1
|
Verdú-Navarro F, Moreno-Cid JA, Weiss J, Egea-Cortines M. The advent of plant cells in bioreactors. FRONTIERS IN PLANT SCIENCE 2023; 14:1310405. [PMID: 38148861 PMCID: PMC10749943 DOI: 10.3389/fpls.2023.1310405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Ever since agriculture started, plants have been bred to obtain better yields, better fruits, or sustainable products under uncertain biotic and abiotic conditions. However, a new way to obtain products from plant cells emerged with the development of recombinant DNA technologies. This led to the possibility of producing exogenous molecules in plants. Furthermore, plant chemodiversity has been the main source of pharmacological molecules, opening a field of plant biotechnology directed to produce high quality plant metabolites. The need for different products by the pharma, cosmetics agriculture and food industry has pushed again to develop new procedures. These include cell production in bioreactors. While plant tissue and cell culture are an established technology, beginning over a hundred years ago, plant cell cultures have shown little impact in biotechnology projects, compared to bacterial, yeasts or animal cells. In this review we address the different types of bioreactors that are currently used for plant cell production and their usage for quality biomolecule production. We make an overview of Nicotiana tabacum, Nicotiana benthamiana, Oryza sativa, Daucus carota, Vitis vinifera and Physcomitrium patens as well-established models for plant cell culture, and some species used to obtain important metabolites, with an insight into the type of bioreactor and production protocols.
Collapse
Affiliation(s)
- Fuensanta Verdú-Navarro
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Juan A. Moreno-Cid
- Bioprocessing R&D Department, Bionet, Parque Tecnológico Fuente Álamo, Fuente Álamo, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
2
|
Espejo-Mojica AJ, Rodríguez-López A, Li R, Zheng W, Alméciga-Díaz CJ, Dulcey-Sepúlveda C, Combariza G, Barrera LA. Human recombinant lysosomal β-Hexosaminidases produced in Pichia pastoris efficiently reduced lipid accumulation in Tay-Sachs fibroblasts. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2020; 184:885-895. [PMID: 33111489 PMCID: PMC8045741 DOI: 10.1002/ajmg.c.31849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 11/11/2022]
Abstract
GM2 gangliosidosis, Tay-Sachs and Sandhoff diseases, are lysosomal storage disorders characterized by the lysosomal accumulation of GM2 gangliosides. This accumulation is due to deficiency in the activity of the β-hexosaminidases Hex-A or Hex-B, which are dimeric hydrolases formed by αβ or ββ subunits, respectively. These disorders show similar clinical manifestations that range from mild systemic symptoms to neurological damage and premature death. There is still no effective therapy for GM2 gangliosidoses, but some therapeutic alternatives, as enzyme replacement therapy, have being evaluated. Previously, we reported the production of active human recombinant β-hexosaminidases (rhHex-A and rhHex-B) in the methylotrophic yeast Pichia pastoris. In this study, we evaluated in vitro the cellular uptake, intracellular delivery to lysosome, and reduction of stored substrates. Both enzymes were taken-up via endocytic pathway mediated by mannose and mannose-6-phosphate receptors and delivered to lysosomes. Noteworthy, rhHex-A diminished the levels of stored lipids and lysosome mass in fibroblasts from Tay-Sachs patients. Overall, these results confirm the potential of P. pastoris as host to produce recombinant β-hexosaminidases intended to be used in the treatment of GM2 gangliosidosis.
Collapse
Affiliation(s)
- Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Cindy Dulcey-Sepúlveda
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Germán Combariza
- Department of Mathematics. Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
3
|
Prediction of improved therapeutics for fabry disease patients generated by mutagenesis of the α-galactosidase A active site, dimer interface, and glycosylation region. Protein Expr Purif 2020; 175:105710. [DOI: 10.1016/j.pep.2020.105710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022]
|
4
|
Kumar S, Mutturi S. Expression of a novel α-glucosidase from Aspergillus neoniger in Pichia pastoris and its efficient recovery for synthesis of isomaltooligosaccharides. Enzyme Microb Technol 2020; 141:109653. [DOI: 10.1016/j.enzmictec.2020.109653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/22/2023]
|
5
|
Rodríguez-López A, Pimentel-Vera LN, Espejo-Mojica AJ, Van Hecke A, Tiels P, Tomatsu S, Callewaert N, Alméciga-Díaz CJ. Characterization of Human Recombinant N-Acetylgalactosamine-6-Sulfate Sulfatase Produced in Pichia pastoris as Potential Enzyme for Mucopolysaccharidosis IVA Treatment. J Pharm Sci 2019; 108:2534-2541. [PMID: 30959056 DOI: 10.1016/j.xphs.2019.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
Mucopolysaccharidosis IVA (MPS IVA or Morquio A syndrome) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to lysosomal storage of keratan sulfate and chondroitin-6-sulfate. Currently, enzyme replacement therapy using an enzyme produced in CHO cells represents the main treatment option for MPS IVA patients. As an alternative, we reported the production of an active GALNS enzyme produced in the yeast Pichia pastoris (prGALNS), which showed internalization by cultured cells through a potential receptor-mediated process and similar post-translational processing as human enzyme. In this study, we further studied the therapeutic potential of prGALNS through the characterization of the N-glycosylation structure, in vitro cell uptake and keratan sulfate reduction, and in vivo biodistribution and generation of anti-prGALNS antibodies. Taken together, these results represent an important step in the development of a P. pastoris-based platform for production of a therapeutic GALNS for MPS IVA enzyme replacement therapy.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Luisa N Pimentel-Vera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Annelies Van Hecke
