1
|
Chen M, Yang C, Zhai X, Wang C, Liu M, Zhang B, Guo X, Wang Y, Li H, Liu Y, Han J, Wang X, Li J, Jia L, Li L. Comprehensive Identification and Characterization of HML-9 Group in Chimpanzee Genome. Viruses 2024; 16:892. [PMID: 38932184 PMCID: PMC11209481 DOI: 10.3390/v16060892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Endogenous retroviruses (ERVs) are related to long terminal repeat (LTR) retrotransposons, comprising gene sequences of exogenous retroviruses integrated into the host genome and inherited according to Mendelian law. They are considered to have contributed greatly to the evolution of host genome structure and function. We previously characterized HERV-K HML-9 in the human genome. However, the biological function of this type of element in the genome of the chimpanzee, which is the closest living relative of humans, largely remains elusive. Therefore, the current study aims to characterize HML-9 in the chimpanzee genome and to compare the results with those in the human genome. Firstly, we report the distribution and genetic structural characterization of the 26 proviral elements and 38 solo LTR elements of HML-9 in the chimpanzee genome. The results showed that the distribution of these elements displayed a non-random integration pattern, and only six elements maintained a relatively complete structure. Then, we analyze their phylogeny and reveal that the identified elements all cluster together with HML-9 references and with those identified in the human genome. The HML-9 integration time was estimated based on the 2-LTR approach, and the results showed that HML-9 elements were integrated into the chimpanzee genome between 14 and 36 million years ago and into the human genome between 18 and 49 mya. In addition, conserved motifs, cis-regulatory regions, and enriched PBS sequence features in the chimpanzee genome were predicted based on bioinformatics. The results show that pathways significantly enriched for ERV LTR-regulated genes found in the chimpanzee genome are closely associated with disease development, including neurological and neurodevelopmental psychiatric disorders. In summary, the identification, characterization, and genomics of HML-9 presented here not only contribute to our understanding of the role of ERVs in primate evolution but also to our understanding of their biofunctional significance.
Collapse
Affiliation(s)
- Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Caiqin Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiuli Zhai
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chunlei Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Mengying Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bohan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xing Guo
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yanglan Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanping Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Yongjian Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingwan Han
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Xiaolin Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lei Jia
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| | - Lin Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China; (C.Y.); (X.Z.); (C.W.); (M.L.); (B.Z.); (X.G.); (Y.W.); (H.L.); (Y.L.); (J.H.); (X.W.); (J.L.)
| |
Collapse
|
2
|
Silva FA, Picorelli ACR, Veiga GS, Nery MF. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism. BMC Ecol Evol 2023; 23:62. [PMID: 37872505 PMCID: PMC10594719 DOI: 10.1186/s12862-023-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Collapse
Affiliation(s)
- Felipe A Silva
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Agnello C R Picorelli
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Giovanna S Veiga
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mariana F Nery
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
3
|
Rodríguez-Leguizamón G, Ceballos-Garzón A, Suárez CF, Patarroyo MA, Parra-Giraldo CM. Robust, Comprehensive Molecular, and Phenotypical Characterisation of Atypical Candida albicans Clinical Isolates From Bogotá, Colombia. Front Cell Infect Microbiol 2020; 10:571147. [PMID: 33344263 PMCID: PMC7738613 DOI: 10.3389/fcimb.2020.571147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is commensal in human microbiota and is known to be the commonest opportunistic pathogen, having variable clinical outcomes that can lead to up to 60% mortality. Such wide clinical behaviour can be attributed to its phenotypical plasticity and high genetic diversity. This study characterised 10 Colombian clinical isolates which had already been identified as C. albicans by molecular tests; however, previous bioinformatics analysis of protein mass spectra and phenotypical characteristics has shown that this group of isolates has atypical behaviour, sharing characteristics of both C. africana and C. albicans. This study was aimed at evaluating atypical isolates' pathogenic capability in the Galleria mellonella model; susceptibility profiles were determined and MLST was used for molecular characterisation. Cluster analysis, enabling unbiased bootstrap to classify the isolates and establish their cluster membership and e-BURST, was used for establishing clonal complexes (CC). Both approaches involved using representative MLST data from the 18 traditional C. albicans clades, as well as C. albicans-associated and minor species. Ten atypical isolates were distributed as follows: 6/10 (B71, B41, B60, R6, R41, and R282) were grouped into a statistically well-supported atypical cluster (AC) and constituted a differentiated CC 6; 2/10 of the isolates were clearly grouped in clade 1 and were concurrent in CC 4 (B80, B44). Another 2/10 atypical isolates were grouped in clade 10 and concurred in CC 7 (R425, R111); most atypical isolates were related to geographically distant isolates and some represented new ST. Isolates B41 and R41 in the AC had greater virulence. Isolate B44 was fluconazole-resistant and was grouped in clade 1. The atypical nature of the isolates studied here was demonstrated by the contrast between phenotypical traits (C. africana-like), molecular markers (C. albicans-like), virulence, and antifungal resistance, highlighting the widely described genetic plasticity for this genus. Our results showed that the atypical isolates forming well-differentiated groups belonged to C. albicans. Our findings could contribute towards developing molecular epidemiology approaches for managing hospital-acquired infection.
Collapse
Affiliation(s)
- Giovanni Rodríguez-Leguizamón
- Hospital Universitario Mayor Méderi-Universidad del Rosario, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Andrés Ceballos-Garzón
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos F Suárez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.,Biomathematics Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Manuel A Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Claudia M Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
4
|
Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS One 2020; 15:e0236515. [PMID: 32764757 PMCID: PMC7413554 DOI: 10.1371/journal.pone.0236515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
With the increasing availability of high quality genomic data, there is opportunity to deeply explore the genealogical relationships of different gene loci between closely related species. In this study, we utilized genomes of Xenopus laevis (XLA, a tetraploid species with (L) and (S) sub-genomes) and X. tropicalis (XTR, a diploid species) to investigate whether synonymous substitution rates among orthologous or homoeologous genes displayed any heterogeneity. From over 1500 orthologous/homoeologous genes collected, we calculated proportion of synonymous substitutions between genomes/sub-genomes (k) and found variation within and between chromosomes. Within most chromosomes, we identified higher k with distance from the centromere, likely attributed to higher substitution rates and recombination in these regions. Using maximum likelihood methods, we identified further evidence supporting rate heterogeneity, and estimated species divergence times and ancestral population sizes. Estimated species divergence times (XLA.L-XLA.S: ~25.5 mya; XLA-XTR: ~33.0 mya) were slightly younger compared to a past study, attributed to consideration of population size in our study. Meanwhile, we found very large estimated population size in the ancestral populations of the two species (NA = 2.55 x 106). Local hybridization and population structure, which have not yet been well elucidated in frogs, may be a contributing factor to these possible large population sizes.
