1
|
Grygorczuk S, Czupryna P, Martonik D, Adamczuk J, Parfieniuk-Kowerda A, Grzeszczuk A, Pawlak-Zalewska W, Dunaj-Małyszko J, Mielczak K, Parczewski M, Moniuszko-Malinowska A. The Factors Associated with the Blood-Brain Barrier Dysfunction in Tick-Borne Encephalitis. Int J Mol Sci 2025; 26:1503. [PMID: 40003967 PMCID: PMC11855613 DOI: 10.3390/ijms26041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
The pathogenesis of the central nervous system (CNS) pathology in tick-borne encephalitis (TBE) remains unclear. We attempted to identify mediators of the blood-brain barrier (BBB) disruption in human TBE in paired serum and cerebrospinal fluid (CSF) samples from 100 TBE patients. CSF albumin quotient (Qalb) was calculated as a measure of BBB impairment. Concentrations of cytokines, cytokine antagonists, adhesion molecules, selectins and matrix metalloproteinases (MMP) were measured with a multiplex bead assay. Single nucleotide polymorphisms (SNP) in genes MIF, TNF, TNFRSF1A, TNFRSF1B, IL-10, TLR3 and TLR4 were studied in patient blood DNA extracts and analyzed for associations with Qalb and/or cytokine concentrations. The multivariate regression models of Qalb were built with the soluble mediators as independent variables. The best models obtained included L-selectin, P-selectin, sVCAM, MMP7, MMP8 (or MMP9) and IL-28A as positive and IL-12p70, IL-15, IL-6Rα/IL-6 ratio and TNF-RII/TNFα ratio as negative correlates of Qalb. The genotype did not associate with Qalb, but polymorphism rs4149570 (in TNFRSF1A) associated with TNFα and rs1800629 (TNF) with MIF concentration. We confirm the association of the TNFα-dependent response, L-selectin and MMP8/MMP9 with BBB disruption and identify its novel correlates (IL-12, IL-15, IL-28A, MMP7). We detect no genotype associations with BBB function in TBE.
Collapse
Affiliation(s)
- Sambor Grygorczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Diana Martonik
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Anna Parfieniuk-Kowerda
- Department of Infectious Diseases and Hepatology, Medical University in Białystok, 15-089 Białystok, Poland; (D.M.); (A.P.-K.)
| | - Anna Grzeszczuk
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Wioletta Pawlak-Zalewska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Justyna Dunaj-Małyszko
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| | - Kaja Mielczak
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Acquired Immunodeficiency, Pomeranian Medical University, 70-204 Szczecin, Poland; (K.M.); (M.P.)
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University in Białystok, 15-089 Białystok, Poland; (P.C.); (J.A.); (A.G.); (W.P.-Z.); (J.D.-M.); (A.M.-M.)
| |
Collapse
|
2
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
3
|
Vasconcelos BCB, Vieira JA, Silva GO, Fernandes TN, Rocha LC, Viana AP, Serique CDS, Filho CS, Bringel RAR, Teixeira FFDL, Ferreira MS, Casseb SMM, Carvalho VL, de Melo KFL, de Castro PHG, Araújo SC, Diniz JAP, Demachki S, Anaissi AKM, Sosthenes MCK, Vasconcelos PFDC, Anthony DC, Diniz CWP, Diniz DG. Antibody-enhanced dengue disease generates a marked CNS inflammatory response in the black-tufted marmoset Callithrix penicillata. Neuropathology 2015; 36:3-16. [PMID: 26303046 DOI: 10.1111/neup.12229] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important.