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Petra Tiels
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Shunji Tomatsu
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania 19107; Departments of Orthopedics and BioMedical, Skeletal Dysplasia, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
6
|
Geng X, Fan J, Xu L, Wang H, Ng TB. Hydrolysis of oligosaccharides by a fungal α-galactosidase from fruiting bodies of a wild mushroom Leucopaxillus tricolor. J Basic Microbiol 2018; 58:1043-1052. [DOI: 10.1002/jobm.201800215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 08/05/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xueran Geng
- College of Food Science and Engineering; Shanxi Agricultural University; Taigu Shanxi China
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Jing Fan
- Hebei Foreing Studies University; Shijiazhuang Hebei China
| | - Lijing Xu
- College of Food Science and Engineering; Shanxi Agricultural University; Taigu Shanxi China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing China
| | - Tzi Bun Ng
- Faculty of Medicine; School of Biomedical Sciences; The Chinese University of Hong Kong; Shatin, New Territories Hong Kong China
| |
Collapse
|
7
|
Belyad F, Karkhanei AA, Raheb J. Expression, characterization and one step purification of heterologous glucose oxidase gene from Aspergillus niger ATCC 9029 in Pichia pastoris. EUPA OPEN PROTEOMICS 2018; 19:1-5. [PMID: 30197862 PMCID: PMC6126455 DOI: 10.1016/j.euprot.2018.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 11/20/2022]
Abstract
Glucose Oxidase (GOD), is a common flavoprotein from Aspergillus niger ATCC 9029 with a broad application in biotechnology, food and medical industries. In this study, GOD gene was cloned into the expression vector, pPIC9 and screened by the alcohol oxidase promoter. The enzyme production increased at 28 °C. GOD activity induced by 1.0% methanol and the highest level of GOD production was the result of shaking rate at 225 rpm. The highest enzyme activity obtained at a pH value ranged from 5 to 7 at 50 °C. The enzyme was stable at a broad pH range and temperature.
Collapse
Affiliation(s)
- Fakhry Belyad
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Asghar Karkhanei
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jamshid Raheb
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Corresponding author at: Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (Nigeb), Shahrak-e Pajoohesh, km 15, Tehran – Karaj Highway, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
8
|
Zhao R, Zhao R, Tu Y, Zhang X, Deng L, Chen X. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity. PLoS One 2018; 13:e0197067. [PMID: 29738566 PMCID: PMC5940202 DOI: 10.1371/journal.pone.0197067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 11/18/2022] Open
Abstract
A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0–10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing.
Collapse
Affiliation(s)
- Ruili Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Rui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Yishuai Tu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiaoming Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Liping Deng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
- China Center for Type Culture Collection, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
9
|
Pimentel N, Rodríguez-Lopez A, Díaz S, Losada JC, Díaz-Rincón DJ, Cardona C, Espejo-Mojica ÁJ, Ramírez AM, Ruiz F, Landázuri P, Poutou-Piñales RA, Cordoba-Ruiz HA, Alméciga-Díaz CJ, Barrera-Avellaneda LA. Production and characterization of a human lysosomal recombinant iduronate-2-sulfatase produced in Pichia pastoris. Biotechnol Appl Biochem 2018; 65:655-664. [DOI: 10.1002/bab.1660] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/24/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Alexander Rodríguez-Lopez
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
- Chemical Department; Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Juan C. Losada
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Dennis J. Díaz-Rincón
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Carolina Cardona
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Ángela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Aura M. Ramírez
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Fredy Ruiz
- Control; Power Electronics and Management of Technological Innovation (CEPIT); Electronic Engineering Department; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Patricia Landázuri
- Research Group on Cardiovascular and Metabolic Diseases (GECAVYME); Faculty of Health Sciences; University of Quindío; Armenia-Quindío Colombia
| | - Raúl A. Poutou-Piñales
- Grupo de Biotecnología Ambiental e Industrial (GBAI); Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Henry A. Cordoba-Ruiz
- Chemical Department; Faculty of Science; Pontificia Universidad Javeriana; Bogotá D.C. Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Luis A. Barrera-Avellaneda
- Institute for the Study of Inborn Errors of Metabolism; Faculty of Science; Pontificia Universidad Javeriana; Bogotá Colombia
| |
Collapse
|
10
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris. PLoS One 2016; 11:e0161529. [PMID: 27548309 PMCID: PMC4993465 DOI: 10.1371/journal.pone.0161529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application.
Collapse
|
12
|
Rodríguez-López A, Alméciga-Díaz CJ, Sánchez J, Moreno J, Beltran L, Díaz D, Pardo A, Ramírez AM, Espejo-Mojica AJ, Pimentel L, Barrera LA. Recombinant human N-acetylgalactosamine-6-sulfate sulfatase (GALNS) produced in the methylotrophic yeast Pichia pastoris. Sci Rep 2016; 6:29329. [PMID: 27378276 PMCID: PMC4932491 DOI: 10.1038/srep29329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A.
