1
|
Kundu S, Sarkar D. Synthetic Attempts Towards Eminent Anti-Viral Candidates of SARS-CoV. Mini Rev Med Chem 2021; 22:232-247. [PMID: 34254915 DOI: 10.2174/1389557521666210712205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and take away more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). Entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs are currently approved that completely eliminates the deadly corona virus. The promising SARS-CoV-2 anti-viral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2 which are favipiravir, remdesivir and lopinavir.
Collapse
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
2
|
Boffito M, Back DJ, Flexner C, Sjö P, Blaschke TF, Horby PW, Cattaneo D, Acosta EP, Anderson P, Owen A. Toward Consensus on Correct Interpretation of Protein Binding in Plasma and Other Biological Matrices for COVID-19 Therapeutic Development. Clin Pharmacol Ther 2021; 110:64-68. [PMID: 33113246 PMCID: PMC8359231 DOI: 10.1002/cpt.2099] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The urgent global public health need presented by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has brought scientists from diverse backgrounds together in an unprecedented international effort to rapidly identify interventions. There is a pressing need to apply clinical pharmacology principles and this has already been recognized by several other groups. However, one area that warrants additional specific consideration relates to plasma and tissue protein binding that broadly influences pharmacokinetics and pharmacodynamics. The principles of free drug theory have been forged and applied across drug development but are not currently being routinely applied for SARS-CoV-2 antiviral drugs. Consideration of protein binding is of critical importance to candidate selection but requires correct interpretation, in a drug-specific manner, to avoid either underinterpretation or overinterpretation of its consequences. This paper represents a consensus from international researchers seeking to apply historical knowledge, which has underpinned highly successful antiviral drug development for other viruses, such as HIV and hepatitis C virus for decades.
Collapse
Affiliation(s)
- Marta Boffito
- Chelsea & Westminster HospitalLondonUK
- Department of Infectious DiseaseImperial College LondonLondonUK
| | - David J. Back
- Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
| | - Charles Flexner
- Bloomberg School of Public HealthJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Peter Sjö
- Drugs for Neglected Diseases Initiative (DNDi)GenevaSwitzerland
| | - Terrence F. Blaschke
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Peter W. Horby
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Dario Cattaneo
- Unit of Clinical PharmacologyASST FatebenefratelliSacco University HospitalMilanItaly
| | - Edward P. Acosta
- Department of Pharmacology and ToxicologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Peter Anderson
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of ColoradoAuroraColoradoUSA
| | - Andrew Owen
- Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolUK
- Centre of Excellence in Long‐acting Therapeutics (CELT)University of LiverpoolUK
| |
Collapse
|
3
|
Benko Z, Zhang J, Zhao RY. Development of A Fission Yeast Cell-Based Platform for High Throughput Screening of HIV-1 Protease Inhibitors. Curr HIV Res 2021; 17:429-440. [PMID: 31782368 DOI: 10.2174/1570162x17666191128102839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND HIV-1 protease inhibitor (PI) is one of the most potent classes of drugs in combinational antiretroviral therapies (cART). When a PI is used in combination with other anti- HIV drugs, cART can often suppress HIV-1 below detection thus prolonging the patient's lives. However, the challenge often faced by patients is the emergence of HIV-1 drug resistance. Thus, PIs with high genetic-barrier to drug-resistance are needed. OBJECTIVE The objective of this study was to develop a novel and simple fission yeast (Schizosaccharomyces pombe) cell-based system that is suitable for high throughput screening (HTS) of small molecules against HIV-1 protease (PR). METHODS A fission yeast RE294-GFP strain that stably expresses HIV-1 PR and green fluorescence protein (GFP) under the control of an inducible nmt1 promoter was used. Production of HIV-1 PR induces cellular growth arrest, which was used as the primary endpoint for the search of PIs and was quantified by an absorbance-based method. Levels of GFP production were used as a counter-screen control to eliminate potential transcriptional nmt1 inhibitors. RESULTS Both the absorbance-based HIV-1 PR assay and the GFP-based fluorescence assay were miniaturized and optimized for HTS. A pilot study was performed using a small drug library mixed with known PI drugs and nmt1 inhibitors. With empirically adjusted and clearly defined double-selection criteria, we were able to correctly identify the PIs and to exclude all hidden nmt1 inhibitors. CONCLUSION We have successfully developed and validated a fission yeast cell-based HTS platform for the future screening and testing of HIV-1 PR inhibitors.
Collapse
Affiliation(s)
- Zsigmond Benko
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Jiantao Zhang
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States
| | - Richard Y Zhao
- Department of Pathology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Department of Microbiology- Immunology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Human Virology, University of Maryland Medical School, Baltimore, MD 21201, United States.,Institute of Global Health, University of Maryland Medical School, Baltimore, MD 21201, United States
| |
Collapse
|
4
|
Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CTK, Makino S, Menachery VD, Bilello JP, Shi PY. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. Nat Commun 2020; 11:5214. [PMID: 33060595 PMCID: PMC7567097 DOI: 10.1038/s41467-020-19055-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. Here we present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. SARS-CoV-2-Nluc can be used to measure neutralizing antibody activity in patient sera within 5 hours, and it produces results in concordance with a plaque reduction neutralization test (PRNT). Additionally, using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2), we show that the assay can be used for antiviral screening. Using the optimized SARS-CoV-2-Nluc assay, we evaluate a panel of antivirals and other anti-infective drugs, and we identify nelfinavir, rupintrivir, and cobicistat as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.
Collapse
Grants
- R01 AI134907 NIAID NIH HHS
- R00 AG049092 NIA NIH HHS
- UL1 TR001439 NCATS NIH HHS
- U19 AI100625 NIAID NIH HHS
- TL1 TR001440 NCATS NIH HHS
- R01 AI114657 NIAID NIH HHS
- U19 AI142759 NIAID NIH HHS
- R24 AI120942 NIAID NIH HHS
- R01 AI146081 NIAID NIH HHS
- R43 AI145617 NIAID NIH HHS
- A.E.M. is supported by a Clinical and Translational Science Award NRSA (TL1) Training Core (TL1TR001440) from NIH. C.R.F.-G. is supported by the predoctoral fellowship from the McLaughlin Fellowship Endowment at UTMB. S.M. was supported by NIH grants AI114657 and AI146081. V.D.M. was supported by NIH grants U19AI100625, R00AG049092, R24AI120942, and STARs Award from the University of Texas System. P.-Y.S. was supported by NIH grants AI142759, AI134907, AI145617, and UL1TR001439, and awards from the Sealy & Smith Foundation, Kleberg Foundation, John S. Dunn Foundation, Amon G. Carter Foundation, Gilson Longenbaugh Foundation, and Summerfield Robert Foundation.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Antonio E Muruato
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xianwen Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kumari G Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianying Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
5
|
Xie X, Muruato AE, Zhang X, Lokugamage KG, Fontes-Garfias CR, Zou J, Liu J, Ren P, Balakrishnan M, Cihlar T, Tseng CTK, Makino S, Menachery VD, Bilello JP, Shi PY. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32607511 DOI: 10.1101/2020.06.22.165712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A high-throughput platform would greatly facilitate COVID-19 serological testing and antiviral screening. Here we report a nanoluciferase SARS-CoV-2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. We demonstrate that the optimized reporter virus assay in Vero E6 cells can be used to measure neutralizing antibody activity in patient sera and produces results in concordance with a plaque reduction neutralization test (PRNT). Compared with the low-throughput PRNT (3 days), the SARS-CoV-2-Nluc assay has substantially shorter turnaround time (5 hours) with a high-throughput testing capacity. Thus, the assay can be readily deployed for large-scale vaccine evaluation and neutralizing antibody testing in humans. Additionally, we developed a high-throughput antiviral assay using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2). When tested against this reporter virus, remdesivir exhibited substantially more potent activity in A549-hACE2 cells compared to Vero E6 cells (EC 50 0.115 vs 1.28 μM), while this difference was not observed for chloroquine (EC 50 1.32 vs 3.52 μM), underscoring the importance of selecting appropriate cells for antiviral testing. Using the optimized SARS-CoV-2-Nluc assay, we evaluated a collection of approved and investigational antivirals and other anti-infective drugs. Nelfinavir, rupintrivir, and cobicistat were identified as the most selective inhibitors of SARS-CoV-2-Nluc (EC 50 0.77 to 2.74 μM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 μM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.
