1
|
Murine cytomegalovirus degrades MHC class II to colonize the salivary glands. PLoS Pathog 2018; 14:e1006905. [PMID: 29447285 PMCID: PMC5831752 DOI: 10.1371/journal.ppat.1006905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Cytomegaloviruses (CMVs) persistently and systemically infect the myeloid cells of immunocompetent hosts. Persistence implies immune evasion, and CMVs evade CD8+ T cells by inhibiting MHC class I-restricted antigen presentation. Myeloid cells can also interact with CD4+ T cells via MHC class II (MHC II). Human CMV (HCMV) attacks the MHC II presentation pathway in vitro, but what role this evasion might play in host colonization is unknown. We show that Murine CMV (MCMV) down-regulates MHC II via M78, a multi-membrane spanning viral protein that captured MHC II from the cell surface and was necessary although not sufficient for its degradation in low pH endosomes. M78-deficient MCMV down-regulated MHC I but not MHC II. After intranasal inoculation, it showed a severe defect in salivary gland colonization that was associated with increased MHC II expression on infected cells, and was significantly rescued by CD4+ T cell loss. Therefore MCMV requires CD4+ T cell evasion by M78 to colonize the salivary glands, its main site of long-term shedding. Human cytomegalovirus is the commonest infectious cause of harm to unborn children. Vaccines have not stopped it establishing chronic, systemic infections. Murine cytomegalovirus (MCMV) provides an accessible model to understand why. We show that MCMV evades CD4+ T cells via its M78 protein, and that this helps infection to spread despite the immune response. Thus while CD4+ T cells are important for host defence, viral evasion limits their capacity to act alone in controlling infection.
Collapse
|
2
|
Abstract
Cytomegalovirus (CMV) anterior uveitis and endotheliitis occurs among immunocompetent individuals and may manifest as Posner-Schlossman syndrome or Fuchs uveitis syndrome. The condition may first present following ophthalmic surgery, the use of a fluocinolone-sustained steroid drug delivery implant, or the use of topical prostaglandin analogues for the treatment of glaucoma. We report the first case of a non-human immunodeficiency virus-infected individual who presented with CMV anterior uveitis after the use of topical cyclosporine A 0.05% ophthalmic emulsion for the treatment of symptomatic dry eyes.
Collapse
Affiliation(s)
- Jay Siak
- a Ocular Inflammation and Immunology Service , Singapore National Eye Centre , Singapore.,b Ocular Inflammation and Immunology Research Group, Singapore Eye Research Institute , Singapore.,c Department of Ophthalmology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore
| | - Soon-Phaik Chee
- a Ocular Inflammation and Immunology Service , Singapore National Eye Centre , Singapore.,b Ocular Inflammation and Immunology Research Group, Singapore Eye Research Institute , Singapore.,c Department of Ophthalmology, Yong Loo Lin School of Medicine , National University of Singapore , Singapore.,d Duke-NUS Medical School , Singapore
| |
Collapse
|
3
|
Viral binding-induced signaling drives a unique and extended intracellular trafficking pattern during infection of primary monocytes. Proc Natl Acad Sci U S A 2016; 113:8819-24. [PMID: 27432979 DOI: 10.1073/pnas.1604317113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We initiated experiments to examine the infection of monocytes postentry. New data show that human cytomegalovirus (HCMV) DNA is detected in the nucleus beginning only at 3 d postinfection in monocytes, compared with 30 min postinfection in fibroblasts and endothelial cells, suggesting that HCMV nuclear translocation in monocytes is distinct from that seen in other cell types. We now show that HCMV is initially retained in early endosomes and then moves sequentially to the trans-Golgi network (TGN) and recycling endosomes before nuclear translocation. HCMV is retained initially as a mature particle before deenvelopment in recycling endosomes. Disruption of the TGN significantly reduced nuclear translocation of viral DNA, and HCMV nuclear translocation in infected monocytes was observed only when correct gH/gL/UL128-131/integrin/c-Src signaling occurred. Taken together, our findings show that viral binding of the gH/gL/UL128-131 complex to integrins and the ensuing c-Src signaling drive a unique nuclear translocation pattern that promotes productive infection and avoids viral degradation, suggesting that it represents an additional viral evasion/survival strategy.
