1
|
Enzymatic Conversion of Different Qualities of Refined Softwood Hemicellulose Recovered from Spent Sulfite Liquor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103207. [PMID: 35630684 PMCID: PMC9143570 DOI: 10.3390/molecules27103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Spent sulfite liquor (SSL) from softwood processing is rich in hemicellulose (acetyl galactoglucomannan, AcGGM), lignin, and lignin-derived compounds. We investigated the effect of sequential AcGGM purification on the enzymatic bioconversion of AcGGM. SSL was processed through three consecutive purification steps (membrane filtration, precipitation, and adsorption) to obtain AcGGM with increasing purity. Significant reduction (~99%) in lignin content and modest loss (~18%) of polysaccharides was observed during purification from the least pure preparation (UFR), obtained by membrane filtration, compared to the purest preparation (AD), obtained by adsorption. AcGGM (~14.5 kDa) was the major polysaccharide in the preparations; its enzymatic hydrolysis was assessed by reducing sugar and high-performance anion-exchange chromatography analysis. The hydrolysis of the UFR preparation with Viscozyme L or Trichoderma reesei β-mannanase TrMan5A (1 mg/mL) resulted in less than ~50% bioconversion of AcGGM. The AcGGM in the AD preparation was hydrolyzed to a higher degree (~67% with TrMan5A and 80% with Viscozyme L) and showed the highest conversion rate. This indicates that SSL contains enzyme-inhibitory compounds (e.g., lignin and lignin-derived compounds such as lignosulfonates) which were successfully removed.
Collapse
|
2
|
den Haan R, Rose SH, Cripwell RA, Trollope KM, Myburgh MW, Viljoen-Bloom M, van Zyl WH. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt. Biotechnol Adv 2021; 53:107859. [PMID: 34678441 DOI: 10.1016/j.biotechadv.2021.107859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Selected strains of Saccharomyces cerevisiae are used for commercial bioethanol production from cellulose and starch, but the high cost of exogenous enzymes for substrate hydrolysis remains a challenge. This can be addressed through consolidated bioprocessing (CBP) where S. cerevisiae strains are engineered to express recombinant glycoside hydrolases during fermentation. Looking back at numerous strategies undertaken over the past four decades to improve recombinant protein production in S. cerevisiae, it is evident that various steps in the protein production "pipeline" can be manipulated depending on the protein of interest and its anticipated application. In this review, we briefly introduce some of the strategies and highlight lessons learned with regards to improved transcription, translation, post-translational modification and protein secretion of heterologous hydrolases. We examine how host strain selection and modification, as well as enzyme compatibility, are crucial determinants for overall success. Finally, we discuss how lessons from heterologous hydrolase expression can inform modern synthetic biology and genome editing tools to provide process-ready yeast strains in future. However, it is clear that the successful expression of any particular enzyme is still unpredictable and requires a trial-and-error approach.
Collapse
Affiliation(s)
- Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Shaunita H Rose
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Kim M Trollope
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
3
|
Ma L, Jiang H, Li W, Qin H, Lv Z, Huang J, Hou X, Wang W. Biochemical properties of a native β-1,4-mannanase from Aspergillus aculeatus QH1 and partial characterization of its N-glycosylation. Biochem Biophys Rep 2021; 26:100922. [PMID: 33644418 PMCID: PMC7887645 DOI: 10.1016/j.bbrep.2021.100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
N-glycosylation plays critical roles in protein secretion, sorting, stability, activity modulation, and interactions to other molecules in the eukaryotic organisms. Fungal β-1,4-mannanases have been widely used in the agri-food industry and contribute to the pathogenesis on plants. However, the information on N-glycosylation of a specific fungal carbohydrate-active enzyme (CAZyme) is currently limited. Herein, a cDNA was cloned from Aspergillus aculeatus QH1, displaying a full length of 1302 bp with an open reading frame of 1134 bp encoding for a GH5 subfamily 7 β-1, 4-mannanase, namely AacMan5_7A. The enzyme was purified and exhibited an optimal activity at pH 4.6 and 60 °C, hydrolyzing glucomannan and galactomannan, but not yeast mannan. AacMan5_7A is an N-glycosylated protein decorated with a high-mannose type glycan. Further through UPLC-ESI-MS/MS analysis, one of the four predicted N-glycosylation sites at N255 position was experimentally verified. The present study expands the information of N-glycosylation in fungal CAZymes, providing scientific bases for enhancing the production of fungal enzymes and their applications in food, feed, and plant biomass conversions. A cDNA was cloned from Aspergillus aculeatus QH1 for a GH5 subfamily 7 β-1, 4-mannanase, namely AacMan5_7A. AacMan5_7A was characterized for its general enzyme properties. AacMan5_7A is an N-glycosylated protein decorated with a high-mannose type glycan. One of the four predicted N-glycosylation sites at N255 position was experimentally verified.
