1
|
Wu X, Cui L, Bai Y, Bian L, Liang Z. Pseudotyped Viruses for Enterovirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:209-228. [PMID: 36920699 DOI: 10.1007/978-981-99-0113-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Using a non-pathogenic pseudotyped virus as a surrogate for a wide-type virus in scientific research complies with the recent requirements for biosafety. Enterovirus (EV) contains many species of viruses, which are a type of nonenveloped virus. The preparation of its corresponding pseudotyped virus often needs customized construction compared to some enveloped viruses. This article describes the procedures and challenges in the construction of pseudotyped virus for enterovirus (pseudotyped enterovirus, EVpv) and also introduces the application of EVpv in basic virological research, serological monitoring, and the detection of neutralizing antibody (NtAb).
Collapse
Affiliation(s)
- Xing Wu
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lisha Cui
- Minhai biotechnology Co. Ltd, Beijing, China
| | - Yu Bai
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Lianlian Bian
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus & Enterovirus Vaccines, Institute for Biological Products, National Institutes for Food and Drug Control, Beijing, China
- WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| |
Collapse
|
2
|
Childs K, Jackson B, Harvey Y, Seago J. Trans-Encapsidation of Foot-and-Mouth Disease Virus Genomes Facilitates Escape from Neutralizing Antibodies. Viruses 2022; 14:1161. [PMID: 35746633 PMCID: PMC9229618 DOI: 10.3390/v14061161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Foot-and-mouth disease is an economically devastating disease of livestock caused by foot-and-mouth disease virus (FMDV). Vaccination is the most effective control measure in place to limit the spread of the disease; however, the success of vaccination campaigns is hampered by the antigenic diversity of FMDV and the rapid rate at which new strains emerge that escape pre-existing immunity. FMDV has seven distinct serotypes, and within each serotype are multiple strains that often induce little cross-protective immunity. The diversity of FMDV is a consequence of the high error rate of the RNA-dependent RNA polymerase, accompanied by extensive recombination between genomes during co-infection. Since multiple serotypes and strains co-circulate in regions where FMDV is endemic, co-infection is common, providing the conditions for recombination, and also for other events such as trans-encapsidation in which the genome of one virus is packaged into the capsid of the co-infecting virus. Here, we demonstrate that the co-infection of cells with two FMDVs of different serotypes results in trans-encapsidation of both viral genomes. Crucially, this facilitates the infection of new cells in the presence of neutralizing antibodies that recognize the capsid that is encoded by the packaged genome.
Collapse
Affiliation(s)
| | | | | | - Julian Seago
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (K.C.); (B.J.); (Y.H.)
| |
Collapse
|
3
|
Childs K, Juleff N, Moffat K, Seago J. Demonstration of Co-Infection and Trans-Encapsidation of Viral RNA In Vitro Using Epitope-Tagged Foot-and-Mouth Disease Viruses. Viruses 2021; 13:v13122433. [PMID: 34960702 PMCID: PMC8708420 DOI: 10.3390/v13122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Foot-and-mouth disease, caused by foot-and-mouth disease virus (FMDV), is an economically devastating disease affecting several important livestock species. FMDV is antigenically diverse and exists as seven serotypes comprised of many strains which are poorly cross-neutralised by antibodies induced by infection or vaccination. Co-infection and recombination are important drivers of antigenic diversity, especially in regions where several serotypes co-circulate at high prevalence, and therefore experimental systems to study these events in vitro would be beneficial. Here we have utilised recombinant FMDVs containing an HA or a FLAG epitope tag within the VP1 capsid protein to investigate the products of co-infection in vitro. Co-infection with viruses from the same and from different serotypes was demonstrated by immunofluorescence microscopy and flow cytometry using anti-tag antibodies. FLAG-tagged VP1 and HA-tagged VP1 could be co-immunoprecipitated from co-infected cells, suggesting that newly synthesised capsids may contain VP1 proteins from both co-infecting viruses. Furthermore, we provide the first demonstration of trans-encapsidation of an FMDV genome into capsids comprised of proteins encoded by a co-infecting heterologous virus. This system provides a useful tool for investigating co-infection dynamics in vitro, particularly between closely related strains, and has the advantage that it does not depend upon the availability of strain-specific FMDV antibodies.
Collapse
|
4
|
Newcastle Disease Virus-Based Vectored Vaccine against Poliomyelitis. J Virol 2018; 92:JVI.00976-18. [PMID: 29925653 DOI: 10.1128/jvi.00976-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
The poliovirus eradication initiative has spawned global immunization infrastructure and dramatically decreased the prevalence of the disease, yet the original virus eradication goal has not been met. The suboptimal properties of the existing vaccines are among the major reasons why the program has repeatedly missed eradication deadlines. Oral live poliovirus vaccine (OPV), while affordable and effective, occasionally causes the disease in the primary recipients, and the attenuated viruses rapidly regain virulence and can cause poliomyelitis outbreaks. Inactivated poliovirus vaccine (IPV) is safe but expensive and does not induce the mucosal immunity necessary to interrupt virus transmission. While the need for a better vaccine is widely recognized, current efforts are focused largely on improvements to the OPV or IPV, which are still beset by the fundamental drawbacks of the original products. Here we demonstrate a different design of an antipoliovirus vaccine based on in situ production of virus-like particles (VLPs). The poliovirus capsid protein precursor, together with a protease required for its processing, are expressed from a Newcastle disease virus (NDV) vector, a negative-strand RNA virus with mucosal tropism. In this system, poliovirus VLPs are produced in the cells of vaccine recipients and are presented to their immune systems in the context of active replication of NDV, which serves as a natural adjuvant. Intranasal administration of the vectored vaccine to guinea pigs induced strong neutralizing systemic and mucosal antibody responses. Thus, the vectored poliovirus vaccine combines the affordability and efficiency of a live vaccine with absolute safety, since no full-length poliovirus genome is present at any stage of the vaccine life cycle.IMPORTANCE A new, safe, and effective vaccine against poliovirus is urgently needed not only to complete the eradication of the virus but also to be used in the future to prevent possible virus reemergence in a postpolio world. Currently, new formulations of the oral vaccine, as well as improvements to the inactivated vaccine, are being explored. In this study, we designed a viral vector with mucosal tropism that expresses poliovirus capsid proteins. Thus, poliovirus VLPs are produced in vivo, in the cells of a vaccine recipient, and are presented to the immune system in the context of vector virus replication, stimulating the development of systemic and mucosal immune responses. Such an approach allows the development of an affordable and safe vaccine that does not rely on the full-length poliovirus genome at any stage.
