1
|
Diorganotin(IV) complexes derived from thiazole Schiff bases: synthesis, characterization, antimicrobial and cytotoxic studies. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Safe S, Karki K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol Cancer Res 2021; 19:180-191. [PMID: 33106376 PMCID: PMC7864866 DOI: 10.1158/1541-7786.mcr-20-0707] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The three-orphan nuclear receptor 4A genes are induced by diverse stressors and stimuli, and there is increasing evidence that NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) play an important role in maintaining cellular homeostasis and in pathophysiology. In blood-derived tumors (leukemias and lymphomas), NR4A expression is low and NR4A1-/-/NR4A3-/- double knockout mice rapidly develop acute myelocytic leukemia, suggesting that these receptors exhibit tumor suppressor activity. Treatment of leukemia and most lymphoma cells with drugs that induce expression of NR4A1and NR4A3 enhances apoptosis, and this represents a potential clinical application for treating this disease. In contrast, most solid tumor-derived cell lines express high levels of NR4A1 and NR4A2, and both receptors exhibit pro-oncogenic activities in solid tumors, whereas NR4A3 exhibits tumor-specific activities. Initial studies with retinoids and apoptosis-inducing agents demonstrated that their cytotoxic activity is NR4A1 dependent and involved drug-induced nuclear export of NR4A1 and formation of a mitochondrial proapoptotic NR4A1-bcl-2 complex. Drug-induced nuclear export of NR4A1 has been reported for many agents/biologics and involves interactions with multiple mitochondrial and extramitochondrial factors to induce apoptosis. Synthetic ligands for NR4A1, NR4A2, and NR4A3 have been identified, and among these compounds, bis-indole derived (CDIM) NR4A1 ligands primarily act on nuclear NR4A1 to inhibit NR4A1-regulated pro-oncogenic pathways/genes and similar results have been observed for CDIMs that bind NR4A2. Based on results of laboratory animal studies development of NR4A inducers (blood-derived cancers) and NR4A1/NR4A2 antagonists (solid tumors) may be promising for cancer therapy and also for enhancing immune surveillance.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
3
|
Safe S, Jin UH, Morpurgo B, Abudayyeh A, Singh M, Tjalkens RB. Nuclear receptor 4A (NR4A) family - orphans no more. J Steroid Biochem Mol Biol 2016; 157:48-60. [PMID: 25917081 PMCID: PMC4618773 DOI: 10.1016/j.jsbmb.2015.04.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/26/2015] [Accepted: 04/21/2015] [Indexed: 01/17/2023]
Abstract
The orphan nuclear receptors NR4A1, NR4A2 and NR4A3 are immediate early genes induced by multiple stressors, and the NR4A receptors play an important role in maintaining cellular homeostasis and disease. There is increasing evidence for the role of these receptors in metabolic, cardiovascular and neurological functions and also in inflammation and inflammatory diseases and in immune functions and cancer. Despite the similarities of NR4A1, NR4A2 and NR4A3 and their interactions with common cis-genomic elements, they exhibit unique activities and cell-/tissue-specific functions. Although endogenous ligands for NR4A receptors have not been identified, there is increasing evidence that structurally-diverse synthetic molecules can directly interact with the ligand binding domain of NR4A1 and act as agonists or antagonists, and ligands for NR4A2 and NR4A3 have also been identified. Since NR4A receptors are key factors in multiple diseases, there are opportunities for the future development of NR4A ligands for clinical applications in treating multiple health problems including metabolic, neurologic and cardiovascular diseases, other inflammatory conditions, and cancer.
Collapse
MESH Headings
- Arthritis/metabolism
- Cardiovascular Diseases/metabolism
- DNA-Binding Proteins/metabolism
- Homeostasis
- Humans
- Immunity, Cellular
- Inflammation/metabolism
- Ligands
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Neoplasms/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA.
