1
|
Yuan P, Yan J, Wang S, Guo Y, Xi X, Han S, Yin J, Peng B, He X, Bodem J, Liu W. Trim28 acts as restriction factor of prototype foamy virus replication by modulating H3K9me3 marks and destabilizing the viral transactivator Tas. Retrovirology 2021; 18:38. [PMID: 34903241 PMCID: PMC8670036 DOI: 10.1186/s12977-021-00584-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Background Prototype foamy virus (PFV) is nonpathogenic complex retroviruses that express a transcriptional transactivator Tas, which is essential for the activity of viral long terminal repeat (LTR) promoter and internal promoter (IP). Tripartite motif-containing protein 28 (Trim28) is well known as a scaffold protein normally enriched in gene promoter region to repress transcription. We sought to determine if whether Trim28 could be enriched in PFV promoter region to participate the establishment of PFV latency infection. Results In this study, we show that Trim28 restricts Tas-dependent transactivation activity of PFV promoter and negatively regulates PFV replication. Trim28 was found to be enriched in LTR instead of IP promoter regions of PFV genome and contribute to the maintenance of histone H3K9me3 marks on the LTR promoter. Furthermore, Trim28 interacts with Tas and colocalizes with Tas in the nucleus. Besides, we found that Trim28, an E3 ubiquitin ligase, binds directly to and promotes Tas for ubiquitination and degradation. And the RBCC domain of Trim28 is required for the ubiquitination and degradation of Tas. Conclusions Collectively, our findings not only identify a host factor Trim28 negatively inhibits PFV replication by acting as transcriptional restriction factor enriched in viral LTR promoter through modulating H3K9me3 mark here, but also reveal that Trim28 mediated ubiquitin proteasome degradation of Tas as a mechanism underlying Trim28 restricts Tas-dependent transcription activity of PFV promoter and PFV replication. These findings provide new insights into the process of PFV latency establishment. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Peipei Yuan
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Wang
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yang Guo
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xueyan Xi
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jochen Bodem
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, 97078, Würzburg, Germany
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, No. 185, Donghu Road, Wuchang District, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
Yedavalli VRK, Patil A, Parrish J, Kozak CA. A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology 2021; 18:20. [PMID: 34261506 PMCID: PMC8278194 DOI: 10.1186/s12977-021-00564-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/29/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Retroviruses exist as exogenous infectious agents and as endogenous retroviruses (ERVs) integrated into host chromosomes. Such endogenous retroviruses (ERVs) are grouped into three classes roughly corresponding to the seven genera of infectious retroviruses: class I (gamma-, epsilonretroviruses), class II (alpha-, beta-, delta-, lentiretroviruses) and class III (spumaretroviruses). Some ERVs have counterparts among the known infectious retroviruses, while others represent paleovirological relics of extinct or undiscovered retroviruses. RESULTS Here we identify an intact ERV in the Anuran amphibian, Xenopus tropicalis. XtERV-S has open reading frames (ORFs) for gag, pol (polymerase) and env (envelope) genes, with a small additional ORF in pol and a serine tRNA primer binding site. It has unusual features and domain relationships to known retroviruses. Analyses based on phylogeny and functional motifs establish that XtERV-S gag and pol genes are related to the ancient env-less class III ERV-L family but the surface subunit of env is unrelated to known retroviruses while its transmembrane subunit is class I-like. LTR constructs show transcriptional activity, and XtERV-S transcripts are detected in embryos after the maternal to zygotic mid-blastula transition and before the late tailbud stage. Tagged Gag protein shows typical subcellular localization. The presence of ORFs in all three protein-coding regions along with identical 5' and 3' LTRs (long terminal repeats) indicate this is a very recent germline acquisition. There are older, full-length, nonorthologous, defective copies in Xenopus laevis and the distantly related African bullfrog, Pyxicephalus adspersus. Additional older, internally deleted copies in X. tropicalis carry a 300 bp LTR substitution. CONCLUSIONS XtERV-S represents a genera-spanning member of the largely env-less class III ERV that has ancient and modern copies in Anurans. This provirus has an env ORF with a surface subunit unrelated to known retroviruses and a transmembrane subunit related to class I gammaretroviruses in sequence and organization, and is expressed in early embryogenesis. Additional XtERV-S-related but defective copies are present in X. tropicalis and other African frog taxa. XtERV-S is an unusual class III ERV variant, and it may represent an important transitional retroviral form that has been spreading in African frogs for tens of millions of years.