Collapse
Affiliation(s)
- Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J. Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltran
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrea Pardo
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Aura María Ramírez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Angela J. Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luisa Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
13
|
Shen JS, Busch A, Day TS, Meng XL, Yu CI, Dabrowska-Schlepp P, Fode B, Niederkrüger H, Forni S, Chen S, Schiffmann R, Frischmuth T, Schaaf A. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. J Inherit Metab Dis 2016; 39:293-303. [PMID: 26310963 PMCID: PMC4754329 DOI: 10.1007/s10545-015-9886-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/02/2023]
Abstract
Enzyme replacement therapy (ERT) is an effective treatment for several lysosomal storage disorders (LSDs). Intravenously infused enzymes are taken up by tissues through either the mannose 6-phosphate receptor (M6PR) or the mannose receptor (MR). It is generally believed that M6PR-mediated endocytosis is a key mechanism for ERT in treating LSDs that affect the non-macrophage cells of visceral organs. However, the therapeutic efficacy of MR-mediated delivery of mannose-terminated enzymes in these diseases has not been fully evaluated. We tested the effectiveness of a non-phosphorylated α-galactosidase A produced from moss (referred to as moss-aGal) in vitro and in a mouse model of Fabry disease. Endocytosis of moss-aGal was MR-dependent. Compared to agalsidase alfa, a phosphorylated form of α-galactosidase A, moss-aGal was more preferentially targeted to the kidney. Cellular localization of moss-aGal and agalsidase alfa in the heart and kidney was essentially identical. A single injection of moss-aGal led to clearance of accumulated substrate in the heart and kidney to an extent comparable to that achieved by agalsidase alfa. This study suggested that mannose-terminated enzymes may be sufficiently effective for some LSDs in which non-macrophage cells are affected, and that M6P residues may not always be a prerequisite for ERT as previously considered.
Collapse
Affiliation(s)
- Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA.
| | | | - Taniqua S Day
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Xing-Li Meng
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Chun I Yu
- Baylor Institute for Immunology Research, Dallas, TX, 75204, USA
| | | | | | | | - Sabrina Forni
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | - Shuyuan Chen
- Baylor Research Institute, Dallas, TX, 75226, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, 3812 Elm Street, Dallas, TX, 75226, USA
| | | | | |
Collapse
|
14
|
Espejo-Mojica ÁJ, Alméciga-Díaz CJ, Rodríguez A, Mosquera Á, Díaz D, Beltrán L, Díaz S, Pimentel N, Moreno J, Sánchez J, Sánchez OF, Córdoba H, Poutou-Piñales RA, Barrera LA. Human recombinant lysosomal enzymes produced in microorganisms. Mol Genet Metab 2015; 116:13-23. [PMID: 26071627 DOI: 10.1016/j.ymgme.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
Abstract
Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD.
Collapse
Affiliation(s)
- Ángela J Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Alexander Rodríguez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia; Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ángela Mosquera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Dennis Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Beltrán
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sergio Díaz
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Pimentel
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jefferson Moreno
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhonnathan Sánchez
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Oscar F Sánchez
- School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Henry Córdoba
- Chemical Department, School of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A Barrera
- Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
15
|
Yao M, Zhang J, Wang X. High-level secretion of human bikunin from recombinant Pichia pastoris. Lett Appl Microbiol 2015. [PMID: 26202000 DOI: 10.1111/lam.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Human bikunin is a glycoprotein that exhibits trypsin inhibitory activity against serine proteases, and is effective in clinic. However, limited productivity and high price of human bikunin retard its further application. In this study, a high-yield, low-cost process of recombinant human bikunin (rh-bikunin) production from Pichia pastoris was established. The trypsin inhibitory activity reached 6·2 × 10(3) IU ml(-1) after 120 h induction of P. pastoris fermentation process, which was 20-fold higher than that of the previous yield. Furthermore, a simple and low-cost purification process, including ammonium sulphate precipitation, anion exchange adsorption of impurity and cation exchange chromatography, was developed with the results of 38·7% recovery and 96·6% purity of rh-bikunin. This work made a big step to improve bikunin further application in clinic. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrated the highest rh-bikunin production process towards its application as trypsin inhibitor in clinic. In this work, Pichia pastoris GS115 was used as a host for higher rh-bikunin production which was 20-fold higher than that of P. pastoris X-33. Then, a simple, low-cost purification procedure of rh-bikunin was developed. This potential high productivity and low cost of rh-bikunin process will benefit patients eventually.