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Benjamin Morpurgo
- Texas A&M Institute for Genomic Medicine, Texas A&M University, 670 Raymond Stotzer Pkwy, College Station, TX 77843, USA
| | - Ala Abudayyeh
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mandip Singh
- Department of Pharmaceutics, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ronald B Tjalkens
- Department of Toxicology and Neuroscience, Colorado State University, 1680Campus Delivery, Fort Collins, CO 80523-1680, USA
| |
Collapse
|
4
|
Milaeva E, Shpakovsky D, Gracheva Y, Antonenko T, Osolodkin D, Palyulin V, Shevtsov P, Neganova M, Vinogradova D, Shevtsova E. Some insight into the mode of cytotoxic action of organotin compounds with protective 2,6-di-tert-butylphenol fragments. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2014.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Tabassum S, Yadav S, Arjmand F. Exploration of glycosylated-organotin(IV) complexes as anticancer drug candidates. Inorganica Chim Acta 2014; 423:38-45. [DOI: 10.1016/j.ica.2014.07.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Niu L, Li Y, Li Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Arjmand F, Parveen S, Tabassum S, Pettinari C. Organo-tin antitumor compounds: Their present status in drug development and future perspectives. Inorganica Chim Acta 2014; 423:26-37. [DOI: 10.1016/j.ica.2014.07.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Shpakovsky DB, Banti CN, Mukhatova EM, Gracheva YA, Osipova VP, Berberova NT, Albov DV, Antonenko TA, Aslanov LA, Milaeva ER, Hadjikakou SK. Synthesis, antiradical activity and in vitro cytotoxicity of novel organotin complexes based on 2,6-di-tert-butyl-4-mercaptophenol. Dalton Trans 2014; 43:6880-90. [DOI: 10.1039/c3dt53469c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antiradical activity and in vitro cytotoxicity of novel organotin complexes with 2,6-di-tert-butylphenol pendant were established.
Collapse
Affiliation(s)
- D. B. Shpakovsky
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - C. N. Banti
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina, Greece
| | - E. M. Mukhatova
- Astrakhan’ State Technical University
- Astrakhan’, Russian Federation
| | - Yu. A. Gracheva
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - V. P. Osipova
- South Research Center
- Russian Academy of Sciences
- Rostov on Don, Russian Federation
| | - N. T. Berberova
- Astrakhan’ State Technical University
- Astrakhan’, Russian Federation
| | - D. V. Albov
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - T. A. Antonenko
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - L. A. Aslanov
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - E. R. Milaeva
- Moscow State Lomonosov University
- Department of Chemistry
- Moscow, Russian Federation
| | - S. K. Hadjikakou
- Section of Inorganic and Analytical Chemistry
- Department of Chemistry
- University of Ioannina
- Ioannina, Greece
| |
Collapse
|
9
|
Main-Group Medicinal Chemistry Including Li and Bi*. COMPREHENSIVE INORGANIC CHEMISTRY II 2013. [PMCID: PMC7152213 DOI: 10.1016/b978-0-08-097774-4.00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Main-group element compounds were among the first developed in the modern era as pharmaceutical preparations for the treatment of a wide variety of human ailments; it is now recognized that many of these elements exist in traditional medicine of many societies, for example, arsenic. The use of main-group element compounds in contemporary medicine continues for the treatment of, for example, depression (Li), stomach ulcers (Bi), cancer (As and Ga), and leishmaniasis (Sb). Not surprisingly, new compounds of these elements, and other main-group elements, continue to be investigated for their potential use in new therapies. In this chapter, the use of main-group elements as therapeutic agents is outlined and also, where understood, comments on biological targets and mechanisms of action. Further, key advances in new potential applications of main-group element compounds in medicine are evaluated.