Collapse
|
6
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
7
|
Effect of Plasma Protein Binding on the Anti-Hepatitis B Virus Activity and Pharmacokinetic Properties of NVR 3-778. Antimicrob Agents Chemother 2018; 62:AAC.01497-18. [PMID: 30181376 DOI: 10.1128/aac.01497-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
High plasma protein binding (PPB) levels not only affect drug-target engagement but can also impact exposure of hepatocytes to antivirals and thereby affect antiviral activity. In this study, we assessed the effect of PPB on the antiviral activity of NVR 3-778, a sulfamoylbenzamide capsid assembly modulator (CAM). To this end, primary human hepatocyte (PHH) medium was spiked with plasma proteins. First, the effect of plasma proteins on the hepatitis B virus (HBV) infection assay was evaluated. The addition of plasma proteins neither decreased cell viability nor affected HBV DNA secretion or intracellular HBV RNA accumulation. In contrast, the secretion and intracellular amount of HBV proteins were induced with increasing amounts of plasma proteins. Next, the antiviral activity of NVR 3-778 was demonstrated by multiple assays while PPB and the time-dependent disappearance of the parent drug were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plasma proteins strongly decreased the free fraction of NVR 3-778, resulting in a physiologically relevant in vitro hepatocyte exposure. NVR 3-778 displayed a high PPB level, while the antiviral activity was reduced approximately only 4-fold. The disconnect between the high PPB level and the only moderate shift of the antiviral activity was explained by the rapid hepatic clearance of NVR 3-778 in the absence of plasma proteins. This study highlights the use of PHHs as a model to accurately determine the antiviral activity by capturing PPB, clearance, and liver distribution. It is advantageous to consider both pharmacokinetics and pharmacodynamics for selection of HBV antiviral drug candidates and for successful extrapolation of in vitro data to clinical studies.
Collapse
|
8
|
Funicello M, Chiummiento L, Tramutola F, Armentano M, Bisaccia F, Miglionico R, Milella L, Benedetti F, Berti F, Lupattelli P. Synthesis and biological evaluation in vitro and in mammalian cells of new heteroaryl carboxyamides as HIV-protease inhibitors. Bioorg Med Chem 2017; 25:4715-4722. [DOI: 10.1016/j.bmc.2017.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022]
|
9
|
Banis GE, Winkler T, Barton P, Chocron SE, Kim E, Kelly DL, Payne GF, Ben-Yoav H, Ghodssi R. The Binding Effect of Proteins on Medications and Its Impact on Electrochemical Sensing: Antipsychotic Clozapine as a Case Study. Pharmaceuticals (Basel) 2017; 10:E69. [PMID: 28763030 PMCID: PMC5620613 DOI: 10.3390/ph10030069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 12/18/2022] Open
Abstract
Clozapine (CLZ), a dibenzodiazepine, is demonstrated as the optimal antipsychotic for patients suffering from treatment-resistant schizophrenia. Like many other drugs, understanding the concentration of CLZ in a patient's blood is critical for managing the patients' symptoms, side effects, and overall treatment efficacy. To that end, various electrochemical techniques have been adapted due to their capabilities in concentration-dependent sensing. An open question associated with electrochemical CLZ monitoring is whether drug-protein complexes (i.e., CLZ bound to native blood proteins, such as serum albumin (SA) or alpha-1 acid-glycoprotein (AAG)) contribute to electrochemical redox signals. Here, we investigate CLZ-sensing performance using fundamental electrochemical methods with respect to the impact of protein binding. Specifically, we test the activity of bound and free fractions of a mixture of CLZ and either bovine SA or human AAG. Results suggest that bound complexes do not significantly contribute to the electrochemical signal for mixtures of CLZ with AAG or SA. Moreover, the fraction of CLZ bound to protein is relatively constant at 31% (AAG) and 73% (SA) in isolation with varying concentrations of CLZ. Thus, electrochemical sensing can enable direct monitoring of only the unbound CLZ, previously only accessible via equilibrium dialysis. The methods utilized in this work offer potential as a blueprint in developing electrochemical sensors for application to other redox-active medications with high protein binding more generally. This demonstrates that electrochemical sensing can be a new tool in accessing information not easily available previously, useful toward optimizing treatment regimens.
Collapse
Affiliation(s)
- George E Banis
- Department of Bioengineering, University of Maryland, 2201 J.M. Patterson Hall, College Park, MD 20742, USA.
| | - Thomas Winkler
- Department of Bioengineering, University of Maryland, 2201 J.M. Patterson Hall, College Park, MD 20742, USA.
| | - Patricia Barton
- Department of Bioengineering, University of Maryland, 2201 J.M. Patterson Hall, College Park, MD 20742, USA.
| | - Sheryl E Chocron
- Department of Bioengineering, University of Maryland, 2201 J.M. Patterson Hall, College Park, MD 20742, USA.
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, Suite 5115 Plant Sciences Building, College Park, MD 20742, USA.
| | - Deanna L Kelly
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore MD 21201, USA.
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, Suite 5115 Plant Sciences Building, College Park, MD 20742, USA.
| | - Hadar Ben-Yoav
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.
| | - Reza Ghodssi
- Department of Bioengineering, University of Maryland, 2201 J.M. Patterson Hall, College Park, MD 20742, USA.
- Institute for Systems Research, University of Maryland, 2173 A.V. Williams Building, College Park, MD 20742, USA.
| |
Collapse
|
10
|
Bhowmick R, Islam ASM, Giri A, Katarkar A, Ali M. A rhodamine based turn-on chemosensor for Fe3+ in aqueous medium and interactions of its Fe3+ complex with HSA. NEW J CHEM 2017. [DOI: 10.1039/c7nj02446k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel hexa-coordinating rhodamine-based chemosensor, HL6, selectively and rapidly recognizes Fe3+ in the presence of a number of metal cations, numerous anions and amino acids in purely aqueous medium with live cell imaging applications.
