1
|
Practical approach to N-benzyl derivatives of 2-amino-8-methoxy-4H-chromene-3-carbonitrile by reductive amination: Exploration of their effects against protein kinases and in silico ADME profiling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Design and Microwave Synthesis of New (5 Z) 5-Arylidene-2-thioxo-1,3-thiazolinidin-4-one and (5 Z) 2-Amino-5-arylidene-1,3-thiazol-4(5 H)-one as New Inhibitors of Protein Kinase DYRK1A. Pharmaceuticals (Basel) 2021; 14:ph14111086. [PMID: 34832868 PMCID: PMC8623179 DOI: 10.3390/ph14111086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the synthesis of libraries of new 5-arylidene-2-thioxo-1,3-thiazolidin-4-ones 3 (twenty-two compounds) and new 2-amino-5-arylidene-1,3-thiazol-4(5H)-ones 5 (twenty-four compounds) with stereo controlled Z-geometry under microwave irradiation. The 46 designed final compounds were tested in order to determine their activity against four representative protein kinases (DYR1A, CK1, CDK5/p25, and GSK3α/β). Among these 1,3-thiazolidin-4-ones, the molecules (5Z) 5-(4-hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one 3e (IC50 0.028 μM) and (5Z)-5-benzo[1,3]dioxol-5-ylmethylene-2-(pyridin-2-yl)amino-1,3-thiazol-4(5H)-one 5s (IC50 0.033 μM) were identified as lead compounds and as new nanomolar DYRK1A inhibitors. Some of these compounds in the two libraries have been also evaluated for their in vitro inhibition of cell proliferation (Huh7 D12, Caco2, MDA-MB 231, HCT 116, PC3, and NCI-H2 tumor cell lines). These results will enable us to use the 1,3-thiazolidin-4-one core as pharmacophores to develop potent treatment for neurological or oncological disorders in which DYRK1A is fully involved.
Collapse
|
3
|
Zhou S, Huang G. Retracted Article: The synthesis and biological activity of marine alkaloid derivatives and analogues. RSC Adv 2020; 10:31909-31935. [PMID: 35518151 PMCID: PMC9056551 DOI: 10.1039/d0ra05856d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
The ocean is the origin of life, with a unique ecological environment, which has given birth to a wealth of marine organisms. The ocean is an important source of biological resources and tens of thousands of monomeric compounds have been separated from marine organisms using modern separation technology. Most of these monomeric compounds have some kind of biological activity that has attracted extensive attention from researchers. Marine alkaloids are a kind of compound that can be separated from marine organisms. They have complex and special chemical structures, but at the same time, they can show diversity in biological activities. The biological activities of marine alkaloids mainly manifest in the form of anti-tumor, anti-fungus, anti-viral, anti-malaria, and anti-osteoporosis properties. Many marine alkaloids have good medicinal prospects and can possibly be used as anti-tumor, anti-viral, and anti-fungal clinical drugs or as lead compounds. The limited amounts of marine alkaloids that can be obtained by separation, coupled with the high cytotoxicity and low selectivity of these lead compounds, has restricted the clinical research and industrial development of marine alkaloids. Marine alkaloid derivatives and analogues have been obtained via rational drug design and chemical synthesis, to make up for the shortcomings of marine alkaloids; this has become an urgent subject for research and development. This work systematically reviews the recent developments relating to marine alkaloid derivatives and analogues in the field of medical chemistry over the last 10 years (2010-2019). We divide marine alkaloid derivatives and analogues into five types from the point-of-view of biological activity and elaborated on these activities. We also briefly discuss the optimization process, chemical synthesis, biological activity evaluation, and structure-activity relationship (SAR) of each of these compounds. The abundant SAR data provides reasonable approaches for the design and development of new biologically active marine alkaloid derivatives and analogues.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou Hainan 571158 China
| | - Gangliang Huang
- Chongqing Key Laboratory of Green Synthesis and Application, Active Carbohydrate Research Institute, College of Chemistry, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
4
|
Loidreau Y, Dubouilh-Benard C, Nourrisson MR, Loaëc N, Meijer L, Besson T, Marchand P. Exploring Kinase Inhibition Properties of 9 H-pyrimido[5,4- b]- and [4,5- b]indol-4-amine Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13050089. [PMID: 32397570 PMCID: PMC7281298 DOI: 10.3390/ph13050089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 11/30/2022] Open
Abstract
We previously highlighted the interest in 6,5,6-fused tricyclic analogues of 4-aminoquinazolines as kinase inhibitors in the micromolar to the nanomolar range of IC50 values. For the generation of chemical libraries, the formamide-mediated cyclization of the cyanoamidine precursors was carried out under microwave irradiation in an eco-friendly approach. In order to explore more in-depth the pharmacological interest in such tricyclic skeletons, the central five member ring, i.e., thiophène or furan, was replaced by a pyrrole to afford 9H-pyrimido[5,4-b]- and [4,5-b]indol-4-amine derivatives inspired from harmine. The inhibitory potency of the final products was determined against four protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, and DYRK1A). As a result, we have identified promising compounds targeting CK1δ/ε and DYRK1A and displaying micromolar and submicromolar IC50 values.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Carole Dubouilh-Benard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
| | - Marie-Renée Nourrisson
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
| | - Nadège Loaëc
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
| | - Laurent Meijer
- Station Biologique de Roscoff, Protein Phosphorylation & Human Disease Group, 29680 Roscoff, France; (N.L.); (L.M.)
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, F-76000 Rouen, France; (Y.L.); (C.D.-B.)
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| | - Pascal Marchand
- Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, F-44000 Nantes, France;
- Correspondence: (T.B.); (P.M.); Tel.: +33-235-522-904 (T.B.); +33-253-009-155 (P.M.)
| |
Collapse
|
5
|
Fruit C, Couly F, Bhansali R, Rammohan M, Lindberg MF, Crispino JD, Meijer L, Besson T. Biological Characterization of 8-Cyclopropyl-2-(pyridin-3-yl)thiazolo[5,4- f]quinazolin-9(8 H)-one, a Promising Inhibitor of DYRK1A. Pharmaceuticals (Basel) 2019; 12:ph12040185. [PMID: 31861110 PMCID: PMC6958357 DOI: 10.3390/ph12040185] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/27/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) hyperactivity has been linked to the development of a number of human malignancies. DYRK1A is the most studied family member, and the discovery of novel specific inhibitors is attracting considerable interest. The 8-cyclopropyl-2(pyridin-3-yl)thiazolo[5,4-f]quinazolin-9(8H)-one (also called FC162) was found to be a promising inhibitor of DYRK1A and was characterized in biological experiments, by western transfer and flow cytometry on SH-SY5Y and pre-B cells. Here, the results obtained with FC162 are compared to well-characterized known DYRK1A inhibitors (e.g., Leucettine L41 and EHT1610).
Collapse
Affiliation(s)
- Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
| | - Florence Couly
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
| | - Rahul Bhansali
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
- College of Medicine, University of Illinois, Chicago, IL 60611, USA
| | - Malini Rammohan
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
| | - Mattias F. Lindberg
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (M.F.L.); (L.M.)
| | - John D. Crispino
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA; (R.B.); (M.R.); (J.D.C.)