Collapse
Affiliation(s)
- Liqing Ma
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heping Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weihua Li
- National Center of Biomedical Analysis, Beijing, 100850, China
| | - Hua Qin
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, 97239, USA
| | - Zhi Lv
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiujiu Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xuewen Hou
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weijun Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.,Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
4
|
Tarutina MG, Lazareva MN, Semenko EI, Sineoky SP. Expression of Aspergillus aculeatus β-Mannanase in Pichia pastoris Yeast and Analysis of Industrially Important Enzyme Properties. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819090084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Liu J, Basit A, Miao T, Zheng F, Yu H, Wang Y, Jiang W, Cao Y. Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides. Appl Microbiol Biotechnol 2018; 102:10027-10041. [PMID: 30215129 DOI: 10.1007/s00253-018-9355-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/05/2018] [Accepted: 08/30/2018] [Indexed: 01/23/2023]
Abstract
Degradation of mannans is a key process in the production of foods and prebiotics. β-Mannanase is the key enzyme that hydrolyzes 1,4-β-D-mannosidic linkages in mannans. Heterogeneous expression of β-mannanase in Pichia pastoris systems is widely used; however, Saccharomyces cerevisiae expression systems are more reliable and safer. We optimized β-mannanase gene from Aspergillus sulphureus and expressed it in five S. cerevisiae strains. Haploid and diploid strains, and strains with constitutive promoter TEF1 or inducible promoter GAL1, were tested for enzyme expression in synthetic auxotrophic or complex medium. Highest efficiency expression was observed for haploid strain BY4741 integrated with β-mannanase gene under constitutive promoter TEF1, cultured in complex medium. In fed-batch culture in a fermentor, enzyme activity reached ~ 24 U/mL after 36 h, and production efficiency reached 16 U/mL/day. Optimal enzyme pH was 2.0-7.0, and optimal temperature was 60 °C. In studies of β-mannanase kinetic parameters for two substrates, locust bean gum galactomannan (LBG) gave Km = 24.13 mg/mL and Vmax = 715 U/mg, while konjac glucomannan (KGM) gave Km = 33 mg/mL and Vmax = 625 U/mg. One-hour hydrolysis efficiency values were 57% for 1% LBG, 74% for 1% KGM, 39% for 10% LBG, and 53% for 10% KGM. HPLC analysis revealed that the major hydrolysis products were the oligosaccharides mannose, mannobiose, mannotriose, mannotetraose, mannopentaose, and mannohexaose. Our findings show that this β-mannanase has high efficiency for hydrolysis of mannans to mannooligosaccharides, a type of prebiotic, suggesting strong potential application in food industries.
Collapse
Affiliation(s)
- Junquan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Abdul Basit
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Ting Miao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Fengzhen Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China
| | - Hang Yu
- Liaoning Union Pharmaceutical Company Limited, Benxi, Liaoning, China
| | - Yan Wang
- Liaoning Union Pharmaceutical Company Limited, Benxi, Liaoning, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agro-Biotechnology, China Agricultural University, Beijing, China.
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Suzuki K, Michikawa M, Sato H, Yuki M, Kamino K, Ogasawara W, Fushinobu S, Kaneko S. Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from Talaromyces trachyspermus B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes. J Appl Glycosci (1999) 2018; 65:13-21. [PMID: 34354508 PMCID: PMC8056896 DOI: 10.5458/jag.jag.jag-2017_018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/27/2017] [Indexed: 11/16/2022] Open
Abstract
Highly thermostable β-mannanase, belonging to glycoside hydrolase family 5 subfamily 7, was purified from the culture supernatant of Talaromyces trachyspermus B168 and the cDNA of its transcript was cloned. The recombinant enzyme showed maximal activity at pH 4.5 and 85 °C. It retained more than 90 % of its activity below 60 °C. Obtaining the crystal structure of the enzyme helped us to understand the mechanism of its thermostability. An antiparallel β-sheet, salt-bridges, hydrophobic packing, proline residues in the loops, and loop shortening are considered to be related to the thermostability of the enzyme. The enzyme hydrolyzed mannans such as locust bean gum, carob galactomannan, guar gum, konjac glucomannan, and ivory nut mannan. It hydrolyzed 50.7 % of the total mannans from coffee waste, producing mannooligosaccharides. The enzyme has the highest optimum temperature among the known fungal β-mannanases and has potential for use in industrial applications.
Collapse
Affiliation(s)
| | - Mari Michikawa
- 2 Food Biotechnology Division, National Food Research Institute
| | - Haruna Sato
- 3 Department of Bioengineering, Nagaoka University of Technology
| | - Masahiro Yuki
- 3 Department of Bioengineering, Nagaoka University of Technology
| | - Kei Kamino
- 4 Department of Biotechnology, National Institute of Technology and Evaluation
| | - Wataru Ogasawara
- 3 Department of Bioengineering, Nagaoka University of Technology
| | | | - Satoshi Kaneko
- 2 Food Biotechnology Division, National Food Research Institute.,5 Department of Subtropical Biochemistry and Biotechnology, Faculty of Agriculture, University of the Ryukyus
| |
Collapse
|
7
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
8
|
Nadaroglu H, Adiguzel G, Adiguzel A, Sonmez Z. A thermostable-endo-β-(1,4)-mannanase from Pediococcus acidilactici (M17): purification, characterization and its application in fruit juice clarification. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chai SY, Abu Bakar FD, Mahadi NM, Murad AMA. A thermotolerant Endo-1,4-β-mannanase from Trichoderma virens UKM1: Cloning, recombinant expression and characterization. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Ishii J, Okazaki F, Djohan AC, Hara KY, Asai-Nakashima N, Teramura H, Andriani A, Tominaga M, Wakai S, Kahar P, Prasetya B, Ogino C, Kondo A. From mannan to bioethanol: cell surface co-display of β-mannanase and β-mannosidase on yeast Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:188. [PMID: 27594915 PMCID: PMC5009545 DOI: 10.1186/s13068-016-0600-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/19/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Mannans represent the largest hemicellulosic fraction in softwoods and also serve as carbohydrate stores in various plants. However, the utilization of mannans as sustainable resources has been less advanced in sustainable biofuel development. Based on a yeast cell surface-display technology that enables the immobilization of multiple enzymes on the yeast cell walls, we constructed a recombinant Saccharomyces cerevisiae strain that co-displays β-mannanase and β-mannosidase; this strain is expected to facilitate ethanol fermentation using mannan as a biomass source. RESULTS Parental yeast S. cerevisiae assimilated mannose and glucose as monomeric sugars, producing ethanol from mannose. We constructed yeast strains that express tethered β-mannanase and β-mannosidase; co-display of the two enzymes on the cell surface was confirmed by immunofluorescence staining and enzyme activity assays. The constructed yeast cells successfully hydrolyzed 1,4-β-d-mannan and produced ethanol by assimilating the resulting mannose without external addition of enzymes. Furthermore, the constructed strain produced ethanol from 1,4-β-d-mannan continually during the third batch of repeated fermentation. Additionally, the constructed strain produced ethanol from ivory nut mannan; ethanol yield was improved by NaOH pretreatment of the substrate. CONCLUSIONS We successfully displayed β-mannanase and β-mannosidase on the yeast cell surface. Our results clearly demonstrate the utility of the strain co-displaying β-mannanase and β-mannosidase for ethanol fermentation from mannan biomass. Thus, co-tethering β-mannanase and β-mannosidase on the yeast cell surface provides a powerful platform technology for yeast fermentation toward the production of bioethanol and other biochemicals from lignocellulosic materials containing mannan components.
