in tissues, cells, and body fluids. Even though plasma sulfatides and lysosulfatides would seem attractive candidate biomarkers that could possibly correlate with the severity of MLD and be of use to monitor the effects of therapeutic intervention, our results indicate that it is unlikely that the determination of these storage products in plasma will be useful in this respect.
Collapse
Affiliation(s)
- Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ben J H M Poorthuis
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Barcenas M, Suhr TR, Scott CR, Turecek F, Gelb MH. Quantification of sulfatides in dried blood and urine spots from metachromatic leukodystrophy patients by liquid chromatography/electrospray tandem mass spectrometry. Clin Chim Acta 2014; 433:39-43. [PMID: 24370383 PMCID: PMC4039571 DOI: 10.1016/j.cca.2013.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatments are being developed for metachromatic leukodystrophy (MLD), suggesting the need for eventual newborn screening. Previous studies have shown that sulfatide molecular species are increased in the urine of MLD patients compared to samples from non-MLD individuals, but there is no data using dried blood spots (DBS), the most common sample available for newborn screening laboratories. METHODS We used ultra-high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) to quantify sulfatides in DBS and dried urine spots from 14 MLD patients and 50 non-MLD individuals. RESULTS Several sulfatide molecular species were increased in dried urine samples from all MLD samples compared to non-MLD samples. Sulfatides, especially low molecular species, were increased in DBS from MLD patients, but the sulfatide levels were relatively low. There was good separation in sulfatide levels between MLD and non-MLD samples when dried urine spots were used, but not with DBS, because DBS from non-MLD individuals have measurable levels of sulfatides. CONCLUSION Sulfatide accumulation studies in urine, but not in DBS, emerges as the method of choice if newborn screening is to be proposed for MLD.
Collapse
Affiliation(s)
- Mariana Barcenas
- Departments of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Teryn R Suhr
- MLD Foundation, 21345 Miles Dr., West Linn, OR 97068, United States
| | - C Ronald Scott
- Departments of Pediatrics, University of Washington, Seattle WA 98195, United States
| | - Frantisek Turecek
- Departments of Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Michael H Gelb
- Departments of Chemistry, University of Washington, Seattle, WA 98195, United States; Departments of Biochemistry, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
14
|
Han M, Jun SH, Song SH, Park HD, Park KU, Song J. Ultra-performance liquid chromatography/tandem mass spectrometry for determination of sulfatides in dried blood spots from patients with metachromatic leukodystrophy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:587-594. [PMID: 24519821 DOI: 10.1002/rcm.6823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Metachromatic leukodystrophy (MLD) is a genetic autosomal recessive disease caused by a deficiency in arylsulfatase A. Accumulated sulfatides can be detected in the urine and detection of sulfatiduria is a useful test for diagnosis and monitoring. To our knowledge, no studies have explored the accumulation of sulfatides in dried blood spots (DBSs). We developed an ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method for measuring sulfatides in DBSs from patients with MLD. METHODS DBSs were eluted with internal standard. After mixing and centrifugation, the organic layer was transferred to a 96-well microplate and dried, then resuspended in methanol/propanol solution. Samples were analyzed on an UPLC system. Total running time was 4 min. Quantification was achieved by multiple reaction monitoring using a tandem mass spectrometer. We evaluated the precision, linearity, and ion suppression of the method and analyzed sulfatide concentrations in DBS specimens from MLD patients (n = 9), pseudodeficiency (PD) patient (n = 1), obligate heterozygotes (OH) (n = 2) and normal controls (n = 124). RESULTS In negative-ion mode, sulfatides species subjected to collision-induced dissociation readily fragment to produce an intense ion at m/z 96.8 (HSO4(-)). The precisions of low and high concentration controls ranged from 5.4 to 19.9%. The sulfatides produced linear responses. Molecular species of sulfatides were barely detected in DBSs from normal individuals and the PD-OH group [mean (range), 0.07 (<0.05-0.34) and 0.13 (<0.05-0.22) µg/mL, respectively]. In contrast, the DBSs from MLD patients showed a marked increase in several molecular species of sulfatide [mean (range), 2.02 (1.18-3.89) µg/mL]. CONCLUSIONS Simultaneous detection for sulfatides using UPLC/MS/MS can be successfully applied to DBS analysis. This method provides a fast and effective screening and monitoring tool for the diagnosis and treatment of MLD.
Collapse
Affiliation(s)
- Minje Han
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This chapter will serve as a guide for the diagnosis of multiple sclerosis (MS). Primary aims include a review of both the common and atypical clinical manifestations of MS, a detailed discussion of the alternative diagnoses which can mimic MS, as well as a review of the current established diagnostic criteria and a history of their development. It will also review the distinct disease courses and MS variants. The goal of the chapter is to facilitate the diagnostic process for clinicians so that they may expedite early diagnosis and treatment in an effort to alter disease outcomes and ultimately improve patients' quality of life.