Collapse
|
4
|
Yu G, He QY. Functional similarity analysis of human virus-encoded miRNAs. J Clin Bioinforma 2011; 1:15. [PMID: 21884632 PMCID: PMC3164608 DOI: 10.1186/2043-9113-1-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/19/2011] [Indexed: 12/17/2022] Open
Abstract
miRNAs are a class of small RNAs that regulate gene expression via RNA silencing machinery. Some viruses also encode miRNAs, contributing to the complex virus-host interactions. A better understanding of viral miRNA functions would be useful in designing new preventive strategies for treating diseases induced by viruses. To meet the challenge for how viruses module host gene expression by their encoded miRNAs, we measured the functional similarities among human viral miRNAs by using a method we reported previously. Higher order functions regulated by viral miRNAs were also identified by KEGG pathway analysis on their targets. Our study demonstrated the biological processes involved in virus-host interactions via viral miRNAs. Phylogenetic analysis suggested that viral miRNAs have distinct evolution rates compared with their corresponding genome.
Collapse
Affiliation(s)
- Guangchuang Yu
- Institute of Life and Health Engineering and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | | |
Collapse
|
5
|
Human cytomegalovirus immunity and immune evasion. Virus Res 2010; 157:151-60. [PMID: 21056604 DOI: 10.1016/j.virusres.2010.10.031] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) infection induces both innate immune responses including Natural Killer cells as well as adaptive humoral and cell mediated (CD4+ helper, CD8+ cytotoxic and γδ T cell) responses which lead to the resolution of acute primary infection. Despite such a robust primary immune response, HCMV is still able to establish latency. Long term memory T cell responses are maintained at high frequency and are thought to prevent clinical disease following periodic reactivation of the virus. As such, a balance is established between the immune response and viral reactivation. Loss of this balance in the immunocompromised host can lead to unchecked viral replication following reactivation of latent virus, with consequent disease and mortality. HCMV encodes multiple immune evasion mechanisms that target both the innate and acquired immune system. This article describes the current understanding of Natural killer cell, antibody and T cell mediated immune responses and the mechanisms that the virus utilizes to subvert these responses.
Collapse
|
6
|
Waller ECP, Day E, Sissons JGP, Wills MR. Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 2008; 197:83-96. [PMID: 18301918 DOI: 10.1007/s00430-008-0082-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Indexed: 12/11/2022]
Abstract
Primary human cytomegalovirus (HCMV) infection of an immunocompetent individual leads to the generation of a robust CD4+ and CD8+ T cell response which subsequently controls viral replication. HCMV is never cleared from the host and enters into latency with periodic reactivation and viral replication, which is controlled by reactivation of the memory T cells. In this article, we discuss the magnitude, phenotype and clonality of the T cell response following primary HCMV infection, the selection of responding T cells into the long-term memory pool and maintenance of this memory T cell population in the face of a latent/persistent infection. The article also considers the effect that this long-term surveillance of HCMV has on the T cell memory phenotype, their differentiation, function and the associated concepts of T cell memory inflation and immunosenescence.
Collapse
Affiliation(s)
- Edward C P Waller
- Department of Medicine, Level 5, Addenbrookes Hospital, University of Cambridge, Hills Rd, Cambridge CB2 2QQ, UK
| | | | | | | |
Collapse
|
7
|
Sinzger C, Eberhardt K, Cavignac Y, Weinstock C, Kessler T, Jahn G, Davignon JL. Macrophage cultures are susceptible to lytic productive infection by endothelial-cell-propagated human cytomegalovirus strains and present viral IE1 protein to CD4+ T cells despite late downregulation of MHC class II molecules. J Gen Virol 2006; 87:1853-1862. [PMID: 16760387 DOI: 10.1099/vir.0.81595-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contribution of CD4(+) T cells to control of human cytomegalovirus (HCMV) has been shown and infected tissue macrophages might contribute to this response by antigen presentation. As shown previously, CD4(+) T cells recognize HCMV immediate-early antigen IE1 on glioblastoma cells manipulated to express MHC class II molecules. Here, the possible interference of virus-induced MHC class II downmodulation with the presentation of IE1 by natural target cells was analysed. The capacity of IE1-specific CD4(+) T-cell clones to recognize HCMV-infected monocyte-derived macrophages was tested. Various HCMV strains were used to achieve efficient infection of macrophages. Activation of CD4(+) T cells by infected macrophages was evaluated at different time points after infection. Endothelial-cell-adapted HCMV strains efficiently infected cultured human macrophages. However, the immediate-early and early phases of replication were prolonged. Infected cells entered the late replication phase only after 3 days of infection, which was associated with downmodulation of MHC class II molecules at the surface of infected cells. Strong stimulation of IE1-specific CD4(+) T cells resulted from endogenous de novo antigen production and presentation by infected macrophages during the first 3 days of virus replication, despite MHC class II downmodulation in the late replication phase. Therefore, infected macrophages are assumed to contribute to the antiviral immune response in infected organs.