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laurent Meijer
- ManRos Therapeutics & Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France; (M.F.L.); (L.M.)
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France; (C.F.); (F.C.)
- Correspondence: ; Tel.: +33-(0)-235-522-904
| |
Collapse
|
6
|
Ziane S, Mazari MM, Safer AM, Sad El Hachemi Amar A, Ruchaud S, Baratte B, Bach S. Comparison between Conventional and Nonconventional Methods for the Synthesis of Some 2-Oxazolidinone Derivatives and Preliminary Investigation of Their Inhibitory Activity Against Certain Protein Kinases. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Couly F, Harari M, Dubouilh-Benard C, Bailly L, Petit E, Diharce J, Bonnet P, Meijer L, Fruit C, Besson T. Development of Kinase Inhibitors via Metal-Catalyzed C⁻H Arylation of 8-Alkyl-thiazolo[5,4- f]-quinazolin-9-ones Designed by Fragment-Growing Studies. Molecules 2018; 23:E2181. [PMID: 30158487 PMCID: PMC6225322 DOI: 10.3390/molecules23092181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022] Open
Abstract
Efficient metal catalyzed C⁻H arylation of 8-alkyl-thiazolo[5,4-f]-quinazolin-9-ones was explored for SAR studies. Application of this powerful chemical tool at the last stage of the synthesis of kinase inhibitors allowed the synthesis of arrays of molecules inspired by fragment-growing studies generated by molecular modeling calculations. Among the potentially active compounds designed through this strategy, FC162 (4c) exhibits nanomolar IC50 values against some kinases, and is the best candidate for the development as a DYRK kinase inhibitor.
Collapse
Affiliation(s)
- Florence Couly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Marine Harari
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | | | - Laetitia Bailly
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Emilie Petit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Julien Diharce
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS, 7311 BP 6759, 45067 Orléans CEDEX 2, France.
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Peninsula, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| | - Thierry Besson
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France.
| |
Collapse
|
8
|
Walter A, Chaikuad A, Helmer R, Loaëc N, Preu L, Ott I, Knapp S, Meijer L, Kunick C. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype. PLoS One 2018; 13:e0196761. [PMID: 29723265 PMCID: PMC5933782 DOI: 10.1371/journal.pone.0196761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
Cdc2-like kinases (CLKs) represent a family of serine-threonine kinases involved in the regulation of splicing by phosphorylation of SR-proteins and other splicing factors. Although compounds acting against CLKs have been described, only a few show selectivity against dual-specificity tyrosine phosphorylation regulated-kinases (DYRKs). We here report a novel CLK inhibitor family based on a 6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one core scaffold. Within the series, 3-(3-chlorophenyl)-6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one (KuWal151) was identified as inhibitor of CLK1, CLK2 and CLK4 with a high selectivity margin towards DYRK kinases. The compound displayed a potent antiproliferative activity in an array of cultured cancer cell lines. The X-ray structure analyses of three members of the new compound class co-crystallized with CLK proteins corroborated a molecular binding mode predicted by docking studies.
Collapse
Affiliation(s)
- Anne Walter
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Renate Helmer
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ingo Ott
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium and Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff, France
- * E-mail: (CK); (LM)
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
- Center of Pharmaceutical Engeneering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (CK); (LM)
| |
Collapse
|
9
|
Billot K, Coquil C, Villiers B, Josselin-Foll B, Desban N, Delehouzé C, Oumata N, Le Meur Y, Boletta A, Weimbs T, Grosch M, Witzgall R, Saunier S, Fischer E, Pontoglio M, Fautrel A, Mrug M, Wallace D, Tran PV, Trudel M, Bukanov N, Ibraghimov-Beskrovnaya O, Meijer L. Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. Am J Physiol Renal Physiol 2018. [PMID: 29537311 DOI: 10.1152/ajprenal.00489.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.
Collapse
Affiliation(s)
- Katy Billot
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | | | | | - Béatrice Josselin-Foll
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nathalie Desban
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Claire Delehouzé
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | - Yannick Le Meur
- Service de Néphrologie, Centre Hospitalier Universitaire La Cavale Blanche, Rue Tanguy Prigent, Brest Cedex, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, DIBIT San Raffaele Scientific Institute , Milan , Italy
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California
| | - Melanie Grosch
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | - Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | | | - Evelyne Fischer
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Marco Pontoglio
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Alain Fautrel
- Université de Rennes 1, H2P2 Histopathology Core Facility, Rennes Cedex, France
| | - Michal Mrug
- Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Darren Wallace
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas
| | - Pamela V Tran
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas.,University of Kansas Medical Center, Department of Anatomy and Cell Biology , Kansas City, Kansas
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Montreal, Quebec , Canada
| | - Nikolay Bukanov
- Sanofi Genzyme, Rare Renal and Bone Diseases, Framingham, Massachusetts
| | | | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| |
Collapse
|
10
|
A novel matrine derivative WM622 inhibits hepatocellular carcinoma by inhibiting PI3K/AKT signaling pathways. Mol Cell Biochem 2018. [DOI: 10.1007/s11010-018-3341-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Meine R, Becker W, Falke H, Preu L, Loaëc N, Meijer L, Kunick C. Indole-3-Carbonitriles as DYRK1A Inhibitors by Fragment-Based Drug Design. Molecules 2018; 23:E64. [PMID: 29364148 PMCID: PMC6017736 DOI: 10.3390/molecules23020064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a potential drug target because of its role in the development of Down syndrome and Alzheimer's disease. The selective DYRK1A inhibitor 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acid (KuFal194), a large, flat and lipophilic molecule, suffers from poor water solubility, limiting its use as chemical probe in cellular assays and animal models. Based on the structure of KuFal194, 7-chloro-1H-indole-3-carbonitrile was selected as fragment template for the development of smaller and less lipophilic DYRK1A inhibitors. By modification of this fragment, a series of indole-3-carbonitriles was designed and evaluated as potential DYRK1A ligands by molecular docking studies. Synthesis and in vitro assays on DYRK1A and related protein kinases identified novel double-digit nanomolar inhibitors with submicromolar activity in cell culture assays.
Collapse
Affiliation(s)
- Rosanna Meine
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Hannes Falke
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France.
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France.
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| |
Collapse
|
12
|
Loaëc N, Attanasio E, Villiers B, Durieu E, Tahtouh T, Cam M, Davis RA, Alencar A, Roué M, Bourguet-Kondracki ML, Proksch P, Limanton E, Guiheneuf S, Carreaux F, Bazureau JP, Klautau M, Meijer L. Marine-Derived 2-Aminoimidazolone Alkaloids. Leucettamine B-Related Polyandrocarpamines Inhibit Mammalian and Protozoan DYRK & CLK Kinases. Mar Drugs 2017; 15:E316. [PMID: 29039762 PMCID: PMC5666424 DOI: 10.3390/md15100316] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 10/12/2017] [Indexed: 01/13/2023] Open
Abstract
A large diversity of 2-aminoimidazolone alkaloids is produced by various marine invertebrates, especially by the marine Calcareous sponges Leucetta and Clathrina. The phylogeny of these sponges and the wide scope of 2-aminoimidazolone alkaloids they produce are reviewed in this article. The origin (invertebrate cells, associated microorganisms, or filtered plankton), physiological functions, and natural molecular targets of these alkaloids are largely unknown. Following the identification of leucettamine B as an inhibitor of selected protein kinases, we synthesized a family of analogues, collectively named leucettines, as potent inhibitors of DYRKs (dual-specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) and potential pharmacological leads for the treatment of several diseases, including Alzheimer's disease and Down syndrome. We assembled a small library of marine sponge- and ascidian-derived 2-aminoimidazolone alkaloids, along with several synthetic analogues, and tested them on a panel of mammalian and protozoan kinases. Polyandrocarpamines A and B were found to be potent and selective inhibitors of DYRKs and CLKs. They inhibited cyclin D1 phosphorylation on a DYRK1A phosphosite in cultured cells. 2-Aminoimidazolones thus represent a promising chemical scaffold for the design of potential therapeutic drug candidates acting as specific inhibitors of disease-relevant kinases, and possibly other disease-relevant targets.