Collapse
|
5
|
Viktorova EG, Khattar S, Samal S, Belov GA. Poliovirus Replicon RNA Generation, Transfection, Packaging, and Quantitation of Replication. ACTA ACUST UNITED AC 2018; 48:15H.4.1-15H.4.15. [PMID: 29512114 DOI: 10.1002/cpmc.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Poliovirus is a prototype member of the Enterovirus genus of the Picornaviridae family of small positive strand RNA viruses, which include important human and animal pathogens. Quantitative assessment of viral replication is very important for investigation of the virus biology and the development of anti-viral strategies. The poliovirus genome structure allows replacement of structural genes with a reporter protein, such as a luciferase or a fluorescent protein, whose signals can be detected and quantified in vivo, thus permitting observation of replication kinetics in live cells. This paper presents protocols for poliovirus replicon RNA production, purification, packaging and transfection, as well as techniques for monitoring Renilla luciferase replication signal in living cells. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ekaterina G Viktorova
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Sunil Khattar
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Siba Samal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - George A Belov
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland
| |
Collapse
|
6
|
Chen P, Wu X, Mao Q, Gao F, Hao X, Bian L, Zhu F, Li W, Xu M, Liang Z. A rapid and quantitative assay for measuring neutralizing antibodies of Coxsackievirus B3. J Virol Methods 2016; 232:1-7. [PMID: 26947399 PMCID: PMC7113863 DOI: 10.1016/j.jviromet.2016.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
We have established a robust single round infection system of CVB3. A new quantitative assay for measuring NtAb of CVB3 in clinical samples. Seroprevalence of CVB3 in pre-school children is lower than that in adults.
Coxsackievirus B3 (CVB3) infection has been found to account for an increasing proportion cases of hand, foot and mouth disease (HFMD) in recent epidemiology studies. CVB3 is a single stranded, non-enveloped RNA virus and the infection can cause prominent health threat to pre-school children. Here, by taking approaches of reverse genetics, we established a single-round infection system for CVB3. The pseudovirus was produced by sequential transfection of CVB3 capsid expresser plasmid and CVB3 replicon RNA bearing firefly luciferase as a reporter. The CVB3 pseudovirus system was used for quantifying neutralizing antibody (NtAb) levels of 720 human serum samples and showed superior specificity and sensitivity comparing traditional cytopathic effect (CPE) assay. Furthermore, we compared the seroprevalence of CVB3 NtAbs in pre-school children and healthy adults, and found that only 11.94% of pre-school children were NtAbs positive which suggested that most children were naive to CVB3 infection; while there is much higher positive rate in adults (60%) indicating that most adults have experienced CVB3 infection during childhood. This rapid and quantitative assay greatly facilitates evaluating the level of NtAbs against CVB3 in populations and will help to advance CVB3 vaccine development.
Collapse
Affiliation(s)
- Pan Chen
- National Institutes for Food and Drug Control, Beijing 100050, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xing Wu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Xiaotian Hao
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing 100050, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing 100050, China.
| |
Collapse
|
7
|
Abstract
The Picornaviridae represent a large family of small plus-strand RNA viruses that cause a bewildering array of important human and animal diseases. Morphogenesis is the least-understood step in the life cycle of these viruses, and this process is difficult to study because encapsidation is tightly coupled to genome translation and RNA replication. Although the basic steps of assembly have been known for some time, very few details are available about the mechanism and factors that regulate this process. Most of the information available has been derived from studies of enteroviruses, in particular poliovirus, where recent evidence has shown that, surprisingly, the specificity of encapsidation is governed by a viral protein-protein interaction that does not involve an RNA packaging signal. In this review, we make an attempt to summarize what is currently known about the following topics: (i) encapsidation intermediates, (ii) the specificity of encapsidation (iii), viral and cellular factors that are required for encapsidation, (iv) inhibitors of encapsidation, and (v) a model of enterovirus encapsidation. Finally, we compare some features of picornavirus morphogenesis with those of other plus-strand RNA viruses.
Collapse
|
8
|
Wimmer E, Paul AV. Synthetic poliovirus and other designer viruses: what have we learned from them? Annu Rev Microbiol 2012; 65:583-609. [PMID: 21756105 DOI: 10.1146/annurev-micro-090110-102957] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to known genome sequences, modern strategies of DNA synthesis have made it possible to recreate in principle all known viruses independent of natural templates. We describe the first synthesis of a virus (poliovirus) in 2002 that was accomplished outside living cells. We comment on the reaction of laypeople and scientists to the work, which shaped the response to de novo syntheses of other viruses. We discuss those viruses that have been synthesized since 2002, among them viruses whose precise genome sequence had to be established by painstakingly stitching together pieces of sequence information, and viruses involved in zoonosis. Synthesizing viral genomes provides a powerful tool for studying gene function and the pathogenic potential of these organisms. It also allows modification of viral genomes to an extent hitherto unthinkable. Recoding of poliovirus and influenza virus to develop new vaccine candidates and refactoring the phage T7 DNA genome are discussed as examples.
Collapse
Affiliation(s)
- Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11790, USA.
| | | |
Collapse
|
9
|
Evolution of poliovirus defective interfering particles expressing Gaussia luciferase. J Virol 2011; 86:1999-2010. [PMID: 22156535 DOI: 10.1128/jvi.05871-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Polioviruses (PVs) carrying a reporter gene are useful tools for studies of virus replication, particularly if the viral chimeras contain the polyprotein that provides all of the proteins necessary for a complete replication cycle. Replication in HeLa cells of a previously constructed poliovirus expressing the gene for Renilla luciferase (RLuc) fused to the N terminus of the polyprotein H(2)N-RLuc-P1-P2-P3-COOH (P1, structural domain; P2 and P3, nonstructural domains) led to the deletion of RLuc after only one passage. Here we describe a novel poliovirus chimera that expresses Gaussia luciferase (GLuc) inserted into the polyprotein between P1 and P2 (N(2)H-P1-GLuc-P2-P3-COOH). This chimera, termed PV-GLuc, replicated to 10% of wild-type yield. The reporter signal was fully retained for three passages and then gradually lost. After six passages the signal was barely detectable. On further passages, however, the GLuc signal reappeared, and after eight passages it had reached the same levels observed with the original PV-GLuc at the first passage. We demonstrated that this surprising observation was due to coevolution of defective interfering (DI) particles that had lost part or all of the capsid coding sequence (ΔP1-GLuc-P2-P3) and wild-type-like viruses that had lost the GLuc sequence (P1-P2-P3). When used at low passage, PV-GLuc is an excellent tool for studying aspects of genome replication and morphogenesis. The GLuc protein was secreted from mammalian cells but, in agreement with published data, was not secreted from PV-GLuc-infected cells due to poliovirus-induced inhibition of cellular protein secretion. Published evidence indicates that individual expression of enterovirus polypeptide 3A, 2B, or 2BC in COS-1 cells strongly inhibits host protein secretion. In HeLa cells, however, expression of none of the poliovirus polypeptides, either singly or in pairs, inhibited GLuc secretion. Thus, inhibition of GLuc secretion in PV-infected HeLa cells is likely a result of the interaction between several viral and cellular proteins that are different from those in COS-1 cells.