Collapse
Affiliation(s)
- Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Akash Patil
- Department of Biomedical Engineering, John Hopkins University, Baltimore, MD, 21205, USA
| | - Janay Parrish
- Internal Medicine, Northwell Health, Lenox Hill Hospital, New York, NY, 10075, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
4
|
A purine-rich element in foamy virus pol regulates env splicing and gag/pol expression. Retrovirology 2017; 14:10. [PMID: 28166800 PMCID: PMC5294762 DOI: 10.1186/s12977-017-0337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background The foamy viral genome encodes four central purine-rich elements localized in the integrase-coding region of pol. Previously, we have shown that the first two of these RNA elements (A and B) are required for protease dimerization and activation. The D element functions as internal polypurine tract during reverse transcription. Peters et al., described the third element (C) as essential for gag expression suggesting that it might serve as an RNA export element for the unspliced genomic transcript. Results Here, we analysed env splicing and demonstrate that the described C element composed of three GAA repeats known to bind SR proteins regulates env splicing, thus balancing the amount of gag/pol mRNAs. Deletion of the C element effectively promotes a splice site switch from a newly identified env splice acceptor to the intrinsically strong downstream localised env 3′ splice acceptor permitting complete splicing of almost all LTR derived transcripts. We provide evidence that repression of this env splice acceptor is a prerequisite for gag expression. This repression is achieved by the C element, resulting in impaired branch point recognition and SF1/mBBP binding. Separating the branch point from the overlapping purine-rich C element, by insertion of only 20 nucleotides, liberated repression and fully restored splicing to the intrinsically strong env 3′ splice site. This indicated that the cis-acting element might repress splicing by blocking the recognition of essential splice site signals. Conclusions The foamy viral purine-rich C element regulates splicing by suppressing the branch point recognition of the strongest env splice acceptor. It is essential for the formation of unspliced gag and singly spliced pol transcripts. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0337-6) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Ma Q, Tan J, Cui X, Luo D, Yu M, Liang C, Qiao W. Residues R(199)H(200) of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization. Virology 2013; 449:215-23. [PMID: 24418555 DOI: 10.1016/j.virol.2013.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R(199)H(200) and R(221)R(222)R(223) that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R(221)R(222)R(223), but not R(199)H(200), relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R(221)R(222)R(223) in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R(199)H(200) disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R(199)H(200) residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R(199)H(200) in Bel1 impairs PFV replication to a much greater extent than mutating R(221)R(222)R(223). Collectively, our findings suggest that R(199)H(200) directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity.
Collapse
Affiliation(s)
- Qinglin Ma
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxu Cui
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China; Centre Laboratory, TianJin 4th Centre Hospital, Tianjin 300140, China
| | - Di Luo
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Yu
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2; Departments of Medicine McGill University, Montreal, QC, Canada; Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Liu W, Lei J, Liu Y, Slavkovic Lukic D, Räthe AM, Bao Q, Kehl T, Bleiholder A, Hechler T, Löchelt M. Feline foamy virus-based vectors: advantages of an authentic animal model. Viruses 2013; 5:1702-18. [PMID: 23857307 PMCID: PMC3738957 DOI: 10.3390/v5071702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023] Open
Abstract
New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Martin Löchelt
- Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: (W.L.); (J.L.); (Y.L.); (D.S.L.); (A.-M.R.); (Q.B.); (T.K.); (A.B.); (T.H.)
| |
Collapse
|
8
|
Schrom EM, Moschall R, Hartl MJ, Weitner H, Fecher D, Langemeier J, Bohne J, Wöhrl BM, Bodem J. U1snRNP-mediated suppression of polyadenylation in conjunction with the RNA structure controls poly (A) site selection in foamy viruses. Retrovirology 2013; 10:55. [PMID: 23718736 PMCID: PMC3694450 DOI: 10.1186/1742-4690-10-55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 05/21/2013] [Indexed: 11/13/2022] Open
Abstract
Background During reverse transcription, retroviruses duplicate the long terminal repeats (LTRs). These identical LTRs carry both promoter regions and functional polyadenylation sites. To express full-length transcripts, retroviruses have to suppress polyadenylation in the 5′LTR and activate polyadenylation in the 3′LTR. Foamy viruses have a unique LTR structure with respect to the location of the major splice donor (MSD), which is located upstream of the polyadenylation signal. Results Here, we describe the mechanisms of foamy viruses regulating polyadenylation. We show that binding of the U1 small nuclear ribonucleoprotein (U1snRNP) to the MSD suppresses polyadenylation at the 5′LTR. In contrast, polyadenylation at the 3′LTR is achieved by adoption of a different RNA structure at the MSD region, which blocks U1snRNP binding and furthers RNA cleavage and subsequent polyadenylation. Conclusion Recently, it was shown that U1snRNP is able to suppress the usage of intronic cryptic polyadenylation sites in the cellular genome. Foamy viruses take advantage of this surveillance mechanism to suppress premature polyadenylation at the 5’end of their RNA. At the 3’end, Foamy viruses use a secondary structure to presumably block access of U1snRNP and thereby activate polyadenylation at the end of the genome. Our data reveal a contribution of U1snRNP to cellular polyadenylation site selection and to the regulation of gene expression.