Collapse
Affiliation(s)
- Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Fumiyoshi Okazaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577, Kurimamachiya, Tsu, Mie 514‑8507 Japan
| | - Apridah Cameliawati Djohan
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong Jalan Raya Bogor Km. 46, Cibinong, West Java 16911 Indonesia
| | - Kiyotaka Y. Hara
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Department of Environmental Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526 Japan
| | - Nanami Asai-Nakashima
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Hiroshi Teramura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Ade Andriani
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong Jalan Raya Bogor Km. 46, Cibinong, West Java 16911 Indonesia
| | - Masahiro Tominaga
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Bambang Prasetya
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong Jalan Raya Bogor Km. 46, Cibinong, West Java 16911 Indonesia
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
11
|
Adiguzel A, Nadaroglu H, Adiguzel G. Purification and characterization of [Formula: see text]-mannanase from Bacillus pumilus (M27) and its applications in some fruit juices. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:5292-5298. [PMID: 26243955 PMCID: PMC4519521 DOI: 10.1007/s13197-014-1609-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Thermo alkaline mannanase was purified from the bacteria of Bacillus pumilus (M27) using the techniques of ammonium sulphate precipitation, DEAE-Sephadex ion exchange chromatography and Sephacryl S200 gel filtration chromatography with 111-fold and 36 % yield. It was determined that the enzyme had 2 sub-units including 35 kDa and 55 kDa in gel filtration chromatography and SDS-PAGE electrophoresis systems. The optimum pH and temperature was determined as 8 and 60 °C, respectively. It was also noticed that the enzyme did not lose its activity at a wide interval such as pH 3-11 and at high temperatures such as 90 °C. Additionally, the effects of some metal ions on the mannanase enzyme activity. Moreover, the clarifying efficiency of purified mannanase enzyme with some fruit juices such as orange, apricot, grape and apple was also investigated. Enzymatic treatment was carried out with 1 mL L(-1) of purified mannanase for 1 h at 60 °C. It was determined that the highest pure enzyme was efficient upon clarifying the apple juice at 154 % rate.
Collapse
Affiliation(s)
- Ahmet Adiguzel
- />Faculty of Science, Department of Molecular Biology and Genetic, Ataturk University, 25240 Erzurum, Turkey
| | - Hayrunnisa Nadaroglu
- />Department of Food Technology, Erzurum Vocational Training School, Ataturk University, 25240 Erzurum, Turkey
| | - Gulsah Adiguzel
- />Department of Food Hygiene and Technology, Faculty of Veterinary, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
12
|
Malherbe AR, Rose SH, Viljoen-Bloom M, van Zyl WH. Expression and evaluation of enzymes required for the hydrolysis of galactomannan. J Ind Microbiol Biotechnol 2014; 41:1201-9. [PMID: 24888762 DOI: 10.1007/s10295-014-1459-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/08/2014] [Indexed: 11/25/2022]
Abstract
The cost-effective production of bioethanol from lignocellulose requires the complete conversion of plant biomass, which contains up to 30 % mannan. To ensure utilisation of galactomannan during consolidated bioprocessing, heterologous production of mannan-degrading enzymes in fungal hosts was explored. The Aspergillus aculeatus endo-β-mannanase (Man1) and Talaromyces emersonii α-galactosidase (Agal) genes were expressed in Saccharomyces cerevisiae Y294, and the Aspergillus niger β-mannosidase (cMndA) and synthetic Cellvibrio mixtus β-mannosidase (Man5A) genes in A. niger. Maximum enzyme activity for Man1 (374 nkat ml(-1), pH 5.47), Agal (135 nkat ml(-1), pH 2.37), cMndA (12 nkat ml(-1), pH 3.40) and Man5A (8 nkat ml(-1), pH 3.40) was observed between 60 and 70 °C. Co-expression of the Man1 and Agal genes in S. cerevisiae Y294[Agal-Man1] reduced the extracellular activity relative to individual expression of the respective genes. However, the combined action of crude Man1, Agal and Man5A enzyme preparations significantly decreased the viscosity of galactomannan in locust bean gum, confirming hydrolysis thereof. Furthermore, when complemented with exogenous Man5A, S. cerevisiae Y294[Agal-Man1] produced 56 % of the theoretical ethanol yield, corresponding to a 66 % carbohydrate conversion, on 5 g l(-1) mannose and 10 g l(-1) locust bean gum.