Collapse
Affiliation(s)
| | | | - Arindam Giri
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| | - Atul Katarkar
- Department of Molecular & Human Genetics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Mahammad Ali
- Department of Chemistry
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
11
|
Yousuf S, Natesan S, Enoch IVMV. Chemico-biological interaction of Etravirine and its β-Cyclodextrin complex with macromolecular targets. J Biomol Struct Dyn 2016; 35:1006-1019. [DOI: 10.1080/07391102.2016.1166987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sameena Yousuf
- Department of Nanosciences & Technology and Department of Chemistry, School of Science and Humanities, Karunya University , Coimbatore 641114, Tamil Nadu, India
| | - Sudha Natesan
- Department of Nanosciences & Technology and Department of Chemistry, School of Science and Humanities, Karunya University , Coimbatore 641114, Tamil Nadu, India
| | - Israel V. M. V. Enoch
- Department of Nanosciences & Technology and Department of Chemistry, School of Science and Humanities, Karunya University , Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
12
|
No Need for Lopinavir Dose Adjustment during Pregnancy: a Population Pharmacokinetic and Exposure-Response Analysis in Pregnant and Nonpregnant HIV-Infected Subjects. Antimicrob Agents Chemother 2015; 60:400-8. [PMID: 26525798 DOI: 10.1128/aac.01197-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/24/2015] [Indexed: 11/20/2022] Open
Abstract
Lopinavir-ritonavir is frequently prescribed to HIV-1-infected women during pregnancy. Decreased lopinavir exposure has been reported during pregnancy, but the clinical significance of this reduction is uncertain. This analysis aimed to evaluate the need for lopinavir dose adjustment during pregnancy. We conducted a population pharmacokinetic analysis of lopinavir and ritonavir concentrations collected from 84 pregnant and 595 nonpregnant treatment-naive and -experienced HIV-1-infected subjects enrolled in six clinical studies. Lopinavir-ritonavir doses in the studies ranged between 400/100 and 600/150 mg twice daily. In addition, linear mixed-effect analysis was used to compare the area under the concentration-time curve from 0 to 12 h (AUC0-12) and concentration prior to dosing (Cpredose) in pregnant women and nonpregnant subjects. The relationship between lopinavir exposure and virologic suppression in pregnant women and nonpregnant subjects was evaluated. Population pharmacokinetic analysis estimated 17% higher lopinavir clearance in pregnant women than in nonpregnant subjects. Lopinavir clearance values postpartum were 26.4% and 37.1% lower than in nonpregnant subjects and pregnant women, respectively. As the tablet formulation was estimated to be 20% more bioavailable than the capsule formulation, no statistically significant differences between lopinavir exposure in pregnant women receiving the tablet formulation and nonpregnant subjects receiving the capsule formulation were identified. In the range of lopinavir AUC0-12 or Cpredose values observed in the third trimester, there was no correlation between lopinavir exposure and viral load or proportion of subjects with virologic suppression. Similar efficacy was observed between pregnant women and nonpregnant subjects receiving lopinavir-ritonavir at 400/100 mg twice daily. The pharmacokinetic and pharmacodynamic results support the use of a lopinavir-ritonavir 400/100-mg twice-daily dose during pregnancy.
Collapse
|
13
|
Sudha N, Enoch IVMV. Binding Modes of Cabergoline to Bovine Serum Albumin in Free- and β-Cyclodextrin-Encapsulated Forms: Differences in Quenching Behavior and Förster Resonance Energy Transfer. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0355-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ivachtchenko AV, Mitkin OD, Yamanushkin PM, Kuznetsova IV, Bulanova EA, Shevkun NA, Koryakova AG, Karapetian RN, Bichko VV, Trifelenkov AS, Kravchenko DV, Vostokova NV, Veselov MS, Chufarova NV, Ivanenkov YA. Discovery of novel highly potent hepatitis C virus NS5A inhibitor (AV4025). J Med Chem 2014; 57:7716-30. [PMID: 25148100 DOI: 10.1021/jm500951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of next in class small-molecule hepatitis C virus (HCV) NS5A inhibitors with picomolar potency containing 2-pyrrolidin-2-yl-5-{4-[4-(2-pyrrolidin-2-yl-1H-imidazol-5-yl)buta-1,3-diynyl]phenyl}-1H-imidazole cores was designed based on the SAR studies available for the reported NS5A inhibitors. Compound 13a (AV4025), with (S,S,S,S)-stereochemistry (EC50 = 3.4 ± 0.2 pM, HCV replicon genotype 1b), was dramatically more active than were the compounds with two (S)- and two (R)-chiral centers. Human serum did not significantly reduce the antiviral activity (<4-fold). Relatively favorable pharmacokinetic features and good oral bioavailability were observed during animal studies. Compound 13a was well tolerated in rodents (in mice, LD50 = 2326 mg/kg or higher), providing a relatively high therapeutic index. During safety, pharmacology and subchronic toxicity studies in rats and dogs, it was not associated with any significant pathological or clinical findings. This compound is currently being evaluated in phase I/II clinical trials for the treatment of HCV infection.
Collapse
Affiliation(s)
- Alexandre V Ivachtchenko
- Alla Chem LLC , 1835 East Hallandale Beach Boulevard 442, Hallandale Beach, Florida 33009, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu X, Wright M, Hop CECA. Rational use of plasma protein and tissue binding data in drug design. J Med Chem 2014; 57:8238-48. [PMID: 25099658 DOI: 10.1021/jm5007935] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is a commonly accepted assumption that only unbound drug molecules are available to interact with their targets. Therefore, one of the objectives in drug design is to optimize the compound structure to increase in vivo unbound drug concentration. In this review, theoretical analyses and experimental observations are presented to illustrate that low plasma protein binding does not necessarily lead to high in vivo unbound plasma concentration. Similarly, low brain tissue binding does not lead to high in vivo unbound brain tissue concentration. Instead, low intrinsic clearance leads to high in vivo unbound plasma concentration, and low efflux transport activity at the blood-brain barrier leads to high unbound brain concentration. Plasma protein and brain tissue binding are very important parameters in understanding pharmacokinetics, pharmacodynamics, and toxicities of drugs, but these parameters should not be targeted for optimization in drug design.
Collapse
Affiliation(s)
- Xingrong Liu
- Genentech, Inc. , South San Francisco, California 94080, United States
| | | | | |
Collapse
|
16
|
In vitro activity and resistance profile of samatasvir, a novel NS5A replication inhibitor of hepatitis C virus. Antimicrob Agents Chemother 2014; 58:4431-42. [PMID: 24867983 DOI: 10.1128/aac.02777-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The hepatitis C virus (HCV) nonstructural 5A (NS5A) protein is a clinically validated target for drugs designed to treat chronic HCV infection. This study evaluated the in vitro activity, selectivity, and resistance profile of a novel anti-HCV compound, samatasvir (IDX719), alone and in combination with other antiviral agents. Samatasvir was effective and selective against infectious HCV and replicons, with 50% effective concentrations (EC50s) falling within a tight range of 2 to 24 pM in genotype 1 through 5 replicons and with a 10-fold EC50 shift in the presence of 40% human serum in the genotype 1b replicon. The EC90/EC50 ratio was low (2.6). A 50% cytotoxic concentration (CC50) of >100 μM provided a selectivity index of >5 × 10(7). Resistance selection experiments (with genotype 1a replicons) and testing against replicons bearing site-directed mutations (with genotype 1a and 1b replicons) identified NS5A amino acids 28, 30, 31, 32, and 93 as potential resistance loci, suggesting that samatasvir affects NS5A function. Samatasvir demonstrated an overall additive effect when combined with interferon alfa (IFN-α), ribavirin, representative HCV protease, and nonnucleoside polymerase inhibitors or the nucleotide prodrug IDX184. Samatasvir retained full activity in the presence of HIV and hepatitis B virus (HBV) antivirals and was not cross-resistant with HCV protease, nucleotide, and nonnucleoside polymerase inhibitor classes. Thus, samatasvir is a selective low-picomolar inhibitor of HCV replication in vitro and is a promising candidate for future combination therapies with other direct-acting antiviral drugs in HCV-infected patients.
Collapse
|
17
|
Fader LD, Malenfant E, Parisien M, Carson R, Bilodeau F, Landry S, Pesant M, Brochu C, Morin S, Chabot C, Halmos T, Bousquet Y, Bailey MD, Kawai SH, Coulombe R, LaPlante S, Jakalian A, Bhardwaj PK, Wernic D, Schroeder P, Amad M, Edwards P, Garneau M, Duan J, Cordingley M, Bethell R, Mason SW, Bös M, Bonneau P, Poupart MA, Faucher AM, Simoneau B, Fenwick C, Yoakim C, Tsantrizos Y. Discovery of BI 224436, a Noncatalytic Site Integrase Inhibitor (NCINI) of HIV-1. ACS Med Chem Lett 2014; 5:422-7. [PMID: 24900852 DOI: 10.1021/ml500002n] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 01/01/2023] Open
Abstract
An assay recapitulating the 3' processing activity of HIV-1 integrase (IN) was used to screen the Boehringer Ingelheim compound collection. Hit-to-lead and lead optimization beginning with compound 1 established the importance of the C3 and C4 substituent to antiviral potency against viruses with different aa124/aa125 variants of IN. The importance of the C7 position on the serum shifted potency was established. Introduction of a quinoline substituent at the C4 position provided a balance of potency and metabolic stability. Combination of these findings ultimately led to the discovery of compound 26 (BI 224436), the first NCINI to advance into a phase Ia clinical trial.