Collapse
Affiliation(s)
- Eva-Maria Schrom
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gessain A, Rua R, Betsem E, Turpin J, Mahieux R. HTLV-3/4 and simian foamy retroviruses in humans: discovery, epidemiology, cross-species transmission and molecular virology. Virology 2013; 435:187-99. [PMID: 23217627 PMCID: PMC7111966 DOI: 10.1016/j.virol.2012.09.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022]
Abstract
Non-human primates are considered to be likely sources of viruses that can infect humans and thus pose a significant threat to human population. This is well illustrated by some retroviruses, as the simian immunodeficiency viruses and the simian T lymphotropic viruses, which have the ability to cross-species, adapt to a new host and sometimes spread. This leads to a pandemic situation for HIV-1 or an endemic one for HTLV-1. Here, we present the available data on the discovery, epidemiology, cross-species transmission and molecular virology of the recently discovered HTLV-3 and HTLV-4 deltaretroviruses, as well as the simian foamy retroviruses present in different human populations at risk, especially in central African hunters. We discuss also the natural history in humans of these retroviruses of zoonotic origin (magnitude and geographical distribution, possible inter-human transmission). In Central Africa, the increase of the bushmeat trade during the last decades has opened new possibilities for retroviral emergence in humans, especially in immuno-compromised persons.
Collapse
Affiliation(s)
- Antoine Gessain
- Institut Pasteur, Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, France, Département de Virologie, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris, Cedex 15, France.
| | | | | | | | | |
Collapse
|
10
|
Complete genome sequences of two novel European clade bovine foamy viruses from Germany and Poland. J Virol 2012; 86:10905-6. [PMID: 22966195 DOI: 10.1128/jvi.01875-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein.
Collapse
|
11
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Mühle M, Bleiholder A, Kolb S, Hübner J, Löchelt M, Denner J. Immunological properties of the transmembrane envelope protein of the feline foamy virus and its use for serological screening. Virology 2011; 412:333-40. [PMID: 21316070 DOI: 10.1016/j.virol.2011.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/17/2010] [Accepted: 01/14/2011] [Indexed: 11/16/2022]
Abstract
The transmembrane envelope (TM) proteins of retroviruses are used as antigen in diagnostic immunoassays and they represent a conserved target for neutralizing antibodies. To analyze the situation in infections with the feline foamy virus (FFV), its recombinant TM protein was produced and used for ELISA and Western blot analyses. Screening sera from 404 German cats showed that 39% reacted against the TM protein, the same infection rate was determined using the Gag protein. Epitope mapping showed antibodies against the membrane proximal external region (MPER) of the TM protein in the sera from infected cats, but attempts to induce neutralizing antibodies by immunization with the recombinant TM protein failed. This is the first report demonstrating that the TM protein of the FFV is highly immunogenic and valuable for serological screening. Similar to HIV-1, but in contrast to different gammaretroviruses, immunization with the TM protein of FFV did not induce neutralizing antibodies.