Collapse
Affiliation(s)
- Tracy M Deangelis
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai Medical Center, New York, NY, USA
| | - Aaron Miller
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Kuchař L, Asfaw B, Poupětová H, Honzíková J, Tureček F, Ledvinová J. Direct tandem mass spectrometric profiling of sulfatides in dry urinary samples for screening of metachromatic leukodystrophy. Clin Chim Acta 2013; 425:153-9. [PMID: 23838369 DOI: 10.1016/j.cca.2013.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prediagnostic steps in suspected metachromatic leukodystrophy (MLD) rely on clinical chemical methods other than enzyme assays. We report a new diagnostic method which evaluates changes in the spectrum of molecular types of sulfatides (3-O-sulfogalactosyl ceramides) in MLD urine. METHODS The procedure allows isolation of urinary sulfatides by solid-phase extraction on DEAE-cellulose membranes, transportation of a dry membrane followed by elution and tandem mass spectrometry (MS/MS) analysis in the clinical laboratory. Major sulfatide isoforms are normalized to the least variable component of the spectrum, which is the indigenous C18:0 isoform. This procedure does not require the use of specific internal standards and minimizes errors caused by sample preparation and measurement. RESULTS Urinary sulfatides were analyzed in a set of 21 samples from patients affected by sulfatidosis. The combined abundance of the five most elevated isoforms, C22:0, C22:0-OH, C24:0, C24:1-OH, and C24:0-OH sulfatides, was found to give the greatest distinction between MLD-affected patients and a control group. CONCLUSIONS The method avoids transportation of liquid urine samples and generates stable membrane-bound sulfatide samples that can be stored at ambient temperature. MS/MS sulfatide profiling targeted on the most MLD-representative isoforms is simple with robust results and is suitable for screening.
Collapse
Affiliation(s)
- Ladislav Kuchař
- Institute of Inherited Metabolic Diseases, First Faculty of Medicine and General Teaching Hospital, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
Farwanah H, Kolter T. Lipidomics of glycosphingolipids. Metabolites 2012; 2:134-64. [PMID: 24957371 PMCID: PMC3901200 DOI: 10.3390/metabo2010134] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 01/30/2012] [Indexed: 01/14/2023] Open
Abstract
Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.
Collapse
Affiliation(s)
- Hany Farwanah
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| | - Thomas Kolter
- Life and Medical Sciences Institute (LiMES), Membrane Biology and Lipid Biochemistry Unit, c/o Kekulé-Institut für Organische Chemie und Biochemie, University of Bonn, Gerhard-Domagk Str. 1, D-53121 Bonn, Germany.
| |
Collapse
|
18
|
Lysosomal storage diseases: Diagnostic confirmation and management of presymptomatic individuals. Genet Med 2011; 13:457-84. [DOI: 10.1097/gim.0b013e318211a7e1] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
19
|
Sowell J, Wood T. Towards a selected reaction monitoring mass spectrometry fingerprint approach for the screening of oligosaccharidoses. Anal Chim Acta 2010; 686:102-6. [PMID: 21237314 DOI: 10.1016/j.aca.2010.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/17/2022]
Abstract
The oligosaccharidoses are a group of metabolic disorders resulting from a deficiency in enzymes responsible for the catabolism of protein bound oligosaccharides and are typified by the accumulation of corresponding sugars in the urine. Screening is typically accomplished using thin layer chromatography. However, analyte specificity can be a problem and thus complicate interpretation of results. For this reason we developed a mixed mode liquid chromatography tandem mass spectrometry assay for the screening of the oligosaccharidoses which potentially mitigates many of the problems associated with thin layer chromatography. Samples from patients previously diagnosed with I-Cell disease, mannosidosis, Pompe, galactosialidosis, and fucosidosis were derivatized with 3-methyl-1-phenyl-2-pyrazolin-5-one and subjected to analysis by liquid chromatography tandem mass spectrometry. Results were compared to normal control samples. Preliminary results suggest that each oligosaccharidoses produces a unique selected reaction monitoring fingerprint and that the developed method may be an effective screening and diagnostic tool for these disorders.
Collapse
Affiliation(s)
- John Sowell
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | | |
Collapse
|
20
|
Kuchar L, Rotková J, Asfaw B, Lenfeld J, Horák D, Korecká L, Bílková Z, Ledvinová J. Semisynthesis of C17:0 isoforms of sulphatide and glucosylceramide using immobilised sphingolipid ceramide N-deacylase for application in analytical mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2393-2399. [PMID: 20635342 DOI: 10.1002/rcm.4659] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Sphingolipid ceramide N-deacylase (SCDase, EC 3.5.1.69) is a hydrolytic enzyme isolated from Pseudomonas sp. TK 4. In addition to its primary deacylation function, this enzyme is able to reacylate lyso-sphingolipids under specific conditions. We immobilised this enzyme on magnetic macroporous cellulose and used it to semisynthesise C17:0 glucosylceramide and C17:0 sulphatide, which are required internal standards for quantification of the corresponding glycosphingolipids (GSL) by tandem mass spectrometry. A high rate of conversion was achieved for both lipids (80% for C17:0 sulphatide and 90% for C17:0 glucosylceramide). In contrast to synthesis with a soluble form of the enzyme, use of immobilised SCDase significantly reduced the contamination of the sphingolipid products with other isoforms, so further purification was not necessary. Our method can be effectively used for the simple preparation of specifically labelled sphingolipids of high isoform purity for application in mass spectrometry.