Collapse
Affiliation(s)
- Lee D. Fader
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Eric Malenfant
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Mathieu Parisien
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Rebekah Carson
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - François Bilodeau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Serge Landry
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Marc Pesant
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Christian Brochu
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Sébastien Morin
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Catherine Chabot
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Ted Halmos
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Yves Bousquet
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Murray D. Bailey
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Stephen H. Kawai
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - René Coulombe
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Steven LaPlante
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Araz Jakalian
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Punit K. Bhardwaj
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Dominik Wernic
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Patricia Schroeder
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Ma’an Amad
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Paul Edwards
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michel Garneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Jianmin Duan
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michael Cordingley
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Richard Bethell
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Stephen W. Mason
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Michael Bös
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Pierre Bonneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Marc-André Poupart
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Anne-Marie Faucher
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Bruno Simoneau
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Craig Fenwick
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Christiane Yoakim
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| | - Youla Tsantrizos
- Research and Development, Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, Québec H7S 2G5, Canada
| |
Collapse
|
18
|
Preclinical profile of BI 224436, a novel HIV-1 non-catalytic-site integrase inhibitor. Antimicrob Agents Chemother 2014; 58:3233-44. [PMID: 24663024 DOI: 10.1128/aac.02719-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3'-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95 values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-like in vitro absorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%; F, 82%), and dog (CL, 8%; F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.
Collapse
|
19
|
DeGoey DA, Randolph JT, Liu D, Pratt J, Hutchins C, Donner P, Krueger AC, Matulenko M, Patel S, Motter CE, Nelson L, Keddy R, Tufano M, Caspi DD, Krishnan P, Mistry N, Koev G, Reisch TJ, Mondal R, Pilot-Matias T, Gao Y, Beno DWA, Maring CJ, Molla A, Dumas E, Campbell A, Williams L, Collins C, Wagner R, Kati WM. Discovery of ABT-267, a pan-genotypic inhibitor of HCV NS5A. J Med Chem 2014; 57:2047-57. [PMID: 24400777 DOI: 10.1021/jm401398x] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We describe here N-phenylpyrrolidine-based inhibitors of HCV NS5A with excellent potency, metabolic stability, and pharmacokinetics. Compounds with 2S,5S stereochemistry at the pyrrolidine ring provided improved genotype 1 (GT1) potency compared to the 2R,5R analogues. Furthermore, the attachment of substituents at the 4-position of the central N-phenyl group resulted in compounds with improved potency. Substitution with tert-butyl, as in compound 38 (ABT-267), provided compounds with low-picomolar EC50 values and superior pharmacokinetics. It was discovered that compound 38 was a pan-genotypic HCV inhibitor, with an EC50 range of 1.7-19.3 pM against GT1a, -1b, -2a, -2b, -3a, -4a, and -5a and 366 pM against GT6a. Compound 38 decreased HCV RNA up to 3.10 log10 IU/mL during 3-day monotherapy in treatment-naive HCV GT1-infected subjects and is currently in phase 3 clinical trials in combination with an NS3 protease inhibitor with ritonavir (r) (ABT-450/r) and an NS5B non-nucleoside polymerase inhibitor (ABT-333), with and without ribavirin.
Collapse
Affiliation(s)
- David A DeGoey
- Research and Development, AbbVie Inc. , North Chicago, Illinois 60064, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev 2013; 26:274-88. [PMID: 23554417 DOI: 10.1128/cmr.00092-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the optimization of dosing regimens of anti-infective agents, it is imperative to have a good understanding of pharmacokinetics (PK) and pharmacodynamics (PD). Whenever possible, drug efficacy needs to be related to unbound concentrations at the site of action. For anti-infective drugs, the infection site is typically located outside plasma, and a drug must diffuse through capillary membranes to reach its target. Disease- and drug-related factors can contribute to differential tissue distribution. As a result, the assumption that the plasma concentration of drugs represents a suitable surrogate of tissue concentrations may lead to erroneous conclusions. Quantifying drug exposure in tissues represents an opportunity to relate the pharmacologically active concentrations to an observed pharmacodynamic parameter, such as the MIC. Selection of an appropriate specimen to sample and the advantages and limitations of the available sampling techniques require careful consideration. Ultimately, the goal will be to assess the appropriateness of a drug and dosing regimen for a specific pathogen and infection.
Collapse
|
21
|
Investigation of the interaction of the new antiarrhythmic drug procainamide hydrochloride with bovine serum albumin and the effect of some metal ions on the binding: a fluorescence quenching study. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0933-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Sandhya B, Hegde AH, Seetharamappa J. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins. Mol Biol Rep 2012; 40:3817-27. [DOI: 10.1007/s11033-012-2460-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/18/2012] [Indexed: 11/24/2022]
|
23
|
Bakaeean B, Kabiri M, Iranfar H, Saberi MR, Chamani J. Binding Effect of Common Ions to Human Serum Albumin in the Presence of Norfloxacin: Investigation with Spectroscopic and Zeta Potential Approaches. J SOLUTION CHEM 2012. [DOI: 10.1007/s10953-012-9895-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
24
|
Novel method to assess antiretroviral target trough concentrations using in vitro susceptibility data. Antimicrob Agents Chemother 2012; 56:5938-45. [PMID: 22964257 DOI: 10.1128/aac.00691-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Durable suppression of HIV-1 replication requires the establishment of antiretroviral drug concentrations that exceed the susceptibility of the virus strain(s) infecting the patient. Minimum plasma drug concentrations (C(trough)) are correlated with response, but determination of target C(trough) values is hindered by a paucity of in vivo concentration-response data. In the absence of these data, in vitro susceptibility measurements, adjusted for serum protein binding, can provide estimations of suppressive in vivo drug concentrations. We derived serum protein binding correction factors (PBCF) for protease inhibitors, nonnucleoside reverse transcriptase inhibitors, and an integrase inhibitor by measuring the effect of a range of human serum concentrations on in vitro drug susceptibility measured with the PhenoSense HIV assay. PBCFs corresponding to 100% HS were extrapolated using linear regression and ranged from 1.4 for nevirapine to 77 for nelfinavir. Using the mean 95% inhibitory concentration (IC(95)) for ≥1,200 drug-susceptible viruses, we calculated protein-bound IC(95) (PBIC(95)) values. PBIC(95) values were concordant with the minimum effective C(trough) values that were established in well-designed pharmacodynamic studies (e.g., indinavir, saquinavir, and amprenavir). In other cases, the PBIC(95) values were notably lower (e.g., darunavir, efavirenz, and nevirapine) or higher (nelfinavir and etravirine) than existing target recommendations. The establishment of PBIC(95) values as described here provides a convenient and standardized approach for estimation of the minimum drug exposure that is required to maintain viral suppression and prevent the emergence of drug-resistant variants, particularly when in vivo concentration-response relationships are lacking.