Collapse
Affiliation(s)
- Michael Mühle
- Robert Koch Institute, Berlin, Nordufer 20, 13553 Germany
| | | | | | | | | | | |
Collapse
|
13
|
Bodem J, Schied T, Gabriel R, Rammling M, Rethwilm A. Foamy virus nuclear RNA export is distinct from that of other retroviruses. J Virol 2011; 85:2333-41. [PMID: 21159877 PMCID: PMC3067772 DOI: 10.1128/jvi.01518-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/07/2010] [Indexed: 01/09/2023] Open
Abstract
Most retroviruses express all of their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. Two pathways have been described that explain how retroviruses circumvent this nuclear export inhibition. One involves a constitutive transport element in the viral RNA that interacts with the cellular mRNA transporter proteins NXF1 and NXT1 to facilitate nuclear export. The other pathway relies on the recognition of a viral RNA element by a virus-encoded protein that interacts with the karyopherin CRM1. In this report, we analyze the protein factors required for the nuclear export of unspliced foamy virus (FV) mRNA. We show that this export is CRM1 dependent. In contrast to other complex retroviruses, FVs do not encode an export-mediating protein. Cross-linking experiments indicated that the cellular protein HuR binds to the FV RNA. Inhibition studies showed that both ANP32A and ANP32B, which are known to bridge HuR and CRM1, are essential for FV RNA export. By using this export pathway, FVs solve a central problem of viral replication.
Collapse
Affiliation(s)
- Jochen Bodem
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Tanja Schied
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Richard Gabriel
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Matthias Rammling
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| | - Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str. 7, 97078 Würzburg, Germany
| |
Collapse
|
14
|
Bodem J, Kräusslich HG, Rethwilm A. Acetylation of the foamy virus transactivator Tas by PCAF augments promoter-binding affinity and virus transcription. J Gen Virol 2007; 88:259-263. [PMID: 17170459 DOI: 10.1099/vir.0.82169-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was shown recently that retrovirus transactivators interact with transcriptional coactivators, such as histone acetyltransferases (HATs). Foamy viruses (FVs) direct gene expression from the long terminal repeat and from an internal promoter. The activity of both promoters is strictly dependent on the DNA-binding transactivator Tas. Recently, it was shown that Tas interacts with the HATs p300 and PCAF. Based on these findings, it is demonstrated here that PCAF has the ability to acetylate Tas in vitro and in vivo. Tas acetylation resulted in enhanced DNA binding to the virus promoters. In vitro transcription reactions on non-chromatinized template showed that only acetylated Tas enhanced transcription significantly. These results demonstrate that acetylation of the FV transactivator Tas may be an effective means to regulate virus transcription.
Collapse
Affiliation(s)
- Jochen Bodem
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
- Institut für Virologie, Universität Heidelberg, Germany
| | | | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|
15
|
Omoto S, Brisibe EA, Okuyama H, Fujii YR. Feline foamy virus Tas protein is a DNA-binding transactivator. J Gen Virol 2004; 85:2931-2935. [PMID: 15448355 DOI: 10.1099/vir.0.80088-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foamy viruses (FVs) harbour a transcriptional transactivator (Tas) and two Tas-responsive promoter regions, one in the 5′ long terminal repeat (LTR) and the other an internal promoter (IP) in the envelope gene. To analyse the mechanism of transactivation of the FVs, the specificity of feline FV (FFV) Tas protein, which is more distantly related to the respective proteins of non-human primate origin, were investigated. FFV Tas has been shown specifically to activate gene expression from the cognate promoters. No cross-transactivation was noted of the prototype foamy virus and human immunodeficiency virus type 1 LTR. The putative transactivation response element of FFV Tas was mapped to the 5′ LTR U3 region (approximately nt −228 to −195). FFV Tas binds to this element in addition to a previously described sequence (position −66 to −51). It is therefore concluded that FFV Tas is a DNA-binding transactivator that interacts with at least two regions in the virus LTR.
Collapse
Affiliation(s)
- Shinya Omoto
- Molecular Biology and Retroviral Genetics Group, Division of Nutritional Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Ebiamadon Andi Brisibe
- Research and Scientific Developments Division, Molecular Bio/Sciences Ltd, 124 MCC Road, Calabar, Cross River State, Nigeria
| | - Harumi Okuyama
- Molecular Biology and Retroviral Genetics Group, Division of Nutritional Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoichi R Fujii
- Molecular Biology and Retroviral Genetics Group, Division of Nutritional Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
16
|
Bastone P, Löchelt M. Kinetics and characteristics of replication-competent revertants derived from self-inactivating foamy virus vectors. Gene Ther 2004; 11:465-73. [PMID: 14973540 DOI: 10.1038/sj.gt.3302185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, self-inactivating (SIN) retroviral vectors based on feline foamy virus (FFV) were constructed and analysed. The FFV SIN vectors were devoid of the core FFV long terminal repeat promoter plus upstream sequences but contained all structural and regulatory genes. This design allowed sensitive detection of replication-competent revertants (RCRs). The FFV SIN vectors efficiently transduced the green fluorescence protein into recipient cells. However, RCRs appeared after serial passages of transduced cells. In all RCR clones analysed, parts of the heterologous cytomegalovirus immediate early promoter, originally driving expression of the FFV vector genome, were taken up to restore the deleted SIN promoter function required for replication competence. The RCRs were strongly reduced in replication capacity compared with the parental replication-competent vectors containing the FFV promoter. In all RCR genomes analysed, the uptake of the heterologous promoter was accompanied by deletion of almost the complete marker gene. Although the RCRs described in this study may not have the capacity to spread in humans and animals, they may pose a theoretical risk, for instance during transduction of haematopoietic stem cells. Thus, FV-based SIN vectors require additional genetic modifications in order to avoid RCRs.