Collapse
Affiliation(s)
| | - Juliana Almeida Vieira
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Geane Oliveira Silva
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | - Luciano Chaves Rocha
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - André Pereira Viana
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Cássio Diego Sá Serique
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Carlos Santos Filho
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Raissa Aires Ribeiro Bringel
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Francisco Fernando Dacier Lobato Teixeira
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | | | | | | | | | | | | | - Samia Demachki
- Universidade Federal do Pará, UFPA, Instituto de Ciências da Saúde, Laboratório de Anatomia Patológica, Hospital Universitário João de Barros Barreto, Belém, Pará, Brasil
| | - Ana Karyssa Mendes Anaissi
- Universidade Federal do Pará, UFPA, Instituto de Ciências da Saúde, Laboratório de Anatomia Patológica, Hospital Universitário João de Barros Barreto, Belém, Pará, Brasil
| | - Marcia Consentino Kronka Sosthenes
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | | | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Mansfield Road, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| | - Daniel Guerreiro Diniz
- Universidade Federal do Pará, UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto
| |
Collapse
|
4
|
Nf1 loss and Ras hyperactivation in oligodendrocytes induce NOS-driven defects in myelin and vasculature. Cell Rep 2013; 4:1197-212. [PMID: 24035394 PMCID: PMC3982616 DOI: 10.1016/j.celrep.2013.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 01/05/2023] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) and Costello syndrome Rasopathy have behavioral deficits. In NF1 patients, these may correlate with white matter enlargement and aberrant myelin. To model these features, we induced Nf1 loss or HRas hyperactivation in mouse oligodendrocytes. Enlarged brain white matter tracts correlated with myelin decompaction, downregulation of claudin-11, and mislocalization of connexin-32. Surprisingly, non-cell-autonomous defects in perivascular astrocytes and the blood-brain barrier (BBB) developed, implicating a soluble mediator. Nitric oxide (NO) can disrupt tight junctions and gap junctions, and NO and NO synthases (NOS1–NOS3) were upregulated in mutant white matter. Treating mice with the NOS inhibitor NG-nitro-L-arginine methyl ester or the antioxidant N-acetyl cysteine corrected cellular phenotypes. CNP-HRasG12V mice also displayed locomotor hyperactivity, which could be rescued by antioxidant treatment. We conclude that Nf1/Ras regulates oligodendrocyte NOS and that dysregulated NO signaling in oligodendrocytes can alter the surrounding vasculature. The data suggest that anti-oxidants may improve some behavioral deficits in Rasopathy patients.
Collapse
|
5
|
Diniz JAP, dos Santos ZA, Braga MAG, Dias ÁLB, da Silva DEA, Medeiros DBDA, Barros VLRDS, Chiang JO, Zoghbi KEDF, Quaresma JAS, Takiya CM, Moura Neto V, de Souza W, Vasconcelos PFDC, Diniz CWP. Early and late pathogenic events of newborn mice encephalitis experimentally induced by itacaiunas and curionópolis bracorhabdoviruses infection. PLoS One 2008; 3:e1733. [PMID: 18320052 PMCID: PMC2253828 DOI: 10.1371/journal.pone.0001733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/30/2007] [Indexed: 11/19/2022] Open
Abstract
In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share many pathological and clinical features present in other rhabdoviruses but distinct virulence and glial targets in newborn albino Swiss mice brain.
Collapse
|
6
|
Clarke DK, Nasar F, Lee M, Johnson JE, Wright K, Calderon P, Guo M, Natuk R, Cooper D, Hendry RM, Udem SA. Synergistic attenuation of vesicular stomatitis virus by combination of specific G gene truncations and N gene translocations. J Virol 2007; 81:2056-64. [PMID: 17151112 PMCID: PMC1797571 DOI: 10.1128/jvi.01911-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/23/2006] [Indexed: 12/13/2022] Open
Abstract
A variety of rational approaches to attenuate growth and virulence of vesicular stomatitis virus (VSV) have been described previously. These include gene shuffling, truncation of the cytoplasmic tail of the G protein, and generation of noncytopathic M gene mutants. When separately introduced into recombinant VSV (rVSV), these mutations gave rise to viruses distinguished from their "wild-type" progenitor by diminished reproductive capacity in cell culture and/or reduced cytopathology and decreased pathogenicity in vivo. However, histopathology data from an exploratory nonhuman primate neurovirulence study indicated that some of these attenuated viruses could still cause significant levels of neurological injury. In this study, additional attenuated rVSV variants were generated by combination of the above-named three distinct classes of mutation. The resulting combination mutants were characterized by plaque size and growth kinetics in cell culture, and virulence was assessed by determination of the intracranial (IC) 50% lethal dose (LD(50)) in mice. Compared to virus having only one type of attenuating mutation, all of the mutation combinations examined gave rise to virus with smaller plaque phenotypes, delayed growth kinetics, and 10- to 500-fold-lower peak titers in cell culture. A similar pattern of attenuation was also observed following IC inoculation of mice, where differences in LD(50) of many orders of magnitude between viruses containing one and two types of attenuating mutation were sometimes seen. The results show synergistic rather than cumulative increases in attenuation and demonstrate a new approach to the attenuation of VSV and possibly other viruses.