Collapse
Affiliation(s)
- Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
- Station Biologique de Roscoff, CNRS, 'Protein Phosphorylation and Human Disease' Group, Place G. Teissier, 29680 Roscoff, Bretagne, France.
| | - Eletta Attanasio
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| | - Benoît Villiers
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| | - Emilie Durieu
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| | - Tania Tahtouh
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| | - Morgane Cam
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Aline Alencar
- Universidade Federal do Rio de Janeiro, Instituto de Biologia-Departamento de Zoologia, Av. Carlos Chagas Filho 373-CCS-Bloco A-Sala A0-100, Ilha do Fundão, 21941-902 Rio de Janeiro, Brasil.
| | - Mélanie Roué
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d' Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France.
| | - Marie-Lise Bourguet-Kondracki
- Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d' Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France.
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Emmanuelle Limanton
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Groupe Chimie Organique et Interfaces (CORINT), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, Bretagne, France.
| | - Solène Guiheneuf
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Groupe Chimie Organique et Interfaces (CORINT), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, Bretagne, France.
| | - François Carreaux
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Groupe Chimie Organique et Interfaces (CORINT), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, Bretagne, France.
| | - Jean-Pierre Bazureau
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, ISCR UMR CNRS 6226, Groupe Chimie Organique et Interfaces (CORINT), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes CEDEX, Bretagne, France.
| | - Michelle Klautau
- Universidade Federal do Rio de Janeiro, Instituto de Biologia-Departamento de Zoologia, Av. Carlos Chagas Filho 373-CCS-Bloco A-Sala A0-100, Ilha do Fundão, 21941-902 Rio de Janeiro, Brasil.
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France.
| |
Collapse
|
13
|
Walter A, Chaikuad A, Loaëc N, Preu L, Knapp S, Meijer L, Kunick C, Koch O. Identification of CLK1 Inhibitors by a Fragment-linking Based Virtual Screening. Mol Inform 2016; 36. [PMID: 28000414 DOI: 10.1002/minf.201600123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 11/11/2022]
Abstract
Alternative splicing plays an important role in the regulation of protein biosynthesis. CDC2-like kinases (CLKs) phosphorylate splicing factors rendering them a potential target for treating diseases caused by splicing dysregulation. As selective and potent inhibitors of CLK1 are still lacking, a fragment-linking based virtual screening campaign was successfully applied to identify new inhibitors showing activity on CLK1. These inhibitors exhibit a novel 2,4-substituted 1,3-thiazole scaffold that is suitable for further modification. A subsequently performed docking and protein structure based analysis revealed first hints for inhibitors showing preferred binding activity for CLK1 and DYRK2 over other splicing kinases.
Collapse
Affiliation(s)
- Anne Walter
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine, Chemical Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, U.K.,Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Lutz Preu
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Chemical Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, U.K.,Institute of Pharmaceutical Chemistry and Buchmann Institute for Life Sciences, Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Laurent Meijer
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106, Braunschweig, Germany
| | - Oliver Koch
- Technische Universität Dortmund, Fakultät für Chemie und chemische Biologie, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
14
|
Labrière C, Lozach O, Blairvacq M, Meijer L, Guillou C. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. Eur J Med Chem 2016; 124:920-934. [DOI: 10.1016/j.ejmech.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
15
|
Microwave synthesis of new 3-(3-aminopropyl)-5-arylidene- 2-thioxo-1,3-thiazolidine-4-ones as potential Ser/Thr protein kinase inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1719-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Discovery of pyrido[3,4-g]quinazoline derivatives as CMGC family protein kinase inhibitors: Design, synthesis, inhibitory potency and X-ray co–crystal structure. Eur J Med Chem 2016; 118:170-7. [DOI: 10.1016/j.ejmech.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/18/2022]
|
17
|
5-Substituted 3-chlorokenpaullone derivatives are potent inhibitors of Trypanosoma brucei bloodstream forms. Bioorg Med Chem 2016; 24:3790-800. [DOI: 10.1016/j.bmc.2016.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 01/31/2023]
|
18
|
Hédou D, Dubouilh-Benard C, Loaëc N, Meijer L, Fruit C, Besson T. Synthesis of Bioactive 2-(Arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation. Molecules 2016; 21:molecules21060794. [PMID: 27322235 PMCID: PMC6272913 DOI: 10.3390/molecules21060794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.
Collapse
Affiliation(s)
- Damien Hédou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | | | - Nadège Loaëc
- Protein Phosphorylation & Human Disease group, Station Biologique, 29680 Roscoff, France.
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
19
|
Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules 2016; 21:molecules21050578. [PMID: 27144552 PMCID: PMC6273584 DOI: 10.3390/molecules21050578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer's disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases.
Collapse
|
20
|
Synthetic Development of New 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases. Molecules 2015; 20:12412-35. [PMID: 26184130 PMCID: PMC6332318 DOI: 10.3390/molecules200712412] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/17/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
A new route to 3-(4-arylmethylamino)butyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase “one-pot two-steps” approach assisted by microwave dielectric from N-(arylmethyl)butane-1,4-diamine hydrochloride 6a–f (as source of the first point diversity) and commercial bis-(carboxymethyl)-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a–n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a–n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3α/β; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts). Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines.
Collapse
|
21
|
Boulahjar R, Ouach A, Bourg S, Bonnet P, Lozach O, Meijer L, Guguen-Guillouzo C, Le Guevel R, Lazar S, Akssira M, Troin Y, Guillaumet G, Routier S. Advances in tetrahydropyrido[1,2-a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Eur J Med Chem 2015; 101:274-87. [PMID: 26142492 DOI: 10.1016/j.ejmech.2015.06.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An efficient synthetic strategy was developed to modulate the structure of the tetrahydropyridine isoindolone (Valmerin) skeleton. A library of more than 30 novel final structures was generated. Biological activities on CDK5 and GSK3 as well as cellular effects on cancer cell lines were measured for each novel compound. Additionally docking studies were performed to support medicinal chemistry efforts. A strong GSK3/CDK5 dual inhibitor (38, IC50 GSK3/CDK5 32/84 nM) was obtained. A set of highly selective GSK3 inhibitors was synthesized by fine-tuning structural modifications (29 IC50 GSK3/CDK5 32/320 nM). Antiproliferative effects on cells were correlated with the in vitro kinase activities and the best effects were obtained with lung and colon cell lines.