Collapse
Affiliation(s)
- L Kuchar
- Institute of Inherited Metabolic Disorders, General Faculty Hospital and Charles University First Faculty of Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tan MAF, Fuller M, Zabidi-Hussin ZAMH, Hopwood JJ, Meikle PJ. Biochemical profiling to predict disease severity in metachromatic leukodystrophy. Mol Genet Metab 2010; 99:142-8. [PMID: 19815439 DOI: 10.1016/j.ymgme.2009.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 11/21/2022]
Abstract
Metachromatic leukodystrophy is a neurodegenerative disease that is characterized by a deficiency of arylsulfatase A, resulting in the accumulation of sulfatide and other lipids in the lysosomal network of affected cells. Accumulation of sulfatide in the nervous system leads to severe impairment of neurological function with a fatal outcome. Prognosis is often poor unless treatment is carried out before the onset of clinical symptoms. Pre-symptomatic detection of affected individuals may be possible with the introduction of newborn screening programs. The ability to accurately predict clinical phenotype and rate of disease progression in asymptomatic individuals will be essential to assist selection of the most appropriate treatment strategy. Biochemical profiling, incorporating the determination of residual enzyme protein/activity using immune-based assays, and metabolite profiling using electrospray ionization-tandem mass spectrometry, was performed on urine and cultured skin fibroblasts from a cohort of patients representing the clinical spectrum of metachromatic leukodystrophy and on unaffected controls. Residual enzyme protein/activity in fibroblasts was able to differentiate unaffected controls, arylsulfatase A pseudo-deficient individuals, pseudo-deficient compound heterozygotes and affected patients. Metachromatic leukodystrophy phenotypes were distinguished by quantification of sulfatide and other secondarily altered lipids in urine and skin fibroblasts; this enabled further differentiation of the late-infantile form of the disorder from the juvenile and adult forms. Prediction of the rate of disease progression for metachromatic leukodystrophy requires a combination of information on genotype, residual arylsulfatase A protein and activity and the measurement of sulfatide and other lipids in urine and cultured skin fibroblasts.
Collapse
Affiliation(s)
- M A F Tan
- Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | | | | | | | | |
Collapse
|
22
|
Kuchar L, Ledvinová J, Hrebícek M, Mysková H, Dvoráková L, Berná L, Chrastina P, Asfaw B, Elleder M, Petermöller M, Mayrhofer H, Staudt M, Krägeloh-Mann I, Paton BC, Harzer K. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A 2009; 149A:613-21. [PMID: 19267410 PMCID: PMC3437469 DOI: 10.1002/ajmg.a.32712] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prosaposin deficiency (pSap-d) and saposin B deficiency (SapB-d) are both lipid storage disorders caused by mutations in the PSAP gene that codes for the 65-70 kDa prosaposin protein, which is the precursor for four sphingolipid activator proteins, saposins A-D. We report on two new patients with PSAP gene defects; one, with pSap-d, who had a severe neurovisceral dystrophy and died as a neonate, and the other with SapB-d, who presented with a metachromatic leukodystrophy-like disorder but had normal arylsulfatase activity. Screening for urinary sphingolipids was crucial to the diagnosis of both patients, with electrospray ionization tandem mass spectrometry also providing quantification. The pSap-d patient is the first case with this condition where urinary sphingolipids have been investigated. Multiple sphingolipids were elevated, with globotriaosylceramide showing the greatest increase. Both patients had novel mutations in the PSAP gene. The pSap-d patient was homozygous for a splice-acceptor site mutation two bases upstream of exon 10. This mutation led to a premature stop codon and yielded low levels of transcript. The SapB-d patient was a compound heterozygote with a splice-acceptor site variant exclusively affecting the SapB domain on one allele, and a 2 bp deletion leading to a null, that is, pSap-d mutation, on the other allele. Phenotypically, pSap-d is a relatively uniform disease of the neonate, whereas SapB-d is heterogeneous with a spectrum similar to that in metachromatic leukodystrophy. The possible existence of genotypes and phenotypes intermediate between those of pSap-d and the single saposin deficiencies is speculated.
Collapse
Affiliation(s)
- Ladislav Kuchar
- Charles University in Prague, 1st Medical Faculty, Institute of Inherited Metabolic Disorders of 1st Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kim H, Ahn E, Moon MH. Profiling of human urinary phospholipids by nanoflow liquid chromatography/tandem mass spectrometry. Analyst 2008; 133:1656-63. [PMID: 19082067 DOI: 10.1039/b804715d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry (nanoLC-ESI-MS-MS) was used for the first time in a comprehensive analysis of human urinary phospholipids (PL). PL mixtures from human urine were separated with a reversed phase LC capillary column coupled to ESI-MS-MS. This study used the dual scan method in which two consecutive LC-ESI-MS-MS runs were done in both positive ion mode to detect phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and in negative ion mode to detect phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidic acid (PA), and phosphatidylglycerol (PG). We focused on identifying the maximum number of PLs from a healthy human urine sample by varying the extracted volume of urine along with the evaluation of extraction efficiency for urinary PLs. We found that 22 PCs, 14 PEs, 15 PIs, 13 PSs, 7 PAs, and 4 PGs were identified during nLC-ESI-MS-MS when phospholipids in urine were extracted by ultracentrifugation. The efficiency of lipid extraction by ultracentrifugation versus lyophilization was evaluated by reducing the initial urine volume. We found that lyophilization was more efficient than ultracentrifugation for extracting lipids from small volumes (1 mL) of urine.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Chemistry, Yonsei University, Seoul, South Korea
| | | | | |
Collapse
|
24
|
Abstract
A review is presented of the major clinical features of a number of glycolipidoses including Fabry, Gaucher, Tay-Sachs, metachromatic leukodystrophy as well as CeroidLipofucinosis and Sjogren-Larsson syndrome. The possibilities offered by lipidomics for diagnosis and follow-up after enzyme replacement therapy are presented from a practical perspective. The contribution of HPLC coupled with tandem mass spectrometry has considerably simplified the detection and assay of abnormal metabolites. Corresponding internal standards consisting of weighed mixtures of the stable-isotope labeled metabolites required to calibrate and quantitate lipid components of these orphan diseases standards have yet to become commercially available. A lipidomics approach has been found to compare favorably with DNA-sequence analysis for the rapid diagnosis of pre-birth syndromes resulting from these multiple gene defects. The method also seems to be suitable for screening applications in terms of a high throughput combined with a low rate of false diagnoses based on the wide differences in metabolite concentrations found in affected patients as compared with normal subjects. The practical advantages of handling samples for lipidomic diagnoses as compared to enzyme assay are presented for application to diagnosis during pregnancy.