Collapse
Affiliation(s)
- M Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - J Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - X Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Production of a Highly Protease-Resistant Fungal α-Galactosidase in Transgenic Maize Seeds for Simplified Feed Processing. PLoS One 2015; 10:e0129294. [PMID: 26053048 PMCID: PMC4460051 DOI: 10.1371/journal.pone.0129294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/06/2015] [Indexed: 02/02/2023] Open
Abstract
Raffinose-family oligosaccharide (RFO) in soybeans is one of the major anti-nutritional factors for poultry and livestocks. α-Galactosidase is commonly supplemented into the animal feed to hydrolyze α-1,6-galactosidic bonds on the RFOs. To simplify the feed processing, a protease-resistant α-galactosidase encoding gene from Gibberella sp. strain F75, aga-F75, was modified by codon optimization and heterologously expressed in the embryos of transgentic maize driven by the embryo-specific promoter ZM-leg1A. The progenies were produced by backcrossing with the commercial inbred variety Zheng58. PCR, southern blot and western blot analysis confirmed the stable integration and tissue specific expression of the modified gene, aga-F75m, in seeds over four generations. The expression level of Aga-F75M reached up to 10,000 units per kilogram of maize seeds. In comparison with its counterpart produced in Pichia pastoris strain GS115, maize seed-derived Aga-F75M showed a lower temperature optimum (50 °C) and lower stability over alkaline pH range, but better thermal stability at 60 °C to 70 °C and resistance to feed pelleting inactivation (80 °C). This is the first report of producing α-galactosidase in transgenic plant. The study offers an effective and economic approach for direct utilization of α-galactosidase-producing maize without any purification or supplementation procedures in the feed processing.
Collapse
|
17
|
Meghdari M, Gao N, Abdullahi A, Stokes E, Calhoun DH. Carboxyl-terminal truncations alter the activity of the human α-galactosidase A. PLoS One 2015; 10:e0118341. [PMID: 25719393 PMCID: PMC4342250 DOI: 10.1371/journal.pone.0118341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Fabry disease is an X-linked inborn error of glycolipid metabolism caused by deficiency of the human lysosomal enzyme, α-galactosidase A (αGal), leading to strokes, myocardial infarctions, and terminal renal failure, often leading to death in the fourth or fifth decade of life. The enzyme is responsible for the hydrolysis of terminal α-galactoside linkages in various glycolipids. Enzyme replacement therapy (ERT) has been approved for the treatment of Fabry disease, but adverse reactions, including immune reactions, make it desirable to generate improved methods for ERT. One approach to circumvent these adverse reactions is the development of derivatives of the enzyme with more activity per mg. It was previously reported that carboxyl-terminal deletions of 2 to 10 amino acids led to increased activity of about 2 to 6-fold. However, this data was qualitative or semi-quantitative and relied on comparison of the amounts of mRNA present in Northern blots with αGal enzyme activity using a transient expression system in COS-1 cells. Here we follow up on this report by constructing and purifying mutant enzymes with deletions of 2, 4, 6, 8, and 10 C-terminal amino acids (Δ2, Δ4, Δ6, Δ8, Δ10) for unambiguous quantitative enzyme assays. The results reported here show that the kcat/Km approximately doubles with deletions of 2, 4, 6 and 10 amino acids (0.8 to 1.7-fold effect) while a deletion of 8 amino acids decreases the kcat/Km (7.2-fold effect). These results indicate that the mutated enzymes with increased activity constructed here would be expected to have a greater therapeutic effect on a per mg basis, and could therefore reduce the likelihood of adverse infusion related reactions in Fabry patients receiving ERT treatment. These results also illustrate the principle that in vitro mutagenesis can be used to generate αGal derivatives with improved enzyme activity.
Collapse
Affiliation(s)
- Mariam Meghdari
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Nicholas Gao
- Chemistry Dept., City College of New York, New York, NY, USA
| | - Abass Abdullahi
- Biology & Medical Lab Technology, Bronx Community College, Bronx, NY, USA
| | - Erin Stokes
- Chemistry Dept., City College of New York, New York, NY, USA
| | - David H. Calhoun
- Chemistry Dept., City College of New York, New York, NY, USA
- * E-mail:
| |
Collapse
|
18
|
Unzueta U, Vázquez F, Accardi G, Mendoza R, Toledo-Rubio V, Giuliani M, Sannino F, Parrilli E, Abasolo I, Schwartz S, Tutino ML, Villaverde A, Corchero JL, Ferrer-Miralles N. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A. Appl Microbiol Biotechnol 2015; 99:5863-74. [DOI: 10.1007/s00253-014-6328-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/12/2014] [Accepted: 12/14/2014] [Indexed: 12/28/2022]
|
19
|
Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1. Appl Microbiol Biotechnol 2014; 99:1261-72. [DOI: 10.1007/s00253-014-6269-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
20
|
Seman WW, Bakar S, Bukhari N, Gaspar S, Othman R, Nathan S, Mahadi N, Jahim J, Murad A, Bakar FA. High level expression of Glomerella cingulata cutinase in dense cultures of Pichia pastoris grown under fed-batch conditions. J Biotechnol 2014; 184:219-28. [DOI: 10.1016/j.jbiotec.2014.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
|
21
|
Katrolia P, Rajashekhara E, Yan Q, Jiang Z. Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol 2013; 34:307-17. [DOI: 10.3109/07388551.2013.794124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Yegin S, Fernandez-Lahore M. A Thermolabile Aspartic Proteinase from Mucor mucedo DSM 809: Gene Identification, Cloning, and Functional Expression in Pichia pastoris. Mol Biotechnol 2012; 54:661-72. [DOI: 10.1007/s12033-012-9608-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Directed Evolution of Penicillium janczewskii zalesk α-Galactosidase Toward Enhanced Activity and Expression in Pichia pastoris. Appl Biochem Biotechnol 2012; 168:638-50. [DOI: 10.1007/s12010-012-9806-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/11/2012] [Indexed: 02/02/2023]