Collapse
|
5
|
Ballesteros-Nova NE, Pérez-Rodríguez R, Beltrán-López RG, Domínguez-Domínguez O. Genetic differentiation in the southern population of the Fathead Minnow Pimephales promelas Rafinesque (Actinopterygii: Cyprinidae). PeerJ 2019; 7:e6224. [PMID: 31106042 PMCID: PMC6497047 DOI: 10.7717/peerj.6224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022] Open
Abstract
The North American cyprinid Pimephales promelas is a species with a wide distribution range, occurring in distinct hydrographic basins in Mexico, Canada, and the United States. Previous morphological and meristic analyses of P. promelas concluded that at least three subspecies exist in the midwestern and northeast region of the United States. No studies have been carried out on the Mexican population of P. promelas, but the findings of cryptic diversity in United States populations of this species, as well as in other codistributed fish species in Mexico could be an indication that Mexican populations of P. promelas consist of cryptic species. Using the mitochondrial gene cyt b and the first intron of the S7 ribosomal protein-coding nuclear gene we carried out phylogenetic and phylogeographic analyses of populations of P. promelas across its distribution range in northwestern Mexico. Using this information were analyzed the structure and differentiation level between populations of P. promelas from distinct river basins in the region in identifying cryptic diversity. Twenty-four sequences were obtained for cyt b, and 30 for S7, which included the two heterozygous alleles. The results revealed the existence of four well-differentiated lineages: (1) Yaqui in the Pacific slope; (2) Santa Maria, and (3) Casas Grandes in the Guzman Basin; and (4) Nazas+Conchos in Chihuahua state. This challenges the current taxonomy of P. promelas. Differences in the relationships between markers and the small sample size for the Santa Maria population (n = 1), indicate that our results must be corroborated with more data and morphological analyses. Biogeographic analysis of these findings suggest that the evolutionary history of P. promelas is associated with the fragmentation of the ancestral Rio Grande river system since Miocene in northwestern Mexico consistent with findings for codistributed fish species.
Collapse
Affiliation(s)
- Nayarit E Ballesteros-Nova
- Programa Institucional de Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Rodolfo Pérez-Rodríguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Rosa G Beltrán-López
- Programa Institucional de Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio de Ictiología, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México.,Laboratorio Nacional de Análisis y Síntesis Ecológica para la Conservación de Recursos Genéticos de México, Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| |
Collapse
|
6
|
Orr CM. Kinematics of the anthropoid os centrale and the functional consequences of scaphoid-centrale fusion in African apes and hominins. J Hum Evol 2017; 114:102-117. [PMID: 29447753 DOI: 10.1016/j.jhevol.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/21/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
In most primates, the os centrale is interposed between the scaphoid, trapezoid, trapezium, and head of the capitate, thus constituting a component of the wrist's midcarpal complex. Scaphoid-centrale fusion is among the clearest morphological synapomorphies of African apes and hominins. Although it might facilitate knuckle-walking by increasing the rigidity and stability of the radial side of the wrist, the exact functional significance of scaphoid-centrale fusion is unclear. If fusion acts to produce a more rigid radial wrist that stabilizes the hand and limits shearing stresses, then in taxa with a free centrale, it should anchor ligaments that check extension and radial deviation, but exhibit motion independent of the scaphoid. Moreover, because the centrale sits between the scaphoid and capitate (a major stabilizing articulation), scaphoid-centrale mobility should correlate with scaphocapitate mobility in extension and radial deviation. To test these hypotheses, the centrale's ligamentous binding was investigated via dissection in Pongo and Papio, and the kinematics of the centrale were quantified in a cadaveric sample of anthropoids (Pongo sp., Ateles geoffroyi, Colobus guereza, Macaca mulatta, and Papio anubis) using a computed-tomography-based method to track wrist-bone motion. Results indicate that the centrale rotates freely relative to the scaphoid in all taxa. However, centrale mobility is only correlated with scaphocapitate mobility during extension in Pongo-possibly due to differences in overall wrist configuration between apes and monkeys. If an extant ape-like wrist characterized early ancestors of African apes and hominins, then scaphoid-centrale fusion would have increased midcarpal rigidity in extension relative to the primitive condition. Although biomechanically consistent with a knuckle-walking hominin ancestor, this assumes that the trait evolved specifically for that biological role, which must be squared with contradictory interpretations of extant and fossil hominoid morphology. Regardless of its original adaptive significance, scaphoid-centrale fusion likely presented a constraint on early hominin midcarpal mobility.
Collapse
Affiliation(s)
- Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
7
|
Pawel Gorecki P, Paszek J, Eulenstein O. Unconstrained Diameters for Deep Coalescence. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:1002-1012. [PMID: 26887001 DOI: 10.1109/tcbb.2016.2520937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The minimizing-deep-coalescence (MDC) approach infers a median (species) tree for a given set of gene trees under the deep coalescence cost. This cost accounts for the minimum number of deep coalescences needed to reconcile a gene tree with a species tree where the leaf-genes are mapped to the leaf-species through a function called leaf labeling. In order to better understand the MDC approach we investigate here the diameter of a gene tree, which is an important property of the deep coalescence cost. This diameter is the maximal deep coalescence costs for a given gene tree under all leaf labelings for each possible species tree topology. While we prove that this diameter is generally infinite, this result relies on the diameter's unrealistic assumption that species trees can be of infinite size. Providing a more practical definition, we introduce a natural extension of the gene tree diameter that constrains the species tree size by a given constant. For this new diameter, we describe an exact formula, present a complete classification of the trees yielding this diameter, derive formulas for its mean and variance, and demonstrate its ability using comparative studies.
Collapse
|
8
|
Inferring Human Demographic Histories of Non-African Populations from Patterns of Allele Sharing. Am J Hum Genet 2017; 100:766-772. [PMID: 28475859 DOI: 10.1016/j.ajhg.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/31/2017] [Indexed: 11/22/2022] Open
Abstract
Recent human-genetics studies have come to different conclusions regarding how and when modern humans spread out of Africa and into the rest of the world. I present here a simple parsimony-based analysis that suggests that East Asians and Melanesians are sister groups, and I discuss what implications this has for recent claims made about the demographic histories of non-African populations.
Collapse
|
9
|
Eng CM, Arnold AS, Biewener AA, Lieberman DE. The human iliotibial band is specialized for elastic energy storage compared with the chimp fascia lata. ACTA ACUST UNITED AC 2015; 218:2382-93. [PMID: 26026035 DOI: 10.1242/jeb.117952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
Abstract
This study examines whether the human iliotibial band (ITB) is specialized for elastic energy storage relative to the chimpanzee fascia lata (FL). To quantify the energy storage potential of these structures, we created computer models of human and chimpanzee lower limbs based on detailed anatomical dissections. We characterized the geometry and force-length properties of the FL, tensor fascia lata (TFL) and gluteus maximus (GMax) in four chimpanzee cadavers based on measurements of muscle architecture and moment arms about the hip and knee. We used the chimp model to estimate the forces and corresponding strains in the chimp FL during bipedal walking, and compared these data with analogous estimates from a model of the human ITB, accounting for differences in body mass and lower extremity posture. We estimate that the human ITB stores 15- to 20-times more elastic energy per unit body mass and stride than the chimp FL during bipedal walking. Because chimps walk with persistent hip flexion, the TFL and portions of GMax that insert on the FL undergo smaller excursions (origin to insertion) than muscles that insert on the human ITB. Also, because a smaller fraction of GMax inserts on the chimp FL than on the human ITB, and thus its mass-normalized physiological cross-sectional area is about three times less in chimps, the chimp FL probably transmits smaller muscle forces. These data provide new evidence that the human ITB is anatomically derived compared with the chimp FL and potentially contributes to locomotor economy during bipedal locomotion.
Collapse
Affiliation(s)
- Carolyn M Eng
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Allison S Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew A Biewener
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Górecki P, Eulenstein O. Gene Tree Diameter for Deep Coalescence. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2015; 12:155-165. [PMID: 26357086 DOI: 10.1109/tcbb.2014.2351795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The deep coalescence cost accounts for discord caused by deep coalescence between a gene tree and a species tree. It is a major concern that the diameter of a gene tree (the tree's maximum deep coalescence cost across all species trees) depends on its topology, which can largely obfuscate phylogenetic studies. While this bias can be compensated by normalizing the deep coalescence cost using diameters, obtaining them efficiently has been posed as an open problem by Than and Rosenberg. Here, we resolve this problem by describing a linear time algorithm to compute the diameter of a gene tree. In addition, we provide a complete classification of the species trees yielding this diameter to guide phylogenetic analyses.