Collapse
Affiliation(s)
- Rajâa Boulahjar
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Aziz Ouach
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Stéphane Bourg
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Pascal Bonnet
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Olivier Lozach
- C.N.R.S., 'Protein Phosphorylation & Human Disease' Group, USR3151, Station Biologique, BP 74, 29682 Roscoff Cedex, France
| | - Laurent Meijer
- C.N.R.S., 'Protein Phosphorylation & Human Disease' Group, USR3151, Station Biologique, BP 74, 29682 Roscoff Cedex, France
| | - Christiane Guguen-Guillouzo
- Plateforme ImPACcell-SFR BIOSIT UMS-CNRS3480 UMS-INSERM018, Université de Rennes1, 35043 Rennes Cedex, France
| | - Rémy Le Guevel
- Plateforme ImPACcell-SFR BIOSIT UMS-CNRS3480 UMS-INSERM018, Université de Rennes1, 35043 Rennes Cedex, France
| | - Saïd Lazar
- Laboratoire de Chimie, Bioorganique et Analytique, URAC 22 pôle Répam, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Mohamed Akssira
- Laboratoire de Chimie, Bioorganique et Analytique, URAC 22 pôle Répam, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - Yves Troin
- Clermont Université, ENSCCF, Laboratoire de Chimie des Hétérocycles et des Glucides, BP 10448, 63000 Clermont-Ferrand, France
| | - Gérald Guillaumet
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| | - Sylvain Routier
- Univ Orleans, CNRS UMR 7311, Institut de Chimie Organique et Analytique, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
22
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Loidreau Y, Deau E, Marchand P, Nourrisson MR, Logé C, Coadou G, Loaëc N, Meijer L, Besson T. Synthesis and molecular modelling studies of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines as multitarget Ser/Thr kinases inhibitors. Eur J Med Chem 2014; 92:124-34. [PMID: 25549552 DOI: 10.1016/j.ejmech.2014.12.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023]
Abstract
This paper reports the design and synthesis of a novel series of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines via microwave-assisted multi-step synthesis. A common precursor of the whole series, 3-amino-5-bromothieno[2,3-b]pyridine-2-carbonitrile, was rapidly synthesized in one step from commercially-available 5-bromo-2-chloronicotinonitrile. Formylation with DMF-DMA led to (E)-N'-(5-bromo-2-cyanothieno[2,3-b]pyridin-3-yl)-N,N-dimethylformimidamide (4) which was conveniently functionalized at position 8 by palladium-catalyzed Suzuki-Miyaura cross-coupling to introduce a heteroaromatic ring. High-temperature formamide-mediated cyclization of the cyanoamidine intermediate gave seventeen 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines. The inhibitory potency of the final products was evaluated against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) and revealed that 8-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine 1g specifically inhibits CK1δ/ε and CLK1 (220 and 88 nM, respectively) while its 7-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine isomer 10 showed no activity on the panel of tested kinases. Molecular modelling of 10 and 1g in the ATP binding sites of CK1δ/ε and CLK1 showed that functionalization at position 7 of pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines is likely to induce a steric clash on the CK1δ/ε P-loop and thus a complete loss of inhibitory activity.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Pascal Marchand
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Gaël Coadou
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Nadège Loaëc
- Protein Phosphorylation & Human Disease Group, Station Biologique, 29680 Roscoff, France; Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France.
| |
Collapse
|
24
|
Miambo RF, Laronze-Cochard M, Lawson AM, Guillot R, Baldeyrou B, Lansiaux A, Supuran CT, Sapi J. Synthesis of new biologically active isothiazolo[4,5-b]carbazole-type tetracyclic derivatives via an indole-2,3-quinodimethane approach. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Foucourt A, Hédou D, Dubouilh-Benard C, Désiré L, Casagrande AS, Leblond B, Loäec N, Meijer L, Besson T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part I. Molecules 2014; 19:15546-71. [PMID: 25268714 PMCID: PMC6270991 DOI: 10.3390/molecules191015546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022] Open
Abstract
The convenient synthesis of a library of novel 6,6,5-tricyclic thiazolo[5,4-f] quinazolines (forty molecules) was achieved mainly under microwave irradiation. Dimroth rearrangement and 4,5-dichloro-1,2,3,-dithiazolium chloride (Appel salt) chemistry were associated for the synthesis of a novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (16) a versatile molecular platform for the synthesis of various bioactive derivatives. Kinase inhibition of the final compounds was evaluated on a panel of four Ser/Thr kinases (DYRK1A, CDK5, CK1 and GSK3) chosen for their strong implications in various regulation processes, especially Alzheimer's disease (AD). In view of the results of this preliminary screening, thiazolo[5,4-f]quinazoline scaffolds constitutes a promising source of inspiration for the synthesis of novel bioactive molecules. Among the compounds of this novel chemolibrary, 7i, 8i and 9i inhibited DYRK1A with IC50 values ranging in the double-digit nanomolar range (40, 47 and 50 nM, respectively).
Collapse
Affiliation(s)
- Alicia Foucourt
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Damien Hédou
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Carole Dubouilh-Benard
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | | | | | | | - Nadège Loäec
- Protein Phosphorylation & Human Disease group, CNRS, Station Biologique, Roscoff F-29680, France.
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff F-29680, France.
| | - Thierry Besson
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| |
Collapse
|
26
|
Houzé S, Hoang NT, Lozach O, Le Bras J, Meijer L, Galons H, Demange L. Several human cyclin-dependent kinase inhibitors, structurally related to roscovitine, are new anti-malarial agents. Molecules 2014; 19:15237-57. [PMID: 25251193 PMCID: PMC6271241 DOI: 10.3390/molecules190915237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022] Open
Abstract
In Africa, malaria kills one child each minute. It is also responsible for about one million deaths worldwide each year. Plasmodium falciparum, is the protozoan responsible for the most lethal form of the disease, with resistance developing against the available anti-malarial drugs. Among newly proposed anti-malaria targets, are the P. falciparum cyclin-dependent kinases (PfCDKs). There are involved in different stages of the protozoan growth and development but share high sequence homology with human cyclin-dependent kinases (CDKs). We previously reported the synthesis of CDKs inhibitors that are structurally-related to (R)-roscovitine, a 2,6,9-trisubstituted purine, and they showed activity against neuronal diseases and cancers. In this report, we describe the synthesis and the characterization of new CDK inhibitors, active in reducing the in vitro growth of P. falciparum (3D7 and 7G8 strains). Six compounds are more potent inhibitors than roscovitine, and three exhibited IC50 values close to 1 µM for both 3D7 and 7G8 strains. Although, such molecules do inhibit P. falciparum growth, they require further studies to improve their selectivity for PfCDKs.