|
24
|
Zalai D, Dietzsch C, Herwig C, Spadiut O. A dynamic fed batch strategy for a Pichia pastoris mixed feed system to increase process understanding. Biotechnol Prog 2012; 28:878-86. [PMID: 22505140 DOI: 10.1002/btpr.1551] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/30/2012] [Indexed: 11/09/2022]
Abstract
Mixed substrate feeding strategies are frequently investigated to enhance the productivity of recombinant Pichia pastoris processes. For this purpose, numerous fed batch experiments or time-consuming continuous cultivations are required to optimize control parameters such as the substrate mixing ratio and the applied methanol concentration. In this study, we decoupled the feeding of methanol and glycerol in a mixed substrate fed batch environment to gain process understanding for a recombinant P. pastoris Muts strain producing the model enzyme horseradish peroxidase. Specific substrate uptake rates (qs) were controlled separately, and a stepwise increased qGly-control scheme was applied to investigate the effect of various substrate fluxes on the culture. The qs-controlled strategy allowed a parallel characterization of the metabolism and the recombinant protein expression in a fed batch environment. A critical-specific glycerol uptake rate was determined, where a decline of the specific productivity occurred, and a time-dependent acceleration of protein expression was characterized with the dynamic fed batch approach. Based on the observations on recombinant protein expression, propositions for an optimal feeding design to target maximal productivities were stated. Thus, the dynamic fed batch strategy was found to be a valuable tool for both process understanding and optimization of product formation for P. pastoris in a mixed substrate environment.
Collapse
Affiliation(s)
- Dénes Zalai
- Vienna University of Technology, Institute of Chemical Engineering, Research Area Biochemical Engineering, Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Corchero JL, Mendoza R, Lorenzo J, Rodríguez-Sureda V, Domínguez C, Vázquez E, Ferrer-Miralles N, Villaverde A. Integrated approach to produce a recombinant, his-tagged human α-galactosidase a in mammalian cells. Biotechnol Prog 2011; 27:1206-17. [DOI: 10.1002/btpr.637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 02/16/2011] [Indexed: 11/06/2022]
|
26
|
Zhang N, Bilsland E. Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy. Methods Mol Biol 2011; 759:501-523. [PMID: 21863505 DOI: 10.1007/978-1-61779-173-4_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by sequencing should adopt an integrative approach including both bioinformatics and experimental analysis to reveal functional conservation and divergence of complexes and pathways. The techniques and resources generated for systems biology studies in yeast have found a wide range of applications. Here we focused on using these technologies in revealing functions of genes from mammals, in identifying targets of novel and known drugs and in screening drugs targeting specific proteins and/or protein-protein interactions.
Collapse
Affiliation(s)
- Nianshu Zhang
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
27
|
Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high-cell-density fed-batch cultures. Appl Environ Microbiol 2010; 76:4486-96. [PMID: 20472737 DOI: 10.1128/aem.02475-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Matching both the construction of a recombinant strain and the process design with the characteristics of the target protein has the potential to significantly enhance bioprocess performance, robustness, and reproducibility. The factors affecting the physiological state of recombinant Pichia pastoris Mut(+) (methanol utilization-positive) strains and their cell membranes were quantified at the individual cell level using a combination of staining with fluorescent dyes and flow cytometric enumeration. Cell vitalities were found to range from 5 to 95% under various process conditions in high-cell-density fed-batch cultures, with strains producing either porcine trypsinogen or horseradish peroxidase extracellularly. Impaired cell vitality was observed to be the combined effect of production of recombinant protein, low pH, and high cell density. Vitality improved when any one of these stress factors was excluded. At a pH value of 4, which is commonly applied to counter proteolysis, recombinant strains exhibited severe physiological stress, whereas strains without heterologous genes were not affected. Physiologically compromised cells were also found to be increasingly sensitive to methanol when it accumulated in the culture broth. The magnitude of the response varied when different reporters were combined with either the native AOX1 promoter or its d6* variant, which differ in both strength and regulation. Finally, the quantitative assessment of the physiology of individual cells enables the implementation of innovative concepts in bioprocess development. Such concepts are in contrast to the frequently used paradigm, which always assumes a uniform cell population, because differentiation between the individual cells is not possible with methods commonly used.
Collapse
|
28
|
Fredericks D, Clay R, Warner T, O'Connor A, de Kretser DM, Hearn MTW. Optimization of the expression of recombinant human activin A in the yeast Pichia pastoris. Biotechnol Prog 2010; 26:372-83. [DOI: 10.1002/btpr.304] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Cao Y, Yang P, Shi P, Wang Y, Luo H, Meng K, Zhang Z, Wu N, Yao B, Fan Y. Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Akeboshi H, Chiba Y, Kasahara Y, Takashiba M, Takaoka Y, Ohsawa M, Tajima Y, Kawashima I, Tsuji D, Itoh K, Sakuraba H, Jigami Y. Production of recombinant beta-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta. Appl Environ Microbiol 2007; 73:4805-12. [PMID: 17557860 PMCID: PMC1951009 DOI: 10.1128/aem.00463-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/24/2007] [Indexed: 01/28/2023] Open
Abstract
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.