Collapse
|
11
|
Kwong M, Pemberton TJ. Sequence differences at orthologous microsatellites inflate estimates of human-chimpanzee differentiation. BMC Genomics 2014; 15:990. [PMID: 25407736 PMCID: PMC4253012 DOI: 10.1186/1471-2164-15-990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Microsatellites---contiguous arrays of 2–6 base-pair motifs---have formed the cornerstone of population-genetic studies for over two decades. Their genotype data typically takes the form of PCR fragment lengths obtained using locus-specific primer pairs to amplify the genomic region encompassing the microsatellite. Recently, we reported a dataset of 5,795 human and 84 chimpanzee individuals with genotypes at 246 human-derived autosomal microsatellites as a resource to facilitate interspecies comparisons. A major assumption underlying this dataset is that PCR amplicons at orthologous microsatellites are commensurable between species. Results We find this assumption to be frequently incorrect owing to discordance in microsatellite organization and variability, as well as nontrivial length imbalances caused by small species-specific indels in microsatellite flanking sequences. Converting PCR fragment lengths into the repeat numbers they represent at 138 microsatellites whose organization and variability was found to be highly similar in both species, we show that interspecies incommensurability among PCR amplicons can inflate FST and DPS estimates by up to 10.6%. Separate investigations of determinants of microsatellite variability in humans and chimpanzees uncover similar patterns with mean and maximum numbers of repeats, as well as numbers and ranges of distinct alleles, all important factors in predicting heterozygosity. In contrast, across microsatellites, numbers of repeats were significantly smaller in chimpanzees than in humans, while numbers and ranges of distinct alleles were instead larger. Conclusions Our findings have fundamental implications for interspecies comparisons using microsatellites and offer new opportunities for more accurate comparisons of patterns of human and chimpanzee genetic variation in numerous areas of application. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-990) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Trevor J Pemberton
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Abstract
The great ape families are the species most closely related to our own, comprising chimpanzees, bonobos, gorillas, and orangutans. They live exclusively in tropical rainforests in Central Africa and the islands of Southeast Asia. Due to their close evolutionary relationship with humans, great apes share many cognitive, physiological, and morphological similarities with humans. The members of the great ape family make obvious models to facilitate the further understanding about humans' biology and history. This review will discuss how the recent addition of genome-wide data from great apes has furthered humans' understanding of these species and humanity, especially in the realm of evolutionary genetics.
Collapse
|
13
|
Phylogeny and evolution of RNA structure. Methods Mol Biol 2014. [PMID: 24639167 DOI: 10.1007/978-1-62703-709-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution.
Collapse
|
14
|
Guevara EE, Steiper ME. Molecular phylogenetic analysis of the Papionina using concatenation and species tree methods. J Hum Evol 2013; 66:18-28. [PMID: 24161610 DOI: 10.1016/j.jhevol.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 08/30/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
The Papionina is a geographically widespread subtribe of African cercopithecid monkeys whose evolutionary history is of particular interest to anthropologists. The phylogenetic relationships among arboreal mangabeys (Lophocebus), baboons (Papio), and geladas (Theropithecus) remain unresolved. Molecular phylogenetic analyses have revealed marked gene tree incongruence for these taxa, and several recent concatenated phylogenetic analyses of multilocus datasets have supported different phylogenetic hypotheses. To address this issue, we investigated the phylogeny of the Lophocebus + Papio + Theropithecus group using concatenation methods, as well as alternative methods that incorporate gene tree heterogeneity to estimate a 'species tree.' Our compiled DNA sequence dataset was ∼56 kb pairs long and included 57 independent partitions. All analyses of concatenated alignments strongly supported a Lophocebus + Papio clade and a basal position for Theropithecus. The Bayesian concordance analysis supported the same phylogeny. A coalescent-based Bayesian method resulted in a very poorly resolved species tree. The topological agreement between concatenation and the Bayesian concordance analysis offers considerable support for a Lophocebus + Papio clade as the dominant relationship across the genome. However, the results of the Bayesian concordance analysis indicate that almost half the genome has an alternative history. As such, our results offer a well-supported phylogenetic hypothesis for the Papio/Lophocebus/Theropithecus trichotomy, while at the same time providing evidence for a complex evolutionary history that likely includes hybridization among lineages.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA.
| | - Michael E Steiper
- Department of Anthropology, Hunter College, City University of New York, 695 Park Avenue, New York, NY 10065, USA; Program in Anthropology, The Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA; Program in Biology, The Graduate Center, City University of New York, 365 5th Avenue, New York, NY 10016, USA; New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, USA.
| |
Collapse
|
15
|
Schrago CG. The effective population sizes of the anthropoid ancestors of the human-chimpanzee lineage provide insights on the historical biogeography of the great apes. Mol Biol Evol 2013; 31:37-47. [PMID: 24124206 DOI: 10.1093/molbev/mst191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The recent development of methods that apply coalescent theory to phylogenetic problems has enabled the study of the population-level phenomena that drove the diversification of anthropoid primates. Effective population size, Ne, is one of the main parameters that constitute the theoretical underpinning of these new analytical approaches. For this reason, the ancestral N(e) of selected primate lineages has been thoroughly investigated. However, for some of these lineages, the estimates of ancestral N(e) reported in several studies present significant variation. This is the case for the common ancestor of humans and chimpanzees. Moreover, several ancestral anthropoid lineages have been ignored in the studies conducted so far. Because N(e) is fundamental to understand historic species demography, it is a crucial component of a complete description of the historical scenario of primate evolution. It also provides information that is helpful for differentiating between competing biogeographical hypotheses. In this study, the effective population sizes of the anthropoid ancestors of the human-chimp lineage are inferred using data sets of coding and noncoding sequences. A general pattern of a serial decline of population sizes is found between the ancestral lineage of Anthropoidea and that of Homo and Pan. When the theoretical distribution of gene trees was derived from the parametric estimates obtained, it closely corresponded to the empirical frequency of inferred gene trees along the genome. The most abrupt decrease of N(e) was found between the ancestors of all great apes and those of the African great apes alone. This suggests the occurrence of a genetic bottleneck during the evolution of Homininae, which corroborates the origin of African apes from a Eurasian ancestor.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Pease JB, Hahn MW. More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution 2013; 67:2376-84. [PMID: 23888858 DOI: 10.1111/evo.12118] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
When speciation events occur in rapid succession, incomplete lineage sorting (ILS) can cause disagreement among individual gene trees. The probability that ILS affects a given locus is directly related to its effective population size (Ne ), which in turn is proportional to the recombination rate if there is strong selection across the genome. Based on these expectations, we hypothesized that low-recombination regions of the genome, as well as sex chromosomes and nonrecombining chromosomes, should exhibit lower levels of ILS. We tested this hypothesis in phylogenomic datasets from primates, the Drosophila melanogaster clade, and the Drosophila simulans clade. In all three cases, regions of the genome with low or no recombination showed significantly stronger support for the putative species tree, although results from the X chromosome differed among clades. Our results suggest that recurrent selection is acting in these low-recombination regions, such that current levels of diversity also reflect past decreases in the effective population size at these same loci. The results also demonstrate how considering the genomic context of a gene tree can assist in more accurate determination of the true species phylogeny, especially in cases where a whole-genome phylogeny appears to be an unresolvable polytomy.