Collapse
|
10
|
Katika MR, Hendriksen PJ, de Ruijter NC, van Loveren H, Peijnenburg A. Immunocytological and biochemical analysis of the mode of action of bis (tri-n-butyltin) tri-oxide (TBTO) in Jurkat cells. Toxicol Lett 2012; 212:126-36. [DOI: 10.1016/j.toxlet.2012.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
|
11
|
Shpakovsky DB, Banti CN, Beaulieu-Houle G, Kourkoumelis N, Manoli M, Manos MJ, Tasiopoulos AJ, Hadjikakou SK, Milaeva ER, Charalabopoulos K, Bakas T, Butler IS, Hadjiliadis N. Synthesis, structural characterization and in vitro inhibitory studies against human breast cancer of the bis-(2,6-di-tert-butylphenol)tin(iv) dichloride and its complexes. Dalton Trans 2012; 41:14568-82. [DOI: 10.1039/c2dt31527k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Moran AE, Holzapfel KL, Xing Y, Cunningham NR, Maltzman JS, Punt J, Hogquist KA. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. ACTA ACUST UNITED AC 2011; 208:1279-89. [PMID: 21606508 PMCID: PMC3173240 DOI: 10.1084/jem.20110308] [Citation(s) in RCA: 806] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of antigen receptors to engage self-ligands with varying affinity is crucial for lymphocyte development. To further explore this concept, we generated transgenic mice expressing GFP from the immediate early gene Nr4a1 (Nur77) locus. GFP was up-regulated in lymphocytes by antigen receptor stimulation but not by inflammatory stimuli. In T cells, GFP was induced during positive selection, required major histocompatibility complex for maintenance, and directly correlated with the strength of T cell receptor (TCR) stimulus. Thus, our results define a novel tool for studying antigen receptor activation in vivo. Using this model, we show that regulatory T cells (T(reg) cells) and invariant NKT cells (iNKT cells) perceived stronger TCR signals than conventional T cells during development. However, although T(reg) cells continued to perceive strong TCR signals in the periphery, iNKT cells did not. Finally, we show that T(reg) cell progenitors compete for recognition of rare stimulatory TCR self-ligands.
Collapse
Affiliation(s)
- Amy E Moran
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
INTRODUCTION Nuclear receptor 4A1(NR4A1) (testicular receptor 3 (TR3), nuclear hormone receptor (Nur)77) is a member of the nuclear receptor superfamily of transcription factors and is highly expressed in multiple tumor types. RNA interference studies indicate that NR4A1 exhibits growth-promoting, angiogenic and prosurvival activity in most cancers. AREAS COVERED Studies on several apoptosis-inducing agents that activate nuclear export of NR4A1, which subsequently forms a mitochondrial NR4A1-bcl-2 complex that induces the intrinsic pathway for apoptosis are discussed. Cytosporone B and related compounds that induce NR4A1-dependent apoptosis in cancer cells through both modulation of nuclear NR4A1 and nuclear export are discussed. A relatively new class of diindolylmethane analogs (C-DIMs) including 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) (NR4A1 activator) and 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) (NR4A1 deactivator) are discussed in more detail. These anticancer drugs (C-DIMs) act strictly through nuclear NR4A1 and induce apoptosis in cancer cells and tumors. EXPERT OPINION It is clear that NR4A1 plays an important pro-oncogenic role in cancer cells and tumors, and there is increasing evidence that this receptor can be targeted by anticancer drugs that induce cell death via NR4A1-dependent and -independent pathways. Since many of these compounds exhibit relatively low toxicity, they represent an important class of mechanism-based anticancer drugs with excellent potential for clinical applications.