Collapse
Affiliation(s)
- Sandrine Houzé
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Nha-Thu Hoang
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| | - Olivier Lozach
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Jacques Le Bras
- Laboratoire de Parasitologie, CNR du Paludisme, AP-HP, Hôpital Bichat & UMR 216 IRD, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire, Paris 75006, France.
| | - Laurent Meijer
- Protein Phosphorylation and Human Diseases Group, CNRS, USR 3151, Station biologique, Roscoff 29680, France.
| | - Hervé Galons
- ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, Roscoff 29680, France.
| | - Luc Demange
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (LCBPT), UMR 8601 CNRS, Université Paris Descartes, Sorbonne Paris Cité, UFR Biomédicale des Saints Pères, 45 rue des Saints-Pères, Paris 75270, France.
| |
Collapse
|
27
|
Maiwald F, Benítez D, Charquero D, Dar MA, Erdmann H, Preu L, Koch O, Hölscher C, Loaëc N, Meijer L, Comini MA, Kunick C. 9- and 11-Substituted 4-azapaullones are potent and selective inhibitors of African trypanosoma. Eur J Med Chem 2014; 83:274-83. [PMID: 24973661 DOI: 10.1016/j.ejmech.2014.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Trypanosomes from the "brucei" complex are pathogenic parasites endemic in sub-Saharan Africa and causative agents of severe diseases in humans and livestock. In order to identify new antitrypanosomal chemotypes against African trypanosomes, 4-azapaullones carrying α,β-unsaturated carbonyl chains in 9- or 11-position were synthesized employing a procedure with a Heck reaction as key step. Among the so prepared compounds, 5a and 5e proved to be potent antiparasitic agents with antitrypanosomal activity in the submicromolar range.
Collapse
Affiliation(s)
- Franziska Maiwald
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Diego Benítez
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Diego Charquero
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Mahin Abad Dar
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Hanna Erdmann
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Lutz Preu
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany
| | - Oliver Koch
- Technische Universität Dortmund, Department of Chemistry and Chemical Biology, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Christoph Hölscher
- Forschungszentrum Borstel, Forschungsgruppe Infektionsimmunologie, Parkallee 22, D-23845 Borstel, Germany
| | - Nadège Loaëc
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Laurent Meijer
- ManRos Therapeutics, Perharidy Research Center, 29680 Roscoff, France
| | - Marcelo A Comini
- Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay.
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Beethovenstraße 55, D-38106 Braunschweig, Germany.
| |
Collapse
|
28
|
Beniddir MA, Le Borgne E, Iorga BI, Loaëc N, Lozach O, Meijer L, Awang K, Litaudon M. Acridone alkaloids from Glycosmis chlorosperma as DYRK1A inhibitors. JOURNAL OF NATURAL PRODUCTS 2014; 77:1117-22. [PMID: 24798019 DOI: 10.1021/np400856h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two new acridone alkaloids, chlorospermines A and B (1 and 2), were isolated from the stem bark of Glycosmis chlorosperma, together with the known atalaphyllidine (3) and acrifoline (4), by means of bioguided isolation using an in vitro enzyme assay against DYRK1A. Acrifoline (4) and to a lesser extent chlorospermine B (2) and atalaphyllidine (3) showed significant inhibiting activity on DYRK1A with IC50's of 0.075, 5.7, and 2.2 μM, respectively. Their selectivity profile was evaluated against a panel of various kinases, and molecular docking calculations provided structural details for the interaction between these compounds and DYRK1A.
Collapse
Affiliation(s)
- Mehdi A Beniddir
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, LabEx CEBA , 1, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou J, Chen Y, Cao C, Chen X, Gao W, Zhang L. Inactivation of glycogen synthase kinase-3β up-regulates β-catenin and promotes chondrogenesis. Cell Tissue Bank 2014; 16:135-42. [PMID: 24760579 DOI: 10.1007/s10561-014-9449-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/14/2014] [Indexed: 01/02/2023]
Abstract
This study aimed to investigate whether inhibition of glycogen synthase kinase-3β (GSK-3β) could promote chondrocytes proliferation. The expression pattern of GSK-3β was firstly determined by immunohistochemistry (IHC) in normal mouse. Tibias were then isolated and cultured for 6 days. The tibias were treated with dimethylsulfoxide (control) or GSK-3 inhibitor SB415286 (SB86). Length of tibias was measured until 6 days after treatment. These bones were either stained with alcian blue/alizarin red or analyzed by IHC. In addition, GSK-3β and β-catenin were analyzed by Western blot. Finally, cartilage-specific GSK-3β deletion mice (KO) were generated. Efficiency of GSK-3β deletion was determined through Western blot and IHC. After treated by inhibitor SB86, the overall length of growth plate was not changed. However, growth of tibia in SB86 group was increased by 31 %, the length of resting and proliferating was increased 13 % (P < 0.01), whereas the length of hypertrophic was decreased by 57 % (P < 0.01). Besides, the mineralized length was found to be significant longer than the control group (P < 0.05). In KO mice, growth plate and calvaria tissue both exhibit significant reduction of GSK-3β (P < 0.05) whereas the lengths of tibias in KO were almost same compared with control mice. Finally, an increase amount of β-catenin protein was observed in SB86 (P < 0.05). In addition, significantly increased β-catenin was also found in the growth plate of KO mice (P < 0.05). Inhibition of GSK-3 could promote longitudinal growth of bone through increasing bone formation. Besides, the inactivation of GSK-3β could lead to enhancing β-catenin, therefore promote chondrocytes proliferation.
Collapse
Affiliation(s)
- Junjie Zhou
- Orthopedic Surgery, PuTuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, LanXi Road, Shanghai, 200062, China,
| | | | | | | | | | | |
Collapse
|
30
|
Guiheneuf S, Paquin L, Carreaux F, Durieu E, Roisnel T, Meijer L, Bazureau JP. New 5-ylidene rhodanine derivatives based on the dispacamide A model. Mol Divers 2014; 18:375-88. [PMID: 24584455 DOI: 10.1007/s11030-014-9509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/04/2014] [Indexed: 01/01/2023]
Abstract
A practical approach for the preparation of (5Z) 5-ylidene rhodanine derivatives bearing the (4,5-dihalogeno-pyrrol-2-yl)carbamoyl fragment of dispacamide A is reported. The new compounds were obtained in good yields (19-88 %) by Knoevenagel condensation according to a solution-phase microwave dielectric heating protocol in the presence of organic bases (piperidine, TEA, and AcONa) from a set of N-substituted rhodanines 2(a-i). The ten synthetic products 3(a-j) have been synthesized with a Z-geometry about their exocyclic double bond and the structure of one of these compounds (3) was confirmed by a single X-ray diffraction analysis. The new (5Z) 5-ylidene rhodanine derivatives 3(a-j) were tested against eight protein kinases.
Collapse
Affiliation(s)
- Solene Guiheneuf
- Université de Rennes 1 Institut des Sciences Chimiques de Rennes ISCR UMR CNRS 6226, groupe Ingénierie Chimique et Molécules pour le Vivant (ICMV), Bât. 10 A, Campus de Beaulieu, CS 74205, 263 Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Waiker DK, Karthikeyan C, Poongavanam V, Kongsted J, Lozach O, Meijer L, Trivedi P. Synthesis, biological evaluation and molecular modelling studies of 4-anilinoquinazoline derivatives as protein kinase inhibitors. Bioorg Med Chem 2014; 22:1909-15. [DOI: 10.1016/j.bmc.2014.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/18/2022]
|
32
|
|
33
|
Deau E, Loidreau Y, Marchand P, Nourrisson MR, Loaëc N, Meijer L, Levacher V, Besson T. Synthesis of novel 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues and evaluation of their inhibitory activity against Ser/Thr kinases. Bioorg Med Chem Lett 2013; 23:6784-8. [PMID: 24176400 DOI: 10.1016/j.bmcl.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The efficient synthesis of 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki-Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/β). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases.