Collapse
Affiliation(s)
- A R Malherbe
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | | | | |
Collapse
|
13
|
Characterization of a β-1,4-mannanase from a newly isolated strain of Pholiota adiposa and its application for biomass pretreatment. Bioprocess Biosyst Eng 2014; 37:1817-24. [PMID: 24590240 DOI: 10.1007/s00449-014-1156-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
A highly efficient β-1,4-mannanase-secreting strain, Pholiota adiposa SKU0714, was isolated and identified on the basis of its morphological features and sequence analysis of internal transcribed spacer rDNA. P. adiposa β-1,4-mannanase was purified to homogeneity from P. adiposa culture supernatants by one-step chromatography on a Sephacryl gel filtration column. P. adiposa β-1,4-mannanase showed the highest activity toward locust bean gum (V max = 1,990 U/mg protein, K m = 0.12 mg/mL) ever reported. Its internal amino acid sequence showed homology with hydrolases from the glycoside hydrolase family 5 (GH5), indicating that the enzyme is a member of the GH5 family. The saccharification of commercial mannanase and P. adiposa β-1,4-mannanase-pretreated rice straw by Celluclast 1.5L (Novozymes) was compared. In comparison with the commercial Novo Mannaway(®) (113 mg/g-substrate), P. adiposa β-1,4-mannanase-pretreated rice straw released more reducing sugars (141 mg/g-substrate). These properties make P. adiposa β-1,4-mannanase a good candidate as a new commercial β-1,4-mannanase to improve biomass pretreatment.
Collapse
|
14
|
Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:663-9. [DOI: 10.1016/j.bbapap.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/24/2013] [Accepted: 01/22/2014] [Indexed: 11/20/2022]
|
15
|
Couturier M, Roussel A, Rosengren A, Leone P, Stålbrand H, Berrin JG. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 β-(1,4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharide catalysis. J Biol Chem 2013; 288:14624-14635. [PMID: 23558681 DOI: 10.1074/jbc.m113.459438] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microbial deconstruction of the plant cell wall is a key biological process that is of increasing importance with the development of a sustainable biofuel industry. The glycoside hydrolase families GH5 (PaMan5A) and GH26 (PaMan26A) endo-β-1,4-mannanases from the coprophilic ascomycete Podospora anserina contribute to the enzymatic degradation of lignocellulosic biomass. In this study, P. anserina mannanases were further subjected to detailed comparative analysis of their substrate specificities, active site organization, and transglycosylation capacity. Although PaMan5A displays a classical mode of action, PaMan26A revealed an atypical hydrolysis pattern with the release of mannotetraose and mannose from mannopentaose resulting from a predominant binding mode involving the -4 subsite. The crystal structures of PaMan5A and PaMan26A were solved at 1.4 and 2.85 Å resolution, respectively. Analysis of the PaMan26A structure supported strong interaction with substrate at the -4 subsite mediated by two aromatic residues Trp-244 and Trp-245. The PaMan26A structure appended to its family 35 carbohydrate binding module revealed a short and proline-rich rigid linker that anchored together the catalytic and the binding modules.
Collapse
Affiliation(s)
- Marie Couturier
- INRA, UMR1163 BCF, Aix Marseille Université, Polytech Marseille, F-13288 Marseille, France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, CNRS UMR7257, F-13288 Marseille, France
| | - Anna Rosengren
- Department of Biochemistry and Structural Biology, Lund University, P. O. Box 124, S-221 00, Lund, Sweden
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques, Aix Marseille Université, CNRS UMR7257, F-13288 Marseille, France
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, P. O. Box 124, S-221 00, Lund, Sweden
| | - Jean-Guy Berrin
- INRA, UMR1163 BCF, Aix Marseille Université, Polytech Marseille, F-13288 Marseille, France.
| |
Collapse
|
16
|
Katrolia P, Yan Q, Zhang P, Zhou P, Yang S, Jiang Z. Gene cloning and enzymatic characterization of an alkali-tolerant endo-1,4-β-mannanase from Rhizomucor miehei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:394-401. [PMID: 23252695 DOI: 10.1021/jf303319h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An endo-1,4-β-mannanase gene (RmMan5A) was cloned from the thermophilic fungus Rhizomucor miehei for the first time and expressed in Escherichia coli . The gene had an open reading frame of 1330 bp encoding 378 amino acids and contained four introns. It displayed the highest amino acid sequence identity (42%) with the endo-1,4-β-mannanases from glycoside hydrolase family 5. The purified enzyme was a monomer of 43 kDa. RmMan5A displayed maximum activity at 55 °C and an optimal pH of 7.0. It was thermostable up to 55 °C and alkali-tolerant, displaying excellent stability over a broad pH range of 4.0-10.0, when incubated for 30 min without substrate. The enzyme displayed the highest specificity for locust bean gum (K(m) = 3.78 mg mL⁻¹), followed by guar gum (K(m) = 7.75 mg mL⁻¹) and konjac powder (K(m) = 22.7 mg mL⁻¹). RmMan5A hydrolyzed locust bean gum and konjac powder yielding mannobiose, mannotriose, and a mixture of various mannose-linked oligosaccharides. It was confirmed to be a true endo-acting β-1,4-mannanase, which showed requirement of four mannose residues for hydrolysis, and was also capable of catalyzing transglycosylation reactions. These properties make RmMan5A highly useful in the food/feed, paper and pulp, and detergent industries.