Collapse
Affiliation(s)
- James B Pease
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | |
Collapse
|
17
|
Wall JD, Kim SK, Luca F, Carbone L, Mootnick AR, de Jong PJ, Di Rienzo A. Incomplete lineage sorting is common in extant gibbon genera. PLoS One 2013; 8:e53682. [PMID: 23341974 PMCID: PMC3544895 DOI: 10.1371/journal.pone.0053682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/04/2012] [Indexed: 11/25/2022] Open
Abstract
We sequenced reduced representation libraries by means of Illumina technology to generate over 1.5 Mb of orthologous sequence from a representative of each of the four extant gibbon genera (Nomascus, Hylobates, Symphalangus, and Hoolock). We used these data to assess the evolutionary relationships between the genera by evaluating the likelihoods of all possible bifurcating trees involving the four taxa. Our analyses provide weak support for a tree with Nomascus and Hylobates as sister taxa and with Hoolock and Symphalangus as sister taxa, though bootstrap resampling suggests that other phylogenetic scenarios are also possible. This uncertainty is due to short internal branch lengths and extensive incomplete lineage sorting across taxa. The true phylogenetic relationships among gibbon genera will likely require a more extensive whole-genome sequence analysis.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Paleopopulation genetics is a new field that focuses on the population genetics of extinct groups and ancestral populations (i.e., populations ancestral to extant groups). With recent advances in DNA sequencing technologies, we now have unprecedented ability to directly assay genetic variation from fossils. This allows us to address issues, such as past population structure, changes in population size, and evolutionary relationships between taxa, at a much greater resolution than can traditional population genetics studies. In this review, we discuss recent developments in this emerging field as well as prospects for the future.
Collapse
Affiliation(s)
- Jeffrey D Wall
- Institute for Human Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94134, USA.
| | | |
Collapse
|
19
|
Eldon B, Degnan JH. Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents. Theor Popul Biol 2012; 82:117-30. [PMID: 22613063 DOI: 10.1016/j.tpb.2012.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/07/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Probabilities of monophyly, paraphyly, and polyphyly of two-species gene genealogies are computed for modest sample sizes and compared for two different Λ coalescent processes. Coalescent processes belonging to the Λ coalescent family admit asynchronous multiple mergers of active ancestral lineages. Assigning a timescale to the time of divergence becomes a central issue when different populations have different coalescent processes running on different timescales. Clade probabilities in single populations are also computed, which can be useful for testing for taxonomic distinctiveness of an observed set of monophyletic lineages. The coalescence rates of multiple merger coalescent processes are functions of coalescent parameters. The effect of coalescent parameters on the probabilities studied depends on the coalescent process, and if the population is ancestral or derived. The probability of reciprocal monophyly tends to be somewhat lower, when associated with a Λ coalescent, under the null hypothesis that two groups come from the same population. However, even for fairly recent divergence times, the probability of monophyly tends to be higher as a function of the number of generations for coalescent processes that admit multiple mergers, and is sensitive to the parameter of one of the example processes.
Collapse
Affiliation(s)
- Bjarki Eldon
- Department of Statistics, University of Oxford, One South Parks Road, Oxford OX1 3TG, UK.
| | | |
Collapse
|
20
|
The relative congruence of cranial and genetic estimates of hominoid taxon relationships: implications for the reconstruction of hominin phylogeny. J Hum Evol 2012; 62:640-53. [PMID: 22513382 DOI: 10.1016/j.jhevol.2012.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 01/02/2023]
Abstract
Previous analyses of extant catarrhine craniodental morphology have often failed to recover their molecular relationships, casting doubt on the accuracy of hominin phylogenies based on anatomical data. However, on the basis of genetic, morphometric and environmental affinity patterns, a growing body of literature has demonstrated that particular aspects of cranial morphology are remarkably reliable proxies for neutral modern human population history. Hence, it is important to test whether these intra-specific patterns can be extrapolated to a broader primate taxon level such that inference rules for understanding the morphological evolution of the extinct hominins may be devised. Here, we use a matrix of molecular distances between 15 hominoid taxa to test the genetic congruence of 14 craniomandibular regions, defined and morphometrically delineated on the basis of previous modern human analyses. This methodology allowed us to test directly whether the cranial regions found to be reliable indicators of population history were also more reliable proxies for hominoid genetic relationships. Cranial regions were defined on the basis of three criteria: developmental-functional units, individual bones, and regions differentially affected by masticatory stress. The results found that all regions tested were significantly and strongly correlated with the molecular matrix. However, the modern human predictions regarding the relative congruence of particular regions did not hold true, as the face was statistically the most reliable indicator of hominoid genetic distances, as opposed to the vault or basicranium. Moreover, when modern humans were removed from the analysis, all cranial regions improved in their genetic congruence, suggesting that it is the inclusion of morphologically-derived humans that has the largest effect on incongruence between morphological and molecular estimates of hominoid relationships. Therefore, it may be necessary to focus on smaller intra-generic taxonomic levels to more fully understand the effects of neutral and selective evolutionary processes in generating morphological diversity patterns.
Collapse
|
21
|
Ari E, Ittzés P, Podani J, Thi QCL, Jakó É. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes. Mol Phylogenet Evol 2012; 63:193-202. [DOI: 10.1016/j.ympev.2012.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 11/17/2011] [Accepted: 01/11/2012] [Indexed: 11/28/2022]
|
22
|
Anderson CNK, Liu L, Pearl D, Edwards SV. Tangled trees: the challenge of inferring species trees from coalescent and noncoalescent genes. Methods Mol Biol 2012; 856:3-28. [PMID: 22399453 DOI: 10.1007/978-1-61779-585-5_1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phylogenies based on different genes can produce conflicting phylogenies; methods that resolve such ambiguities are becoming more popular, and offer a number of advantages for phylogenetic analysis. We review so-called species tree methods and the biological forces that can undermine them by violating important aspects of the underlying models. Such forces include horizontal gene transfer, gene duplication, and natural selection. We review ways of detecting loci influenced by such forces and offer suggestions for identifying or accommodating them. The way forward involves identifying outlier loci, as is done in population genetic analysis of neutral and selected loci, and removing them from further analysis, or developing more complex species tree models that can accommodate such loci.
Collapse
Affiliation(s)
- Christian N K Anderson
- Department of Organismic and Evolutionary Biology & Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | | | | |
Collapse
|
23
|
Wu ZQ, Ge S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Mol Phylogenet Evol 2012; 62:573-8. [DOI: 10.1016/j.ympev.2011.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/22/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
|
24
|
Cummins CA, McInerney JO. A Method for Inferring the Rate of Evolution of Homologous Characters that Can Potentially Improve Phylogenetic Inference, Resolve Deep Divergence and Correct Systematic Biases. Syst Biol 2011; 60:833-44. [DOI: 10.1093/sysbio/syr064] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carla A. Cummins
- Molecular Evolution and Bioinformatics Unit, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - James O. McInerney
- Molecular Evolution and Bioinformatics Unit, Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
25
|
Lohse K, Sharanowski B, Stone GN. QUANTIFYING THE PLEISTOCENE HISTORY OF THE OAK GALL PARASITOID CECIDOSTIBA FUNGOSA USING TWENTY INTRON LOCI. Evolution 2010; 64:2664-81. [PMID: 20455927 DOI: 10.1111/j.1558-5646.2010.01024.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, West Mains Road, United Kingdom.