Collapse
Affiliation(s)
- Christian Sinzger
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Kathrin Eberhardt
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Yolaine Cavignac
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Christof Weinstock
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Tobias Kessler
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Gerhard Jahn
- Institut für Medizinische Virologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | | |
Collapse
|
8
|
Delmas S, Martin L, Baron M, Nelson JA, Streblow DN, Davignon JL. Optimization of CD4+ T lymphocyte response to human cytomegalovirus nuclear IE1 protein through modifications of both size and cellular localization. THE JOURNAL OF IMMUNOLOGY 2006; 175:6812-9. [PMID: 16272338 DOI: 10.4049/jimmunol.175.10.6812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously reported that the CD4+ T lymphocyte response against nuclear human CMV IE1 protein depends in part on endogenous MHC class II presentation. To optimize presentation by HLA-DR of the nuclear IE1 protein and increase the response by CD4+ T cells, we have constructed two different adenovirus vectors containing mutant versions of IE1, containing a HLA-DR3 epitope, fused to GFP. The first construct consisted of a sequence of 46 aa encoded by exon 4, called GFP-IE1 (86-131). The second construct consisted of the whole IE1 mutated on exon 4 nuclear localization signals, identified in this study, and deleted of already known exon 2 nuclear localization signals (GFP-IE1M). Both of these IE1 vectors expressed proteins with cytoplasmic localization, as evidenced by GFP expression, as opposed to control GFP-IE1, which was nuclear. GFP-IE1 (86-131) induced IE1-specific CD4+ T cell clone response that was >30-fold more potent than that against GFP-IE1 and GFP-IE1M. The CD4+ T cell response was due to endogenous presentation followed by exogenous presentation at later time points. Presentation was dependent on both proteasome and acidic compartments. GFP-IE1 (86-131) was rapidly degraded by the APC, which may account for better presentation. Our data show potentiation of the CD4+ T cell response to a specific epitope through shortening and relocation of an otherwise nuclear protein and suggest applications in vaccination.
Collapse
Affiliation(s)
- Sandra Delmas
- Institut National de la Santé et de la Recherche Médicale Unité 563, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | |
Collapse
|
9
|
Cinatl J, Scholz M, Doerr HW. Role of tumor cell immune escape mechanisms in cytomegalovirus-mediated oncomodulation. Med Res Rev 2005; 25:167-85. [PMID: 15389728 DOI: 10.1002/med.20018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It has been known for a long time that cytomegalovirus (CMV) has evolved mechanisms that allow the escape from the host immune surveillance. In the past, many efforts have been done to elucidate the molecular mechanisms underlying this virus-mediated immune escape and thus virus persistence. However, it is unknown, whether CMV may also impair immune responses directed against tumor cells. This might have severe consequences on tumor progression and may explain the growing evidence for CMV-mediated oncomodulation. This review summarizes recent work on CMV-mediated immune escape mechanisms of tumor cells and oncomodulation and proposes novel aspects that may be important for understanding the CMV-associated tumor progression.
Collapse
Affiliation(s)
- Jindrich Cinatl
- Interdisziplinäres Labor für Tumor- und Virusforschung, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
10
|
Abstract
Infection of mice with murine cytomegalovirus (MCMV) is an established model for studying human cytomegalovirus (HCMV) infection. Similarly to HCMV infection, pathological changes and disease manifestations during MCMV infection are mainly dependent on the immune status of the mouse host. This review focuses mainly on the pathogenesis of MCMV infection in immunocompetent and immunodeficient and/or immature mice and discusses the principles of immunosurveillance of infection and the mechanisms by which this virus evades immune control.