Collapse
|
10
|
Lim BK, Yun SH, Gil CO, Ju ES, Choi JO, Kim DK, Jeon ES. Foreign gene transfer to cardiomyocyte using a replication-defective recombinant coxsackievirus B3 without cytotoxicity. Intervirology 2011; 55:201-9. [PMID: 21821992 DOI: 10.1159/000324541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Replication-competent coxsackievirus B3 (CVB3) has been used as a gene transfer vector for cultured cardiomyocytes and hearts in vivo. However, CVB3 induces cell lysis when it replicates in infected cells. In this study, we investigated whether a replication-defective rCVB3 vector could be generated and used as a noncytotoxic gene transfer vector for cardiomyocytes. METHODS We generated a replication-defective luciferase-expressing CVB3 plasmid. This recombinant cDNA and pCMV-P1 plasmids were amplified and cotransfected into Hek293 cells using transfection reagents. Replication-defective rLuCVB3 virus was recovered from the cells and cell culture supernatants for 3 days after transfection. The generated rLuCVB3 viruses were concentrated on a 30% sucrose cushion and semiquantified using a luciferase assay. In addition, foreign gene delivery by the rLuCVB3 was tested in cultured cardiomyocytes and intact mouse hearts after rLuCVB3 infection. RESULTS Luciferase was expressed in Hek293, HeLa cells and cardiomyocytes after rLuCVB3 infection. In addition, these cells did not show a significant cytopathic effect after 72 h. Luciferase protein expression or activity were detected for 3 days in the myocardium of rLuCVB3-infected mouse hearts without producing cytotoxicity or inflammation. CONCLUSION As a proof-of-concept, these data indicate that a replication-defective rCVB3 vector can be generated and used as a novel gene transfer system to transfect exogenous genes into cardiomyocytes without generating cytotoxicity.
Collapse
Affiliation(s)
- Byung-Kwan Lim
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog 2010; 6:e1001066. [PMID: 20865167 PMCID: PMC2928791 DOI: 10.1371/journal.ppat.1001066] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 07/26/2010] [Indexed: 12/27/2022] Open
Abstract
In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV), is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase) in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20) and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase) of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase) and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20) were blocked in encapsidation (no virus after blind passages) but could be rescued if the capsid and 2C(ATPase) coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i) genome replication is known to be stringently linked to translation, (ii) morphogenesis is known to be stringently linked to genome replication, (iii) newly synthesized 2C(ATPase) is an essential component of the replication complex, and (iv) 2C(ATPase) has specific affinity to capsid protein(s). These conditions lead to morphogenesis at the site where newly synthesized genomes emerge from the replication complex.
Collapse
|
12
|
Cameron CE, Oh HS, Moustafa IM. Expanding knowledge of P3 proteins in the poliovirus lifecycle. Future Microbiol 2010; 5:867-81. [PMID: 20521933 PMCID: PMC2904470 DOI: 10.2217/fmb.10.40] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Poliovirus is the most extensively studied member of the order Picornavirales, which contains numerous medical, veterinary and agricultural pathogens. The picornavirus genome encodes a single polyprotein that is divided into three regions: P1, P2 and P3. P3 proteins are known to participate more directly in genome replication, for example by containing the viral RNA-dependent RNA polymerase (RdRp or 3Dpol), among several other proteins and enzymes. We will review recent data that provide new insight into the structure, function and mechanism of P3 proteins and their complexes, which are required for initiation of genome replication. Replication of poliovirus genomes occurs within macromolecular complexes, containing viral RNA, viral proteins and host-cell membranes, collectively referred to as replication complexes. P2 proteins clearly contribute to interactions with the host cell that are required for virus multiplication, including formation of replication complexes. We will discuss recent data that suggest a role for P3 proteins in formation of replication complexes. Among the least understood steps of the poliovirus lifecycle is encapsidation of genomic RNA. We will also describe data that suggest a role for P3 proteins in this step.
Collapse
Affiliation(s)
- Craig E Cameron
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
13
|
Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396:1-9. [DOI: 10.1016/j.virol.2009.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
14
|
Wimmer E, Mueller S, Tumpey TM, Taubenberger JK. Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 2009; 27:1163-72. [PMID: 20010599 PMCID: PMC2819212 DOI: 10.1038/nbt.1593] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rapid progress in DNA synthesis and sequencing is spearheading the deliberate, large-scale genetic alteration of organisms. These new advances in DNA manipulation have been extended to the level of whole-genome synthesis, as evident from the synthesis of poliovirus, from the resurrection of the extinct 1918 strain of influenza virus and of human endogenous retroviruses and from the restructuring of the phage T7 genome. The largest DNA synthesized so far is the 582,970 base pair genome of Mycoplasma genitalium, although, as yet, this synthetic DNA has not been 'booted' to life. As genome synthesis is independent of a natural template, it allows modification of the structure and function of a virus's genetic information to an extent that was hitherto impossible. The common goal of this new strategy is to further our understanding of an organism's properties, particularly its pathogenic armory if it causes disease in humans, and to make use of this new information to protect from, or treat, human viral disease. Although only a few applications of virus synthesis have been described as yet, key recent findings have been the resurrection of the 1918 influenza virus and the generation of codon- and codon pair-deoptimized polioviruses.
Collapse
Affiliation(s)
- Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA.