Collapse
Affiliation(s)
- Priti Katrolia
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Madzak C, Beckerich JM. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Lin H, Wang Q, Shen Q, Zhan J, Zhao Y. Genetic engineering of microorganisms for biodiesel production. Bioengineered 2012; 4:292-304. [PMID: 23222170 DOI: 10.4161/bioe.23114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Collapse
Affiliation(s)
- Hui Lin
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou, China; Institute of Plant Science; College of Life Sciences; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|
19
|
Gene cloning, expression, and biochemical characterization of an alkali-tolerant β-mannanase from Humicola insolens Y1. ACTA ACUST UNITED AC 2012; 39:547-55. [DOI: 10.1007/s10295-011-1067-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Abstract
In this article, we firstly report a highly alkali-tolerant fungal β-mannanase from Humicola insolens Y1. The full-length cDNA of the β-mannanase, designated as man5A, has an open reading frame of 1,233 bp that encodes a 411-amino acid polypeptide (Man5A) with a calculated molecular mass of 42.3 kDa. The deduced sequence of Man5A comprises a putative 20-residue signal peptide and a catalytic domain belonging to glycoside hydrolase family 5, and displays 61–85% identities with hypothetical proteins and 32–39% with experimentally verified fungal β-mannanases. Purified recombinant Man5A produced by Pichia pastoris has a specific activity of 1,122 U mg−1 and exhibits optimal activity at pH 5.5 and 70°C. Distinct from other reported fungal β-mannanases, Man5A is highly alkali tolerant, exhibiting 45 and 36% of the maximal activity at pH 8.0 and 9.0, respectively, and more than 10% activity even at pH 10.0. Moreover, Man5A has excellent pH stability at pH 5.0–12.0 and is highly thermostable at 50°C. The higher frequency of alkaline amino acids (Arg and Lys), greater pKa values of the catalytic residues, and more positively charged residues on the surface of Man5A might be the causes. Man5A has strong resistance to various neutral and alkaline proteases, retaining more than 97% of the activity after proteolytic treatment for 1 h. The superior characteristics of Man5A make it more advantageous for the application in the kraft pulp industry.
Collapse
|
20
|
Kim DY, Ham SJ, Lee HJ, Cho HY, Kim JH, Kim YJ, Shin DH, Rhee YH, Son KH, Park HY. Cloning and characterization of a modular GH5 β-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. BIORESOURCE TECHNOLOGY 2011; 102:9185-9192. [PMID: 21767948 DOI: 10.1016/j.biortech.2011.06.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 05/31/2023]
Abstract
The gene (1272-bp) encoding a β-1,4-mannanase from a gut bacterium of Eisenia fetida, Cellulosimicrobium sp. strain HY-13 was cloned and expressed in Escherichia coli. The recombinant β-1,4-mannanase (rManH) was approximately 44.0 kDa and has a catalytic GH5 domain that is 65% identical to that of the Micromonospora sp. β-1,4-mannosidase. The enzyme exhibited the highest catalytic activity toward mannans at 50 °C and pH 6.0. rManH displayed a high specific activity of 14,711 and 8498 IU mg⁻¹ towards ivory nut mannan and locust bean gum, respectively; however it could not degrade the structurally unrelated polysaccharides, mannobiose, or p-nitrophenyl sugar derivatives. rManH was strongly bound to ivory nut mannan, Avicel, chitosan, and chitin but did not attach to curdlan, insoluble oat spelt xylan, lignin, or poly(3-hydroxybutyrate). The superior biocatalytic properties of rManH suggest that the enzyme can be exploited as an effective additive in the animal feed industry.
Collapse
Affiliation(s)
- Do Young Kim
- Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dilokpimol A, Nakai H, Gotfredsen CH, Baumann MJ, Nakai N, Abou Hachem M, Svensson B. Recombinant production and characterisation of two related GH5 endo-β-1,4-mannanases from Aspergillus nidulans FGSC A4 showing distinctly different transglycosylation capacity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1720-9. [PMID: 21867780 DOI: 10.1016/j.bbapap.2011.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/30/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
Abstract
The glycoside hydrolase family 5 (GH5) endo-β-1,4-mannanases ManA and ManC from Aspergillus nidulans FGSC A4 were produced in Pichia pastoris X33 and purified in high yields of 120 and 145mg/L, respectively, from the culture supernatants. Both enzymes showed increasing catalytic efficiency (k(cat)/K(M)) towards β-1,4 manno-oligosaccharides with the degree of polymerisation (DP) from 4 to 6 and also hydrolysed konjac glucomannan, guar gum and locust bean gum galactomannans. ManC had up to two-fold higher catalytic efficiency for DP 5 and 6 manno-oligosaccharides and also higher activity than ManA towards mannans. Remarkably, ManC compared to ManA transglycosylated mannotetraose with formation of longer β-1,4 manno-oligosaccharides 8-fold more efficiently and was able to use mannotriose, melezitose and isomaltotriose out of 36 tested acceptors resulting in novel penta- and hexasaccharides, whereas ManA used only mannotriose as acceptor. ManA and ManC share 39% sequence identity and homology modelling suggesting that they have very similar substrate interactions at subsites +1 and +2 except that ManC Trp283 at subsite +1 corresponded to Ser289 in ManA. Site-directed mutagenesis to ManA S289W lowered K(M) for manno-oligosaccharides by 30-45% and increased transglycosylation yield by 50% compared to wild-type. Conversely, K(M) for ManC W283S was increased, the transglycosylation yield was reduced by 30-45% and furthermore activity towards mannans decreased below that of ManA. This first mutational analysis in subsite +1 of GH5 endo-β-1,4-mannanases indicated that Trp283 in ManC participates in discriminating between mannan substrates with different extent of branching and has a role in transglycosylation and substrate affinity.
Collapse
Affiliation(s)
- Adiphol Dilokpimol
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
22
|
Combinatorial strategy of sorbitol feeding and low-temperature induction leads to high-level production of alkaline β-mannanase in Pichia pastoris. Enzyme Microb Technol 2011; 49:407-12. [PMID: 22112568 DOI: 10.1016/j.enzmictec.2011.06.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/29/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022]
Abstract
A process for efficient production of an alkaline β-mannanases from Bacillus sp. N16-5 was established by heterologous expression using Pichia pastoris. A high producing strain was generated by removing the native β-mannanases signal peptide and increasing the copy number of the mature β-mannanases gene. High cell density fermentation of this strain in 1-L bioreactor led to a production level of 4164 U/mL after 96 h of induction. Sorbitol co-feeding and temperature-lowering strategies both increased the β-mannanase production levels. Combined usage of these two strategies achieved the most effective result-the enzyme level reached 6336 U/mL within 84 h, which to our best knowledge is the highest production level reported for the expression of extreme β-mannanase thus far. The strategy described in this work can also be adapted to express other important industrial enzymes with extreme properties.