Collapse
|
25
|
Colsch B, Afonso C, Turpin JC, Portoukalian J, Tabet JC, Baumann N. Sulfogalactosylceramides in motor and psycho-cognitive adult metachromatic leukodystrophy: relations between clinical, biochemical analysis and molecular aspects. Biochim Biophys Acta Gen Subj 2008; 1780:434-40. [DOI: 10.1016/j.bbagen.2007.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 10/04/2007] [Accepted: 10/06/2007] [Indexed: 12/20/2022]
|
26
|
Kumperscak HG, Plesnicar BK, Zalar B, Gradisnik P, Seruga T, Paschke E. Adult metachromatic leukodystrophy: a new mutation in the schizophrenia-like phenotype with early neurological signs. Psychiatr Genet 2007; 17:85-91. [PMID: 17413447 DOI: 10.1097/ypg.0b013e3280298280] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The adult type of metachromatic leukodystrophy can manifest itself as motor or as psycho-cognitive form, the latter is very similar to schizophrenia. We report on two sisters with adult metachromatic leukodystrophy who display symptoms of both forms. METHODS Presented are genotype analyses and 4-year follow-up data regarding clinical manifestations as well as neurocognitive and neuroimaging results for two adult sisters with metachromatic leukodystrophy. RESULTS Whereas the younger sister developed disorganized schizophrenia-like symptoms, the other exhibited schizophrenia-like, negative symptoms. In both sisters, neurological signs were already present at the onset of the disease and progression towards dementia was documented within 1-2 years. In peripheral leukocytes, the activity of arylsulphatase A was reduced to 2 and 5% of the mean normal activity in both women. Genotype analysis revealed compound heterozygosity for a known severe splice site mutation, (c.459+1G>A) together with two known polymorphisms, [(c.937G>T), (p.Trp193Asp)] and [(c.1530C>G), (p.Thr391Ser)], and a novel missense mutation, (c.1194C>T). The latter results in the exchange of a conserved polar amino acid, threonine 279, to hydrophobic isoleucine (Thr279Ileu), which could not be found among >100 control alleles. A family analysis identified T279I as the paternal allele, whereas (c.459+1G>A) as well as the two polymorphisms were inherited from the mother. This is consistent with a disease-causing effect of the novel mutation. CONCLUSIONS The novel mutation, T279I detected in our patients, correlates with a specific phenotype with schizophrenia-like symptoms, neurological signs and cognitive impairment early in the course of the disease and a relatively fast progression towards dementia. This is in contrast to previous reports on adult metachromatic leukodystrophy patients with the psycho-cognitive phenotype who did not show any neurological signs for decades, however, most of these patients were heterozygous for another specific missense mutation, I179S.
Collapse
Affiliation(s)
- Hojka G Kumperscak
- Department of Paediatrics, Maribor Teaching Hospital, Maribor, Slovenia.
| | | | | | | | | | | |
Collapse
|
27
|
Cui Y, Colsch B, Afonso C, Alonso C, Baumann N, Tabet JC, Mallet JM, Zhang Y. Synthetic sulfogalactosylceramide (sulfatide) and its use for the mass spectrometric quantitative urinary determination in metachromatic leukodystrophies. Glycoconj J 2007; 25:147-55. [PMID: 17701343 DOI: 10.1007/s10719-007-9067-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
3-O-Sulfogalactosylceramides (sulfatides) accumulate in the genetic disease metachromatic leukodystrophy which is due to a defect in the catabolic enzyme, arylsulfatase A. Clinical diagnosis is usually confirmed by in vitro enzymatic deficiency of arylsulfatase A activity. The diagnosis may be complicated because of arylsulfatase A pseudo-deficiencies and another cause of MLD, sphingolipid activator B deficiency. As large quantities of sulfatides can be found in the urine in this disease, sulfatiduria appears as an extremely useful test. As recently enzyme replacement is underway, the quantitative determination, using an internal standard, appears particularly useful as a follow-up. Thus a non-physiological sulfatide was synthesized for this purpose, i.e. 3-O-sulfo-beta-D-C17 galactosylceramide (3-O-Sulfo-D: -Galactosyl-beta1'-->1-N-Heptadecanoyl-D-erythro-Sphingosine). It has been prepared through condensation of an azidosphingosine derivative with a protected D-galactopyranosyltrichloroacetimidate. Reduction of the azide was followed by acylation of a C-17 fatty acid. The key step was achieved by selective sulfation of the desired hydroxyl group on the sugar residue of the galactosylceramide using the stannylene methodology to give a 3'-sulfated beta-galactosyl C-17 ceramide.
Collapse
Affiliation(s)
- Yanli Cui
- Département de Chimie, Ecole Normale Supérieure, UMR 8642, CNRS-ENS-UPMC, 24 rue Lhomond, 75231 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Isaac G, Pernber Z, Gieselmann V, Hansson E, Bergquist J, Månsson JE. Sulfatide with short fatty acid dominates in astrocytes and neurons. FEBS J 2006; 273:1782-90. [PMID: 16623713 DOI: 10.1111/j.1742-4658.2006.05195.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosphingolipids are located in cell membranes and the brain is especially enriched. We speculated that the subcellular location of glycosphingolipids depends on their fatty acid chain length because their sugar residues are constant, whereas fatty acid chain length can vary within the same molecule. To test this hypothesis we analysed the glycosphingolipid sulfatide, which is highly abundant in myelin and has mostly long fatty acids. We used a negative ion electrospray tandem mass spectrometry precursor ion scan to analyse the molecular species of sulfatide in cultured astrocytes and a mouse model of the human disease metachromatic leukodystrophy. In these arylsulfatase A (ASA)-deficient mice sulfatide accumulates intracellularly in neurons and astrocytes. Immunocytochemistry was also performed on cultured astrocytes and analysed using confocal laser scanning microscopy. Analyses of the molecular species showed that cultured astrocytes contained sulfatide with a predominance of stearic acid (C18), which was located in large intracellular vesicles throughout the cell body and along the processes. The same was seen in ASA-deficient mice, which accumulated a higher proportion (15 mol% compared with 8 mol% in control mice) of sulfatide with stearic acid. We conclude that the major fatty acid composition of sulfatide differs between white and grey matter, with neurons and astrocytes containing mostly short-chain fatty acids with an emphasis on stearic acid. Based on our results, we speculate that the fatty acid chain length of sulfatide might determine its intracellular (short chain) or extracellular (long chain) location and thereby its functions.