Collapse
Affiliation(s)
- Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yoshida K, Itoyama R, Yamahira M, Tanaka J, Loaëc N, Lozach O, Durieu E, Fukuda T, Ishibashi F, Meijer L, Iwao M. Synthesis, Resolution, and Biological Evaluation of Atropisomeric (aR)- and (aS)-16-Methyllamellarins N: Unique Effects of the Axial Chirality on the Selectivity of Protein Kinases Inhibition. J Med Chem 2013; 56:7289-301. [DOI: 10.1021/jm400719y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kenyu Yoshida
- Division
of Chemistry and Materials Sciences, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Ryosuke Itoyama
- Division
of Chemistry and Materials Sciences, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masashi Yamahira
- Division
of Marine Life Science and Biochemistry, Graduate School of Fisheries
Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Junji Tanaka
- Institute
for Materials Chemistry and Engineering, Kyushu University, Kasuga
Koen 6-1, Kasuga 816-8580, Japan
| | - Nadège Loaëc
- Protein
Phosphorylation and Human Disease Group, Station Biologique, CNRS, 29680 Roscoff, Bretagne, France
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, Bretagne, France
| | - Olivier Lozach
- Protein
Phosphorylation and Human Disease Group, Station Biologique, CNRS, 29680 Roscoff, Bretagne, France
| | - Emilie Durieu
- Protein
Phosphorylation and Human Disease Group, Station Biologique, CNRS, 29680 Roscoff, Bretagne, France
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, Bretagne, France
| | - Tsutomu Fukuda
- Division
of Chemistry and Materials Sciences, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Fumito Ishibashi
- Division
of Marine Life Science and Biochemistry, Graduate School of Fisheries
Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Laurent Meijer
- Protein
Phosphorylation and Human Disease Group, Station Biologique, CNRS, 29680 Roscoff, Bretagne, France
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, Bretagne, France
| | - Masatomo Iwao
- Division
of Chemistry and Materials Sciences, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
35
|
Burgy G, Tahtouh T, Durieu E, Foll-Josselin B, Limanton E, Meijer L, Carreaux F, Bazureau JP. Chemical synthesis and biological validation of immobilized protein kinase inhibitory Leucettines. Eur J Med Chem 2013; 62:728-37. [DOI: 10.1016/j.ejmech.2013.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 12/30/2022]
|
36
|
Fugel W, Oberholzer AE, Gschloessl B, Dzikowski R, Pressburger N, Preu L, Pearl LH, Baratte B, Ratin M, Okun I, Doerig C, Kruggel S, Lemcke T, Meijer L, Kunick C. 3,6-Diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles are selective inhibitors of Plasmodium falciparum glycogen synthase kinase-3. J Med Chem 2013; 56:264-75. [PMID: 23214499 DOI: 10.1021/jm301575n] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plasmodium falciparum is the infective agent responsible for malaria tropica. The glycogen synthase kinase-3 of the parasite (PfGSK-3) was suggested as a potential biological target for novel antimalarial drugs. Starting from hit structures identified in a high-throughput screening campaign, 3,6-diamino-4-(2-halophenyl)-2-benzoylthieno[2,3-b]pyridine-5-carbonitriles were discovered as a new class of PfGSK-3 inhibitors. Being less active on GSK-3 homologues of other species, the title compounds showed selectivity in favor of PfGSK-3. Taking into account the X-ray structure of a related molecule in complex with human GSK-3 (HsGSK-3), a model was computed for the comparison of inhibitor complexes with the plasmodial and human enzymes. It was found that subtle differences in the ATP-binding pockets are responsible for the observed PfGSK-3 vs HsGSK-3 selectivity. Representatives of the title compound class exhibited micromolar IC₅₀ values against P. falciparum erythrocyte stage parasites. These results suggest that inhibitors of PfGSK-3 could be developed as potential antimalarial drugs.
Collapse
Affiliation(s)
- Wiebke Fugel
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Loidreau Y, Marchand P, Dubouilh-Benard C, Nourrisson MR, Duflos M, Loaëc N, Meijer L, Besson T. Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases. Eur J Med Chem 2013; 59:283-95. [PMID: 23237976 DOI: 10.1016/j.ejmech.2012.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 01/04/2023]
Abstract
Novel N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines (1) and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues (2) were designed and prepared for the first time via microwave-accelerated multi-step synthesis. Various anilines were condensed with N'-(2-cyanaryl)-N,N-dimethylformimidamide intermediates obtained by reaction of 3-amino-6-methoxybenzofuran-2-carbonitrile (3) and 3-amino-6-methoxybenzothiophene-2-carbonitrile (4) precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) was estimated. Compounds (2a-z) turned out to be particularly promising for the development of new pharmacological dual inhibitors of CLK1 and DYRK1A kinases.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Université de Rouen, Laboratoire de Chimie Organique et Bio-organique, Réactivité et Analyse (C.O.B.R.A.), CNRS UMR 6014 & FR3038, Institut de Recherche en Chimie Organique Fine (I.R.C.O.F.) rue Tesnière, 76130 Mont Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Coulibaly WK, Paquin L, Bénie A, Bekro YA, Durieu E, Meijer L, Bazureau JP. Synthesis of N,N'-bis(5-arylidene-4-oxo-3,5-dihydro-4H-imidazol-2-yl)diamines bearing various linkers and biological evaluation as potential inhibitors of kinases. Eur J Med Chem 2012; 58:581-90. [PMID: 23174317 DOI: 10.1016/j.ejmech.2012.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
The synthesis in 4 steps of new N,N'-bis(5-arylidene-4-oxo-3,5-dihydro-4H-imidazol-2-yl)diamines issued from various symmetric primary diamines as linkers was reported. The key step of our strategy has been the sulphur/nitrogen displacement of (5Z)-5-arylidene-2-ethylsulfanyl-3,5-dihydro-4H-imidazol-4-ones 6 with respectively ethylenediamine 7a, piperazine 7b and N,N'-bis(3-aminopropyl)piperazine 7c using solvent-free reaction conditions under microwave irradiation with retention of configuration. These compounds were tested for their kinase inhibitory potencies toward four kinases (GSK-3α/β, DYRK1A, CLK1 and CLK3).