| | | | | |
Collapse
|
26
|
Abstract
The massive amount of genomic sequence data that is now available for analyzing evolutionary relationships among 31 placental mammals reduces the stochastic error in phylogenetic analyses to virtually zero. One would expect that this would make it possible to finally resolve controversial branches in the placental mammalian tree. We analyzed a 2,863,797 nucleotide-long alignment (3,364 genes) from 31 placental mammals for reconstructing their evolution. Most placental mammalian relationships were resolved, and a consensus of their evolution is emerging. However, certain branches remain difficult or virtually impossible to resolve. These branches are characterized by short divergence times in the order of 1-4 million years. Computer simulations based on parameters from the real data show that as little as about 12,500 amino acid sites could be sufficient to confidently resolve short branches as old as about 90 million years ago (Ma). Thus, the amount of sequence data should no longer be a limiting factor in resolving the relationships among placental mammals. The timing of the early radiation of placental mammals coincides with a period of climate warming some 100-80 Ma and with continental fragmentation. These global processes may have triggered the rapid diversification of placental mammals. However, the rapid radiations of certain mammalian groups complicate phylogenetic analyses, possibly due to incomplete lineage sorting and introgression. These speciation-related processes led to a mosaic genome and conflicting phylogenetic signals. Split network methods are ideal for visualizing these problematic branches and can therefore depict data conflict and possibly the true evolutionary history better than strictly bifurcating trees. Given the timing of tectonics, of placental mammalian divergences, and the fossil record, a Laurasian rather than Gondwanan origin of placental mammals seems the most parsimonious explanation.
Collapse
Affiliation(s)
- Björn M Hallström
- Department of Cell and Organism Biology, Division of Evolutionary Molecular Systematics, University of Lund, Lund, Sweden
| | | |
Collapse
|
27
|
Bourke BP, Foster PG, Bergo ES, Calado DC, Sallum MAM. Phylogenetic relationships among species of Anopheles (Nyssorhynchus) (Diptera, Culicidae) based on nuclear and mitochondrial gene sequences. Acta Trop 2010; 114:88-96. [PMID: 20117069 DOI: 10.1016/j.actatropica.2010.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 01/07/2010] [Accepted: 01/18/2010] [Indexed: 11/25/2022]
Abstract
Phylogenetic relationships among 21 species of mosquitoes in subgenus Nyssorhynchus were inferred from the nuclear white and mitochondrial NADH dehydrogenase subunit 6 (ND6) genes. Bayesian phylogenetic methods found that none of the three Sections within Nyssorhynchus (Albimanus, Argyritarsis, Myzorhynchella) were supported in all analyses, although Myzorhynchella was found to be monophyletic at the combined genes. Within the Albimanus Section the monophyly of the Strodei Subgroup was strongly supported and within the Myzorhynchella Section Anopheles antunesi and An. lutzii formed a strongly supported monophyletic group. The epidemiologically significant Albitarsis Complex showed evidence of paraphyly (relative to An. lanei-Myzorhynchella) and discordance across gene trees, and the previously synonomized species of An. dunhami and An. goeldii were recovered as sister species. Finally, there was evidence of complexes in several species, including An. antunesi, An. deaneorum, and An. strodei.
Collapse
|
28
|
White MA, Ané C, Dewey CN, Larget BR, Payseur BA. Fine-scale phylogenetic discordance across the house mouse genome. PLoS Genet 2009; 5:e1000729. [PMID: 19936022 PMCID: PMC2770633 DOI: 10.1371/journal.pgen.1000729] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 10/19/2009] [Indexed: 11/18/2022] Open
Abstract
Population genetic theory predicts discordance in the true phylogeny of different genomic regions when studying recently diverged species. Despite this expectation, genome-wide discordance in young species groups has rarely been statistically quantified. The house mouse subspecies group provides a model system for examining phylogenetic discordance. House mouse subspecies are recently derived, suggesting that even if there has been a simple tree-like population history, gene trees could disagree with the population history due to incomplete lineage sorting. Subspecies of house mice also hybridize in nature, raising the possibility that recent introgression might lead to additional phylogenetic discordance. Single-locus approaches have revealed support for conflicting topologies, resulting in a subspecies tree often summarized as a polytomy. To analyze phylogenetic histories on a genomic scale, we applied a recently developed method, Bayesian concordance analysis, to dense SNP data from three closely related subspecies of house mice: Mus musculus musculus, M. m. castaneus, and M. m. domesticus. We documented substantial variation in phylogenetic history across the genome. Although each of the three possible topologies was strongly supported by a large number of loci, there was statistical evidence for a primary phylogenetic history in which M. m. musculus and M. m. castaneus are sister subspecies. These results underscore the importance of measuring phylogenetic discordance in other recently diverged groups using methods such as Bayesian concordance analysis, which are designed for this purpose.
Collapse
Affiliation(s)
- Michael A. White
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cécile Ané
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Colin N. Dewey
- Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bret R. Larget
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
29
|
Hernandez-Aguilar RA. Chimpanzee nest distribution and site reuse in a dry habitat: implications for early hominin ranging. J Hum Evol 2009; 57:350-64. [PMID: 19744699 DOI: 10.1016/j.jhevol.2009.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/07/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
Abstract
This paper reports on a 20-month study of chimpanzee nesting patterns in Issa, Ugalla, western Tanzania. Ugalla is one of the driest, most open, and seasonal habitats where chimpanzees are found. The methods used were ethoarchaeological, as the chimpanzees were not habituated and behavioural observations were rare. Systematic data on the spatial and temporal distribution of nests are presented. Places with no nests at the beginning of the study, despite being suitable for nesting, were used as controls. Similar to other chimpanzee study sites, nests were highly concentrated in some parts of the landscape. Issa chimpanzees preferred to nest on slopes. They extensively used the woodland vegetation type of their habitat for nesting throughout the annual cycle. Ninety percent of nest sites were used repeatedly throughout the study period, but none of the control places had nests during this period. The results indicate that chimpanzees ranged more widely during the dry season, when food abundance was lowest, food was available mainly in open vegetation types, and when drinking water was restricted to a few sources. Early hominins in similar habitats may have followed the ranging strategy of Issa chimpanzees. As with a previous study, the distribution of nests was spatially similar to archaeological distributions in early hominin sites. Hominin topography and vegetation type preferences may be misrepresented in the archaeological record. Nest sites may have been the antecedents of carcass processing sites.
Collapse
Affiliation(s)
- R Adriana Hernandez-Aguilar
- Leverhulme Centre for Human Evolutionary Studies, Department of Biological Anthropology, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, Cambridge, CB21QH, United Kingdom.
| |
Collapse
|
30
|
Hazkani-Covo E. Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny. Mol Biol Evol 2009; 26:2175-9. [PMID: 19578158 DOI: 10.1093/molbev/msp131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homoplasy-free characters are a valuable and highly desired tool for molecular systematics. Nuclear sequences of mitochondrial origin (numts) are fragments of mitochondrial DNA that have been transferred into the nuclear genome. numts are passively captured into genomes and have no transposition activity, which suggests they may have utility as phylogenetic markers. Here, five fully sequenced primate genomes (human, chimpanzee, orangutan, rhesus macaque, and marmoset) are used to reconstruct the evolutionary dynamics of recent numt accumulation in a phylogenetic context. The status of 367 numt loci is used as categorical data, and a maximum parsimony approach is used to trace numt insertions on different branches of the taxonomically undisputed primate phylogenetic tree. The presence of a given numt in related taxa implies orthologous integration, whereas the absence of a numt indicates the plesiomorphic condition prior to integration. An average rate of 5.65 numts per 1 My is estimated on the tree, but insertion rates vary significantly on different branches. Two instances in which the presence-absence pattern of numts does not agree with the phylogenetic tree were identified. These events may be the result of either lineage sorting or reversal. Using the numts reported here to reconstruct primate phylogeny produces the canonical primate tree topology with high bootstrap support. Moreover, numts identified in gorilla Supercontigs were used to test the human-chimp-gorilla trichotomy, yielding a high level of support for the sister relationship of human and chimpanzee. These analyses suggest that numts are valuable phylogenetic markers that can be used for molecular systematics. It remains to be tested whether numts are useful at deeper phylogenetic levels.