Collapse
Affiliation(s)
- Syng-Ook Lee
- Institute of Bioscience and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
14
|
Liu J, Zhou W, Li SS, Sun Z, Lin B, Lang YY, He JY, Cao X, Yan T, Wang L, Lu J, Han YH, Cao Y, Zhang XK, Zeng JZ. Modulation of orphan nuclear receptor Nur77-mediated apoptotic pathway by acetylshikonin and analogues. Cancer Res 2008; 68:8871-80. [PMID: 18974131 DOI: 10.1158/0008-5472.can-08-1972] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shikonin derivatives, which are the active components of the medicinal plant Lithospermum erythrorhizon, exhibit many biological effects including apoptosis induction through undefined mechanisms. We recently discovered that orphan nuclear receptor Nur77 migrates from the nucleus to the mitochondria, where it binds to Bcl-2 to induce apoptosis. Here, we report that certain shikonin derivatives could modulate the Nur77/Bcl-2 apoptotic pathway by increasing levels of Nur77 protein and promoting its mitochondrial targeting in cancer cells. Structural modification of acetylshikonin resulted in the identification of a derivative 5,8-diacetoxyl-6-(1'-acetoxyl-4'-methyl-3'-pentenyl)-1,4-naphthaquinones (SK07) that exhibited improved efficacy and specificity in activating the pathway. Unlike other Nur77 modulators, shikonins increased the levels of Nur77 protein through their posttranscriptional regulation. The apoptotic effect of SK07 was impaired in Nur77 knockout cells and suppressed by cotreatment with leptomycin B that inhibited Nur77 cytoplasmic localization. Furthermore, SK07 induced apoptosis in cells expressing the COOH-terminal half of Nur77 protein but not its NH(2)-terminal region. Our data also showed that SK07-induced apoptosis was associated with a Bcl-2 conformational change and Bax activation. Together, our results show that certain shikonin derivatives act as modulators of the Nur77-mediated apoptotic pathway and identify a new shikonin-based lead that targets Nur77 for apoptosis induction.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Biomedical Research, Xiamen University, Xiamen, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jiang MM, Dai Y, Gao H, Zhang X, Wang GH, He JY, Hu QY, Zeng JZ, Zhang XK, Yao XS. Cardenolides from Antiaris toxicaria as potent selective Nur77 modulators. Chem Pharm Bull (Tokyo) 2008; 56:1005-8. [PMID: 18591820 DOI: 10.1248/cpb.56.1005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Toxicarioside D (1), a new cardenolide, along with 10 other known ones, was isolated from the stem of Antiaris toxicaria LESCH. by bioassay-guided fractionation. Their structures were determined on the basis of spectroscopic analysis. All the reported compounds effectively inhibited the growth of various cancer cell lines at nanomolar concentrations. Inhibition of cancer cell growth was accompanied with induction of the expression of Nur77, a potent apoptotic member of the steroid/thyroid hormone receptor superfamily.
Collapse
Affiliation(s)
- Miao-Miao Jiang
- College of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tao R, Hancock WW. Resistance of Foxp3+ regulatory T cells to Nur77-induced apoptosis promotes allograft survival. PLoS One 2008; 3:e2321. [PMID: 18509529 PMCID: PMC2386419 DOI: 10.1371/journal.pone.0002321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 04/22/2008] [Indexed: 12/29/2022] Open
Abstract
The NR4A nuclear receptor family member Nur77 (NR4A1) promotes thymocyte apoptosis during negative selection of autoreactive thymocytes, but may also function in mature extrathymic T cells. We studied the effects of over-expression of Nur77 on the apoptosis of murine peripheral T cells, including thymic-derived Foxp3+ regulatory (Treg) cells. Overexpression of Nur77 in the T cell lineage decreased numbers of peripheral CD4 and CD8 T cells by ∼80% compared to wild-type (WT) mice. However, the proportions of Treg cells were markedly increased in the thymus (61% of CD4+Foxp3+ singly positive thymocytes vs. 8% in WT) and secondary lymphoid organs (40–50% of CD4+Foxp3+ T cells vs. 7–8% in WT) of Nur77 transgenic (Nur77Tg) mice, and immunoprecipitation studies showed Nur77 was associated with a recently identified HDAC7/Foxp3 transcriptional complex. Upon activation through the T cell receptor in vitro or in vivo, Nur77Tg T cells showed only marginally decreased proliferation but significantly increased apoptosis. Fully allogeneic cardiac grafts transplanted to Nur77Tg mice survived long-term with well-preserved structure, and recipient splenocytes showed markedly enhanced apoptosis and greatly reduced anti-donor recall responses. Allografts in Nur77Tg recipients had significantly increased expression of multiple Treg-associated genes, including Foxp3, Foxp1, Tip60 and HDAC9. Allograft rejection was restored by CD25 monoclonal antibody therapy, indicating that allograft acceptance was dependent upon Treg function in Nur77Tg recipients. These data show that compared to conventional CD4 and CD8 T cells, Foxp3+ Tregs are relatively resistant to Nur77-mediated apoptosis, and that tipping the balance between the numbers of Tregs and responder T cells in the early period post-transplantation can determine the fate of the allograft. Hence, induced expression of Nur77 might be a novel means to achieve long-term allograft survival.