Collapse
|
25
|
Santos JR, Llibre JM, Imaz A, Domingo P, Iribarren JA, Mariño A, Miralles C, Galindo MJ, Ornelas A, Moreno S, Schapiro JM, Clotet B. Mutations in the protease gene associated with virological failure to lopinavir/ritonavir-containing regimens. J Antimicrob Chemother 2012; 67:1462-9. [PMID: 22431669 DOI: 10.1093/jac/dks080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To assess the most frequent resistance-associated mutations (RAMs) to lopinavir/ritonavir in a cohort of patients attended in daily practice. METHODS We retrospectively identified 195 multitreated subjects with virological failure. Patients were classified as follows: (i) 71 (36.4%) never received lopinavir/ritonavir (lopinavir/ritonavir naive); (ii) 75 (38.5%) had previously failed on lopinavir/ritonavir; and (iii) 49 (25.1%) were on lopinavir/ritonavir at failure. RAM patterns were assessed. Medians, IQRs, percentages, Kruskal-Wallis, χ(2) or Fisher's exact test, and multinomial logistic regression were used whenever appropriate. RESULTS L10I/F, K20R, L24I, L33F, M36I, M46I/L, I47V, G48V, F53L, I54V, A71V, G73S, V82A, I84V and L90M (all with P ≤ 0.037) were protease RAMs overexpressed in patients with lopinavir/ritonavir failure. L10I, M36I, M46I, I54V, L63P, A71V, V82A, I84V and L90M were the most common in lopinavir/ritonavir-naive patients. Other IAS-USA RAMs for lopinavir/ritonavir (L10R/V, K20M, V32I, I47A, I50V, I54L/A/M/T/S, A71T, L76V and V82F/T/S) were not associated with previous or current failure to lopinavir/ritonavir. Lopinavir/ritonavir failure was associated with the number of protease RAMs (OR = 1.146, 95% CI = 1.287, 1.626), higher exposure to protease inhibitors, and the presence of E44D, L33F, I54V and I84V. CONCLUSIONS In multitreated patients with previous or current lopinavir/ritonavir failure, some protease mutations are selected at significantly greater rates. L10I, M36I, I54V, L63P, A71V, V82A and L90M were found in >50% of cases. Thus, their presence should be expected when genotypic testing results are not available. The number of protease RAMs and higher prior exposures to protease inhibitors were significantly associated with lopinavir/ritonavir failure.
Collapse
Affiliation(s)
- José R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nanzigu S, Eriksen J, Makumbi F, Lanke S, Mahindi M, Kiguba R, Beck O, Ma Q, Morse GD, Gustafsson LL, Waako P. Pharmacokinetics of the nonnucleoside reverse transcriptase inhibitor efavirenz among HIV-infected Ugandans. HIV Med 2011; 13:193-201. [PMID: 22107359 DOI: 10.1111/j.1468-1293.2011.00952.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pharmacokinetic variability of the nonnucleoside reverse transcriptase inhibitor efavirenz has been documented, and high variation in trough concentrations or clearance has been found to be a risk for virological failure. Africans population exhibits greater variability in efavirenz concentrations than other ethnic groups, and so a better understanding of the pharmacokinetics of the drug is needed in this population. This study characterized efavirenz pharmacokinetics in HIV-infected Ugandans. METHODS Efavirenz plasma concentrations were obtained for 66 HIV-infected Ugandans initiating efavirenz- based regimens, with blood samples collected at eight time-points over 24 h on day 1 of treatment, and at a further eight time-points on day 14. Noncompartmental analysis was used to describe the pharmacokinetics of efavirenz. RESULTS The mean steady-state minimum plasma concentration (C(min) ) of efavirenz was 2.9 µg/mL, the mean area under the curve (AUC) was 278.5 h µg/mL, and mean efavirenz clearance was 7.4 L/h. Although overall mean clearance did not change over the 2 weeks, 41.9% of participants showed an average 95.8% increase in clearance. On day 14, the maximum concentration (C(max) ) of efavirenz was >4 µg/mL in 96.6% of participants, while C(min) was <1 µg/mL in only 4.5%. Overall, 69% of participants experienced adverse central nervous system (CNS) symptoms attributable to efavirenz during the 2-week period, and 95% of these participants were found to have efavirenz plasma concentrations >4 µg/mL, although only half maintained a high concentration until at least 8 h after dosing. CONCLUSION The findings of this study show that HIV-infected patients on efavirenz may exhibit autoinduction to various extents, and this needs to be taken into consideration in the clinical management of individual patients. Efavirenz CNS toxicity during the initial phase of treatment may be related to C(max) , regardless of the sampling time.
Collapse
Affiliation(s)
- S Nanzigu
- Department of Pharmacology and Therapeutics, Makerere University College of Health Sciences, Kampala, Uganda.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barrail-Tran A, Taburet AM, Poirier JM. [Evidence-based therapeutic drug monitoring of lopinavir]. Therapie 2011; 66:231-8. [PMID: 21819807 DOI: 10.2515/therapie/2011034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/22/2011] [Indexed: 11/20/2022]
Abstract
The HIV protease inhibitor lopinavir presents a wide inter-individual variability related to liver and intestinal metabolism involving CYP3A. Published studies were analyzed to establish whether there is evidence that therapeutic drug monitoring of lopinavir could improve patient care. In naïve or pretreated HIV-infected patients, no relationship could be evidenced between virological efficacy and trough lopinavir concentration, most likely because concentrations are above inhibitory concentrations. Although data are limited, patients with elevated triglycerides and cholesterol had trough lopinavir concentrations >8 000 ng/mL. These data suggest that the level of evidence of interest of lopinavir therapeutic drug monitoring is may be recommended in some situations such as children, pregnant women, pretreated patients if the number of mutations is <5, when coadministration with drug with metabolizing enzyme inducing properties is warranted and toxicity.
Collapse
|
28
|
Mo H, Yang C, Wang K, Wang Y, Huang M, Murray B, Qi X, Sun SC, Deshpande M, Rhodes G, Miller MD. Estimation of inhibitory quotient using a comparative equilibrium dialysis assay for prediction of viral response to hepatitis C virus inhibitors. J Viral Hepat 2011; 18:338-48. [PMID: 20456634 DOI: 10.1111/j.1365-2893.2010.01314.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship of inhibitory quotient (IQ) with the virologic response to specific inhibitors of human hepatitis C virus (HCV) and the best method to correct for serum protein binding in calculating IQ have not been addressed. A common method is to determine a fold shift by comparing the EC(50) values determined in cell culture in the absence and presence of human serum (fold shift in EC(50) ), but this method has a number of disadvantages. In the present study, the fold shifts in drug concentrations between 100% human plasma (HP) and cell culture medium (CCM) were directly measured using a modified comparative equilibrium dialysis (CED) assay for three HCV protease inhibitors (PIs) and for a novel HCV inhibitor GS-9132. The fold shift values in drug concentration between the HP and CCM (CED ratio) were ∼1 for SCH-503034, VX-950 and GS-9132 and 13 for BILN-2061. These values were ∼3-10-fold lower than the fold shift values calculated from the EC(50) assay for all inhibitors except BILN-2061. Using the CED values, a consistent pharmacokinetic and pharmacodynamic relationship was observed for the four HCV inhibitors analysed. Specifically, an approximate 1 log(10) reduction in HCV RNA was achieved with an IQ close to 1, while 2-3 and greater log(10) reductions in HCV RNA were achieved with IQ values of 3-5 and greater, respectively. Thus, use of CED to define IQ provides a predictive and quantitative approach for the assessment of the in vivo potency of HCV PIs and GS-9132. This method provides a framework for the evaluation of other classes of drugs that are bound by serum proteins but require the presence of serum for in vitro evaluation.