Collapse
Affiliation(s)
- P Bastone
- Abt. Genomveränderung und Carcinogenese, Forschungsschwerpunkt Infektion und Krebs, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | |
Collapse
|
17
|
Bodem J, Kang Y, Flügel RM. Comparative functional characterization of the feline foamy virus transactivator reveals its species specificity. Virology 2004; 318:32-6. [PMID: 14972532 DOI: 10.1016/j.virol.2003.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2003] [Revised: 09/29/2003] [Accepted: 09/29/2003] [Indexed: 11/19/2022]
Abstract
Foamy virus (FV) Bel1/Tas transactivators act as key regulators of gene expression and directly bind DNA Bel1 response elements (BREs) in both the internal (IP) and 5'LTR promoters. Here, we report the mapping and the virus species specificity of the nonhomologous feline foamy virus (FFV) BREs in both promoters. The data indicate that FFV Bel1 did not bind the primate FV IP.BRE and that primate FV Bel1 was not capable of binding the FFV IP.BRE. In addition, we show that the C-terminal activation domain of FFV Bel1 does not contribute to DNA binding because a C-terminal trans-dominant negative FFV Bel1 mutant was still able to bind to both promoters.
Collapse
Affiliation(s)
- Jochen Bodem
- Retroviral Gene Expression, German Cancer Research Center, Applied Tumorvirology, D-69009 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Roy J, Rudolph W, Juretzek T, Gärtner K, Bock M, Herchenröder O, Lindemann D, Heinkelein M, Rethwilm A. Feline foamy virus genome and replication strategy. J Virol 2003; 77:11324-31. [PMID: 14557618 PMCID: PMC229293 DOI: 10.1128/jvi.77.21.11324-11331.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crucial aspects of the foamy virus (FV) replication strategy have so far only been investigated for the prototypic FV (PFV) isolate, which is supposed to be derived from nonhuman primates. To study whether the unusual features of this replication pathway also apply to more-distantly related FVs, we constructed feline FV (FFV) infectious molecular clones and vectors. It is shown by quantitative RNA and DNA PCR analysis that FFV virions contain more RNA than DNA. Full-length linear DNA was found in extracellular FFV by Southern blot analysis. Similar to PFV, azidothymidine inhibition experiments and the transfection of nucleic acids extracted from extracellular FFV indicated that DNA is the functional relevant FFV genome. Unlike PFV, no evidence was found indicating that FFV recycles its DNA into the nucleus.
Collapse
Affiliation(s)
- Jacqueline Roy
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Foamy viruses (PFVs), also called spumaviruses, are complex retroviruses inducing a characteristic cytopathic effect in cell culture, leading rapidly to cell lysis. These viruses have been isolated mostly in non-human primates, but three non primate PFVs were characterized, namely the bovine foamy virus, the feline foamy virus and more recently the equine foamy virus. In their hosts, PFVs seem to be apathogenic, mirroring an efficient control of virus replication in vivo. Comparing the biology of the different virus isolates will certainly help to unravel the biology of these retroviruses.