Collapse
Affiliation(s)
- David K Clarke
- Wyeth Vaccines Discovery Research, 401 N. Middletown Road, Bldg. 180/267, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ireland DDC, Reiss CS. Gene expression contributing to recruitment of circulating cells in response to vesicular stomatitis virus infection of the CNS. Viral Immunol 2006; 19:536-45. [PMID: 16987071 PMCID: PMC2562241 DOI: 10.1089/vim.2006.19.536] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During acute Vesicular Stomatitis Virus (VSV) infection of the mouse central nervous system, neutrophils, natural killer (NK) cells, macrophages, and CD4+ and CD8+ T cells are recruited from the circulation in response to chemokines and cytokines. This study elucidated the production of these factors and infiltration of these peripheral cells. Chemokines that were observed included CCL1, CXCL10 (IP-10), CCL5 (RANTES), CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CXCL1 (MIP-2), CCL2 (MCP-1), and CCL11 (eotaxin). Cytokines produced in response to the infection include IL-1 and interferon-gamma, but not type I interferons. Neutrophils are the first recruited cell type, appearing as early as 24 h after intranasal application of the virus. NK cells follow, but T cells are not detected until 6 days postinfection.
Collapse
Affiliation(s)
- Derek D C Ireland
- Department of Biology, New York University, New York, New York 10003-6688, USA
| | | |
Collapse
|
8
|
Hofer M, Hausmann J, Staeheli P, Pagenstecher A. Cerebral expression of interleukin-12 induces neurological disease via differential pathways and recruits antigen-specific T cells in virus-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:949-58. [PMID: 15331418 PMCID: PMC1618590 DOI: 10.1016/s0002-9440(10)63356-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transgenic expression of interleukin-12 (IL-12) in astrocytes causes a spontaneous inflammatory central nervous system disorder in aged mice. Here we show that spontaneous disorder developed only when both mature lymphocytes and interferon (IFN)-gamma were present. Infection with noncytolytic Borna disease virus (BDV) did not affect wild-type mice but accelerated disease of IL-12 transgenic mice. Infection of transgenic mice lacking lymphocytes did not result in neurological symptoms. In contrast, BDV infection of transgenic mice lacking IFN-gamma induced neurological disease with delayed onset of symptoms that resembled those in infected transgenic mice with a functional IFN-gamma gene. In BDV-infected transgenic mice devoid of IFN-gamma no cerebellar calcification was observed, and multiplication of BDV was not inhibited. To determine the antigen specificity of lymphocytes in brains of diseased animals, the IL-12 transgene was introduced into an H-2k genetic background. Infection of IL-12 transgenic H-2k mice resulted in extensive lymphocytic infiltration into the cerebellum but not into other brain regions that also contained viral antigen but expressed the transgene at lower levels. Tetramer analysis revealed that most CD8 T cells in the cerebellum of such mice were BDV-specific. Our results thus demonstrate that IFN-gamma secreting lymphocytes are responsible for disease of IL-12 transgenic mice. They further suggest that expression of IL-12 in the central nervous system may lead to localized recruitment of T cells that recognize antigens expressed in the brain.