| | | | | | | |
Collapse
|
15
|
Arita M, Wakita T, Shimizu H. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. J Gen Virol 2008; 89:2518-2530. [PMID: 18796721 DOI: 10.1099/vir.0.2008/002915-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poliovirus (PV) and enterovirus 71 (EV71) cause severe neurological symptoms in their infections of the central nervous system. To identify compounds with anti-PV and anti-EV71 activities that would not allow the emergence of resistant mutants, we performed drug screening by utilizing a pharmacologically active compound library targeting cellular factors with PV and EV71 pseudoviruses that encapsidated luciferase-encoding replicons. We have found that metrifudil (N-[2-methylphenyl]methyl)-adenosine) (an A2 adenosine receptor agonist), N(6)-benzyladenosine (an A1 adenosine receptor agonist) and NF449 (4,4',4'',4'''-[carbonylbis[imino-5,1,3-benzenetriyl bis(carbonyl-imino)]] tetrakis (benzene-1,3-disulfonic acid) octasodium salt) (a Gs-alpha inhibitor) have anti-EV71 activity, and that GW5074 (3-(3, 5-dibromo-4-hydroxybenzylidine-5-iodo-1,3-dihydro-indol-2-one)) (a Raf-1 inhibitor) has both anti-PV and anti-EV71 activities. EV71 mutants resistant to metrifudil, N(6)-benzyladenosine and NF449 were isolated after passages in the presence of these compounds, but mutants resistant to GW5074 were not isolated for both PV and EV71. The inhibitory effect of GW5074 was not observed in Sendai virus infection and the treatment did not induce the expression of OAS1 and STAT1 mRNA. Small interfering RNA treatment against putative cellular targets of GW5074, including Raf-1, B-Raf, Pim-1, -2, and -3, HIPK2, GAK, MST2 and ATF-3, did not consistently suppress PV replication. Moreover, downregulation of Raf-1 and B-Raf did not affect the sensitivity of RD cells to the inhibitory effect of GW5074. These results suggest that GW5074 has strong and selective inhibitory effect against the replication of PV and EV71 by inhibiting conserved targets in the infection independently of the interferon response.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
16
|
Arita M, Nagata N, Sata T, Miyamura T, Shimizu H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J Gen Virol 2006; 87:3317-3327. [PMID: 17030866 DOI: 10.1099/vir.0.82172-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus (PV) infection causes severe paralysis, typically of the legs, by destruction of the motor neurons in the spinal cord. In this study, the relationship between PV replication in the spinal cord, damage in the motor neurons and poliomyelitis-like paralysis was analysed in transgenic mice expressing the human PV receptor (TgPVR21). First, a PV replicon encoding firefly luciferase in place of the capsid genes (PV-Fluc mc) was trans-encapsidated in 293T cells and the trans-encapsidated PV-Fluc mc (TE-PV-Fluc mc) was then inoculated into the spinal cords of TgPVR21 mice. TE-PV-Fluc mc was recovered with a titre of 6.3 x 10(7) infectious units ml(-1), which was comparable to those of PV1 strains. TgPVR21 mice inoculated with TE-PV-Fluc mc showed non-lethal paralysis of the hindlimbs, with severity ranging from a decline in grip strength to complete flaccid paralysis. The replication of TE-PV-Fluc mc in the spinal cord reached peak levels at 10 h post-inoculation (p.i.), followed by the appearance of paralysis at as early as 12 h p.i., reaching a plateau at 16 h p.i. Histological analysis showed a correlation between the lesion and the severity of the clinical symptoms in most mice. However, severe paralysis could also be observed with an apparently low lesion score, where as few as 5.3 x 10(2) motor neurons (1.4 % of the susceptible cells in the lumbar cord) were infected by TE-PV-Fluc mc. These results indicate that PV replication in a small population of the motor neurons was critical for severe residual poliomyelitis-like paralysis in TgPVR21 mice.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
17
|
Kim KS, Tracy S, Tapprich W, Bailey J, Lee CK, Kim K, Barry WH, Chapman NM. 5'-Terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA. J Virol 2005; 79:7024-41. [PMID: 15890942 PMCID: PMC1112132 DOI: 10.1128/jvi.79.11.7024-7041.2005] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult human enteroviral heart disease is often associated with the detection of enteroviral RNA in cardiac muscle tissue in the absence of infectious virus. Passage of coxsackievirus B3 (CVB3) in adult murine cardiomyocytes produced CVB3 that was noncytolytic in HeLa cells. Detectable but noncytopathic CVB3 was also isolated from hearts of mice inoculated with CVB3. Sequence analysis revealed five classes of CVB3 genomes with 5' termini containing 7, 12, 17, 30, and 49 nucleotide deletions. Structural changes (assayed by chemical modification) in cloned, terminally deleted 5'-nontranslated regions were confined to the cloverleaf domain and localized within the region of the deletion, leaving key functional elements of the RNA intact. Transfection of CVB3 cDNA clones with the 5'-terminal deletions into HeLa cells generated noncytolytic virus (CVB3/TD) which was neutralized by anti-CVB3 serum. Encapsidated negative-strand viral RNA was detected using CsCl-purified CVB3/TD virions, although no negative-strand virion RNA was detected in similarly treated parental CVB3 virions. The viral protein VPg was detected on CVB3/TD virion RNA molecules which terminate in 5' CG or 5' AG. Detection of viral RNA in mouse hearts from 1 week to over 5 months postinoculation with CVB3/TD demonstrated that CVB3/TD virus strains replicate and persist in vivo. These studies describe a naturally occurring genomic alteration to an enteroviral genome associated with long-term viral persistence.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cytopathogenic Effect, Viral
- DNA, Viral/genetics
- Enterovirus B, Human/genetics
- Enterovirus B, Human/pathogenicity
- Enterovirus B, Human/physiology
- Enterovirus Infections/virology
- Genome, Viral
- HeLa Cells
- Humans
- Male
- Mice
- Mice, Inbred A
- Molecular Sequence Data
- Myocarditis/virology
- Myocytes, Cardiac/virology
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Virus Assembly
- Virus Replication
Collapse
Affiliation(s)
- K-S Kim
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jackson CA, Messinger J, Peduzzi JD, Ansardi DC, Morrow CD. Enhanced functional recovery from spinal cord injury following intrathecal or intramuscular administration of poliovirus replicons encoding IL-10. Virology 2005; 336:173-83. [DOI: 10.1016/j.virol.2005.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 03/03/2005] [Accepted: 03/15/2005] [Indexed: 11/26/2022]
|
19
|
Meyer RG, Meyer-Ficca ML, Kaiser H, Selinka HC, Kandolf R, Küpper JH. Plasmid-based generation of recombinant coxsackievirus B3 particles carrying capsid gene replacement replicons. Virus Res 2004; 104:17-26. [PMID: 15177888 DOI: 10.1016/j.virusres.2004.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/24/2022]
Abstract
Recombinant infectious coxsackievirus B3 (CVB3) particles were generated by packaging of modified viral genomes in which the capsid coding P1-region was replaced by an EGFP-luciferase reporter gene. Efficient packaging of the recombinant genome was achieved by a novel method based on cotransfection of a plasmid encoding the subgenomic viral replicon together with two alternative helper plasmids carrying expression cassettes of the CVB3 capsid proteins, and a T7 RNA polymerase expression plasmid. Transcription of a reporter gene and expression of capsid proteins were achieved in a single step, eliminating the need of a helper virus. Recombinant viral stocks were used to infect human embryonal cardiomyocytes (hCMC) and other cell types, and luciferase activity was measured at different timepoints after infection. Neither progeny virus nor wildtype CVB3 was produced upon infection of target cells, facilitating analyses of infected cells without viral spread. The presence of an IRES sequence upstream of the P1 open reading frame in the helper plasmids was indispensable for the generation of recombinant particles, as no packaging was observed using helper plasmids without this feature. Luciferase data obtained by transfection of reporter plasmids with and without upstream 5'-NTR sequences suggests that the CVB3 IRES facilitates translation in T7 RNA polymerase-dependent gene transcription, both in presence and absence of viral replication.