Collapse
|
23
|
|
24
|
Ozturk B, Cekmecelioglu D, Ogel ZB. Optimal conditions for enhanced β-mannanase production by recombinant Aspergillus sojae. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Songsiriritthigul C, Buranabanyat B, Haltrich D, Yamabhai M. Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-beta-mannosidase from Bacillus licheniformis in Escherichia coli. Microb Cell Fact 2010; 9:20. [PMID: 20380743 PMCID: PMC2868798 DOI: 10.1186/1475-2859-9-20] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/11/2010] [Indexed: 11/12/2022] Open
Abstract
Background Mannans are one of the key polymers in hemicellulose, a major component of lignocellulose. The Mannan endo-1,4-β-mannosidase or 1,4-β-D-mannanase (EC 3.2.1.78), commonly named β-mannanase, is an enzyme that can catalyze random hydrolysis of β-1,4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans. The enzyme has found a number of applications in different industries, including food, feed, pharmaceutical, pulp/paper industries, as well as gas well stimulation and pretreatment of lignocellulosic biomass for the production of second generation biofuel. Bacillus licheniformis is a Gram-positive endospore-forming microorganism that is generally non-pathogenic and has been used extensively for large-scale industrial production of various enzymes; however, there has been no previous report on the cloning and expression of mannan endo-1,4-β-mannosidase gene (manB) from B. licheniformis. Results The mannan endo-1,4-β-mannosidase gene (manB), commonly known as β-mannanase, from Bacillus licheniformis strain DSM13 was cloned and overexpressed in Escherichia coli. The enzyme can be harvested from the cell lysate, periplasmic extract, or culture supernatant when using the pFLAG expression system. A total activity of approximately 50,000 units could be obtained from 1-l shake flask cultures. The recombinant enzyme was 6 × His-tagged at its C-terminus, and could be purified by one-step immobilized metal affinity chromatography (IMAC) to apparent homogeneity. The specific activity of the purified enzyme when using locust bean gum as substrate was 1672 ± 96 units/mg. The optimal pH of the enzyme was between pH 6.0 - 7.0; whereas the optimal temperature was at 50 - 60°C. The recombinant β-mannanase was stable within pH 5 - 12 after incubation for 30 min at 50°C, and within pH 6 - 9 after incubation at 50°C for 24 h. The enzyme was stable at temperatures up to 50°C with a half-life time of activity (τ1/2) of approximately 80 h at 50°C and pH 6.0. Analysis of hydrolytic products by thin layer chromatography revealed that the main products from the bioconversion of locus bean gum and mannan were various manno-oligosaccharide products (M2 - M6) and mannose. Conclusion Our study demonstrates an efficient expression and secretion system for the production of a relatively thermo- and alkali-stable recombinant β-mannanase from B. licheniformis strain DSM13, suitable for various biotechnological applications.
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, Thailand.
| | | | | | | |
Collapse
|
26
|
Bien-Cuong D, Thi-Thu D, Berrin JG, Haltrich D, Kim-Anh T, Sigoillot JC, Yamabhai M. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-beta-mannosidase from Aspergillus niger BK01. Microb Cell Fact 2009; 8:59. [PMID: 19912637 PMCID: PMC2780388 DOI: 10.1186/1475-2859-8-59] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 11/13/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mannans are key components of lignocellulose present in the hemicellulosic fraction of plant primary cell walls. Mannan endo-1,4-beta-mannosidases (1,4-beta-D-mannanases) catalyze the random hydrolysis of beta-1,4-mannosidic linkages in the main chain of beta-mannans. Biodegradation of beta-mannans by the action of thermostable mannan endo-1,4-beta-mannosidase offers significant technical advantages in biotechnological industrial applications, i.e. delignification of kraft pulps or the pretreatment of lignocellulosic biomass rich in mannan for the production of second generation biofuels, as well as for applications in oil and gas well stimulation, extraction of vegetable oils and coffee beans, and the production of value-added products such as prebiotic manno-oligosaccharides (MOS). RESULTS A gene encoding mannan endo-1,4-beta-mannosidase or 1,4-beta-D-mannan mannanohydrolase (E.C. 3.2.1.78), commonly termed beta-mannanase, from Aspergillus niger BK01, which belongs to glycosyl hydrolase family 5 (GH5), was cloned and successfully expressed heterologously (up to 243 microg of active recombinant protein per mL) in Pichia pastoris. The enzyme was secreted by P. pastoris and could be collected from the culture supernatant. The purified enzyme appeared glycosylated as a single band on SDS-PAGE with a molecular mass of approximately 53 kDa. The recombinant beta-mannanase is highly thermostable with a half-life time of approximately 56 h at 70 degrees C and pH 4.0. The optimal temperature (10-min assay) and pH value for activity are 80 degrees C and pH 4.5, respectively. The enzyme is not only active towards structurally different mannans but also exhibits low activity towards birchwood xylan. Apparent Km values of the enzyme for konjac glucomannan (low viscosity), locust bean gum galactomannan, carob galactomannan (low viscosity), and 1,4-beta-D-mannan (from carob) are 0.6 mg mL-1, 2.0 mg mL-1, 2.2 mg mL-1 and 1.5 mg mL-1, respectively, while the kcat values for these substrates are 215 s-1, 330 s-1, 292 s-1 and 148 s-1, respectively. Judged from the specificity constants kcat/Km, glucomannan is the preferred substrate of the A. niger beta -mannanase. Analysis by thin layer chromatography showed that the main product from enzymatic hydrolysis of locust bean gum is mannobiose, with only low amounts of mannotriose and higher manno-oligosaccharides formed. CONCLUSION This study is the first report on the cloning and expression of a thermostable mannan endo-1,4-beta-mannosidase from A. niger in Pichia pastoris. The efficient expression and ease of purification will significantly decrease the production costs of this enzyme. Taking advantage of its acidic pH optimum and high thermostability, this recombinant beta-mannanase will be valuable in various biotechnological applications.