Collapse
Affiliation(s)
- H Mo
- Department of Clinical Virology, Gilead Sciences Inc., Foster City, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gustafsson SS, Vrang L, Terelius Y, Danielson UH. Quantification of interactions between drug leads and serum proteins by use of “binding efficiency”. Anal Biochem 2011; 409:163-75. [DOI: 10.1016/j.ab.2010.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 12/20/2022]
|
30
|
Liu X, Ma Q, Zhang F. Therapeutic drug monitoring in highly active antiretroviral therapy. Expert Opin Drug Saf 2011; 9:743-58. [PMID: 20350281 DOI: 10.1517/14740331003767395] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD Despite the efficacy of combination antiretroviral therapy (ART), a large proportion of patients living with HIV/AIDS on ART does not achieve or maintain adequate virological suppression. Therapeutic drug monitoring (TDM) has been utilised to improve treatment outcomes of ART. AREAS COVERED IN THE REVIEW The potential incorporation of TDM into the clinical HIV management is supported by the existing relationship between drug exposure and efficacy/toxicity, the high inter-patient variability pharmacokinetics, and the accurate, specific and rapid method for drug level determination. The current status of TDM in ART is reviewed in this article with discussions on its feasibility, potential use and limitations. WHAT THE READER WILL GAIN Mounting evidence from clinical trials has indicated the potential use of TDM in reducing the rates of treatment failure and adverse effect, avoiding the drug interactions, and special populations, such as children, pregnant women and patients with co-infections. TDM may play an important role even in resource-limited settings, to safeguard expanded use of bioequivalent generic antiretroviral drugs and avoid drug interactions with traditional Chinese medicines. TAKE HOME MESSAGE TDM is still in the centre of controversy in that several critical issues need to be addressed, such as limited adherence assessment, inappropriate response predictors, insufficient validation of target concentration windows and lack of the quality control of assay. The utility of TDM will remain experimental until more data are obtained from large clinical trials showing the benefit of TDM.
Collapse
Affiliation(s)
- Xia Liu
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nan Wei Road, Beijing 100050, China.
| | | | | |
Collapse
|
31
|
Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov 2011; 9:929-39. [PMID: 21119731 DOI: 10.1038/nrd3287] [Citation(s) in RCA: 605] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Data from in vitro plasma protein binding experiments that determine the fraction of protein-bound drug are frequently used in drug discovery to guide structure design and to prioritize compounds for in vivo studies. However, we consider that these practices are usually misleading, because in vivo efficacy is determined by the free (unbound) drug concentration surrounding the therapeutic target, not by the free drug fraction. These practices yield no enhancement of the in vivo free drug concentration. So, decisions based on free drug fraction could result in the wrong compounds being advanced through drug discovery programmes. This Perspective provides guidance on the application of plasma protein binding information in drug discovery.
Collapse
Affiliation(s)
- Dennis A Smith
- Pharmacokinetics, Dynamics and Metabolism Department, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9UJ, UK
| | | | | |
Collapse
|
32
|
He GX, Yang ZY, Williams M, Callebaut C, Cihlar T, Murray BP, Yang C, Mitchell ML, Liu H, Wang J, Arimilli M, Eisenberg E, Stray KM, Tsai LK, Hatada M, Chen X, Chen JM, Wang Y, Lee MS, Strickley RG, Iwata Q, Zheng X, Kim CU, Swaminathan S, Desai MC, Lee WA, Xu L. Discovery of GS-8374, a potent human immunodeficiency virus type 1 protease inhibitor with a superior resistance profile. MEDCHEMCOMM 2011. [DOI: 10.1039/c1md00147g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Manda VK, Mittapalli RK, Bohn KA, Adkins CE, Lockman PR. Nicotine and cotinine increases the brain penetration of saquinavir in rat. J Neurochem 2010; 115:1495-507. [PMID: 20950334 DOI: 10.1111/j.1471-4159.2010.07054.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endothelial tight junctions and efflux transporters of the blood-brain barrier (BBB) significantly limit brain accumulation of many drugs, including protease inhibitors such as saquinavir. The cholinergic agonist nicotine is one of the most commonly used drugs in the world and the incidence is even higher in the human immune deficiency virus population (∼ 70%). We examined the ability of nicotine and its primary metabolite cotinine to modify brain uptake of saquinavir in rats. Both nicotine and cotinine at pharmacological concentrations matching those in smokers, increased brain saquinavir uptake by two fold. Co-perfusion with nicotinic receptor antagonists and passive permeability markers showed that the effect was not caused by receptor activation or BBB permeability disruption. Transport inhibition studies demonstrated that brain saquinavir uptake is limited by multiple efflux transporters, P-glycoprotein (P-gp), breast cancer resistance protein and multidrug resistance-associated protein. In situ perfusion and in vitro experiments using a classical P-gp substrate rhodamine 123 linked the effect of nicotine to inhibition of BBB P-gp transport. The effect was confirmed in vivo in chronic 14 day nicotine administration animals. These data suggest nicotine increases antiretroviral drug exposure to brain and may represent a significant in vivo drug-drug interaction at the BBB. Although this may slightly benefit CNS antiretroviral efficacy, it may also expose the brain to potential serious neurotoxicity.
Collapse
Affiliation(s)
- Vamshi K Manda
- Texas Tech University Health Sciences Center, School of Pharmacy, Department of Pharmaceutical Sciences, Amarillo, Texas 79106-1712, USA
| | | | | | | | | |
Collapse
|
34
|
Hilton BJ, Wolkowicz R. An assay to monitor HIV-1 protease activity for the identification of novel inhibitors in T-cells. PLoS One 2010; 5:e10940. [PMID: 20532177 PMCID: PMC2880603 DOI: 10.1371/journal.pone.0010940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 05/11/2010] [Indexed: 11/26/2022] Open
Abstract
The emergence of resistant HIV strains, together with the severe side-effects of existing drugs and lack of development of effective anti-HIV vaccines highlight the need for novel antivirals, as well as innovative methods to facilitate their discovery. Here, we have developed an assay in T-cells to monitor the proteolytic activity of the HIV-1 protease (PR). The assay is based on the inducible expression of HIV-1 PR fused within the Gal4 DNA-binding and transactivation domains. The fusion protein binds to the Gal4 responsive element and activates the downstream reporter, enhanced green fluorescent protein (eGFP) gene only in the presence of an effective PR Inhibitor (PI). Thus, in this assay, eGFP acts as a biosensor of PR activity, making it ideal for flow cytometry based screening. Furthermore, the assay was developed using retroviral technology in T-cells, thus providing an ideal environment for the screening of potential novel PIs in a cell-type that represents the natural milieu of HIV infection. Clones with the highest sensitivity, and robust, reliable and reproducible reporter activity, were selected. The assay is easily adaptable to other PR variants, a multiplex platform, as well as to high-throughput plate reader based assays and will greatly facilitate the search for novel peptide and chemical compound based PIs in T-cells.
Collapse
Affiliation(s)
- Brett J. Hilton
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Roland Wolkowicz
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mahalingam AK, Axelsson L, Ekegren JK, Wannberg J, Kihlström J, Unge T, Wallberg H, Samuelsson B, Larhed M, Hallberg A. HIV-1 protease inhibitors with a transition-state mimic comprising a tertiary alcohol: improved antiviral activity in cells. J Med Chem 2010; 53:607-15. [PMID: 19961222 DOI: 10.1021/jm901165g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By a small modification in the core structure of the previously reported series of HIV-1 protease inhibitors that encompasses a tertiary alcohol as part of the transition-state mimicking scaffold, up to 56 times more potent compounds were obtained exhibiting EC(50) values down to 3 nM. Three of the inhibitors also displayed excellent activity against selected resistant isolates of HIV-1. The synthesis of 25 new and optically pure HIV-1 protease inhibitors is reported, along with methods for elongation of the inhibitor P1' side chain using microwave-accelerated, palladium-catalyzed cross-coupling reactions, the biological evaluation, and X-ray data obtained from one of the most potent analogues cocrystallized with both the wild type and the L63P, V82T, I84 V mutant of the HIV-1 protease.