Collapse
|
31
|
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 2009; 24:332-40. [PMID: 19307040 DOI: 10.1016/j.tree.2009.01.009] [Citation(s) in RCA: 1135] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 12/17/2008] [Accepted: 01/05/2009] [Indexed: 01/29/2023]
Affiliation(s)
- James H Degnan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
32
|
Patterns of autosomal divergence between the human and chimpanzee genomes support an allopatric model of speciation. Gene 2009; 443:70-5. [PMID: 19463924 DOI: 10.1016/j.gene.2009.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 11/22/2022]
Abstract
There is a large variation in divergence times across genomic regions between human and chimpanzee. It has been suggested that this could partly result from selection against ancestral gene flow between incipient species in regions of the genome containing genetic incompatibilities. It is possible that such barriers to gene flow could arise in specific genes or in chromosomal inversions. I analysed patterns of lineage sorting that occur between human, chimpanzee and gorilla genomic sequences by examining divergent site patterns in >18 Mb genomic alignments. I develop a method to normalise site patterns by the mutational spectrum to minimise errors caused by misinference caused by recurrent mutation. Here I show that divergence times appear to be uniform between coding and noncoding sequences and between inverted and non-rearranged portions of chromosomes. I therefore find no evidence to support the large-scale accumulation of genetic incompatibilities at speciation genes or chromosomal inversions in the ancestral population of humans and chimpanzees. In addition, site patterns that are discordant with the species tree occur more frequently in regions with high human recombination rates. This could indicate the action of selective sweeps in the ancestral population, but could also be indicative of increased rates of homoplasy in these regions. I argue that these observations are compatible with a neutral allopatric model of speciation.
Collapse
|
33
|
|
34
|
A single amino acid substitution in a segment of the CA protein within Gag that has similarity to human immunodeficiency virus type 1 blocks infectivity of a human endogenous retrovirus K provirus in the human genome. J Virol 2008; 83:1105-14. [PMID: 19004950 DOI: 10.1128/jvi.01439-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human endogenous retrovirus K (HERV-K) is the most intact retrovirus in the human genome. However, no single HERV-K provirus in the human genome today appears to be infectious. Since the Gag protein is the central component for the production of retrovirus particles, we investigated the abilities of Gag from two HERV-K proviruses to support production of virus-like particles and viral infectivity. HERV-K113 has full-length open reading frames for all viral proteins, while HERV-K101 has a full-length gag open reading frame and is expressed in human male germ cell tumors. The Gag of HERV-K101 allowed production of viral particles and infectivity, although at lower levels than observed with a consensus sequence Gag. Thus, including HERV-K109, at least two HERV-K proviruses in human genome today have functional Gag proteins. In contrast, HERV-K113 Gag supported only very low levels of particle production, and no infectivity was detectable due to a single amino acid substitution (I516M) near the extreme C terminus of the CA protein within Gag. The sequence of this portion of HERV-K CA showed similarities to that of human immunodeficiency virus type 1 and other primate immunodeficiency viruses. The extreme C terminus of CA may be a general determinant of retrovirus particle production. In addition, precise mapping of the defects in HERV-K proviruses as was done here identifies the key polymorphisms that need to be analyzed to assess the possible existence of infectious HERV-K alleles within the human population.
Collapse
|
35
|
Rokas A, Chatzimanolis S. From gene-scale to genome-scale phylogenetics: the data flood in, but the challenges remain. Methods Mol Biol 2008; 422:1-12. [PMID: 18629657 DOI: 10.1007/978-1-59745-581-7_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
An important goal of phylogenetics is to be able to consistently and accurately reconstruct the historical patterns of cladogenesis among major organismic groups. Gene-scale phylogenetics is insufficient to attain this goal owing to the presence of poor resolution and incongruence in single--and few--gene phylogenies. The increasing availability of genome-scale amounts of data promises to overcome the insufficiency of gene-scale phylogenetics and uncover the genealogical tapestry uniting all living organisms with unprecedented accuracy. Here, we argue that a vast increase in data size alone--although necessary--may not be sufficient to achieve the desired accuracy for three reasons: (i) the existence of short stems in the tree of life, (ii) the saturation of phylogenetic signal in molecular sequences, and (iii) the effect of systematic error on phylogenetic inference. Devising strategies to ameliorate the effect of such challenges on sequence evolution will be critical to the success of current efforts to reconstruct the tree of life.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
36
|
Xing J, Witherspoon DJ, Ray DA, Batzer MA, Jorde LB. Mobile DNA elements in primate and human evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; Suppl 45:2-19. [PMID: 18046749 DOI: 10.1002/ajpa.20722] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee-gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation.
Collapse
Affiliation(s)
- Jinchuan Xing
- Department of Human Genetics, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
37
|
Raichlen DA, Pontzer H, Sockol MD. The Laetoli footprints and early hominin locomotor kinematics. J Hum Evol 2008; 54:112-7. [DOI: 10.1016/j.jhevol.2007.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 06/04/2007] [Accepted: 07/03/2007] [Indexed: 10/22/2022]
|
38
|
Gatesy J, DeSalle R, Wahlberg N. How many genes should a systematist sample? Conflicting insights from a phylogenomic matrix characterized by replicated incongruence. Syst Biol 2007; 56:355-63. [PMID: 17464890 DOI: 10.1080/10635150701294733] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- John Gatesy
- Department of Biology, University of California Riverside, Spieth Hall, Riverside, California 92521, USA.
| | | | | |
Collapse
|
39
|
Yonezawa T, Nikaido M, Kohno N, Fukumoto Y, Okada N, Hasegawa M. Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene 2007; 396:1-12. [PMID: 17449200 DOI: 10.1016/j.gene.2006.12.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/27/2006] [Accepted: 12/29/2006] [Indexed: 11/16/2022]
Abstract
The family Mustelidae, which consists of Mustelinae, Lutrinae, Melinae, and Taxidiinae, is the largest family among Carnivora and is a highly diverse group. Recent molecular phylogenetic studies have clarified the phylogenetic relations among Mustelidae, but there remain several unresolved problems, particularly concerning the deep branchings. Whereas many studies support the monophyly of Mustelidae+Procyonidae among Musteloidea, the relations between Mustelidae+Procyonidae, Ailuridae, and Miphitidae are still unclear. To address these problems, we inferred a tree on the basis of the sequences of mitochondrial genomes and of multiple nuclear genes using the maximum likelihood method. Our results strongly support the hypothesis that the Taxidiinae branched at first, followed by the branching of the Melinae. After that, Mustelinae diversified, and Lutrinae evolved within Mustelinae. With respect to the deep branchings in Musteloidea, the Ailuridae/Mephitidae monophyly tree and the Mephitidae-basal tree are indistinguishable in log-likelihood score, and this problem remains unresolved.