Collapse
Affiliation(s)
- Do Bien-Cuong
- Institute of Biological and Food Technology, Hanoi University of Technology, Hanoi, Vietnam
| | - Dang Thi-Thu
- Institute of Biological and Food Technology, Hanoi University of Technology, Hanoi, Vietnam
| | - Jean-Guy Berrin
- INRA, UMR1163 de Biotechnologie des Champignons Filamenteux, ESIL, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France
| | - Dietmar Haltrich
- BOKU - University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - To Kim-Anh
- Institute of Biological and Food Technology, Hanoi University of Technology, Hanoi, Vietnam
| | - Jean-Claude Sigoillot
- INRA, UMR1163 de Biotechnologie des Champignons Filamenteux, ESIL, 163 avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France
- Université de Provence, UMR1163 de Biotechnologie des Champignons Filamenteux, ESIL, 163 Avenue de Luminy, CP 925, 13288 Marseille Cedex 09, France
| | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
27
|
Roth R, Moodley V, van Zyl P. Heterologous expression and optimized production of an Aspergillus aculeatus endo-1,4-beta-mannanase in Yarrowia lipolytica. Mol Biotechnol 2009; 43:112-20. [PMID: 19507068 DOI: 10.1007/s12033-009-9187-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/07/2009] [Indexed: 11/27/2022]
Abstract
The Aspergillus aculeatus MRC11624 man1 gene, encoding an endo-beta-1,4-mannanase, was cloned and expressed in the promising heterologous enzyme producer, the ascomycetous yeast Yarrowia lipolytica. Both single- and multi-copy transformants were constructed, and the secretion of the enzyme was evaluated as an in-frame fusion with the LIP2 secretion signal, as well as with its natural secretion signal. In shake-flask analysis, the highest volumetric enzyme activity (13,073 nkat/ml) and specific enzyme activity (1,020 nkat/(mg dcw)) were obtained with a multi-copy integrant utilizing beta-mannanase's own secretion signal. The best beta-mannanase-producing strain was subsequently evaluated in batch fermentation and resulted in a maximum volumetric enzyme activity of 6,719 nkat/ml. Fed batch fermentations resulted in a 3.9-fold increase in volumetric enzyme activity compared with batch fermentation, and a maximum titre of 26,139 nkat/ml was obtained. The results reported in this study indicate that Y. lipolytica is a promising producer of A. aculeatus beta-mannanase, producing higher beta-mannanase activity than that of recombinant Saccharomyces cerevisiae or Aspergillus niger when cultivated in shake flasks, which is encouraging for the use of the enzyme in industrial processes such as extraction of vegetable oil from leguminous seeds and the reduction in viscosity of coffee extracts.
Collapse
Affiliation(s)
- Robyn Roth
- CSIR Biosciences, Council of Scientific and Industrial Research, Pretoria 0001, South Africa.
| | | | | |
Collapse
|
28
|
Purification and Characterization of a Low Molecular Weight of β-Mannanase from Penicillium occitanis Pol6. Appl Biochem Biotechnol 2009; 160:1227-40. [DOI: 10.1007/s12010-009-8630-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/31/2009] [Indexed: 11/29/2022]
|
29
|
Production of the Aspergillus aculeatus endo-1,4-β-mannanase in A. niger. J Ind Microbiol Biotechnol 2009; 36:611-7. [DOI: 10.1007/s10295-009-0551-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
|
30
|
A novel highly acidic β-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris. Appl Microbiol Biotechnol 2009; 82:453-61. [DOI: 10.1007/s00253-008-1766-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
|
31
|
Overexpression of an optimized Aspergillus sulphureus β-mannanase gene in Pichia pastoris. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0043-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Moreira LRS, Filho EXF. An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 2008; 79:165-78. [PMID: 18385995 DOI: 10.1007/s00253-008-1423-4] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/15/2008] [Accepted: 02/18/2008] [Indexed: 11/30/2022]
Abstract
Hemicellulose is a complex group of heterogeneous polymers and represents one of the major sources of renewable organic matter. Mannan is one of the major constituent groups of hemicellulose in the wall of higher plants. It comprises linear or branched polymers derived from sugars such as D-mannose, D-galactose, and D-glucose. The principal component of softwood hemicellulose is glucomannan. Structural studies revealed that the galactosyl side chain hydrogen interacts to the mannan backbone intramolecularly and provides structural stability. Differences in the distribution of D-galactosyl units along the mannan structure are found in galactomannans from different sources. Acetyl groups were identified and distributed irregularly in glucomannan. Some of the mannosyl units of galactoglucomannan are partially substituted by O-acetyl groups. Some unusual structures are found in the mannan family from seaweed, showing a complex system of sulfated structure. Endohydrolases and exohydrolases are involved in the breakdown of the mannan backbone to oligosaccharides or fermentable sugars. The main-chain mannan-degrading enzymes include beta-mannanase, beta-glucosidase, and beta-mannosidase. Additional enzymes such as acetyl mannan esterase and alpha-galactosidase are required to remove side-chain substituents that are attached at various points on mannan, creating more sites for subsequent enzymatic hydrolysis. Mannan-degrading enzymes have found applications in the pharmaceutical, food, feed, and pulp and paper industries. This review reports the structure of mannans and some biochemical properties and applications of mannan-degrading enzymes.