Collapse
Affiliation(s)
- A K Mahalingam
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hidaka K, Kimura T, Abdel-Rahman HM, Nguyen JT, McDaniel KF, Kohlbrenner WE, Molla A, Adachi M, Tamada T, Kuroki R, Katsuki N, Tanaka Y, Matsumoto H, Wang J, Hayashi Y, Kempf DJ, Kiso Y. Small-sized human immunodeficiency virus type-1 protease inhibitors containing allophenylnorstatine to explore the S2' pocket. J Med Chem 2009; 52:7604-17. [PMID: 19954246 DOI: 10.1021/jm9005115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of HIV protease inhibitor based on the allophenylnorstatine structure with various P(2)' moieties were synthesized. Among these analogues, we discovered that a small allyl group would maintain potent enzyme inhibitory activity compared to the o-methylbenzyl moiety in clinical candidate 1 (KNI-764, also known as JE-2147, AG-1776, or SM-319777). Introduction of an anilinic amino group to 2 (KNI-727) improved water-solubility and anti-HIV-1 activity. X-ray crystallographic analysis of 13k (KNI-1689) with a beta-methallyl group at P(2)' position revealed hydrophobic interactions with Ala28, Ile84, and Ile50' similar to that of 1. The presence of an additional methyl group on the allyl group in compound 13k significantly increased anti-HIV activity over 1 while providing a rational drug design for structural minimization and improving membrane permeability.
Collapse
Affiliation(s)
- Koushi Hidaka
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cellular models for the screening and development of anti-hepatitis C virus agents. Pharmacol Ther 2009; 124:1-22. [PMID: 19555718 DOI: 10.1016/j.pharmthera.2009.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 12/24/2022]
Abstract
Investigations on the biology of hepatitis C virus (HCV) have been hampered by the lack of small animal models. Efforts have therefore been directed to designing practical and robust cellular models of human origin able to support HCV replication and production in a reproducible, reliable and consistent manner. Many different models based on different forms of virions and hepatoma or other cell types have been described including virus-like particles, pseudotyped particles, subgenomic and full length replicons, virion productive replicons, immortalised hepatocytes, fetal and adult primary human hepatocytes. This review focuses on these different cellular models, their advantages and disadvantages at the biological and experimental levels, and their respective use for evaluating the effect of antiviral molecules on different steps of HCV biology including virus entry, replication, particles generation and excretion, as well as on the modulation by the virus of the host cell response to infection.
Collapse
|
38
|
Estrela RDC, Ribeiro FS, Barroso PF, Tuyama M, Gregório SP, Dias-Neto E, Struchiner CJ, Suarez-Kurtz G. ABCB1 polymorphisms and the concentrations of lopinavir and ritonavir in blood, semen and saliva of HIV-infected men under antiretroviral therapy. Pharmacogenomics 2009; 10:311-8. [PMID: 19207033 DOI: 10.2217/14622416.10.2.311] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Lopinavir and ritonavir are frequently included in highly active antiretroviral therapy (HAART) regimens for HIV infection. These drugs are substrates, and may also inhibit and/or induce the P-glycoprotein (ABCB1) transporter, encoded by the polymorphic ABCB1 gene. We investigated the impact of three common exonic ABCB1 polymorphisms on the concentrations of lopinavir and ritonavir in blood, semen and saliva of HIV-infected men under stable HAART containing ritonavir-boosted lopinavir. MATERIALS & METHODS Blood, semen and saliva samples were collected from 113 subjects, 30-35 minutes before the scheduled morning dose of lopinavir/ritonavir, and trough drug concentrations were measured using LC/MS/MS. The 1236C>T, 2677G>T/A and 3435C>T polymorphisms were genotyped using the single base extension-termination method and ABCB1 haplotypes were statistically inferred. RESULTS Median (25th-75th percentile) trough concentrations (ng/ml) of lopinavir in plasma, semen and saliva were 6326 (4070-8617), 286.0 (128.4-475.5) and 72.7 (38.0-119.6), respectively. The corresponding concentrations (ng/ml) for ritonavir were 261.8 (172.2-398.6), 17.7 (9.2-27.6) and 5.3 (3.2-9.0), respectively. Univariate and multivariate regression analysis revealed no influence of ABCB1 genotypes or haplotypes on the concentrations of lopinavir and ritonavir in plasma, semen and saliva of HIV-infected men under stable HAART treatment. CONCLUSION The ABCB1 1236C>T, 2667G>T/A and 3435C>T genotypes and haplotypes are not predictors of lopinavir and ritonavir concentrations in blood plasma, semen or saliva of HIV-infected men under stable HAART treatment. The concentrations of lopinavir and ritonavir in saliva are not reliable predictors of the concentration of these drugs in semen.
Collapse
Affiliation(s)
- Rita de Cassia Estrela
- Divisão de Farmacologia, Instituto Nacional de Câncer, Rua André Cavalcanti 37, Rio de Janeiro 21230-050, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
39
|
DeGoey DA, Grampovnik DJ, Flentge CA, Flosi WJ, Chen HJ, Yeung CM, Randolph JT, Klein LL, Dekhtyar T, Colletti L, Marsh KC, Stoll V, Mamo M, Morfitt DC, Nguyen B, Schmidt JM, Swanson SJ, Mo H, Kati WM, Molla A, Kempf DJ. 2-Pyridyl P1′-Substituted Symmetry-Based Human Immunodeficiency Virus Protease Inhibitors (A-792611 and A-790742) with Potential for Convenient Dosing and Reduced Side Effects. J Med Chem 2009; 52:2571-86. [DOI: 10.1021/jm900044w] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David A. DeGoey
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - David J. Grampovnik
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Charles A. Flentge
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - William J. Flosi
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Hui-ju Chen
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Clinton M. Yeung
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - John T. Randolph
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Larry L. Klein
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Tatyana Dekhtyar
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Lynn Colletti
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Kennan C. Marsh
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Vincent Stoll
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Mulugeta Mamo
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - David C. Morfitt
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Bach Nguyen
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - James M. Schmidt
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Sue J. Swanson
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Hongmei Mo
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Warren M. Kati
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Akhteruzzaman Molla
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| | - Dale J. Kempf
- Antiviral Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064
| |
Collapse
|
40
|
Predictive value of pharmacokinetics-adjusted phenotypic susceptibility on response to ritonavir-enhanced protease inhibitors (PIs) in human immunodeficiency virus-infected subjects failing prior PI therapy. Antimicrob Agents Chemother 2009; 53:2335-41. [PMID: 19307363 DOI: 10.1128/aac.01387-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activities of protease inhibitors in vivo may depend on plasma concentrations and viral susceptibility. This nonrandomized, open-label study evaluated the relationship of the inhibitory quotient (IQ [the ratio of drug exposure to viral phenotypic susceptibility]) to the human immunodeficiency virus type 1 (HIV-1) viral load (VL) change for ritonavir-enhanced protease inhibitors (PIs). Subjects on PI-based regimens replaced their PIs with ritonavir-enhanced indinavir (IDV/r) 800/200 mg, fosamprenavir (FPV/r) 700/100 mg, or lopinavir (LPV/r) 400/200 mg twice daily. Pharmacokinetics were assessed at day 14; follow-up lasted 24 weeks. Associations between IQ and VL changes were examined. Fifty-three subjects enrolled, 12 on IDV/r, 33 on FPV/r, and 8 on LPV/r. Median changes (n-fold) (FC) of 50% inhibitory concentrations (IC(50)s) to the study PI were high. Median 2-week VL changes were -0.7, -0.1, and -1.0 log(10) for IDV/r, FPV/r, and LPV/r. With FPV/r, correlations between the IQ and the 2-week change in VL were significant (Spearman's r range, -0.39 to -0.50; P < or = 0.029). The strongest correlation with response to FPV/r was the IC(50) FC (r = 0.57; P = 0.001), which improved when only adherent subjects were included (r = 0.68; P = 0.001). In multivariable analyses of the FPV/r arm that included FC, one measure of the drug concentration, corresponding IQ, baseline VL, and CD4, the FC to FPV was the only significant predictor of VL decline (P < 0.001). In exploratory analyses of all arms, the area under the concentration-time curve IQ was correlated with the week 2 VL change (r = -0.72; P < 0.001). In conclusion, in PI-experienced subjects with highly resistant HIV-1, short-term VL responses to RTV-enhanced FPV/r correlated best with baseline susceptibility. The IQ improved correlation in analyses of all arms where a greater range of virologic responses was observed.