Collapse
Affiliation(s)
- Astrid Krmpotic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia.
| | | | | | | | | |
Collapse
|
11
|
Dhiman N, Bonilla RG, Jacobson RM, O'Kane D, Poland GA. Differential HLA gene expression in measles vaccine seropositive and seronegative subjects: a pilot study. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2003; 35:332-6. [PMID: 12875522 DOI: 10.1080/00365540310007105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This is the first study using GeneChip technology to elucidate genetic determinants of the measles vaccine response. A comparative gene expression study was conducted using Affymetrix's Human GeneChip U-95A in 5 human subjects immunized with a 'booster' dose of measles vaccine (Attenuax, Merck) to determine whether serologically distinct subjects exhibit differential expression of human leukocyte antigen (HLA) genes. Healthy individuals aged 15-25 y, previously immunized with 2 doses of measles-mumps-rubella-II (MMR-II) vaccine, were classified as measles vaccine immunoglobulin G-specific antibody seronegatives (n = 2) and seropositives (n = 3). Changes in expression of HLA genes in seronegatives and seropositives were studied on days 7 and 14 post-measles vaccination using Microarray Suite 5.0 (MAS 5.0). There was increased expression of the HLA class I-B (p = 0.0002), HLA class II cluster of DMA, DMB, TAP1, TAP2 (p = 0.0007) and HLA-DR (p = 0.0001) genes, and decreased expression of HLA class I MICB molecule (p = 1), HLA class I-A (p = 0.9999) and major histocompatibility complex class III HSP 70 (p = 0.9999) genes on day 7 or day 14 postvaccination in seropositives compared with seronegatives. These results suggest an association between antibody response and differential HLA gene activation and may explain one potential mechanism underlying measles vaccine non-response.
Collapse
Affiliation(s)
- Neelam Dhiman
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
12
|
Kosugi I, Kawasaki H, Arai Y, Tsutsui Y. Innate immune responses to cytomegalovirus infection in the developing mouse brain and their evasion by virus-infected neurons. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:919-28. [PMID: 12213720 PMCID: PMC1867268 DOI: 10.1016/s0002-9440(10)64252-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytomegalovirus (CMV) is the most frequent infectious cause of developmental brain disorders in humans. Here we show the role of innate immune responses caused by natural killer (NK) cells and nitric oxide (NO) derived from brain macrophages during murine CMV (MCMV) infection of the developing brain. Viral replication in the brain of newborn mice was significantly enhanced by administration of anti-asialo-GM1 antibody, specific for NK cells, or L-N6-(1-imminoethyl)-lysine, a specific inhibitor of NO synthase 2 (NOS2). These results suggest that NK cells and NO contribute to the viral clearance from the brain. At 3 days postinfection (dpi) MCMV early antigen (Ag)-positive cells were immunohistochemically detected in the periventricular area, where most of the positive cells were macrophages. At 7 dpi MCMV-Ag was found not only in cells of the periventricular area but also in neurons of the hippocampus and cortex. At 11 dpi MCMV-Ag disappeared from the periventricular area, but persisted in neurons. In the periventricular area, NK cells and NOS2-positive macrophages were associated with MCMV-Ag-positive cells. In contrast, there were very few NK cells and NOS2-positive macrophages around the MCMV-Ag-positive neurons. In situ hybridization for MCMV DNA demonstrated that positive signals were found mostly in the periventricular cells, and rarely in neurons. These results suggest that the innate immune responses are restricted to the virus-replicating cells, and do not affect MCMV-infected neurons. Therefore, evasion of the innate immune responses by MCMV-infected neurons may be an important factor in supporting the viral persistence in the developing brain.
Collapse
Affiliation(s)
- Isao Kosugi
- Department of Pathology, Hamamatsu University School of Medicine, Japan.