Collapse
Affiliation(s)
- Giorgis Isaac
- Department of Analytical Chemistry, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Wang CH, Liu JH, Lee SC, Hsiao CD, Wu WG. Glycosphingolipid-facilitated membrane insertion and internalization of cobra cardiotoxin. The sulfatide.cardiotoxin complex structure in a membrane-like environment suggests a lipid-dependent cell-penetrating mechanism for membrane binding polypeptides. J Biol Chem 2005; 281:656-67. [PMID: 16263708 DOI: 10.1074/jbc.m507880200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cobra cardiotoxins, a family of basic polypeptides having lipid- and heparin-binding capacities similar to the cell-penetrating peptides, induce severe tissue necrosis and systolic heart arrest in snakebite victims. Whereas cardiotoxins are specifically retained on the cell surface via heparan sulfate-mediated processes, their lipid binding ability appears to be responsible, at least in part, for cardiotoxin-induced membrane leakage and cell death. Although the exact role of lipids involved in toxin-mediated cytotoxicity remains largely unknown, monoclonal anti-sulfatide antibody O4 has recently been shown to inhibit the action of CTX A3, the major cardiotoxin from Taiwan cobra venom, on cardiomyocytes by preventing cardiotoxin-induced membrane leakage and CTX A3 internalization into mitochondria. Here, we show that anti-sulfatide acts by blocking the binding of CTX A3 to the sulfatides in the plasma membrane to prevent sulfatide-dependent CTX A3 membrane pore formation and internalization. We also describe the crystal structure of a CTX A3-sulfatide complex in a membrane-like environment at 2.3 angstroms resolution. The unexpected orientation of the sulfatide fatty chains in the structure allows prediction of the mode of toxin insertion into the plasma membrane. CTX A3 recognizes both the headgroup and the ceramide interfacial region of sulfatide to induce a lipid conformational change that may play a key role in CTX A3 oligomerization and cellular internalization. This proposed lipid-mediated toxin translocation mechanism may also shed light on the cellular uptake mechanism of the amphiphilic cell-penetrating peptides known to involve multiple internalization pathways.
Collapse
Affiliation(s)
- Chia-Hui Wang
- Department of Life Sciences and Institute of Bioinformatics and Structural Biology, National Tsinghua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | | | | | |
Collapse
|
30
|
Fuller M, Sharp PC, Rozaklis T, Whitfield PD, Blacklock D, Hopwood JJ, Meikle PJ. Urinary lipid profiling for the identification of fabry hemizygotes and heterozygotes. Clin Chem 2005; 51:688-94. [PMID: 15695328 DOI: 10.1373/clinchem.2004.041418] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal storage disorder resulting from a deficiency of the lysosomal hydrolase, alpha-galactosidase, for which enzyme replacement therapy is now available. In this study, we aimed to identify Fabry heterozygotes not only for genetic counseling of families but because it is becoming increasingly obvious that many heterozygous (carrier) females are symptomatic and should be considered for treatment. METHODS We measured 29 individual lipid species, including ceramide, glucosylceramide, lactosylceramide, and ceramide trihexoside, in urine samples from Fabry hemizygotes and heterozygotes and from control individuals by electrospray ionization tandem mass spectrometry. Individual analyte species and analyte ratios were analyzed for their ability to differentiate the control and patient groups. RESULTS The Fabry hemizygotes had increased concentrations of the substrate for the deficient enzyme, ceramide trihexoside, as well as lactosylceramide and ceramide, along with decreased concentrations of both glucosylceramide and sphingomyelin. Ratios of these analytes improved differentiation between the control and Fabry groups, with the Fabry heterozygotes generally falling between the Fabry hemizygotes and the control group. CONCLUSIONS These lipid profiles hold particular promise for the identification of Fabry individuals, may aid in the prediction of phenotype, and are potentially useful for the monitoring of therapy in patients receiving enzyme replacement.
Collapse
Affiliation(s)
- Maria Fuller
- Lysosomal Diseases Research Unit, Department of Genetic Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Mills K, Eaton S, Ledger V, Young E, Winchester B. The synthesis of internal standards for the quantitative determination of sphingolipids by tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1739-48. [PMID: 15909321 DOI: 10.1002/rcm.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Novel internal standards have been synthesised for the quantitative determination by tandem mass spectrometry (MS/MS) of the sphingolipids that accumulate in lysosomal storage diseases. The [d4]C16- and [d47]C24-isoforms of galactosylceramide (CMH), lactosylceramide (CDH), globotriaosylceramide (CTH), cerebroside sulphate, sphingomyelin and G(M1)-, G(M2)- and G(M3)-gangliosides were synthesised by the reaction of their lyso-forms with the acid chlorides of hexadecanoic 5,5,6,6-d4 acid ([d4]-palmitic acid) and tetracosanoic-d47 acid ([d47]-lignoceric acid), respectively. The acid chlorides were formed using oxalyl chloride. The structures of the internal standards were confirmed by MS/MS. The fragmentation pattern of each novel compound was similar to that of the corresponding natural form of the sphingolipid, making it a good internal standard for the quantitative determination of the natural sphingolipid by ESI-MS/MS. Characteristic product ions were identified for each compound.