Collapse
Affiliation(s)
- A Saïb
- CNRS UPR9051, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France.
| |
Collapse
|
20
|
Abstract
An overview of the pattern and mechanisms of spuma or foamy virus (FV) gene expression is presented. FVs are complex retroviruses with respect to their genetic outfit and the elements used to control and regulate expression of the viral genome. The increased insight into transcriptional and posttranscriptional mechanisms has revealed that the FVs are distinct, unconventional retroviruses clearly apart from the orthoretroviruses. Although less characterized than the orthoretroviruses, FVs have several unique features that are important for construction and assembly of FV-based vectors for targeted gene delivery and vaccination purposes. Some of these distinguishing features are directly related to the FV-specific mechanisms of gene expression and include (1) the presence of an internal, functional active second transcription unit for expression of the nonstructural genes, (2) the utilization of a subgenomic, spliced transcript for Pol protein expression, and (3) distinct but not yet understood mechanisms for the nuclear exit of defined transcripts and thus an additional level of posttranscriptional control of gene expression. Finally, the interactions of the viral transactivator not only with both viral promoters but also with regulatory elements controlling the expression of defined cellular genes are an important issue with respect to vector development and the apparent apathogenicity of FVs in their natural hosts.
Collapse
Affiliation(s)
- M Löchelt
- Abteilung Retrovirale Genexpression, Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| |
Collapse
|
21
|
Abstract
The foamy viral proteases (FV PRs) are set apart from other retroviral processing enzymes by unique features. The first remarkable property is that FV PRs are enzymatically active as high-molecular-mass Pro-Pol proteins. Hence there exist multiple forms of active FV PRs that likely contribute to cleavage site specificity. A FV PR of low molecular size is not detectable in purified virions, in contrast to PRs of other retroviruses that are found in virus particles. Because the major part of Pol remains attached to the amino-terminal enzymatically active PR protein region, the FV-specific way of expressing Pro-Pol polyproteins from a pol-specific transcript provides for the incorporation of Pro-Pol and IN into virus particles. Proteolytic processing of Gag and Pol proteins is incomplete and delayed. Another novel feature is that the catalytic center of the active dimers of cat FV PR consists of D-S/T-Q instead of D-S/T-G, an unprecedented feature of this enzyme. The temporal and spatial control and the factors that regulate FV PRs remain to be elucidated.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aspartic Acid Endopeptidases/biosynthesis
- Aspartic Acid Endopeptidases/genetics
- Aspartic Acid Endopeptidases/metabolism
- Fusion Proteins, gag-pol/biosynthesis
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/metabolism
- Gene Expression Regulation, Viral
- Gene Products, env/genetics
- Gene Products, env/physiology
- Gene Products, gag/biosynthesis
- Gene Products, gag/metabolism
- Gene Products, pol/biosynthesis
- Gene Products, pol/metabolism
- Humans
- Molecular Sequence Data
- Mutation
- Polyproteins/chemistry
- Polyproteins/physiology
- Protein Processing, Post-Translational
- Rabbits
- Spumavirus/enzymology
- Spumavirus/genetics
- Spumavirus/physiology
- Virion/physiology
- Virus Assembly
Collapse
Affiliation(s)
- R M Flügel
- Retroviral Gene Expression, Research Programme Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany.
| | | |
Collapse
|
22
|
Abstract
The main functions of retroviral glycoproteins are recognition and binding to the cellular virus receptor as well as fusion of viral and cellular lipid membranes to release the viral particle into the cytoplasm of the host cell. Foamy viruses (FVs) are a special group of retroviruses with a very broad host range that use a currently unknown cellular receptor for entry. Nevertheless, many functions of the FV envelope glycoproteins in the viral replication cycle have been characterized in detail over the last years. Several unique features not found for any other retrovirus were identified. These include the presence of two types of FV Env proteins, gp170(Env-Bet) and gp130Env, and the strict requirement of gp130Env coexpression for the FV budding and particle release process, a function that cannot be compensated for by any other viral glycoprotein tested so far. Furthermore, domains in gp130Env could be characterized that influence its intracellular distribution, cell surface transport, and its specific interaction with the viral capsid during particle egress. In addition, it has recently been shown that gp130Env expression alone induces release of subviral particles from cells. This review summarizes the current knowledge about the nature of the FV Env proteins and their function in the viral replication cycle.