Collapse
Affiliation(s)
- Takahiro Yonezawa
- Department of Biosystems Science, Graduate University for Advanced Studies, Hayama, Kanegawa, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Wong A, Jensen JD, Pool JE, Aquadro CF. Phylogenetic incongruence in the Drosophila melanogaster species group. Mol Phylogenet Evol 2007; 43:1138-50. [PMID: 17071113 PMCID: PMC2041876 DOI: 10.1016/j.ympev.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 08/18/2006] [Accepted: 09/01/2006] [Indexed: 12/26/2022]
Abstract
Drosophila melanogaster and its close relatives are used extensively in comparative biology. Despite the importance of phylogenetic information for such studies, relationships between some melanogaster species group members are unclear due to conflicting phylogenetic signals at different loci. In this study, we use twelve nuclear loci (eleven coding and one non-coding) to assess the degree of phylogenetic incongruence in this model system. We focus on two nodes: (1) the node joining the Drosophila erecta-Drosophila orena, Drosophila melanogaster-Drosophila simulans, and Drosophila yakuba-Drosophila teissieri lineages, and (2) the node joining the lineages leading to the melanogaster, takahashii, and eugracilis subgroups. We find limited evidence for incongruence at the first node; our data, as well as those of several previous studies, strongly support monophyly of a clade consisting of D. erecta-D. orena and D. yakuba-D. teissieri. By contrast, using likelihood based tests of congruence, we find robust evidence for topological incongruence at the second node. Different loci support different relationships among the melanogaster, takahashii, and eugracilis subgroups, and the observed incongruence is not easily attributable to homoplasy, non-equilibrium base composition, or positive selection on a subset of loci. We argue that lineage sorting in the common ancestor of these three subgroups is the most plausible explanation for our observations. Such lineage sorting may lead to biased estimation of tree topology and evolutionary rates, and may confound inferences of positive selection.
Collapse
Affiliation(s)
- Alex Wong
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
41
|
Abstract
Mobile elements have been recognized as powerful tools for phylogenetic and population-level analyses. However, issues regarding potential sources of homoplasy and other misleading events have been raised. We have collected available data for all phylogenetic and population level studies of primates utilizing Alu insertion data and examined them for potentially homoplasious and other misleading events. Very low levels of each potential confounding factor in a phylogenetic or population analysis (i.e., lineage sorting, parallel insertions, and precise excision) were found. Although taxa known to be subject to high levels of these types of events may indeed be subject to problems when using SINE analysis, we propose that most taxa will respond as the order Primates has--by the resolution of several long-standing problems observed using sequence-based methods.
Collapse
Affiliation(s)
- David A Ray
- Department of Biology, West Virginia University, PO Box 6057, Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|
42
|
Abstract
A discussion of how homoplasy (the frequency of independently evolved characters) and the spacing of cladogenetic events limit our ability to reconstruct the tree of life using existing phylogenetic methods.
Collapse
|
43
|
Grehan JR. Mona Lisa smile: the morphological enigma of human and great ape evolution. ACTA ACUST UNITED AC 2006; 289:139-57. [PMID: 16865704 DOI: 10.1002/ar.b.20107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The science of human evolution is confronted with the popular chimpanzee theory and the earlier but largely ignored orangutan theory. The quality and scope of published documentation and verification of morphological features suggests there is very little in morphology to support a unique common ancestor for humans and chimpanzees. A close relationship between humans and African apes is currently supported by only eight unproblematic characters. The orangutan relationship is supported by about 28 well-supported characters, and it is also corroborated by the presence of orangutan-related features in early hominids. The uniquely shared morphology of humans and orangutans raises doubts about the almost universal belief that DNA sequence similarities necessarily demonstrate a closer evolutionary relationship between humans and chimpanzees. A new evolutionary reconstruction is proposed for the soft tissue anatomy, physiology, and behavioral biology of the first hominids that includes concealed ovulation, male beard and mustache, prolonged mating, extended pair-bonding, "house" construction, mechanical "genius," and artistic expression.
Collapse
|
44
|
Altheide TK, Hayakawa T, Mikkelsen TS, Diaz S, Varki N, Varki A. System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution. J Biol Chem 2006; 281:25689-702. [PMID: 16769723 DOI: 10.1074/jbc.m604221200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous vertebrate genes are involved in the biology of the oligosaccharide chains attached to glycoconjugates. These genes fall into diverse groups within the conventional Gene Ontology classification. However, they should be evaluated together from functional and evolutionary perspectives in a "biochemical systems" approach, considering each monosaccharide unit's biosynthesis, activation, transport, modification, transfer, recycling, degradation, and recognition. Sialic acid (Sia) residues are monosaccharides at the outer end of glycans on the cell-surface and secreted molecules of vertebrates, mediating recognition by intrinsic or extrinsic (pathogen) receptors. The availability of multiple genome sequences allows a system-wide comparison among primates and rodents of all genes directly involved in Sia biology. Taking this approach, we present further evidence for accelerated evolution in Sia-binding domains of CD33-related Sia-recognizing Ig-like lectins. Other gene classes are more conserved, including those encoding the sialyltransferases that attach Sia residues to glycans. Despite this conservation, tissue sialylation patterns are shown to differ widely among these species, presumably because of rapid evolution of sialyltransferase expression patterns. Analyses of N- and O-glycans of erythrocyte and plasma glycopeptides from these and other mammalian taxa confirmed this phenomenon. Sia modifications on these glycopeptides also appear to be undergoing rapid evolution. This rapid evolution of the sialome presumably results from the ongoing need of organisms to evade microbial pathogens that use Sia residues as receptors. The rapid evolution of Sia-binding domains of the inhibitory CD33-related Sia-recognizing Ig-like lectins is likely to be a secondary consequence, as these inhibitory receptors presumably need to keep up with recognition of the rapidly evolving "self"-sialome.
Collapse
Affiliation(s)
- Tasha K Altheide
- Glycobiology Research and Training Center, Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093-0687, USA
| | | | | | | | | | | |
Collapse
|
45
|
Degnan JH, Rosenberg NA. Discordance of species trees with their most likely gene trees. PLoS Genet 2006; 2:e68. [PMID: 16733550 PMCID: PMC1464820 DOI: 10.1371/journal.pgen.0020068] [Citation(s) in RCA: 583] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/23/2006] [Indexed: 12/01/2022] Open
Abstract
Because of the stochastic way in which lineages sort during speciation, gene trees may differ in topology from each other and from species trees. Surprisingly, assuming that genetic lineages follow a coalescent model of within-species evolution, we find that for any species tree topology with five or more species, there exist branch lengths for which gene tree discordance is so common that the most likely gene tree topology to evolve along the branches of a species tree differs from the species phylogeny. This counterintuitive result implies that in combining data on multiple loci, the straightforward procedure of using the most frequently observed gene tree topology as an estimate of the species tree topology can be asymptotically guaranteed to produce an incorrect estimate. We conclude with suggestions that can aid in overcoming this new obstacle to accurate genomic inference of species phylogenies. Different genomic regions evolving along the branches of a tree of species relationships can have different evolutionary histories. Consequently, estimates of species trees from genetic data may be influenced by the particular choice of genomic regions used in an analysis. Recent work has focused on circumventing this problem by combining information from multiple regions to attempt to produce accurate species tree estimates. The authors show that the use of multiple genomic regions for species tree inference is subject to a surprising new difficulty, the problem of “anomalous gene trees.” Not only can individual genes or genomic regions have genealogical histories that differ in shape, or topology, from a species tree, the gene tree topology most likely to evolve can differ from the species tree topology. As a result, the “democratic vote” procedure of using the most frequently observed gene tree topology as an estimate of the species tree topology can converge on the wrong species tree as more genes are added. As it becomes more feasible to simultaneously investigate many regions of a genome, species tree inference algorithms will need to begin taking the problem of anomalous gene trees into consideration.