Collapse
Affiliation(s)
- Kevin Mills
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
32
|
Abstract
Sphingosines, or sphingoids, are a family of naturally occurring long-chain hydrocarbon derivatives sharing a common 1,3-dihydroxy-2-amino-backbone motif. The majority of sphingolipids, as their derivatives are collectively known, can be found in cell membranes in the form of amphiphilic conjugates, each composed of a polar head group attached to an N-acylated sphingoid, or ceramide. Glycosphingolipids (GSLs), which are the glycosides of either ceramide or myo-inositol-(1-O)-phosphoryl-(O-1)-ceramide, are a structurally and functionally diverse sphingolipid subclass; GSLs are ubiquitously distributed among all eukaryotic species and are found in some bacteria. Since GSLs are secondary metabolites, direct and comprehensive analysis (metabolomics) must be considered an essential complement to genomic and proteomic approaches for establishing the structural repertoire within an organism and deducing its possible functional roles. The glycosphingolipidome clearly comprises an important and extensive subset of both the glycome and the lipidome, but the complexities of GSL structure, biosynthesis, and function form the outlines of a considerable analytical problem, especially since their structural diversity confers by extension an enormous variability with respect to physicochemical properties. This chapter covers selected developments and applications of techniques in mass spectrometric (MS) that have contributed to GSL structural analysis and glycosphingolipidomics since 1990. Sections are included on basic characteristics of ionization and fragmentation of permethylated GSLs and of lithium-adducted nonderivatized GSLs under positive-ion electrospray ionization mass spectrometry (ESI-MS) and collision-induced mass spectrometry (CID-MS) conditions; on the analysis of sulfatides, mainly using negative-ion techniques; and on selected applications of ESI-MS and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to emerging GSL structural, functional, and analytical issues. The latter section includes a particular focus on evolving techniques for analysis of gangliosides, GSLs containing sialic acid, as well as on characterizations of GSLs from selected nonmammalian eukaryotes, such as dipterans, nematodes, cestodes, and fungi. Additional sections focus on the issue of whether it is better to leave GSLs intact or remove the ceramide; on development and uses of thin-layer chromatography (TLC) blotting and TLC-MS techniques; and on emerging issues of high-throughput analysis, including the use of flow injection, liquid chromatography mass spectrometry (LC-MS), and capillary electrophoresis mass spectrometry (CE-MS).
Collapse
Affiliation(s)
- Steven B Levery
- Department of Chemistry, University of New Hamphsire, Durham, USA
| |
Collapse
|
33
|
Whitfield PD, Calvin J, Hogg S, O'Driscoll E, Halsall D, Burling K, Maguire G, Wright N, Cox TM, Meikle PJ, Deegan PB. Monitoring enzyme replacement therapy in Fabry disease--role of urine globotriaosylceramide. J Inherit Metab Dis 2005; 28:21-33. [PMID: 15702403 DOI: 10.1007/s10545-005-4415-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/09/2004] [Indexed: 11/26/2022]
Abstract
Anderson-Fabry disease (referred to as Fabry disease) is an X-linked disorder characterized by a deficiency of the lysosomal enzyme alpha-galactosidase A and the subsequent accumulation in various tissues of globotriaosylceramide (Gb(3)), the main substrate of the defective enzyme. Enzyme replacement therapy (ERT) offers a specific treatment for patients with Fabry disease, though monitoring of treatment is hampered by a lack of surrogate markers of response. In this study, the efficacy of long-term ERT in six Fabry hemizygotes and two symptomatic heterozygotes has been evaluated. Patients were administered recombinant alpha-galactosidase A every 2 weeks for up to a year. The efficacy of ERT was assessed by monitoring symptomatology and renal function. Urinary glycolipid concentration was estimated by a novel tandem mass spectrometric method. Urine glycolipid (Gb(3)) was elevated at baseline and fell impressively on ERT where patients were hemizygotes and in the absence of renal transplantation. In heterozygotes and in a recipient of a renal allograft, elevations and changes in urine glycolipids were less pronounced. In one patient, after several months of ERT, there was a transient increase in Gb(3) concentrations to baseline (pre-ERT) levels, associated with the presence of antibodies to the recombinant alpha-galactosidase A. The marked decline in urine Gb(3) on ERT, and its subsequent increase in association with an inhibitory antibody response, suggest that this analyte deserves further investigation as a potential marker of disease severity and response to treatment.