Collapse
Affiliation(s)
- Hiromi Akeboshi
- Research Center for Glycoscience, AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Expression in Pichia pastoris of a recombinant scFv form of MAb 107, an anti human CD11b integrin antibody. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Kondoh K, Morisaki K, Kim WD, Park GG, Kaneko S, Kobayashi H. Cloning and expression of the gene encoding Streptomyces coelicolor A3(2) alpha-galactosidase belonging to family 36. Biotechnol Lett 2005; 27:641-7. [PMID: 15977071 DOI: 10.1007/s10529-005-3660-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 02/25/2005] [Accepted: 02/28/2005] [Indexed: 11/30/2022]
Abstract
The alpha-galactosidase gene of Streptomyces coelicolor A3(2) was cloned, expressed in Escherichia coli and characterized. It consisted of 1497 nucleotides encoding a protein of 499 amino acids with a predicted molecular weight of 57,385. The observed homology between the deduced amino acid sequences of the enzyme and alpha-galactosidase from Thermus thermophilus was over 40%. The alpha-galactosidase gene was assigned to family 36 of the glycosyl hydrolases. The enzyme purified from recombinant E. coli showed optimal activity at 40 degrees C and pH 7. The enzyme hydrolyzed p-nitrophenyl-alpha-D -galactopyroside, raffinose, stachyose but not melibiose and galactomanno-oligosaccharides, indicating that this enzyme recognizes not only the galactose moiety but also other substrates.
Collapse
Affiliation(s)
- Kenji Kondoh
- Graduated school of Life and Environmental Science, University of Tsukuba, Ibaraki, 305-0006, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Daly R, Hearn MTW. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 2005; 18:119-38. [PMID: 15565717 DOI: 10.1002/jmr.687] [Citation(s) in RCA: 524] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of the methylotrophic yeast, Pichia pastoris, as a cellular host for the expression of recombinant proteins has become increasing popular in recent times. P. pastoris is easier to genetically manipulate and culture than mammalian cells and can be grown to high cell densities. Equally important, P. pastoris is also a eukaryote, and thereby provides the potential for producing soluble, correctly folded recombinant proteins that have undergone all the post-translational modifications required for functionality. Additionally, linearized foreign DNA can be inserted in high efficiency via homologous recombination procedures to generate stable cell lines whilst expression vectors can be readily prepared that allow multiple copies of the target protein, multimeric proteins with different subunit structures, or alternatively the target protein and its cognate binding partners, to be expressed. A further benefit of the P. pastoris system is that strong promoters are available to drive the expression of a foreign gene(s) of interest, thus enabling production of large amounts of the target protein(s) with relative technical ease and at a lower cost than most other eukaryotic systems. The purpose of this review is to summarize important developments and features of this expression system and, in particular, to examine from an experimental perspective the genetic engineering, protein chemical and molecular design considerations that have to be taken into account for the successful expression of the target recombinant protein. Included in these considerations are the influences of P. pastoris strain selection; the choice of expression vectors and promoters; procedures for the transformation and integration of the vectors into the P. pastoris genome; the consequences of rare codon usage and truncated transcripts; and techniques employed to achieve multi-copy integration numbers. The impact of the alcohol oxidase (AOX) pathways in terms of the mut+ and mut(s) phenotypes, intracellular expression and folding pathways is examined. The roles of pre-pro signal sequences such as the alpha mating factor (alpha-MF) and the Glu-Ala repeats at the kex2p cleavage site on the processing of the protein translate(s) have also been considered. Protocols for the generation of protein variants and mutants for screening for orphan cognate binding partners and the use of experimental platforms addressing the molecular recognition behaviour of recombinant proteins such as the extracellular domains of transmembrane receptors with their physiological ligands are also described. Finally, the palindromic patterns of glycosylation that can occur with these expression systems, in terms of the role and location of the sequon in the primary structure, the number of mannose units and the types of oligosaccharides incorporated as Asn- or O-linkages and their impact on the thermostability and immunogenicity of the recombinant protein are considered. Procedures to prevent glycosylation through manipulation of cell culture conditions or via enzymatic and site-directed mutagenesis methods are also discussed.