Collapse
Affiliation(s)
- Ran Tao
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wayne W. Hancock
- Department of Pathology and Laboratory Medicine, Stokes Research Institute and Biesecker Pediatric Liver Center, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Baken KA, Arkusz J, Pennings JLA, Vandebriel RJ, van Loveren H. In vitro immunotoxicity of bis(tri-n-butyltin)oxide (TBTO) studied by toxicogenomics. Toxicology 2007; 237:35-48. [PMID: 17553608 DOI: 10.1016/j.tox.2007.04.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 11/19/2022]
Abstract
The biocide and environmental pollutant bis(tri-n-butyltin)oxide (TBTO) causes thymus atrophy in rodents. Whether the depletion of thymic lymphocytes by tributyltin compounds may be the result of inhibition of cell proliferation or induction of apoptosis is subject of debate. We examined gene expression profiles in primary rat thymocytes exposed to TBTO in vitro at dose levels of 0, 0.1, 0.3, 0.5, and 1.0microM. By measuring cell viability and apoptosis, exposure conditions were selected that would provide information on changes in gene expression preceding or accompanying functional effects of TBTO. Several processes related to TBTO-induced toxicity were detected at the transcriptome level. Effects on lipid metabolisms appeared to be the first indication of disruption of cellular function. Many transcriptional effects of TBTO at higher dose levels were related to apoptotic processes, which corresponded to present or subsequent thymocyte apoptosis observed phenotypically. The gene expression profile was, however, not unambiguous since expression of apoptosis-related genes was both increased and decreased. Stimulation of glucocorticoid receptor signaling appeared to be a relevant underlying mechanism of action. These findings suggest that TBTO exerts its toxic effects on the thymus primarily by affecting apoptotic processes, but the possibility is discussed that this may in fact represent an early effect that precedes inhibition of cell proliferation. At the highest dose level tested, TBTO additionally repressed mitochondrial function and immune cell activation. Our in vitro toxicogenomics approach thus identified several cellular and molecular targets of TBTO that may mediate the toxicity towards thymocytes and thereby its immunosuppressive effects.
Collapse
Affiliation(s)
- Kirsten A Baken
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands.
| | - Joanna Arkusz
- Nofer Institute of Occupational Medicine, Department of Toxicology and Carcinogenesis, Lodz, Poland
| | - Jeroen L A Pennings
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Rob J Vandebriel
- National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| | - Henk van Loveren
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Health Risk Analysis and Toxicology (GRAT), Maastricht University, Maastricht, The Netherlands; National Institute of Public Health and the Environment (RIVM), Laboratory for Toxicology, Pathology and Genetics (TOX), Bilthoven, The Netherlands
| |
Collapse
|
18
|
Abstract
The ultimate growth of a tumour depends on not only the rate of tumour cell proliferation, but also the rate of tumour cell death (apoptosis). Nur77 (also known as TR3 or NGFI-B), an orphan member of the nuclear receptor superfamily, controls both survival and death of cancer cells. A wealth of recent experimental data demonstrates that the Nur77 activities are regulated through its subcellular localisation. In the nucleus, Nur77 functions as an oncogenic survival factor, promoting cancer cell growth. In contrast, it is a potent killer when migrating to mitochondria, where it binds to Bcl-2 and converts its survival phenotype, triggering cytochrome c release and apoptosis. Agents, such as 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN/CD437), which induce Nur77 migration from the nucleus to mitochondria, effectively induce apoptosis of cancer cells. Moreover, Nur77 translocation is highly controlled by retinoid X receptor (RXR), suggesting a role of RXR ligands in regulating the process. Thus, translocation of Nur77 from the nucleus to mitochondria represents a new paradigm in cancer cell apoptosis, and targeting the Nur77 translocation by AHPN/CD437 or RXR ligands promises to effectively restrict cancer cell growth by simultaneously promoting cancer cell death and suppressing cancer cell proliferation.