Collapse
Affiliation(s)
- D Lindemann
- Institut für Virologie, Medizinische Fakultät Carl-Gustav-Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | | |
Collapse
|
23
|
Schwantes A, Truyen U, Weikel J, Weiss C, Löchelt M. Application of chimeric feline foamy virus-based retroviral vectors for the induction of antiviral immunity in cats. J Virol 2003; 77:7830-42. [PMID: 12829823 PMCID: PMC161927 DOI: 10.1128/jvi.77.14.7830-7842.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to define the potential and applicability of replication-competent foamy virus-based vaccine vectors, recombinant feline foamy virus (FFV) vectors encoding defined segments of the feline calicivirus (FCV) capsid protein E domain were constructed. In cell cultures, these FFV-FCV vectors efficiently transduced and expressed a hybrid fusion protein consisting of the essential FFV Bet protein and the attached FCV E domains. The stability of the vectors in vitro was inversely correlated to the size of the heterologous insert. The deletion of a part of the FFV U3 sequence in these FFV-FCV vectors did not interfere with replication and titer in cell cultures but increased the genetic stability of the hybrid vectors. Selected chimeric vectors were injected into immunocompetent cats and persisted in the transduced host concomitant with a strong and specific humoral immune response against vector components. In a substantial number of cats, antibodies directed against the FCV E domain were induced by the FFV-FCV vectors, but no FCV-neutralizing activities were detectable in vitro. When the vaccinated cats were challenged with a high-titer FCV dose, sterile immunity was not induced by any of the hybrid FFV-FCV vectors. However, the FFV-FCV vector with a truncated U3 region of the long terminal repeat promoter significantly reduced the duration of FCV shedding after challenge and suppressed the appearance of FCV-specific ulcers. Possible mechanisms contributing to the partial protection will be discussed.
Collapse
Affiliation(s)
- Astrid Schwantes
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69009 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
24
|
Schwantes A, Ortlepp I, Löchelt M. Construction and functional characterization of feline foamy virus-based retroviral vectors. Virology 2002; 301:53-63. [PMID: 12359446 DOI: 10.1006/viro.2002.1543] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Replication-competent feline foamy or spuma virus (FFV) vectors were constructed and functionally tested. The unmodified FFV vector genome expressed by the strong human cytomegalovirus immediate early promoter encodes FFV particles that were replication-competent in cell cultures. Virus derived from the cloned FFV DNA replicated and persisted in experimentally infected cats similar to the FFV isolate FUV. A FFV vector partially deleted in the noncoding area of the U3 region was used to transduce the gene for the green fluorescent protein (Gfp) into cell cultures. Gfp was expressed either by an internal ribosomal entry site (IRES) or as C-terminal fusion protein linked to Bet that was recently shown to be essential for FFV replication. Whereas the genetic stability of the IRES-Gfp construct was comparably low, the Bet-Gfp fusion protein was detectable upon serial cell-free vector passages. However, genetic rearrangements also occurred leading to the concomitant loss of marker gene expression.
Collapse
Affiliation(s)
- Astrid Schwantes
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, 69009, Heidelberg, Germany
| | | | | |
Collapse
|
25
|
Alke A, Schwantes A, Kido K, Flötenmeyer M, Flügel RM, Löchelt M. The bet gene of feline foamy virus is required for virus replication. Virology 2001; 287:310-20. [PMID: 11531409 DOI: 10.1006/viro.2001.1065] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foamy viruses (FV) are complex retroviruses with additional bel genes located between env and the 3' long-terminal repeat. The functions of the bel 2 and bet genes are unknown and both are dispensable for replication of the prototypic human foamy virus in cell cultures. We examined the function(s) of bel 2 and bet of the distantly related feline foamy virus (FFV) in the proviral context. Mutagenesis was used to alter the Bel 2 and Bet or to abrogate their expression. The Bel 2/Bet mutants showed a 1000-fold reduced viral titer in feline kidney cells; in human 293T cells, viral titer was only about 10-fold reduced compared to wild-type FFV. In both cell types, the Bel 2/Bet mutations resulted in a reduced release of FFV particles. The results indicate that FFV Bet is required for efficient virus replication. The functions of the Bel 2 and Bet proteins are discussed.
Collapse
Affiliation(s)
- A Alke
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Alke A, Schwantes A, Zemba M, Flügel RM, Löchelt M. Characterization of the humoral immune response and virus replication in cats experimentally infected with feline foamy virus. Virology 2000; 275:170-6. [PMID: 11017797 DOI: 10.1006/viro.2000.0537] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cats were experimentally infected with cell culture-adapted feline foamy virus (FFV, spumaretrovirinae) isolate FUV. FFV was consistently recovered from peripheral blood leukocytes and throat samples of FFV-infected cats starting 2 to 3 weeks postinfection (p. i.), indicative of the establishment of persistent FFV infections. Viral persistence was established, even despite neutralizing antibodies that appeared early after infection. The humoral immune response toward FFV was quantitatively and qualitatively analyzed over time. FFV Gag-specific antibodies were first detected 2 weeks p. i. and increased further; reactivities to the other structural and nonstructural FFV proteins appeared slightly delayed. Reactivities against FFV Pol and Gag proteins were detectable by immunoblotting and radioimmunoprecipitation, whereas the latter techniques had to be employed for the unambiguous detection of FFV Env-, Bet-, and Bel 1-specific antibodies.