Collapse
Affiliation(s)
- P D Whitfield
- Biochemical Genetics Unit, Addenbrooke's NHS Trust, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ramsay SL, Maire I, Bindloss C, Fuller M, Whitfield PD, Piraud M, Hopwood JJ, Meikle PJ. Determination of oligosaccharides and glycolipids in amniotic fluid by electrospray ionisation tandem mass spectrometry: in utero indicators of lysosomal storage diseases. Mol Genet Metab 2004; 83:231-8. [PMID: 15542394 DOI: 10.1016/j.ymgme.2004.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/23/2004] [Accepted: 07/29/2004] [Indexed: 10/26/2022]
Abstract
Prenatal diagnosis is available for many lysosomal storage disorders (LSD) using chorionic villus samples or amniocytes. Such diagnoses can be problematical if sample transport and culture are required prior to analysis. The purpose of this study was to identify useful biochemical markers for the diagnosis of lysosomal storage disorders from amniotic fluid. Amniotic fluid samples from control (n=49) and LSD affected (n=36) pregnancies were analysed for the protein markers LAMP-1 and saposin C by ELISA, and for oligosaccharide and lipid metabolite markers by electrospray ionisation-tandem mass spectrometry. Lysosomal storage disorder samples include; aspartylglucosaminuria, galactosialidosis, Gaucher disease, GM1 gangliosidosis, mucopolysaccharidosis types I, II, IIIC, IVA, VI, and VII, mucolipidosis type II, multiple sulfatase deficiency, and sialidosis type II. Each disorder produced a unique signature metabolic profile of protein, oligosaccharide, and glycolipid markers. Some metabolite elevations directly related to the disorder whilst others appeared unrelated to the primary defect. Many lysosomal storage disorders were clearly distinguishable from control populations by the second trimester and in one case in the first trimester. Samples from GM1 gangliosidosis and mucopolysaccharidosis type VII displayed a correlation between gestational age and amount of stored metabolite. These preliminary results provide proof of principal for the use of biomarkers contained in amniotic fluid as clinical tests for some of the more frequent lysosomal storage disorders causal for hydrops fetalis.
Collapse
Affiliation(s)
- Steven L Ramsay
- Lysosomal Diseases Research Unit, Department of Chemical Pathology, Adelaide Women's and Children's Hospital, 72 King William Road, North Adelaide, SA 5006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lingwood D, Fisher LJ, Callahan JW, Ballantyne JS. Sulfatide and Na+-K+-ATPase: A Salinity-sensitive Relationship in the Gill Basolateral Membrane of Rainbow Trout. J Membr Biol 2004; 201:77-84. [PMID: 15630545 DOI: 10.1007/s00232-004-0708-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 07/17/2004] [Indexed: 10/26/2022]
Abstract
We investigated the effect of salinity on the relationship between Na(+)-K(+)-ATPase and sulfogalactosyl ceramide (SGC) in the basolateral membrane of rainbow trout (Oncorhynchus mykiss) gill epithelium. SGC has been implicated as a cofactor in Na(+)-K(+)-ATPase activity, especially in Na(+)-K(+)-ATPase rich tissues. However, whole-tissue studies have questioned this role in the fish gill. We re-examined SGC cofactor function from a gill basolateral membrane perspective. Nine SGC fatty acid species were quantified by tandem mass spectrometry (MS/MS) and related to Na(+)-K(+)-ATPase activity in trout acclimated to freshwater or brackish water (20 ppt). While Na(+)-K(+)-ATPase activity increased, the total concentration and relative proportion of SGC isoforms remained constant between salinities. However, we noted a negative correlation between SGC concentration and Na(+)-K(+)-ATPase activity in fish exposed to brackish water, whereas no correlation existed in fish acclimated to freshwater. Differential Na(+)-K(+)-ATPase/SGC sensitivity is discussed in relation to enzyme isoform switching, the SGC cofactor site model and saltwater adaptation.
Collapse
Affiliation(s)
- D Lingwood
- Department of Zoology, University of Guelph, ON N1G 2W1, Canada.
| | | | | | | |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Newborn screening for neurometabolic disorders offers a unique and promising opportunity to practice preventive medicine in children with diverse inborn errors of metabolism. The benefits of the early identification and presymptomatic treatment of these disorders are now recognized. RECENT FINDINGS The rapid pace of developments in the field of expanded newborn screening has been made possible by technological advances in the ability to detect multiple compounds diagnostic of diverse inborn errors of metabolism in neonatal dried blood specimens. Launched by the success of newborn screening for phenylketonuria, experts in this area are optimistic that further public health benefits will follow the same pathway. This review highlights the population model and public health issues inherent in advances in newborn screening for selected neurometabolic disorders. Current and future diagnostic and therapeutic, as well as social and ethical, dilemmas are discussed. SUMMARY Newborn screening represents one of the major child health advances of this past century. As developments in the field of expanded newborn screening for neurometabolic disease progress forward, the long-term success of this important project will pose future challenges and opportunities.
Collapse
Affiliation(s)
- Martha D Carlson
- Division of Pediatric Neurology, Departments of Pediatrics and Neurology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
37
|
Röschinger W, Olgemöller B, Fingerhut R, Liebl B, Roscher AA. Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediatr 2003; 162 Suppl 1:S67-76. [PMID: 14618396 DOI: 10.1007/s00431-003-1356-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Gas chromatography/mass spectrometry became available more than 30 years ago and has subsequently profoundly contributed not only in the identification of a wide range of inborn errors but also as a key tool for clinical diagnostic screening of genetic metabolic disease. Due to extraordinary advances in liquid chromatography and mass spectrometry (MS) developed in the last decade, the utilisation of MS and the potential number of applications for the purpose of metabolic screening is currently undergoing considerable expansion. CONCLUSIONS This overview aims to describe only current new developments in clinically most relevant applications, in particular with focus on low molecular weight compounds.
Collapse
Affiliation(s)
- Wulf Röschinger
- Research Center, Department of Biochemical Genetics and Molecular Biology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Lindwurmstrasse 4, 80337, Munich, Germany.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Tandem mass spectrometry is becoming an increasingly important analytical technology in the clinical laboratory environment. Applications in toxicology and therapeutic drug monitoring have opened the door for tandem mass spectrometry and now we are seeing a vast array of new applications being developed. It has been the combination of tandem mass spectrometry with sample introduction techniques employing atmospheric pressure ionization that has enabled this technology to be readily implemented in the clinical laboratory. Although its major research applications started with pharmacology and proteomics, tandem mass spectrometry is being used for a great variety of analyses from steroids to catecholamines to peptides. As with chromatographic methods, tandem mass spectrometry is most cost effective when groups of compounds need to be measured simultaneously. However as the price/performance of this technology continues to improve, it will become even more widely utilized for clinical laboratory applications.