Collapse
Affiliation(s)
- Xiao-kun Zhang
- Burnham Institute for Medical Research, Cancer Center, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Moll UM, Marchenko N, Zhang XK. p53 and Nur77/TR3 - transcription factors that directly target mitochondria for cell death induction. Oncogene 2006; 25:4725-43. [PMID: 16892086 DOI: 10.1038/sj.onc.1209601] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The complex apoptotic functions of the p53 tumor suppressor are central to its antineoplastic activity in vivo. Conversely, p53 function is altered or attenuated in one way or another in the majority of human cancers. Besides its well-understood action as a transcriptional regulator of multiple apoptotic genes, p53 also exerts a direct pro-apoptotic role at the mitochondria by engaging in protein-protein interactions with anti- and pro-apoptotic Bcl2 family members, thereby executing the shortest known circuitry of p53 death signaling. Nur77, also known as TR3 or NGFI-B, is a unique transcription factor belonging to the orphan nuclear receptor superfamily. Even more extreme than p53, Nur77 can exert opposing biological activities of survival and death. Its activities are regulated by subcellular distribution, expression levels, protein modification and heterodimerization with retinoid X receptor. In cancer cells, Nur77 functions in the nucleus as an oncogenic survival factor, but becomes a potent killer when certain death stimuli induce its migration to mitochondria, where it binds to Bcl2 and conformationally converts it to a killer that triggers cytochrome c release and apoptosis. This review focuses on their unexpected transcription-independent pro-death programs at mitochondria and highlights the remarkable mechanistic similarities between them. Moreover, an accumulating body of evidence provides ample rationale to further investigate how these mitochondrial p53 and Nur77 pathways could become exploitable targets for new cancer therapeutics.
Collapse
Affiliation(s)
- U M Moll
- Department of Pathology Stony Brook University, Stony Brook, New York 11794-8691, USA.
| | | | | |
Collapse
|
20
|
Kishi H, Nemoto M, Enomoto M, Shinoda M, Kawanobe T, Matsui H. Acute toxic effects of dioctyltin on immune system of rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2006; 22:240-247. [PMID: 21783716 DOI: 10.1016/j.etap.2006.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 04/10/2006] [Indexed: 05/31/2023]
Abstract
In the present study, dioctyltin chloride (DOTC: 100mg/kg, BW) was orally administered to immature (30-day-old) male rats, and the acute toxic effects were studied. Di- and monooctyltin (its metabolite) accumulations were mainly detected in the liver, and peaked 48h later. A similar pattern was also found in the kidney, but the levels were low or trace amounts. Significantly low thymus and spleen weights were detected in DOTC-treated animals. Increased apoptotic cell numbers in the thymus and spleen were observed in DOTC-treated animals also. Although the expression of 97 genes involved in apoptosis was studied in the thymus, at least 24h after treatment, we could not detect clearly different expressions between DOTC- and vehicle-treated animals. The present results suggest that DOTC was selectively immunotoxic. One of the mechanisms for its immunotoxicity would be via its stimulation of immune cell apoptosis.