Collapse
Affiliation(s)
- L R S Moreira
- Departamento de Biologia Celular, Laboratório de Enzimologia, Universidade de Brasília, CEP 70910-900 Brasília, DF, Brazil
| | | |
Collapse
|
33
|
Dhawan S, Kaur J. Microbial Mannanases: An Overview of Production and Applications. Crit Rev Biotechnol 2008; 27:197-216. [DOI: 10.1080/07388550701775919] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Benech RO, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R, Paice M, Tsang A. Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.06.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Geymonat M, Spanos A, Sedgwick SG. A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 2007; 399:120-8. [PMID: 17566670 DOI: 10.1016/j.gene.2007.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/27/2007] [Accepted: 05/04/2007] [Indexed: 01/11/2023]
Abstract
Yeasts are attractive organisms for recombinant protein production. They combine highly developed genetic systems and ease of use with reductions in time and costs. We describe an autoselection system for recombinant protein expression in Saccharomyces cerevisiae which increases yields 5-10-fold compared to conditional selection for expression plasmids. Multicopy expression plasmids encoding essential MOB1 or CDC28 genes are absolutely necessary for the viability of host cells with mob1 or cdc28 deletions in their genomes. Such plasmids are stably maintained, even in rich medium, so optimising biomass production and yields of recombinant protein. Plasmid copy numbers are also increased by limiting selective MOB1 and CDC28 gene expression prior to induction. GST- or 6His-tagged proteins are produced for affinity purification and are expressed from a conditional GAL1-10 promoter to avoid potentially toxic effects of recombinant proteins on growth. Autoselection systems for expressing single or pairs of proteins are described. We demonstrate the versatility of this system by expressing proteins from a number of organisms and include several large and problematic products. The in vitro reconstruction of a step in mitotic regulation shows how this expression system can be successfully applied to the detailed analysis of complex metabolic pathways.
Collapse
Affiliation(s)
- Marco Geymonat
- Division of Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
36
|
van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 108:205-35. [PMID: 17846725 DOI: 10.1007/10_2007_061] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulose to bioethanol refers to the combining of the four biological events required for this conversion process (production of saccharolytic enzymes, hydrolysis of the polysaccharides present in pretreated biomass, fermentation of hexose sugars, and fermentation of pentose sugars) in one reactor. CBP is gaining increasing recognition as a potential breakthrough for low-cost biomass processing. Although no natural microorganism exhibits all the features desired for CBP, a number of microorganisms, both bacteria and fungi, possess some of the desirable properties. This review focuses on progress made toward the development of baker's yeast (Saccharomyces cerevisiae) for CBP. The current status of saccharolytic enzyme (cellulases and hemicellulases) expression in S. cerevisiae to complement its natural fermentative ability is highlighted. Attention is also devoted to the challenges ahead to integrate all required enzymatic activities in an industrial S. cerevisiae strain(s) and the need for molecular and selection strategies pursuant to developing a yeast capable of CBP.
Collapse
Affiliation(s)
- Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, 7602, Matieland, South Africa.
| | | | | | | |
Collapse
|
37
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
38
|
Malheiros Ferreira H, Ximenes Ferreira Filho E. Purification and characterization of a β-mannanase from Trichoderma harzianum strain T4. Carbohydr Polym 2004. [DOI: 10.1016/j.carbpol.2004.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002; 66:506-77, table of contents. [PMID: 12209002 PMCID: PMC120791 DOI: 10.1128/mmbr.66.3.506-577.2002] [Citation(s) in RCA: 2362] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fundamental features of microbial cellulose utilization are examined at successively higher levels of aggregation encompassing the structure and composition of cellulosic biomass, taxonomic diversity, cellulase enzyme systems, molecular biology of cellulase enzymes, physiology of cellulolytic microorganisms, ecological aspects of cellulase-degrading communities, and rate-limiting factors in nature. The methodological basis for studying microbial cellulose utilization is considered relative to quantification of cells and enzymes in the presence of solid substrates as well as apparatus and analysis for cellulose-grown continuous cultures. Quantitative description of cellulose hydrolysis is addressed with respect to adsorption of cellulase enzymes, rates of enzymatic hydrolysis, bioenergetics of microbial cellulose utilization, kinetics of microbial cellulose utilization, and contrasting features compared to soluble substrate kinetics. A biological perspective on processing cellulosic biomass is presented, including features of pretreated substrates and alternative process configurations. Organism development is considered for "consolidated bioprocessing" (CBP), in which the production of cellulolytic enzymes, hydrolysis of biomass, and fermentation of resulting sugars to desired products occur in one step. Two organism development strategies for CBP are examined: (i) improve product yield and tolerance in microorganisms able to utilize cellulose, or (ii) express a heterologous system for cellulose hydrolysis and utilization in microorganisms that exhibit high product yield and tolerance. A concluding discussion identifies unresolved issues pertaining to microbial cellulose utilization, suggests approaches by which such issues might be resolved, and contrasts a microbially oriented cellulose hydrolysis paradigm to the more conventional enzymatically oriented paradigm in both fundamental and applied contexts.
Collapse
Affiliation(s)
- Lee R Lynd
- Chemical and Biochemical Engineering, Thayer School of Engineering and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | | | | | |
Collapse
|
40
|
Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl WH, Cordero Otero RR, Jönsson LJ. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:53-84. [PMID: 11816812 DOI: 10.1007/3-540-45300-8_4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic engineering of Saccharomyces cerevisiae for ethanolic fermentation of xylose is summarized with emphasis on progress made during the last decade. Advances in xylose transport, initial xylose metabolism, selection of host strains, transformation and classical breeding techniques applied to industrial polyploid strains as well as modeling of xylose metabolism are discussed. The production and composition of the substrates--lignocellulosic hydrolysates--is briefly summarized. In a future outlook iterative strategies involving the techniques of classical breeding, quantitative physiology, proteomics, DNA micro arrays, and genetic engineering are proposed for the development of efficient xylose-fermenting recombinant strains of S. cerevisiae.
Collapse
Affiliation(s)
- B Hahn-Hägerdal
- Department of Applied Microbiology, Lund University, PO Box 124, 221 00 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|