Collapse
Affiliation(s)
- Ralph G Meyer
- Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.
Collapse
Affiliation(s)
- Marvin J Grubman
- Plum Island Animal Disease Center, USDA, Agricultural Research Service, North Atlantic Area, Greenport, New York 11944, USA.
| | | |
Collapse
|
21
|
McKnight KL, Sandefur S, Phipps KM, Heinz BA. An adenine-to-guanine nucleotide change in the IRES SL-IV domain of picornavirus/hepatitis C chimeric viruses leads to a nonviable phenotype. Virology 2003; 317:345-58. [PMID: 14698672 DOI: 10.1016/j.virol.2003.08.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inability for the internal ribosomal entry site (IRES) of hepatitis C virus (HCV) to be readily studied in the context of viral replication has been circumvented by constructing chimeras such as with poliovirus (PV), in which translation of the genome polyprotein is under control of the HCV IRES. During our attempts to configure the PV/HCV chimera for our drug discovery efforts, we discovered that an adenine- (A) to-guanine (G) change at nt 350 in domain IV of the HCV IRES resulted in a nonviable phenotype. Similarly, a mengovirus (MV)/HCV chimera using the same configuration with a G at nt 350 (G-350) was found to be nonviable. In contrast, a bovine viral diarrhea virus (BVDV)/HCV chimera remained viable with G-350 in the HCV IRES insert. Second-site, resuscitating mutations were identified from the G-350 PV/HCV and MV/HCV viruses after blind passaging. For both viruses, the resuscitating mutations involved destabilization of domain IV in the HCV IRES. The nonviability of G-350 in the picornavirus/HCV chimeric background might be linked to translation efficiency as indicated by analyses with dual reporter and PV/HCV replicon constructs.
Collapse
Affiliation(s)
- Kevin L McKnight
- Eli Lilly and Company, Lilly Research Laboratories, LCC, Indianapolis, IN 46225, USA.
| | | | | | | |
Collapse
|
22
|
Jackson CA, Messinger J, Palmer MT, Peduzzi JD, Morrow CD. Gene expression in the muscle and central nervous system following intramuscular inoculation of encapsidated or naked poliovirus replicons. Virology 2003; 314:45-61. [PMID: 14517059 DOI: 10.1016/s0042-6822(03)00385-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The spread of intramuscularly inoculated poliovirus to the central nervous system (CNS) has been documented in humans, monkeys, and mice transgenic for the human poliovirus receptor. Poliovirus spread is thought to be due to infection of the peripheral nerve and retrograde transport of poliovirus through the axon to the neuron cell body, where final virus uncoating occurs and translation/replication ensues. In previous studies, we have shown that polio-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. Using a replicon that encodes green fluorescent protein (GFP), we found that following intrathecal inoculation, GFP expression was confined to motorneurons of the spinal cord. To further characterize the gene expression of poliovirus in the periphery and CNS, we have intramuscularly inoculated transgenic mice with poliovirus replicons encoding GFP. Expression of GFP was demonstrated in the muscle, sciatic nerve, dorsal root ganglion, and the ventral horn motorneurons following intramuscular inoculation. There was no evidence of paralysis or behavioral abnormalities in the mice following intramuscular inoculation of the replicon encoding GFP. Injection of replicon RNA alone (naked RNA) into the muscle of transgenic mice or rats, which do not express the poliovirus receptor, also resulted in expression of GFP in the muscle, sciatic nerve, dorsal root ganglion, and ventral horn motorneurons, indicating that transport of the replicon RNA from the periphery to CNS had occurred. GFP expression was found in the muscles and sciatic nerve as early as 6 h after injection of replicons or replicon RNA, even after sciatic nerve section. Analysis at longer times postinjection revealed GFP expression similar to 6 h levels in the cut sciatic nerves and robust expression in the nerves of uncut animals. The infection and expression of GFP in the CNS following intramuscular inoculation of encapsidated replicons encoding GFP occurred in juvenile or adult animals. The expression of GFP in the CNS of juvenile animals was more intense and lasted for up to 5 weeks, in contrast to the duration of expression of approximately 96 h for adult animals. The results of these studies establish that poliovirus replicon RNA is expressed locally within the sciatic nerve and transported from the periphery to the CNS via axonal transport and support the potential of replicons for gene delivery to the CNS.
Collapse
Affiliation(s)
- Cheryl A Jackson
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
23
|
Kusov YY, Shatirishvili G, Klinger M, Gauss-Müller V. A vaccinia virus MVA-T7-mediated recovery of infectious hepatitis A virus from full-size cDNA or from two cDNAs, both by themselves unable to complete the virus life cycle. Virus Res 2002; 89:75-88. [PMID: 12367752 DOI: 10.1016/s0168-1702(02)00115-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The replication-deficient vaccinia virus (VV) MVA-T7 produces large amounts of T7 RNA polymerase and permits efficient protein expression from cDNA of T7-promoted genes. Yet, unlike recombinant VV vTF7-3, (VV) MVA-T7 produces no cytopathic effect in primate cells, thus allowing the study of processes with slow kinetics. We have applied MVA-T7 to aid genome expression of HAV, a representative of the Picornaviridae family that is well known for its inefficient replication in mammalian cell cultures. After cDNA transfection and MVA-T7 infection, empty capsids and mature HAV particles were formed with different kinetics and were characterized by their morphology, protein content, and infectivity. The data suggests that HAV genome replication is initiated from RNA, which was transcribed in vivo by the MVA-T7-encoded T7 RNA polymerase. HAV genome replication was also demonstrated in a recombination assay. After co-expression of two subgenomic HAV cDNAs, both by themselves unable to complete the viral life cycle, infectious HAV was rescued, indicating that replication-dependent genetic recombination has occurred. We propose that the high-level genome expression mediated in vivo by the VV-encoded T7 RNA polymerase augments the amount of viral RNA, such that replication of viruses poorly replicating in cell cytoplasm is detectable.