Collapse
Affiliation(s)
- Rachel Daly
- ARC Special Research Centre for Green Chemistry, Monash University, Building 23, Wellington Road, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
35
|
Yasuda K, Chang HH, Wu HL, Ishii S, Fan JQ. Efficient and rapid purification of recombinant human alpha-galactosidase A by affinity column chromatography. Protein Expr Purif 2005; 37:499-506. [PMID: 15358377 DOI: 10.1016/j.pep.2004.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 07/04/2004] [Indexed: 10/26/2022]
Abstract
The lysosomal enzyme alpha-galactosidase A (alpha-Gal A) metabolizes neutral glycosphingolipids that possess alpha-galactoside residues at the non-reducing terminus, and inherited defects in the activity of alpha-Gal A lead to Fabry disease. We describe here an efficient and rapid purification procedure for recombinant alpha-Gal A by sequential Concanavalin A (Con A)-Sepharose and immobilized thio-alpha-galactoside (thio-Gal) agarose column chromatography. Optimal elution conditions for both columns were obtained using overexpressed human alpha-Gal A. We recommend the use of a mixture of 0.9 M methyl alpha-mannoside and 0.9 M methyl alpha-glucoside in 0.1 M acetate buffer (pH 6.0) with 0.1 M NaCl for the maximum recovery of glycoproteins with multiple high-mannose type sugar chains from Con A column chromatography, and that the Con A column should not be reused for the purification of glycoproteins that are used for structural studies. Binding of the enzyme to the thio-Gal column requires acidic condition at pH 4.8. A galactose-containing buffer (25 mM citrate-phosphate buffer, pH 5.5, with 0.1 M galactose, and 0.1 M NaCl) was used to elute alpha-Gal A. This procedure is especially useful for the purification of mutant forms of alpha-Gal A, which are not stable under conventional purification techniques. A protocol that purifies an intracellular mutant alpha-Gal A (M279I) expressed in COS-7 cells within 6h at 62% overall yield is presented.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Human Genetics, Mount Sinai School of Medicine, Box 1498, Fifth Avenue at 100th Street, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
36
|
KONDOH K, MORISAKI K, KIM WD, KOTWAL SM, KANEKO S, KOBAYASHI H. Expression of Streptomyces coelicolor .ALPHA.-Galactosidase Gene in Escherichia coli and Characterization. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2005. [DOI: 10.3136/fstr.11.207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Larentis AL, Almeida MS, Cabral KMS, Medeiros LN, Kurtenbach E, Coelho MAZ. Expression of Pisum sativum defensin 1 (Psd1) in shaking flasks and bioreactor cultivations of recombinant Pichia pastoris at different pHs. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2004. [DOI: 10.1590/s0104-66322004000200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Garman SC, Garboczi DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 2004; 337:319-35. [PMID: 15003450 DOI: 10.1016/j.jmb.2004.01.035] [Citation(s) in RCA: 279] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/16/2004] [Accepted: 01/21/2004] [Indexed: 01/01/2023]
Abstract
Fabry disease is an X-linked lysosomal storage disease afflicting 1 in 40,000 males with chronic pain, vascular degeneration, cardiac impairment, and other symptoms. Deficiency in the lysosomal enzyme alpha-galactosidase (alpha-GAL) causes an accumulation of its substrate, which ultimately leads to Fabry disease symptoms. Here, we present the structure of the human alpha-GAL glycoprotein determined by X-ray crystallography. The structure is a homodimer with each monomer containing a (beta/alpha)8 domain with the active site and an antiparallel beta domain. N-linked carbohydrate appears at six sites in the glycoprotein dimer, revealing the basis for lysosomal transport via the mannose-6-phosphate receptor. To understand how the enzyme cleaves galactose from glycoproteins and glycolipids, we also determined the structure of the complex of alpha-GAL with its catalytic product. The catalytic mechanism of the enzyme is revealed by the location of two aspartic acid residues (D170 and D231), which act as a nucleophile and an acid/base, respectively. As a point mutation in alpha-GAL can lead to Fabry disease, we have catalogued and plotted the locations of 245 missense and nonsense mutations in the three-dimensional structure. The structure of human alpha-GAL brings Fabry disease into the realm of molecular diseases, where insights into the structural basis of the disease phenotypes might help guide the clinical treatment of patients.
Collapse
Affiliation(s)
- Scott C Garman
- Structural Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Rockville, MD 20852, USA.
| | | |
Collapse
|
39
|
Hanquier J, Sorlet Y, Desplancq D, Baroche L, Ebtinger M, Lefèvre JF, Pattus F, Hershberger CL, Vertès AA. A single mutation in the activation site of bovine trypsinogen enhances its accumulation in the fermentation broth of the yeast Pichia pastoris. Appl Environ Microbiol 2003; 69:1108-13. [PMID: 12571036 PMCID: PMC143679 DOI: 10.1128/aem.69.2.1108-1113.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We produced bovine trypsinogen in the yeast Pichia pastoris. Little or no trypsinogen was detected when the gene with its native leader sequence was expressed under the control of the strong aox1 promoter, suggesting that expression of the wild-type bovine trypsinogen was toxic to the cells. We altered the trypsinogen native propeptide sequence by replacing the lysine at position 6 with an aspartic acid, thus destroying the site in the propeptide cleaved by enterokinase and by trypsin. This mutant accumulated up to 10 mg of trypsinogen per liter in shake flask cultures and about 40 mg/liter in 6-liter fermentors. Trypsinogen could be activated in vitro with a dipeptidyl-aminopeptidase, which selectively removed the modified trypsinogen propeptide; the resulting trypsin was fully active and showed evidence of glycosylation. Thus, we have developed a novel protein production scheme that can be used for the expression of proteins, such as proteases, that are deleterious to the producing organism. This system relies on the expression of a zymogen that cannot be activated in vivo coupled with its in vitro purification and activation.