| | | | | | | |
Collapse
|
13
|
Chevalier MS, Daniels GM, Johnson DC. Binding of human cytomegalovirus US2 to major histocompatibility complex class I and II proteins is not sufficient for their degradation. J Virol 2002; 76:8265-75. [PMID: 12134032 PMCID: PMC155152 DOI: 10.1128/jvi.76.16.8265-8275.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein US2 causes degradation of major histocompatibility complex (MHC) class I heavy-chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. In US2-expressing cells, MHC proteins present in the endoplasmic reticulum (ER) are degraded by cytosolic proteasomes. It appears that US2 binding triggers a normal cellular pathway by which misfolded or aberrant proteins are translocated from the ER to cytoplasmic proteasomes. To better understand how US2 binds MHC proteins and causes their degradation, we constructed a panel of US2 mutants. Mutants truncated from the N terminus as far as residue 40 or from the C terminus to amino acid 140 could bind to class I and class II proteins. Nevertheless, mutants lacking just the cytosolic tail (residues 187 to 199) were unable to cause degradation of both class I and II proteins. Chimeric proteins were constructed in which US2 sequences were replaced with homologous sequences from US3, an HCMV glycoprotein that can also bind to class I and II proteins. One of these US2/US3 chimeras bound to class II but not to class I, and a second bound class I HC better than wild-type US2. Therefore, US2 residues involved in the binding to MHC class I differ subtly from those involved in binding to class II proteins. Moreover, our results demonstrate that the binding of US2 to class I and II proteins is not sufficient to cause degradation of MHC proteins. The cytosolic tail of US2 and certain US2 lumenal sequences, which are not involved in binding to MHC proteins, are required for degradation. Our results are consistent with the hypothesis that US2 couples MHC proteins to components of the ER degradation pathway, enormously increasing the rate of degradation of MHC proteins.
Collapse
Affiliation(s)
- Mathieu S Chevalier
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
14
|
Affiliation(s)
- Bruce T. Seet
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada; and Viral Immunology and Pathogenesis Laboratories, The John P. Robarts Research Institute, London, Ontario, Canada
| | - Grant McFadden
- Department of Microbiology and Immunology, The University of Western Ontario, London, Canada; and Viral Immunology and Pathogenesis Laboratories, The John P. Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
15
|
Abstract
Human cytomegalovirus (CMV) remains the major infectious cause of birth defects as well as an important opportunistic pathogen. Individuals infected with CMV mount a strong immune response that suppresses persistent viral replication and maintains life-long latency. Loss of immune control opens the way to virus reactivation and disease. The large number of immunomodulatory functions encoded by CMV increases the efficiency of infection, dissemination, reactivation and persistent infection in hosts with intact immune systems and could contribute to virulence in immunocompromised hosts. These functions modulate both the innate and adaptive arms of the immune response and appear to target cellular rather than humoral responses preferentially. CMV encodes a diverse arsenal of proteins focused on altering and/or mimicking: (1) classical and non-classical major histocompatibility complex (MHC) protein function; (2) leukocyte migration, activation and cytokine responses; and (3) host cell susceptibility to apoptosis. Evidence that the host evolves mechanisms to counteract virus immune modulation is also accumulating. Although immune evasion is certainly one clear goal of the virus, the pro-inflammatory impact of certain viral functions suggests that increased inflammation benefits viral dissemination. The ability of such viral functions to successfully 'face off' against the host immune system ensures the success of this pathogen in the human population and could provide key insights into disease mechanisms.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, D347 Fairchild Science Building, 299 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305-5124, USA.
| |
Collapse
|
16
|
Chin KC, Cresswell P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc Natl Acad Sci U S A 2001; 98:15125-30. [PMID: 11752458 PMCID: PMC64994 DOI: 10.1073/pnas.011593298] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Little is known about the mechanism by which IFNs inhibit human cytomegalovirus (HCMV) replication. Indeed, infection of fibroblasts with HCMV initiates the expression of a subset of type I IFN-inducible genes whose role in the infectious process is unclear. We describe here the identification of a cytoplasmic antiviral protein that is induced by IFNs, by HCMV infection, and by the HCMV envelope protein, glycoprotein B (gB). Stable expression of the protein in fibroblasts inhibits productive HCMV infection, down-regulating several HCMV structural proteins (gB, pp28, and pp65) known to be indispensable for viral assembly and maturation. We have named the protein viperin (for virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible). HCMV infection causes the redistribution of the induced viperin from its normal endoplasmic reticulum association, first to the Golgi apparatus and then to cytoplasmic vacuoles containing gB and pp28. Expression before HCMV infection reduces viperin redistribution from the endoplasmic reticulum to the Golgi apparatus and prevents vacuolar localization, perhaps reflecting the mechanism used by HCMV to evade the antiviral function.
Collapse
Affiliation(s)
- K C Chin
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8011, USA
| | | |
Collapse
|