Collapse
Affiliation(s)
- Yuri Y Kusov
- Institute of Medical Molecular Biology, Medical University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany.
| | | | | | | |
Collapse
|
24
|
Jackson CA, Cobbs C, Peduzzi JD, Novak M, Morrow CD. Repetitive intrathecal injections of poliovirus replicons result in gene expression in neurons of the central nervous system without pathogenesis. Hum Gene Ther 2001; 12:1827-41. [PMID: 11589826 DOI: 10.1089/104303401753153893] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poliovirus-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. In the current study, a replicon encoding green fluorescent protein (GFP) was encapsidated into authentic poliovirions, using established procedures. Intrathecal delivery of encapsidated replicons encoding GFP to the CNS of mice transgenic for the human poliovirus receptor did not result in any functional deficits as judged by behavioral testing. Histological analysis of the CNS of mice given a single intrathecal injection of poliovirus replicons encoding GFP revealed no obvious pathogenesis in neurons (or other cell types) within the CNS. The expression of GFP was confined to motor neurons throughout the neuroaxis; a time course of expression of GFP revealed that expression was detectable 24 hr postinoculation and returned to background levels by 120 hr postinoculation. A procedure was devised to allow repetitive inoculation of replicons within the same animal. Behavioral testing of animals that had received 6 to 13 independent inoculations of replicons revealed no functional deficits. Histological analysis of the CNS from animals that had received 6 to 13 sequential inoculations of replicons revealed no obvious abnormalities in neurons or other cell types in the CNS; expression of GFP was demonstrated in neurons 24 to 72 hr after the final inoculation of the replicon. Furthermore, there was no obvious inflammatory response in the CNS after the multiple inoculations. These studies establish the safety and efficacy of replicons for gene delivery to the CNS and are discussed with respect to use of replicons as new therapeutic strategies for spinal cord injuries and/or neurological diseases.
Collapse
Affiliation(s)
- C A Jackson
- Department of Physiological Optics, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
25
|
Li X, Lu HH, Mueller S, Wimmer E. The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 2001; 82:397-408. [PMID: 11161279 DOI: 10.1099/0022-1317-82-2-397] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poliovirus proteinase 2A(pro) is an essential enzyme involved in cleavages of viral and cellular proteins during the infectious cycle. Evidence has been obtained that 2A(pro) is also involved in genome replication. All enteroviruses have a negatively charged cluster of amino acids at their C terminus (E(E)/(D)(E)/(D)AMEQ-NH(2)), a common motif suggesting function. When aligned with enterovirus sequences, the 2A(pro) proteinase of human rhinovirus type 2 (HRV2) has a shorter C terminus (EE.Q:-NH(2)) and, indeed, the HRV2 2A(pro) cannot substitute for poliovirus 2A(pro) to yield a viable chimeric virus. Here evidence is provided that the C-terminal cluster of amino acids plays an unknown role in poliovirus genome replication. Deletion of the EEAME sequence from poliovirus 2A(pro) is lethal without significantly influencing proteinase function. On the other hand, addition of EAME to HRV2 2A(pro), yielding a C terminus of this enzyme of EEEAMEQ:, stimulated RNA replication of a poliovirus/HRV2 chimera 100-fold. The novel role of the C-terminal sequence motif is manifested at the level of protein function, since silent mutations in its coding region had no effect on virus proliferation. Poliovirus type 1 Mahoney 2A(pro) could be provided in trans to rescue the lethal deletion EEAME in the poliovirus variant. Encapsidation studies left open the question of whether the C terminus of poliovirus 2A(pro) is involved in particle formation. It is concluded that the C terminus of poliovirus 2A(pro) is an essential domain for viral RNA replication but is not essential for proteolytic processing.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Hui-Hua Lu
- Biochemistry and Molecular Biology, Chiron Corporation, Emeryville, CA 94608, USA2
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, NY 11794, USA1
| |
Collapse
|
26
|
Kotarsky K, Owman C, Olde B. A chimeric reporter gene allowing for clone selection and high-throughput screening of reporter cell lines expressing G-protein-coupled receptors. Anal Biochem 2001; 288:209-15. [PMID: 11152592 DOI: 10.1006/abio.2000.4898] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Efficient screening of ligands interacting with G-protein-coupled receptors is central for modern drug development. Here, we describe an optimized reporter vector primarily intended for use in reporter cell lines expressing such receptors. The construct consists of a synthetic enhancer containing 9x TRE (12-O-tetradecanoylphorbol-13-acetate-responsive elements) fused to a minimal CMV (cytomegalovirus) promoter. Activation of the promoter construct leads to the expression of a chimeric reporter protein based on the genes for enhanced green fluorescent protein and Photinus luciferase. The chimeric protein allows for both clonal selection by fluorescence, which facilitates the selection of optimal reporter cell lines and high-throughput screening by luminescens. In designing the vector, increasing numbers of TRE motifs were tested in front of two different minimal promoters. The reporter gene was more strongly inducible with increasing numbers of TRE motifs. The constructs were tested in two cell lines, CHO and HeLa. The latter regulated reporter gene activity stronger in response to PMA (phorbol 12-myristate 13-acetate) stimulation and were used to construct HF1 reporter cell lines. Model experiments were carried out on these reporter cells transfected with the human BLTR, human CCR5, or the rat alpha(1b) receptor. After maximal agonist stimulation reporter gene activity was increased 200-, 15-, and 50-fold, respectively.
Collapse
Affiliation(s)
- K Kotarsky
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund, SE-223 62, Sweden.
| | | | | |
Collapse
|
27
|
Johansen LK, Morrow CD. Inherent instability of poliovirus genomes containing two internal ribosome entry site (IRES) elements supports a role for the IRES in encapsidation. J Virol 2000; 74:8335-42. [PMID: 10954532 PMCID: PMC116343 DOI: 10.1128/jvi.74.18.8335-8342.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have described poliovirus genomes in which the internal ribosome entry (IRES) for encephalomyocarditis virus (EMCV) is positioned between the P1 and P2-P3 open reading frames of the poliovirus genome. Although these dicistronic poliovirus genomes were replication competent, most exhibited evidence of genetic instability, and the EMCV IRES was deleted upon serial passage. One possible reason for instability of the genome is that the dicistronic genome was at least 108% larger than the wild-type poliovirus genome, which could reduce the efficiency of encapsidation. To address this possibility, we have constructed dicistronic poliovirus replicons by substituting the EMCV IRES and the gene encoding luciferase in place of the poliovirus P1 region; the resulting dicistronic replicons are smaller than the wild-type poliovirus genome. One dicistronic genome was constructed in which the poliovirus 5' nontranslated region was fused to the gene encoding luciferase, followed by the complete EMCV IRES fused to the P2-P3 region of the poliovirus genome (PV-Luc-EMCV). A second dicistronic genome, EMCV-Luc-PV, was constructed with the first 108 nucleotides of the poliovirus genome fused to the EMCV IRES, followed by the gene encoding luciferase and the poliovirus IRES fused to the remaining P2-P3 region of the poliovirus genome. Both dicistronic replicons expressed abundant luciferase following transfection of in vitro-transcribed RNA into HeLa cells at 30, 33, or 37 degrees C. The luciferase activity detected from PV-Luc-EMCV increased rapidly during the first 4 h following transfection and then plateaued, peaking after approximately 24 h. In contrast, the luciferase activity detected from EMCV-Luc-PV increased for approximately 12 h following transfection; by 24 h posttransfection, the overall levels of luciferase activity were similar to that of PV-Luc-EMCV. To analyze encapsidation of the dicistronic replicons, we used a system in which the capsid protein (P1) is provided in trans from a recombinant vaccinia virus (VV-P1). The PV-Luc-EMCV replicon was unstable upon serial passage in the presence of VV-P1, with deletions of the EMCV IRES region detected even during the initial transfection at 37 degrees C. Following serial passage in the presence of VV-P1 at 33 or 30 degrees C, we detected deleted genomes in which the luciferase gene was fused with the P2-P3 genes of the poliovirus genome so as to maintain the translational reading frame. In contrast, the EMCV-Luc-PV replicon was genetically stable during passage with VV-P1 at 33 or 30 degrees C. The encapsidation of EMCV-Luc-PV was compared to that of monocistronic replicons encoding luciferase with either a poliovirus or EMCV IRES. Analysis of the encapsidated replicons after four serial passages with VV-P1 revealed that the dicistronic replicon was encapsidated more efficiently than the monocistronic replicon with the EMCV IRES but less efficiently than the monicistronic replicon with the poliovirus IRES. The results of this study suggest a genetic predisposition for picornavirus genomes to contain a single IRES region and are discussed with respect to a role of the IRES in encapsidation.