Collapse
Affiliation(s)
- Hisashi Kishi
- Department of Hygiene, Dokkyo Medical University School of Medicine, Mibu-machi, Tochigi 321-0293, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Bollo E, Guglielmino R, Sant S, Pregel P, Riondato F, Miniscalco B, Cornaglia E, Nebbia C, Dacasto M. Biochemical, ultrastructural and molecular characterization of the triphenyltin acetate (TPTA)-induced apoptosis in primary cultures of mouse thymocytes. Cell Biol Toxicol 2006; 22:275-84. [PMID: 16802106 DOI: 10.1007/s10565-006-0053-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Triphenyltin acetate (TPTA), a triorganotin compound used in agriculture as a biocide, is immunotoxic in vivo and in vitro. The present study was undertaken to ascertain whether apoptosis might play a role in the TPTA toxicity in vitro. Mouse thymocyte primary cultures were exposed to 0, 4 and 8 micromol/L TPTA; methyl prednisolone (1 micromol/L) was used as a positive control. Cell aliquots were harvested after 0, 1, 2, 4, and 8 h and the presence of early or late apoptotic phenomena was checked by (a) morphological investigations; (b) spectrophotometric quantification of fragmented DNA and agarose gel electrophoresis; (c) cell flow cytofluorometry, using an annexin V-FITC kit; and (d) detection of in situ apoptosis by a colorimetric detection kit (Titer-Tacs). TPTA cytotoxicity was also evaluated using the trypan blue dye exclusion test. Morphological investigation indicated apoptosis and/or necrosis. After 8 h of incubation, cells exposed to 4 micromol/L TPTA showed an increase in DNA fragmentation (on electrophoresis), which was confirmed by spectrophotometry (p < 0.05). Flow cytofluorometry pointed out an early (p < 0.05) increase of annexin V-positive (apoptotic) cells in TPTA-exposed flasks, whereas at least partly contradictory, results were obtained with the Titer-Tacs kit. Overall, these results provide evidence that TPTA, at low concentrations (4 micromol/L) induces early and late apoptotic phenomena, whereas cells exposed to the highest concentrations (8 micromol/L) are likely to undergo necrosis rather than apoptosis.
Collapse
Affiliation(s)
- E Bollo
- Dipartimento di Patologia Animale, Sezione di Anatomia Patologica, Università di Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tabassum S, Pettinari C. Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 2006; 691:1761-1766. [DOI: 10.1016/j.jorganchem.2005.12.033] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] to assess the health risks to consumers associated with exposure to organotins in foodstuffs. EFSA J 2004. [DOI: 10.2903/j.efsa.2004.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Shin HJ, Lee BH, Yeo MG, Oh SH, Park JD, Park KK, Chung JH, Moon CK, Lee MO. Induction of orphan nuclear receptor Nur77 gene expression and its role in cadmium-induced apoptosis in lung. Carcinogenesis 2004; 25:1467-75. [PMID: 15016657 DOI: 10.1093/carcin/bgh135] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium is an environmentally widely dispersed and highly toxic heavy metal that has been classified as a human carcinogen. Using the suppression subtractive hybridization technique, we identified previously 29 cadmium-inducible genes, primarily involved in inflammation, cell survival and apoptosis. Among these genes, we are particularly interested in Nor-1, because this gene belongs to the Nur77 family, which plays a key role in the apoptotic processes of a variety of cells and tissues, including the lung. In the present study, we characterized the induction of the Nur77 family genes in the lungs after cadmium exposure. Nur77, Nor-1 and Nurr1 were all induced after cadmium treatment in a dose- and time-dependent manner in WI-38 and A549 lung cell lines. Treatment with inhibitors of signaling pathways, such as PD98059 and H89, almost completely blocked the expression of Nur77, indicating that the extracellular signal-regulated kinase and protein kinase A signaling pathways are important in cadmium-induced Nur77 expression. When a plasmid encoding dominant-negative Nur77 was transfected into A549 cells, cadmium-induced apoptotic changes, such as chromosomal condensation and Bax expression, were significantly reduced, suggesting that the expression of Nur77 plays an important role in cadmium-induced apoptosis. Furthermore, the number of apoptotic cells and the expression of Nur77 was increased in lung tissues collected from cadmium-treated (30 micromol/kg body wt) Wistar rats. Taken together, these results demonstrate that cadmium induces the expression of Nur77 family genes, leading to apoptosis in lung cells, which may cause pulmonary toxicity in response to cadmium exposure.