Collapse
Affiliation(s)
- Kent C Dooley
- Department of Pathology and Laboratory Medicine, IWK Health Centre and Department of Pathology, Dalhousie University Medical School, Halifax, Nova Scotia, Canada.
| |
Collapse
|
39
|
Carpenter KH, Wiley V. Application of tandem mass spectrometry to biochemical genetics and newborn screening. Clin Chim Acta 2002; 322:1-10. [PMID: 12104075 DOI: 10.1016/s0009-8981(02)00135-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tandem mass spectrometry (MS/MS) has become a key technology in the fields of biochemical genetics and newborn screening. The development of electrospray ionisation (ESI) and associated automation of sample handling and data manipulation have allowed the introduction of expanded newborn screening for disorders which feature accumulation of acylcarnitines and certain amino acids in a number of programs worldwide. In addition, the technique has proven valuable in several areas of biochemical genetics including quantification of carnitine and acylcarnitines, in vitro studies of metabolic pathways (in particular beta-oxidation), and diagnosis of peroxisomal and lysosomal disorders. This review covers some of the basic theory of MS/MS and focuses on the practical application of the technique in these two interrelated areas.
Collapse
Affiliation(s)
- Kevin H Carpenter
- New South Wales Biochemical Genetics, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Sydney, Australia.
| | | |
Collapse
|
40
|
Sandhoff R, Hepbildikler ST, Jennemann R, Geyer R, Gieselmann V, Proia RL, Wiegandt H, Grone HJ. Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J Biol Chem 2002; 277:20386-98. [PMID: 11919180 DOI: 10.1074/jbc.m110641200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfatides show structural, and possibly physiological similarities to gangliosides. Kidney dysfunction might be correlated with changes in sulfatides, the major acidic glycosphingolipids in this organ. To elucidate their in vivo metabolic pathway these compounds were analyzed in mice afflicted with inherited glycosphingolipid disorders. The mice under study lacked the genes encoding either beta-hexosaminidase alpha-subunit (Hexa-/-), the beta-hexosaminidase beta-subunit (Hexb-/-), both beta-hexosaminidase alpha and beta-subunits (Hexa-/- and Hexb-/-), GD3 synthase (GD3S-/-), GD3 synthase and GalNAc transferase (GD3S-/- and GalNAcT-/-), GM2 activator protein (Gm2a-/-), or arylsulfatase A (ASA-/-). Quantification of the sulfatides, I(3)SO(3)(-)-GalCer (SM4s), II(3)SO(3)(-)-LacCer (SM3), II(3)SO(3)(-)-Gg(3)Cer (SM2a), and IV(3,) II(3)-(SO(3)(-))(2)-Gg(4)Cer (SB1a), was performed by nano-electrospray tandem mass spectrometry. We conclude for the in vivo situation in mouse kidneys that: 1) a single enzyme (GalNAc transferase) is responsible for the synthesis of SM2a and GM2 from SM3 and GM3, respectively. 2) In analogy to GD1a, SB1a is degraded via SM2a. 3) SM2a is hydrolyzed to SM3 by beta-hexosaminidase S (Hex S) and Hex A, but not Hex B. Both enzymes are supported by GM2-activator protein. 4) Arylsulfatase A is required to degrade SB1a. It is probably the sole sphingolipid-sulfatase cleaving the galactosyl-3-sulfate bond. In addition, a human Tay-Sachs patient's liver was investigated, which showed accumulation of SM2a along with GM2 storage. The different ceramide compositions of both compounds indicated they were probably derived from different cell types. These data demonstrate that in vivo the sulfatides of the ganglio-series follow the same metabolic pathways as the gangliosides with the replacement of sulfotransferases and sulfatases by sialyltransferases and sialidases. Furthermore, a novel neutral GSL, IV(6)GlcNAcbeta-Gb(4)Cer, was found to accumulate only in Hexa-/- and Hexb-/- mouse kidneys. From this we conclude that Hex S also efficiently cleaves terminal beta1-6-linked HexNAc residues from neutral GSLs in vivo.
Collapse
Affiliation(s)
- Roger Sandhoff
- Deutsches Krebsforschungszentrum Heidelberg, Abteilung für Zelluläre und Molekulare Pathologie, INF 280, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mills K, Johnson A, Winchester B. Synthesis of novel internal standards for the quantitative determination of plasma ceramide trihexoside in Fabry disease by tandem mass spectrometry. FEBS Lett 2002; 515:171-6. [PMID: 11943216 DOI: 10.1016/s0014-5793(02)02491-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The concentration of globotriaosylceramide (ceramide trihexoside (CTH)) in the plasma of patients with Fabry disease has been determined quantitatively by tandem mass spectrometry (MS) using novel internal standards, [D4]C-16 CTH and C-17 CTH, which were synthesised enzymically from lyso-CTH using the reverse reaction of sphingolipid ceramide N-deacylase. C-17 CTH was also synthesised chemically from lyso-CTH. This strategy has also been used to prepare standards for the quantitative determination by MS of other glycosphingolipids.
Collapse
Affiliation(s)
- Kevin Mills
- Biochemistry, Endocrinology and Metabolism Unit, Institute of Child Health (University College London), 30 Guilford Street, WC1N 1EH, London, UK
| | | | | |
Collapse
|
42
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:1076-1082. [PMID: 11599087 DOI: 10.1002/jms.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|