Collapse
Affiliation(s)
- Wacothon Karime Coulibaly
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, groupe Ingénierie Chimique et Molécules pour Vivant, Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Tahtouh T, Elkins JM, Filippakopoulos P, Soundararajan M, Burgy G, Durieu E, Cochet C, Schmid RS, Lo DC, Delhommel F, Oberholzer AE, Pearl LH, Carreaux F, Bazureau JP, Knapp S, Meijer L. Selectivity, cocrystal structures, and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J Med Chem 2012; 55:9312-30. [PMID: 22998443 DOI: 10.1021/jm301034u] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DYRKs (dual specificity, tyrosine phosphorylation regulated kinases) and CLKs (cdc2-like kinases) are implicated in the onset and development of Alzheimer's disease and Down syndrome. The marine sponge alkaloid leucettamine B was recently identified as an inhibitor of DYRKs/CLKs. Synthesis of analogues (leucettines) led to an optimized product, leucettine L41. Leucettines were cocrystallized with DYRK1A, DYRK2, CLK3, PIM1, and GSK-3β. The selectivity of L41 was studied by activity and interaction assays of recombinant kinases and affinity chromatography and competition affinity assays. These approaches revealed unexpected potential secondary targets such as CK2, SLK, and the lipid kinase PIKfyve/Vac14/Fig4. L41 displayed neuroprotective effects on glutamate-induced HT22 cell death. L41 also reduced amyloid precursor protein-induced cell death in cultured rat brain slices. The unusual multitarget selectivity of leucettines may account for their neuroprotective effects. This family of kinase inhibitors deserves further optimization as potential therapeutics against neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Tania Tahtouh
- CNRS, "Protein Phosphorylation & Human Disease" Group, Station Biologique, 29680 Roscoff, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Debray J, Bonte S, Lozach O, Meijer L, Demeunynck M. Catalyst-free synthesis of quinazolin-4-ones from (hetero)aryl-guanidines: application to the synthesis of pyrazolo[4,3-f]quinazolin-9-ones, a new family of DYRK1A inhibitors. Mol Divers 2012; 16:659-67. [PMID: 22991074 DOI: 10.1007/s11030-012-9397-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/03/2012] [Indexed: 01/10/2023]
Abstract
A small library of heterocycle-fused quinazolin-4-ones was prepared and evaluated as kinase inhibitors. The key step of the two-step process involves the environmental friendly thermolysis of N-ethoxycarbonyl-N'-(hetero) arylguanidines at 130 °C in water. The cyclization is fully regioselective. The most active molecules, 7-(2-hydroxyethylamino)- and 7-(3-hydroxypropylamino)-pyrazolo[4,3-f]quinazolin-9-ones, inhibit DYRK1A and CLK1 at submicromolar concentrations, indicating the potential interest of this new heterocycle in drug design.
Collapse
Affiliation(s)
- Julien Debray
- Département de Pharmacochimie Moléculaire, UMR 5063 & ICMG FR-2607, CNRS/Université Joseph Fourier, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
41
|
Boulahjar R, Ouach A, Matteo C, Bourg S, Ravache M, le Guével R, Marionneau S, Oullier T, Lozach O, Meijer L, Guguen-Guillouzo C, Lazar S, Akssira M, Troin Y, Guillaumet G, Routier S. Novel tetrahydropyrido[1,2-a]isoindolone derivatives (valmerins): potent cyclin-dependent kinase/glycogen synthase kinase 3 inhibitors with antiproliferative activities and antitumor effects in human tumor xenografts. J Med Chem 2012; 55:9589-606. [PMID: 23083119 DOI: 10.1021/jm3008536] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of CDK and GSK3 inhibitors has been regarded as a potential therapeutic approach, and a substantial number of diverse structures have been reported to inhibit CDKs and GSK-3β in recent years. Only a few molecules have gone through or are currently undergoing clinical trials as CDK and GSK inhibitors. In this paper, we prepared valmerins, a new family containing the tetrahydropyrido[1,2-a]isoindone core. The fused heterocycle was prepared with a straightforward synthesis that was functionalized by a (het)arylurea. Twelve valmerins inhibited the CDK5 and GSK3 with an IC(50) < 100 nM. A semiquantitative kinase scoring was realized, and a cellular screening was done. At the end of our study, we investigated the in vivo potency of one valmerin. Mice exhibited good tolerance to our lead, which proved its efficacy and clearly blocked tumor growth. Valmerins appear also as good candidates for further development as anticancer agents.
Collapse
Affiliation(s)
- Rajâa Boulahjar
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Loidreau Y, Marchand P, Dubouilh-Benard C, Nourrisson MR, Duflos M, Lozach O, Loaëc N, Meijer L, Besson T. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors. Eur J Med Chem 2012; 58:171-83. [PMID: 23124214 DOI: 10.1016/j.ejmech.2012.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A useful and rapid access to libraries of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues was designed and optimized for the first time via microwave-accelerated condensation and Dimroth rearrangement of the starting anilines with N'-(2-cyanoaryl)-N,N-dimethylformimidamides obtained by reaction of thiophene precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ɛ, GSK3α/β, DYRK1A and CLK1) was estimated. N-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine series of compounds (4a-j) turned out to be particularly promising for the development of new pharmacological inhibitors of CK1 and CLK1 kinases.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Université de Rouen, Laboratoire de Chimie Organique et Bio-organique, Réactivité et Analyse, CNRS UMR 6014 & FR3038, Institut de Recherche en Chimie Organique Fine rue Tesnière, 76130 Mont Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Coulibaly WK, Paquin L, Bénié A, Bekro YA, Durieux E, Meijer L, Le Guével R, Corlu A, Bazureau JP. Synthesis of New N,N'-Bis(5-arylidene-4-oxo-4,5-dihydrothiazolin-2-yl)piperazine Derivatives Under Microwave Irradiation and Preliminary Biological Evaluation. Sci Pharm 2012; 80:825-36. [PMID: 23264934 PMCID: PMC3528043 DOI: 10.3797/scipharm.1206-04] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/16/2012] [Indexed: 12/02/2022] Open
Abstract
New N,N’-bis(5-arylidene-4-oxo-4,5-dihydrothiazoline-2-yl)diamine derivatives 5 were prepared in two steps from rhodanine and piperazine, or 1,4-bis(3-amino-propyl)piperazine, under microwave reaction conditions with retention of configuration. Some of these compounds were tested for in vitro antiproliferative activities and for their kinase inhibitory potencies towards six kinases (CDK5/p25, GSK3α/β, DYRK1A, DYRK2, CLK1, and CLK2). The compound 5d showed nanomolar activity towards DYRK1A kinase (IC50 = 0.041 μM).