Collapse
Affiliation(s)
- Hye-Jin Shin
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV. Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 2004; 34:301-33. [PMID: 15239389 DOI: 10.1080/10408440490270160] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The biochemical modification of the metals and metalloids mercury, tin, arsenic, antimony, bismuth, selenium, and tellurium via formation of volatile metal hydrides and alkylated species (volatile and involatile) performs a fundamental role in determining the environmental processing of these elements. In most instances, the formation of such species increases the environmental mobility of the element, and can result in bioaccumulation in lipophilic environments. While inorganic forms of most of these compounds are well characterized (e.g., arsenic, mercury) and some of them exhibit low toxicity (e.g., tin, bismuth), the more lipid-soluble organometals can be highly toxic. Methylmercury poisoning (e.g., Minamata disease) and tumor development in rats after exposure to dimethylarsinic acid or tributyltin oxide are just some examples. Data on the genotoxicity (and the neurotoxicity) as well as the mechanisms of cellular action of organometal(loid) compounds are, however, scarce. Many studies have shown that the production of such organometal(loid) species is possible and likely whenever anaerobic conditions (at least on a microscale) are combined with available metal(loid)s and methyl donors in the presence of suitable organisms. Such anaerobic conditions can exist within natural environments (e.g., wetlands, pond sediments) as well as within anthropogenic environmental systems (e.g., waste disposal sites and sewage treatments plants). Some methylation can also take place under aerobic conditions. This article gives an overview about the environmental distribution of organometal(loid) compounds and the potential hazardous effects on animal and human health. Genotoxic effects in vivo and in vitro in particular are discussed.
Collapse
Affiliation(s)
- E Dopp
- Institut für Hygiene und Arbeitsmedizin, Universitätsklinikum Essen, Essen, Germany.
| | | | | | | | | |
Collapse
|
26
|
Gennari A, Bol M, Seinen W, Penninks A, Pieters R. Organotin-induced apoptosis occurs in small CD4(+)CD8(+) thymocytes and is accompanied by an increase in RNA synthesis. Toxicology 2002; 175:191-200. [PMID: 12049847 DOI: 10.1016/s0300-483x(02)00083-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The organotin compounds di-n-butyltin dichloride (DBTC) and tri-n-butyltin chloride (TBTC) induce thymus atrophy in rats. At low doses they inhibit immature thymocyte proliferation, whereas at higher doses in particular TBTC induces apoptotic cell death. In vitro, a similar concentration-effect relationship was observed, i.e. low concentrations inhibit DNA and protein synthesis and higher concentrations induce apoptosis. The mechanism of apoptosis by organotins has been partly investigated, but their capacity to inhibit protein synthesis seems to contradict with the idea that macromolecular synthesis is required for organotin-induced apoptosis. Therefore, we aimed to evaluate the relation between apoptosis and the synthesis of RNA and proteins, with a focus on the apoptosis-sensitive thymocyte subset. Results showed that DBTC increases RNA synthesis in particular in the subset of small CD4(+)CD8(+) thymocytes, which normally shows a high incidence of DNA fragmentation. Moreover, the RNA synthesis inhibitor actinomycin D or the protein synthesis inhibitor cycloheximide protected cells from apoptosis by DBTC or TBTC. Although organotin compounds increase synthesis of the heat shock protein HSC73/HSP72, heat shock treatment did not initiate apoptosis in thymocytes, neither antagonized organotin-induced apoptosis. This indicates that synthesis of heat shock proteins is not related to organotin-induced increase of RNA synthesis, and that other RNA-molecules are probably involved.
Collapse
Affiliation(s)
- Alessandra Gennari
- Immunotoxicology Section, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|