Collapse
Affiliation(s)
- James H Degnan
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | |
Collapse
|
46
|
Capelli C, MacPhee RDE, Roca AL, Brisighelli F, Georgiadis N, O'Brien SJ, Greenwood AD. A nuclear DNA phylogeny of the woolly mammoth (Mammuthus primigenius). Mol Phylogenet Evol 2006; 40:620-7. [PMID: 16631387 DOI: 10.1016/j.ympev.2006.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/28/2006] [Accepted: 03/07/2006] [Indexed: 11/19/2022]
Affiliation(s)
- Cristian Capelli
- Istituto di Medicina Legale, Universitá Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Narechania A, Chen Z, DeSalle R, Burk RD. Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 2006; 79:15503-10. [PMID: 16306621 PMCID: PMC1316001 DOI: 10.1128/jvi.79.24.15503-15510.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human papillomaviruses (HPVs) have long been thought to follow a monophyletic pattern of evolution with little if any evidence for recombination between genomes. On the basis of this model, both oncogenicity and tissue tropism appear to have evolved once. Still, no systematic statistical analyses have shown whether monophyly is the rule across all HPV open reading frames (ORFs). We conducted a taxonomic analysis of 59 mucosal/genital HPVs using whole-genome and sliding-window similarity measures; maximum-parsimony, neighbor-joining, and Bayesian phylogenetic analyses; and localized incongruence length difference (LILD) analyses. The algorithm for the LILD analyses localized incongruence by calculating the tree length differences between constrained and unconstrained nodes in a total-evidence tree across all HPV ORFs. The process allows statistical evaluation of every ORF/node pair in the total-evidence tree. The most significant incongruence was observed at the putative high-risk (i.e., cancer-associated) node, the common oncogenic ancestor for alpha HPV species 9 (e.g., HPV type 16 [HPV16]), 11, 7 (e.g., HPV18), 5, and 6. Although these groups share early-gene homology, including high degrees of similarity among E6 and E7, groups 9 and 11 diverge from groups 7, 5, and 6 with respect to L2 and L1. The HPV species groups primarily associated with cervical and anogenital cancers appear to follow two distinct evolutionary paths, one conferred by the early genes and another by the late genes. The incongruence in the genital HPV phylogeny could have occurred from an early recombination event, an ecological niche change, and/or asymmetric genome convergence driven by intense selection. These data indicate that the phylogeny of the oncogenic HPVs is complex and that their evolution may not be monophyletic across all genes.
Collapse
Affiliation(s)
- Apurva Narechania
- Department of Microbiology, Albert Einstein College of Medicine, Ullman Building, Room 515, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
48
|
Varki A, Altheide TK. Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Res 2006; 15:1746-58. [PMID: 16339373 DOI: 10.1101/gr.3737405] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chimpanzee genome sequence is a long-awaited milestone, providing opportunities to explore primate evolution and genetic contributions to human physiology and disease. Humans and chimpanzees shared a common ancestor approximately 5-7 million years ago (Mya). The difference between the two genomes is actually not approximately 1%, but approximately 4%--comprising approximately 35 million single nucleotide differences and approximately 90 Mb of insertions and deletions. The challenge is to identify the many evolutionarily, physiologically, and biomedically important differences scattered throughout these genomes while integrating these data with emerging knowledge about the corresponding "phenomes" and the relevant environmental influences. It is logical to tackle the genetic aspects via both genome-wide analyses and candidate gene studies. Genome-wide surveys could eliminate the majority of genomic sequence differences from consideration, while simultaneously identifying potential targets of opportunity. Meanwhile, candidate gene approaches can be based on such genomic surveys, on genes that may contribute to known differences in phenotypes or disease incidence/severity, or on mutations in the human population that impact unique aspects of the human condition. These two approaches will intersect at many levels and should be considered complementary. We also cite some known genetic differences between humans and great apes, realizing that these likely represent only the tip of the iceberg.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular & Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
49
|
Schmittbuhl M, Rieger J, Le Minor JM, Schaaf A, Guy F. Variations of the mandibular shape in extant hominoids: Generic, specific, and subspecific quantification using elliptical fourier analysis in lateral view. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 132:119-31. [PMID: 17063462 DOI: 10.1002/ajpa.20476] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While a number of studies have documented the mandibular variations in hominoids, few focused on evaluating the variation of the whole outline of this structure. Using an efficient morphometrical approach, i.e. elliptical Fourier analysis, mandibular outlines in lateral view from 578 adult hominoids representing the genera Hylobates, Pongo, Gorilla, Pan, and Homo were quantified and compared. This study confirms that elliptical Fourier analysis provides an accurate characterization of the shape of the mandibular profile. Differences in mandibular shape between hominoid genera, species, subspecies, and to a lesser extent between sexes were demonstrated. Mandibles in great apes and hylobatids subspecies were generally less distinct from each other than were species. However, the magnitudes of differences among subspecies of Gorilla and Pongo approached or exceeded those between Pan troglodytes and P. paniscus. The powerful discrimination between taxa from the genus down to subspecific level associated to the relatively low level of intrageneric mandibular polymorphism in great apes provides strong evidences in support of the taxonomic utility of the shape of the mandibular profile in hominoids. In addition, morphological affinities between Pongo and Pan and the clear distinction between Homo and Pan suggest that the mandibular outline is a poor estimate of phylogenetic relationships in great apes and humans. The sexual dimorphism in mandibular shape exhibits two patterns of expression: a high degree of dimorphism in Gorilla, Pongo, and H. s. syndactylus and a relatively low one in modern humans and Pan. Besides, degree of mandibular shape dimorphism can vary considerably among closely related subspecies as observed in gorillas, arguing against the use of mandibular shape dimorphism patterns as characters in phylogenetic analyses. However, the quantification of the mandibular shape and of the variations among hominoids provides an interesting comparative framework that is likely to supply further arguments for a better understanding of the patterns of differentiation between living hominoids.
Collapse
Affiliation(s)
- Matthieu Schmittbuhl
- EA 3428: "Espèce humaine et primates: variabilité et évolution", Faculté de Médecine, F-67085 Strasbourg, France.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Although the late 17th century witnessed the recognition of fossils as the remains of extinct organisms-because they could be incorporated into the creation story embodied in the Great Chain of Being-acceptance of human antiquity through the indisputable demonstration of the contemporaneity of human bones, stone tools, and accepted fossils was not forthcoming for nearly 2 centuries thereafter. When it did occur, however, ancient humans were not seen as presenting a pattern of diversity similar to that seen in the fossil records of nonhuman organisms. Instead, human evolution then, as now, has typically been interpreted as being unilinear. This belief can be traced to Huxley (1863), who argued that the Feldhofer Grotto Neanderthal skullcap was merely an extension into the past of morphology seen in the Australian Aborigine, whom he took to represent the primitive end of an extreme range of variation he thought characterized Homo sapiens. During the mid-20th century, Mayr and Dobzhansky (mis)used their clout as founders of the evolutionary synthesis to cement in paleoanthropology the idea that human evolutionary history was characterized by nonspeciation. As such, anything that could be interpreted as potentially representing taxic diversity was relegated to the status of individual variation. Lack of understanding of the history of human paleontology, and the biases that constrained its perspective on human evolution, continue to affect the ways in which most paleoanthropologists pigeonhole human fossils.
Collapse
Affiliation(s)
- Jeffrey H Schwartz
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15260, USA. jhs+@pitt.edu
| |
Collapse
|