Collapse
Affiliation(s)
- A Alke
- Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
27
|
Zemba M, Alke A, Bodem J, Winkler IG, Flower RL, Pfrepper K, Delius H, Flügel RM, Löchelt M. Construction of infectious feline foamy virus genomes: cat antisera do not cross-neutralize feline foamy virus chimera with serotype-specific Env sequences. Virology 2000; 266:150-6. [PMID: 10612669 DOI: 10.1006/viro.1999.0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Full-length genomes of the feline foamy virus (FFV or FeFV) isolate FUV were constructed. DNA clone pFeFV-7 stably directed the expression of infectious FFV progeny virus indistinguishable from wild-type, uncloned FFV isolate FUV. The env and bel 1 genes of pFeFV-7 were substituted for by corresponding sequences of the FFV serotype 951 since previous studies implicated a defined part of FFV Env protein as responsible for serotype-specific differences in serum neutralization (I. G. Winkler, R. M. Flügel, M. Löchelt, and R. L. P. Flower, 1998. Virology 247: 144-151). Recombinant virus derived from chimeric plasmid pFeFV-7/951 containing the hybrid env gene and the parental clone pFeFV-7 were used for neutralization studies. By means of a rapid titration assay for FFV infectivity, we show that progeny virus derived from plasmid pFeFV-7 was neutralized by FUV- but not by 951-specific antisera, whereas pFeFV-7/951-derived chimeric virus was neutralized by 951-specific antisera only. Both recombinant proviruses will be useful for repeated delivery of foreign genes for therapeutic gene applications into cats.
Collapse
Affiliation(s)
- M Zemba
- Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, 69009, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bodem J, Zemba M, Flügel RM. Nuclear localization of the functional Bel 1 transactivator but not of the gag proteins of the feline foamy virus. Virology 1998; 251:22-7. [PMID: 9813199 DOI: 10.1006/viro.1998.9369] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions between host cells and foamy or spumaretroviruses are different from those of other known retroviruses. Previous work has suggested that the Gag and high-affinity DNA-binding Bel 1 transactivator of human foamy virus are localized in the nuclei of infected cells. Using two independent detection methods, we show here that the functionally active Bel 1 transactivator protein of feline foamy virus is of nuclear localization. In contrast to that reported for the human foamy virus Gag protein, the cat foamy virus Gag proteins exclusively localized in the cytoplasm close to perinuclear regions.
Collapse
Affiliation(s)
- J Bodem
- Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, 69009, Germany
| | | | | |
Collapse
|
29
|
Bock M, Heinkelein M, Lindemann D, Rethwilm A. Cells expressing the human foamy virus (HFV) accessory Bet protein are resistant to productive HFV superinfection. Virology 1998; 250:194-204. [PMID: 9770433 DOI: 10.1006/viro.1998.9362] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bet is a foamy virus (FV) accessory protein not required for virus replication. The function of Bet is not understood. We report on the generation of cell lines stably expressing the HFV Bet protein. In Bet+ cells, HFV replication was reduced by approximately 3-4 orders of magnitude compared with control cells. The HFV Bet-expressing cells only partially resisted infection by the distantly related feline FV (FFV). Pseudotyping experiments, using murine retroviral vectors with an HFV envelope, revealed that the resistance was not due to downregulation of the unknown HFV receptor. In transfection experiments, using proviral reporter gene constructs and infectious proviruses, no significant differences were detected between Bet+ and control cells. In infection experiments, HFV vectors expressing an indicator gene under control of the HFV promoters showed no activity in Bet+ cells. The results are best compatible with the hypothesis that the main block to productive superinfection of Bet+ cells occurs at an early stage of replication between virus entry and provirus establishment. We suggest that inhibition of provirus integration by Bet protein may serve a distinct function in the unique foamy virus replication cycle.
Collapse
Affiliation(s)
- M Bock
- Institut für Virologie und Immunbiologie, Universität Würzburg, Versbacher Str.7, Würzburg, 97078, Germany
| | | | | | | |
Collapse
|