Collapse
Affiliation(s)
- L K Johansen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
28
|
Bledsoe AW, Jackson CA, McPherson S, Morrow CD. Cytokine production in motor neurons by poliovirus replicon vector gene delivery. Nat Biotechnol 2000; 18:964-9. [PMID: 10973217 DOI: 10.1038/79455] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poliovirus replicon vectors transiently express foreign proteins selectively in motor neurons of the anterior horn of the spinal cord. Here we intraspinally inoculated mice transgenic for the poliovirus receptor (PVR) with replicons encoding murine tumor necrosis factor alpha (mTNF-alpha). We detected high-level expression of mTNF-alpha in the spinal cords of these animals at 8-12 h post inoculation; this returned to background by 72 h. The mice exhibited ataxia and tail atony, whereas animals given a replicon encoding green fluorescent protein (GFP) exhibited no neurological symptoms. Histology of spinal cords from mice given the replicon encoding mTNF-alpha revealed neuronal chromatolysis, reactive astrogliosis, decreased expression of myelin basic protein, and demyelination. These animals recovered with only slight residual damage. This study shows that replicon vectors have potential for targeted delivery of therapeutic proteins to the central nervous system and provide a new approach for treatment of spinal cord trauma and neurological disease.
Collapse
Affiliation(s)
- A W Bledsoe
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
29
|
Johansen LK, Morrow CD. The RNA encompassing the internal ribosome entry site in the poliovirus 5' nontranslated region enhances the encapsidation of genomic RNA. Virology 2000; 273:391-9. [PMID: 10915610 DOI: 10.1006/viro.2000.0433] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poliovirus replicons were constructed which contain the internal ribosome entry site (IRES) of encephalomyocarditis virus (EMCV) substituted for the poliovirus IRES. To monitor gene expression and encapsidation, the gene encoding firefly luciferase was substituted for the P1 gene. Replicons can be encapsidated following serial passage in the presence of a recombinant vaccinia virus, VV-P1, which expresses the poliovirus P1 protein following infection. Encapsidation of the wild-type replicon (PV-Luc) was accomplished at either 33 or 37 degrees C; the lower temperature actually resulted in greater amounts of encapsidated replicon. In contrast, the replicon with the EMCV IRES element (EMCV-Luc) was not efficiently encapsidated at 37 degrees C and, following serial passage with VV-P1 at 37 degrees C, was not amplified. EMCV-Luc was efficiently encapsidated, however, following serial passage with VV-P1 at 33 degrees C. Using the encapsidated EMCV-Luc obtained at 33 degrees C, we found that cells infected with EMCV-Luc at 33 or 37 degrees C produced similar amounts of luciferase. Encapsidated EMCV-Luc and PV-Luc had similar thermal stability at 33 and 37 degrees C. A single-round encapsidation analysis revealed that less EMCV-Luc was encapsidated at 37 than at 33 degrees C; less EMCV-Luc was encapsidated at 33 degrees C compared to PV-Luc at either 37 or 33 degrees C. The results of our studies suggest that in addition to influencing translation/replication, the IRES region of poliovirus can function to enhance encapsidation.
Collapse
Affiliation(s)
- L K Johansen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
30
|
Goodfellow I, Chaudhry Y, Richardson A, Meredith J, Almond JW, Barclay W, Evans DJ. Identification of a cis-acting replication element within the poliovirus coding region. J Virol 2000; 74:4590-600. [PMID: 10775595 PMCID: PMC111979 DOI: 10.1128/jvi.74.10.4590-4600.2000] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 02/16/2000] [Indexed: 12/15/2022] Open
Abstract
The replication of poliovirus, a positive-stranded RNA virus, requires translation of the infecting genome followed by virus-encoded VPg and 3D polymerase-primed synthesis of a negative-stranded template. RNA sequences involved in the latter process are poorly defined. Since many sequences involved in picornavirus replication form RNA structures, we searched the genome, other than the untranslated regions, for predicted local secondary structural elements and identified a 61-nucleotide (nt) stem-loop in the region encoding the 2C protein. Covariance analysis suggested the structure was well conserved in the Enterovirus genus of the Picornaviridae. Site-directed mutagenesis, disrupting the structure without affecting the 2C product, destroyed genome viability and suggested that the structure was required in the positive sense for function. Recovery of revertant viruses suggested that integrity of the structure was critical for function, and analysis of replication demonstrated that nonviable mutants did not synthesize negative strands. Our conclusion, that this RNA secondary structure constitutes a novel poliovirus cis-acting replication element (CRE), is supported by the demonstration that subgenomic replicons bearing lethal mutations in the native structure can be restored to replication competence by the addition of a second copy of the 61-nt wild-type sequence at another location within the genome. This poliovirus CRE functionally resembles an element identified in rhinovirus type 14 (K. L. McKnight and S. M. Lemon, RNA 4:1569-1584, 1998) and the cardioviruses (P. E. Lobert, N. Escriou, J. Ruelle, and T. Michiels, Proc. Natl. Acad. Sci. USA 96:11560-11565, 1999) but differs in sequence, structure, and location. The functional role and evolutionary significance of CREs in the replication of positive-sense RNA viruses is discussed.