Collapse
Affiliation(s)
- José Hanquier
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly & Co., Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chiba Y, Sakuraba H, Kotani M, Kase R, Kobayashi K, Takeuchi M, Ogasawara S, Maruyama Y, Nakajima T, Takaoka Y, Jigami Y. Production in yeast of alpha-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 2002; 12:821-8. [PMID: 12499404 DOI: 10.1093/glycob/cwf096] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A mammalian-like sugar moiety was created in glycoprotein by Saccharomyces cerevisiae in combination with bacterial alpha-mannosidase to produce a more economic enzyme replacement therapy for patients with Fabry disease. We introduced the human alpha-galactosidase A (alpha-GalA) gene into an S. cerevisiae mutant that was deficient in the outer chains of N-linked mannan. The recombinant alpha-GalA contained both neutral (Man(8)GlcNAc(2)) and acidic ([Man-P](1-2)Man(8)GlcNAc(2)) sugar chains. Because an efficient incorporation of alpha-GalA into lysosomes of human cells requires mannose-6-phosphate (Man-6-P) residues that should be recognized by the specific receptor, we trimmed down the sugar chains of the alpha-GalA by a newly isolated bacterial alpha-mannosidase. Treatment of the alpha-GalA with the alpha-mannosidase resulted in the exposure of a Man-6-P residue on a nonreduced end of oligosaccharide chains after the removal of phosphodiester-linked nonreduced-end mannose. The treated alpha-GalA was efficiently incorporated into fibroblasts derived from patients with Fabry disease. The uptake was three to four times higher than that of the nontreated alpha-GalA and was inhibited by the addition of 5 mM Man-6-P. Incorporated alpha-GalA was targeted to the lysosome, and hydrolyzed ceramide trihexoside accumulated in the Fabry fibroblasts after 5 days. This method provides an effective and economic therapy for many lysosomal disorders, including Fabry disease.
Collapse
Affiliation(s)
- Yasunori Chiba
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Fabry disease is an X-linked inherited disorder of metabolism due to mutations in the gene encoding alpha-galactosidase A, a lysosomal enzyme. The enzymatic defect leads to the systemic accumulation of incompletely metabolised glycosphingolipids, primarily globotriaosylceramide, in plasma and lysosomes within various tissues. Inability to prevent the progression of glycosphingolipid deposition causes significant morbidity, associated with significant impact on quality of life and diminished lifespan from early onset strokes, heart attack and progressive renal failure. The disease manifests primarily in hemizygous males; however, there is increasing recognition that heterozygous (carrier) females may also develop disease-related complications. Indeed, most heterozygotes present with cardiac, renal or neurological symptoms, although with later-onset and to a lesser extent than is observed in hemizygotes. Until recently, medical management was symptomatic, consisting of partial pain relief with analgesic drugs (carbamazepin, gabapentin), kidney and vascular protection with angiotensin-converting enzyme inhibitors, statins and folic acid, whereas renal transplantation or dialysis is available for patients experiencing end stage renal failure. The ability to produce high doses of alpha-galactosidase A has opened the way to preclinical studies, and enzyme replacement therapy has recently been validated as a therapeutic agent in clinical trials. Long-term safety and efficacy of replacement therapy are currently being investigated. Increasing knowledge of the natural history of Fabry disease and greater experience with enzyme therapy should enable optimal patient care. The complexity and relative rarity of Fabry disease necessitates a multi-disciplinary team approach that may be facilitated by a disease registry.
Collapse
Affiliation(s)
- Dominique P Germain
- Department of Genetics, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France.
| |
Collapse
|
42
|
Wang SH, Yang TS, Lin SM, Tsai MS, Wu SC, Mao SJT. Expression, characterization, and purification of recombinant porcine lactoferrin in Pichia pastoris. Protein Expr Purif 2002; 25:41-9. [PMID: 12071697 DOI: 10.1006/prep.2001.1607] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant porcine lactoferrin (rPLF) was synthesized in Pichia pastoris using a constitutive promoter from the glyceraldehyde-3-phosphate dehydrogenase gene. Strains expressing rPLF with its own signal sequence or with that from the yeast alpha-mating factor (alpha-MF) were able to produce and secrete rPLF, but levels were consistently higher using alpha-MF constructs. In contrast, P. pastoris strains that expressed rPLF without a signal sequence produced the protein in an insoluble intracellular form. Increasing the initial pH of shake-flask culture medium from 6.0 to 7.0 or adding ferric ions to the medium (to 100 microM) resulted in significant improvements in expression of rPLF from P. pastoris. Expression levels (approximately 12 mg/L) were much higher than those observed from Saccharomyces cerevisiae strains (1-2 mg/L). P. pastoris-secreted rPLF was isolated and purified via a one-step simple procedure using a heparin column. The molecular size (78 kDa), isoelectric point (8.8-9.0), N-terminal amino acid sequence, and iron-binding capability of rPLF were each similar to that of native milk PLF.
Collapse
Affiliation(s)
- Sue-Hong Wang
- Jen-Te Junior College of Medicine Nursing and Management, Miaoli, Taiwan
| | | | | | | | | | | |
Collapse
|
43
|
Shabalin KA, Kulminskaya AA, Savel’ev AN, Shishlyannikov SM, Neustroev KN. Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00482-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|