Collapse
Affiliation(s)
- Markus Hofer
- Abteilung Neuropathologie, Institut für Medizinische and Hygiene, Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
9
|
Soygüder Z, Karadağ H, Nazli M. Neuronal nitric oxide synthase immunoreactivity in ependymal cells during early postnatal development. J Chem Neuroanat 2004; 27:3-6. [PMID: 15036358 DOI: 10.1016/j.jchemneu.2003.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 03/14/2003] [Accepted: 08/12/2003] [Indexed: 01/12/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) immunoreactivity was observed in ependymal cell layer of the central canal of spinal cord of neonatal rats (2-20 days old). Neuronal nitric oxide synthase immunoreactivity was present in postnatal day 2 and this immunoreactivity gradually disappeared by postnatal day 16. The progressive decrease in nNOS staining with the increasing postnatal age may suggest that nNOS staining paralleled the maturation of the central canal and may also suggest that nNOS activity plays a role in the development of the ependymal cells.
Collapse
Affiliation(s)
- Zafer Soygüder
- Yüzüncü Yil Universitesi, Veteriner Fakültesi, Anatomi Anabilim Dali, Van, Turkey.
| | | | | |
Collapse
|
10
|
Wellard J, Rapp M, Hamprecht B, Verleysdonk S. Atrial natriuretic peptides elevate cyclic GMP levels in primary cultures of rat ependymal cells. Neurochem Res 2003; 28:225-33. [PMID: 12608696 DOI: 10.1023/a:1022373032239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to examine the effect of atrial natriuretic peptides on primary cultures of ependymal cells, as measured by changes in intracellular levels of cyclic GMP. Incubation of ependymal cells with rat atrial natriuretic peptide-(1-28) (rANP) elicited a 30-fold increase in ependymal cGMP content within 1 min and more than a 100-fold increase within 10 min to a plateau value of approximately 30 pmol/mg protein. The C-type natriuretic peptide (CNP) elicited a similar increase in cGMP levels; however the maximal effect was observed within 1 min and the levels subsequently dropped by 90% to a low plateau within 10 min. A comparison of the concentration-response curves for rANP, human ANP-(1-28) (hANP) and CNP showed that rANP, hANP and CNP had similar effects, with regards to elevation of cGMP levels at high concentrations, but with differing EC50 values. These results demonstrate the presence of a heterogenous population of functional ANP receptors i n cultured ependymalcells suggesting that ANP may regulate specific ependymal cell activity.
Collapse
Affiliation(s)
- John Wellard
- Physiologisch-chemisches Institut der Universität, Hoppe-Seyler-Str. 4, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
11
|
Chen N, Restivo A, Reiss CS. Leukotrienes play protective roles early during experimental VSV encephalitis. J Neuroimmunol 2001; 120:94-102. [PMID: 11694324 DOI: 10.1016/s0165-5728(01)00415-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Leukotrienes (LT) are potent lipid mediators of inflammation. 5-Lipoxygenase (5-LO) is the key enzyme in the conversion of arachidonic acid to LT. There are four LT: LTB(4), LTC(4), LTD(4) and LTE(4). LT have been extensively studied in airway inflammation but little is known about their roles in viral infection in the CNS. LTB(4) is a chemoattractant for neutrophils. In this work, we studied the roles of LT in acute vesicular stomatitis virus (VSV) encephalitis. Two methods were used to disrupt 5-LO activity: mice were treated with Zileuton, an enzyme antagonist, or 5-LO genetic knockout mice were used. We found that inhibition or deletion of 5-LO resulted in: (a) impaired process of neutrophil infiltration into the CNS early during viral infection; (b) fewer neurons expressed nitric oxide synthase-1 (NOS-1); (c) higher viral titers 1 day after viral infection; and (d) increased disruption of blood brain barrier (BBB). Our studies suggest that LT are important innate immune players during VSV pathogenesis and are beneficial to the host in early control of viral replication in the CNS.