Collapse
Affiliation(s)
- Wacothon Karime Coulibaly
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes (ISCR), UMR CNRS 6226, groupe Ingénièrie Chimique et Molécules pour le Vivant (ICMV), Bât. 10A, campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France. ; Université d'Abobo-Adjamé, Laboratoire de Chimie Bioorganique et de Subtances Naturelles (LCBSN), BP 802, Abidjan 02, République de la Côte d'Ivoire
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Deslandes S, Lamoral-Theys D, Frongia C, Chassaing S, Bruyère C, Lozach O, Meijer L, Ducommun B, Kiss R, Delfourne E. Synthesis and biological evaluation of analogs of the marine alkaloids granulatimide and isogranulatimide. Eur J Med Chem 2012; 54:626-36. [DOI: 10.1016/j.ejmech.2012.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
45
|
Nguyen TB, Lozach O, Surpateanu G, Wang Q, Retailleau P, Iorga BI, Meijer L, Guéritte F. Synthesis, Biological Evaluation, and Molecular Modeling of Natural and Unnatural Flavonoidal Alkaloids, Inhibitors of Kinases. J Med Chem 2012; 55:2811-9. [DOI: 10.1021/jm201727w] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Gif-sur-Yvette Cedex,
France
| | - Olivier Lozach
- “Protein Phosphorylation & Human Disease”, CNRS, Station Biologique, Place G. Teissier, 29682 Roscoff Cedex, France
| | - Georgiana Surpateanu
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Gif-sur-Yvette Cedex,
France
| | - Qian Wang
- Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, 1015 Lausanne, Switzerland
| | - Pascal Retailleau
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Gif-sur-Yvette Cedex,
France
| | - Bogdan I. Iorga
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Gif-sur-Yvette Cedex,
France
| | - Laurent Meijer
- “Protein Phosphorylation & Human Disease”, CNRS, Station Biologique, Place G. Teissier, 29682 Roscoff Cedex, France
- ManRos Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Françoise Guéritte
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles (ICSN), CNRS, 91198 Gif-sur-Yvette Cedex,
France
| |
Collapse
|
46
|
A practical approach to new (5Z) 2-alkylthio-5-arylmethylene-1-methyl-1,5-dihydro-4H-imidazol-4-one derivatives. Molecules 2011; 16:7377-90. [PMID: 21878858 PMCID: PMC6264224 DOI: 10.3390/molecules16097377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/25/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022] Open
Abstract
A practical protocol for the preparation of (5Z)-2-alkylthio-5-arylmethylene-1-methyl-1,5-dihydro-4H-imidazol-4-one derivatives is reported. The new compounds were obtained in good yield and stereoselectivity in two steps, namely a solvent-free Knoevenagel condensation under microwave irradiation, followed by an S-alkylation reaction with various halogenoalkanes.
Collapse
|
47
|
Debdab M, Carreaux F, Renault S, Soundararajan M, Fedorov O, Filippakopoulos P, Lozach O, Babault L, Tahtouh T, Baratte B, Ogawa Y, Hagiwara M, Eisenreich A, Rauch U, Knapp S, Meijer L, Bazureau JP. Leucettines, a class of potent inhibitors of cdc2-like kinases and dual specificity, tyrosine phosphorylation regulated kinases derived from the marine sponge leucettamine B: modulation of alternative pre-RNA splicing. J Med Chem 2011; 54:4172-86. [PMID: 21615147 DOI: 10.1021/jm200274d] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We here report on the synthesis, optimization, and biological characterization of leucettines, a family of kinase inhibitors derived from the marine sponge leucettamine B. Stepwise synthesis of analogues starting from the natural structure, guided by activity testing on eight purified kinases, led to highly potent inhibitors of CLKs and DYRKs, two families of kinases involved in alternative pre-mRNA splicing and Alzheimer's disease/Down syndrome. Leucettine L41 was cocrystallized with CLK3. It interacts with key residues located within the ATP-binding pocket of the kinase. Leucettine L41 inhibits the phosphorylation of serine/arginine-rich proteins (SRp), a family of proteins regulating pre-RNA splicing. Indeed leucettine L41 was demonstrated to modulate alternative pre-mRNA splicing, in a cell-based reporting system. Leucettines should be further explored as pharmacological tools to study and modulate pre-RNA splicing. Leucettines may also be investigated as potential therapeutic drugs in Alzheimer's disease (AD) and in diseases involving abnormal pre-mRNA splicing.
Collapse
Affiliation(s)
- Mansour Debdab
- Université de Rennes 1, Sciences Chimiques de Rennes, UMR CNRS 6226, Groupe Ingénierie Chimique & Molécules pour le Vivant (ICMV), Bât. 10A, Campus de Beaulieu, Avenue du Général Leclerc, CS 74205, 35042 Rennes cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Giraud F, Alves G, Debiton E, Nauton L, Théry V, Durieu E, Ferandin Y, Lozach O, Meijer L, Anizon F, Pereira E, Moreau P. Synthesis, protein kinase inhibitory potencies, and in vitro antiproliferative activities of meridianin derivatives. J Med Chem 2011; 54:4474-89. [PMID: 21623630 DOI: 10.1021/jm200464w] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis of new meridianin derivatives is described. The indolic ring system was substituted at the C-4 to C-7 positions either by a bromine atom or by nitro or amino groups. Additionally, an iodine atom or various aryl groups were introduced at the C-5 position of the 2-aminopyrimidine ring. These compounds as well as some of their synthetic intermediates were tested for their kinase inhibitory potencies and for their in vitro antiproliferative activities. We found that this series of compounds is particularly interesting in the development of new inhibitors of DYRK1A and CLK1 kinases. The most effective compounds toward these two kinase families are the 6- and 7-bromo derivatives 30, 33, and 34 that showed more than 45-fold selectivity toward DYRK1A/CLK1 kinases over the other kinases tested. Meridianin derivatives could thus be developed toward potent and selective inhibitors of key RNA splicing regulators and potential therapeutic agents.
Collapse
Affiliation(s)
- Francis Giraud
- Clermont Université, Université Blaise Pascal, Laboratoire SEESIB, BP 10448, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Castaño Z, Gordon-Weeks PR, Kypta RM. The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth. J Neurochem 2010; 113:117-30. [PMID: 20067585 DOI: 10.1111/j.1471-4159.2010.06581.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) has become an important target for the treatment of mood disorders and neurodegenerative disease. It comprises three enzymes, GSK-3alpha, beta and the neuron-specific isoform, beta2. GSK-3 regulates axon growth by phosphorylating microtubule-associated proteins including Tau. A genetic polymorphism that leads to an increase in the ratio of GSK-3beta1 to GSK-3beta2 interacts with Tau haplotypes to modify disease risk in Parkinson's and Alzheimer's disease. We have examined the roles of each isoform of GSK-3 in neurons. Silencing of GSK-3beta2 inhibited retinoic acid-induced neurite outgrowth in SH-SY5Y neuroblastoma cells and axon growth in rat cortical neurons. Inhibition of neurite outgrowth was prevented by co-expression of GSK-3beta2 but not by co-expression of GSK-3alpha or GSK-3beta1. Ectopic expression GSK-3beta2 enhanced the effects of retinoic acid on neurite length and induced neurite formation in the absence of retinoic acid. GSK-3beta2 phosphorylated Tau at a subset of those sites phosphorylated by GSK-3beta1. In addition, Axin, which regulates responses to Wnt signals, associated more readily with GSK-3beta1 than with GSK-3beta2. Our results suggest that GSK-3 inhibitors that target the Axin-binding site in GSK-3 will preserve the beneficial effects of GSK-3beta2 on axon growth.
Collapse
Affiliation(s)
- Zafira Castaño
- Center for Cooperative Research in Biosciences, CIC bioGUNE, Derio, Spain
| | | | | |
Collapse
|
50
|
Laronze-Cochard M, Cochard F, Daras E, Lansiaux A, Brassart B, Vanquelef E, Prost E, Nuzillard JM, Baldeyrou B, Goosens JF, Lozach O, Meijer L, Riou JF, Henon E, Sapi J. Synthesis and biological evaluation of new penta- and heptacyclic indolo- and quinolinocarbazole ring systems obtained via Pd0 catalysed reductive N-heteroannulation. Org Biomol Chem 2010; 8:4625-36. [DOI: 10.1039/c0ob00149j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|