Collapse
Affiliation(s)
- I Goodfellow
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- D J Evans
- Division of Virology, University of Glasgow, United Kingdom
| |
Collapse
|
32
|
Abstract
Central nervous system malignancies, particularly glioblastoma multiforme, pose significant problems for the development of novel therapeutics. In the absence of advances with standard surgical and chemotherapeutic approaches, the utilisation of genetically engineered viruses, both as direct oncolytic agents as well as for the delivery of foreign proteins, represents a significant advance in the experimental approach to management of patients with these incurable tumours. Among other viruses, HSV offers an opportunity to directly influence the replication of tumour cells within the central nervous system. Because of its propensity to replicate in neuronal tissue as well as its large coding capacity, it provides an experimental model for the development of novel therapeutics. The status of these experimental approaches will be summarised in this review.
Collapse
Affiliation(s)
- J M Markert
- Division of Neurosurgery, University of Alabama at Birmingham, 35233, USA
| | | | | | | | | |
Collapse
|
33
|
Novak MJ, Smythies LE, McPherson SA, Smith PD, Morrow CD. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease elicit a Th1 associated immune response. Vaccine 1999; 17:2384-91. [PMID: 10392620 DOI: 10.1016/s0264-410x(99)00035-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of a vaccine for Helicobacter pylori is a key strategy for reducing the worldwide prevalence of H. pylori infection. Although immunization with recombinant B subunit of H. pylori urease (ureB) has yielded promising results, for the most part, these studies relied on the use of strong adjuvant, cholera toxin, precluding the use in humans. Thus, the development of new vaccine strategies for H. pylori is essential. Previous studies from our laboratory have described a vaccine vector based on poliovirus in which foreign genes are substituted for the poliovirus capsid genes. The genomes encoding foreign proteins (replicons) are encapsidated into authentic poliovirions by providing the capsids in trans. To test the utility of replicons as a vaccine vector for H. pylori, a replicon was constructed which encodes ureB. Expression of ureB in cells from the replicon was demonstrated by metabolic labeling followed by immunoprecipitation with anti-urease antibodies. To investigate the immunogenicity of the replicons, mice containing the transgene for the receptor for poliovirus were immunized via the intramuscular route. Mice given three doses of replicons did not develop substantial antibodies to ureB as determined by Western blot analysis using lysates from H. pylori. In contrast, mice given two doses of replicon followed by a single injection of recombinant ureB developed serum antibodies to ureB which were predominately IgG2a. Splenic lymphocytes from mice immunized with replicons alone, or replicons plus recombinant ureB produced abundant interferon-gamma and no detectable interleukin-4 upon stimulation with recombinant ureB. These results establish that poliovirus replicons encoding H. pylori ureB are immunogenic and induce primarily a T helper 1 associated immune response.
Collapse
Affiliation(s)
- M J Novak
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Virus assembly is a term describing several areas of current research: protein-RNA recognition; the control of the formation of large complexes; and mechanisms of particle maturation. Our understanding of these processes is increasing as a result of the efforts of numerous studies. Crystal structures have recently been solved for relatively complex assembly intermediates.
Collapse
Affiliation(s)
- L Liljas
- Department of Molecular Biology, Uppsala University, Box 590, 751 24 Uppsala, Sweden.
| |
Collapse
|
35
|
Nugent CI, Johnson KL, Sarnow P, Kirkegaard K. Functional coupling between replication and packaging of poliovirus replicon RNA. J Virol 1999; 73:427-35. [PMID: 9847348 PMCID: PMC103849 DOI: 10.1128/jvi.73.1.427-435.1999] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Poliovirus RNA genomes that contained deletions in the capsid-coding regions were synthesized in monkey kidney cells that constitutively expressed T7 RNA polymerase. These replication-competent subgenomic RNAs, or replicons (G. Kaplan and V. R. Racaniello, J. Virol. 62:1687-1696, 1988), were encapsidated in trans by superinfecting polioviruses. When superinfecting poliovirus resistant to the antiviral compound guanidine was used, the RNA replication of the replicon RNAs could be inhibited independently of the RNA replication of the guanidine-resistant helper virus. Inhibiting the replication of the replicon RNA also profoundly inhibited its trans-encapsidation, even though the capsid proteins present in the cells could efficiently encapsidate the helper virus. The observed coupling between RNA replication and RNA packaging could account for the specificity of poliovirus RNA packaging in infected cells and the observed effects of mutations in the coding regions of nonstructural proteins on virion morphogenesis. It is suggested that this coupling results from direct interactions between the RNA replication machinery and the capsid proteins. The coupling of RNA packaging to RNA replication and of RNA replication to translation (J. E. Novak and K. Kirkegaard, Genes Dev. 8:1726-1737, 1994) could serve as mechanisms for late proofreading of poliovirus RNA, allowing only those RNA genomes capable of translating a full complement of functional RNA replication proteins to be propagated.
Collapse
Affiliation(s)
- C I Nugent
- Department of Molecular, Cellular and Developmental Biology and Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Brome mosaic bromovirus (BMV) and cucumber mosaic cucumovirus (CMV) are structurally and genetically very similar. The specificity of the BMV and CMV coat proteins (CPs) during in vivo encapsidation was studied using two RNA3 chimera in which the respective CP genes were exchanged. The replicative competence of each chimera was analyzed in Nicotiana benthamiana protoplasts, and their ability to cause infections was examined in two common permissive hosts, Chenopodium quinoa and N. benthamiana. Each RNA3 chimera replicated to near wild-type (wt) levels and synthesized CPs of expected parental origin when co-inoculated with their respective genomic wt RNAs 1 and 2. However, inoculum containing each chimera was noninfectious in the common permissive hosts tested. Encapsidation assays in N. benthamiana protoplasts revealed that CMV CP expressed from chimeric BMV RNA3 was capable of packaging heterologous BMV RNA, however, at a lower efficiency than parental BMV CP. By contrast, BMV CP expressed from chimeric CMV RNA3 was unable to package heterologous CMV RNA. These observations demonstrate that BMV CP, but not CMV CP, exhibits a high degree of specificity during in vivo packaging. The reasons for the noninfectious nature of each chimera in the host plants tested and factors likely to affect encapsidation in vivo are discussed.
Collapse
Affiliation(s)
- F Osman
- Department of Plant Pathology, University of California, Riverside, Calfornia, 92521-0122, USA
| | | | | | | |
Collapse
|
37
|
Jia XY, Van Eden M, Busch MG, Ehrenfeld E, Summers DF. trans-encapsidation of a poliovirus replicon by different picornavirus capsid proteins. J Virol 1998; 72:7972-7. [PMID: 9733835 PMCID: PMC110132 DOI: 10.1128/jvi.72.10.7972-7977.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 x 10(6) infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.
Collapse
Affiliation(s)
- X Y Jia
- Departments of Microbiology and Molecular Genetics, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|