Collapse
Affiliation(s)
- N Chen
- Department of Biology, New York University, New York, NY 10003-6688, USA
| | | | | |
Collapse
|
12
|
Vitkovic L, Konsman JP, Bockaert J, Dantzer R, Homburger V, Jacque C. Cytokine signals propagate through the brain. Mol Psychiatry 2000; 5:604-15. [PMID: 11126391 DOI: 10.1038/sj.mp.4000813] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interleukin-1 (IL-1) and tumor necrosis factor alpha (TNFalpha) are proinflammatory cytokines that are constitutively expressed in healthy, adult brain where they mediate normal neural functions such as sleep. They are neuromodulators expressed by and acting on neurons and glia. IL-1 and TNFalpha expression is upregulated in several important diseases/disorders. Upregulation of IL-1 and/or TNFalpha expression, elicited centrally or systemically, propagates through brain parenchyma following specific spatio-temporal patterns. We propose that cytokine signals propagate along neuronal projections and extracellular diffusion pathways by molecular cascades that need to be further elucidated. This elucidation is a prerequisite for better understanding of reciprocal interactions between nervous, endocrine and immune systems.
Collapse
Affiliation(s)
- L Vitkovic
- CNRS-INSERM Centre de Pharmacologie-Endocrinologie, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
13
|
Radisavljevic Z, Avraham H, Avraham S. Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem 2000; 275:20770-4. [PMID: 10787417 DOI: 10.1074/jbc.m002448200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelium of the cerebral blood microvessels, which constitutes the major component of the blood-brain barrier, controls leukocyte and metastatic cancer cell adhesion and trafficking into the brain parenchyma. In this study, using rat primary brain microvascular endothelial cells (BMEC), we demonstrate that the vascular endothelial growth factor (VEGF), a potent promoter of angiogenesis, up-regulates the expression of the intracellular adhesion molecule-1 (ICAM-1) through a novel pathway that includes phosphatidylinositol 3 OH-kinase (PI3K), AKT, and nitric oxide (NO), resulting in the migration of BMEC. Upon VEGF treatment, AKT is phosphorylated in a PI3K-dependent manner. AKT activation leads to NO production and release and activation-deficient AKT attenuates NO production stimulated by VEGF. Transfection of the constitutive myr-AKT construct significantly increased basal NO release in BMEC. In these cells, VEGF and the endothelium-derived NO synergistically up-regulated the expression of ICAM-1, which was mediated by the PI3K pathway. This activity was blocked by the PI3K-specific inhibitor, wortmannin. Furthermore, VEGF and NO significantly increased BMEC migration, which was mediated by the up-regulation of ICAM-1 expression and was dependent on the integrity of the PI3K/AKT/NO pathway. This effect was abolished by wortmannin, by the specific ICAM-1 antibody, by the specific inhibitor of NO synthase, N(G)-l-monomethyl-arginine (l-NMMA) or by a combination of wortmannin, ICAM-1 antibody, and l-NMMA. These findings demonstrate that the angiogenic factor VEGF up-regulates ICAM-1 expression and signals to ICAM-1 as an effector molecule through the PI3K/AKT/NO pathway, which leads to brain microvessel endothelial cell migration. These observations may contribute to a better understanding of BMEC angiogenesis and the physiological as well as pathophysiological function of the blood-brain barrier, whose integrity is crucial for normal brain function.
Collapse
Affiliation(s)
- Z Radisavljevic
- Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
14
|
Komatsu T, Ireland DD, Chen N, Reiss CS. Neuronal expression of NOS-1 is required for host recovery from viral encephalitis. Virology 1999; 258:389-95. [PMID: 10366576 DOI: 10.1006/viro.1999.9734] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide synthase (NOS) in host defense and clearance of vesicular stomatitis virus (VSV) from the central nervous system (CNS) was examined. NOS-1, NOS-2, and NOS-3 knockout mice were infected with VSV and were treated with either IL-12 or medium. IL-12 treatment resulted in substantially decreased VSV titers in wildtype and NOS-3 knockout mice, but had a marginal effect in the NOS-1 and NOS-2 knockout mice. NOS-1 expression in neurons was associated with survival from VSV infection. The data indicate that the enzyme activity is local, since NOS-2 expression in microglia and inflammatory macrophages and NOS-3 expression in astrocytes, endothelial cells, and ependymal cells did not compensate.
Collapse
Affiliation(s)
- T Komatsu
- Department of Biology, Center for Neural Science, Kaplan Comprehensive Cancer Center, New York University, 100 Washington Square East, mail code 5181, New York, New York, 10003-6688, USA
| | | | | | | |
Collapse
|