Collapse
|
41
|
Colletti LM, Liu Y, Koev G, Richardson PL, Chen CM, Kati W. Methods to measure the intracellular concentration of unlabeled compounds within cultured cells using liquid chromatography/tandem mass spectrometry. Anal Biochem 2008; 383:186-93. [DOI: 10.1016/j.ab.2008.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
|
42
|
Barragan P, Podzamczer D. Lopinavir/ritonavir: a protease inhibitor for HIV-1 treatment. Expert Opin Pharmacother 2008; 9:2363-75. [DOI: 10.1517/14656566.9.13.2363] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Klein CE, Chiu YL, Cai Y, Beck K, King KR, Causemaker SJ, Doan T, Esslinger HU, Podsadecki TJ, Hanna GJ. Effects of acid-reducing agents on the pharmacokinetics of lopinavir/ritonavir and ritonavir-boosted atazanavir. J Clin Pharmacol 2008; 48:553-62. [PMID: 18440920 DOI: 10.1177/0091270007313392] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A total of 71 HIV-negative healthy adults were randomized to 1 of 6 regimens to receive lopinavir/ritonavir tablets 400/100 mg twice daily (bid) or 800/200 mg once daily (qd) or atazanavir 300 mg + ritonavir 100 mg qd from study days 1 to 15 with a moderate-fat meal. One hour before breakfast, either omeprazole 40 mg qd was administered on study days 11 through 15, or a single dose of ranitidine 150 mg was administered on study day 11. Lopinavir, atazanavir, and ritonavir pharmacokinetics were determined on study days 10, 11, and 15 and compared using point estimates and 90% confidence intervals (CIs). The point estimates for lopinavir Cmax and AUCtau were in the range of 0.92 to 1.08, with 90% CI contained within the range of 0.80 to 1.25 after coadministration of omeprazole or ranitidine. The point estimates for atazanavir Cmax and AUCtau were decreased by 48% to 62% with the upper bound of the 90% CI <or=0.55 after coadministration of omeprazole or ranitidine. The results indicated that lopinavir bioavailability was not affected by the coadministration of omeprazole or ranitidine. In contrast, atazanavir bioavailability was decreased by 48% to 62% when coadministered with ritonavir and either omeprazole or ranitidine.
Collapse
Affiliation(s)
- Cheri E Klein
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Abbott Laboratories Department R4PK, Bldg AP13A, 100 Abbott Park, Abbott Park, IL 60064-6140, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mahmoud KA, Luong JHT. Impedance Method for Detecting HIV-1 Protease and Screening For Its Inhibitors Using Ferrocene−Peptide Conjugate/Au Nanoparticle/Single-Walled Carbon Nanotube Modified Electrode. Anal Chem 2008; 80:7056-62. [DOI: 10.1021/ac801174r] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khaled A. Mahmoud
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2, and Department of Chemistry, University College Cork, Cork, Ireland
| | - John H. T. Luong
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2, and Department of Chemistry, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Nakatani S, Hidaka K, Ami E, Nakahara K, Sato A, Nguyen JT, Hamada Y, Hori Y, Ohnishi N, Nagai A, Kimura T, Hayashi Y, Kiso Y. Combination of non-natural D-amino acid derivatives and allophenylnorstatine-dimethylthioproline scaffold in HIV protease inhibitors have high efficacy in mutant HIV. J Med Chem 2008; 51:2992-3004. [PMID: 18426195 DOI: 10.1021/jm701555p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several non-natural D-amino acid derivatives were introduced as P2/P3 residues in allophenylnorstatine-containing (Apns; (2S,3S)-3-amino-2-hydroxy-4-phenylbutyric acid) HIV protease inhibitors. The synthetic analogues exhibited potent inhibitory activity against HIV-1 protease enzyme and HIV-1 replication in MT-4 cells. Structure-activity relationships revealed that D-cysteine or serine derivatives contributed to highly potent anti-HIV activities. Interestingly, anti-HIV activity of all the D-amino acid-introduced inhibitors was remarkably enhanced in their anti-HIV activities against a Nelfinavir-resistant clone, which has a D30N mutation in the protease, over that of the wild-type strain. HIV inhibitory activity of several analogues was moderately affected by an inclusion of alpha1-acid glycoprotein in the test medium.
Collapse
Affiliation(s)
- Shingo Nakatani
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murphy RL, da Silva BA, Hicks CB, Eron JJ, Gulick RM, Thompson MA, McMillan F, King MS, Hanna GJ, Brun SC. Seven-year efficacy of a lopinavir/ritonavir-based regimen in antiretroviral-naïve HIV-1-infected patients. HIV CLINICAL TRIALS 2008; 9:1-10. [PMID: 18215977 DOI: 10.1310/hct0901-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Evaluate efficacy and tolerability of lopinavir/ritonavir (LPV/r) plus stavudine and lamivudine long term in antiretroviral-naïve patients. DESIGN Open-label follow-up of prospective, randomized, multicenter trial. METHOD Antiretroviral-naïve HIV-infected subjects (N = 00) received of 3 doses of LPV/r plus stavudine and lamivudine for 48 weeks then received LPV/r soft-gel capsules 400/00 mg plus stavudine and lamivudine. After 6 years, subjects replaced stavudine with tenofovir. RESULTS At 7 years, by intent-to-treat analysis, 61 % had plasma HIV-RNA <400 copies/mL and 59% had < 50 copies/mL. Thirty-nine subjects discontinued treatment due to adverse events (n = 6), personal/other reasons (0), loss to follow-up (9), and noncompliance (4). Among 28 subjects qualifying for drug resistance testing, no protease inhibitor or stavudine resistance was observed and 4 showed lamivudine resistance. Most common drug-related moderate or severe adverse events were diarrhea (28%), nausea (6%), and abdominal pain (11 %). Subjects who received stavudine (median 6.6 years) and switched to tenofovir demonstrated significant improvements in total cholesterol (p = .009), triglycerides (p = .023), apolipoprotein C-III (p < .001 ), adiponectin (p = .008), fasting insulin (p = .04), and leptin (p = .03). CONCLUSION LPV/r-based therapy demonstrated sustained efficacy with no protease inhibitor or stavudine resistance through 7 years in antiretroviral-naïve patients. Switching from stavudine to tenofovir resulted in significant improvements in multiple metabolic parameters.
Collapse
|
47
|
Probing the binding of morin to human serum albumin by optical spectroscopy. J Pharm Biomed Anal 2008; 46:699-706. [DOI: 10.1016/j.jpba.2007.10.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/18/2022]
|
48
|
Grigorian A, Hurford R, Chao Y, Patrick C, Langford TD. Alterations in the Notch4 pathway in cerebral endothelial cells by the HIV aspartyl protease inhibitor, nelfinavir. BMC Neurosci 2008; 9:27. [PMID: 18302767 PMCID: PMC2268698 DOI: 10.1186/1471-2202-9-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 02/26/2008] [Indexed: 11/12/2022] Open
Abstract
Background Aspartyl protease inhibitors (PIs) used to treat HIV belong to an important group of drugs that influence significantly endothelial cell functioning and angiogenic capacity, although specific mechanisms are poorly understood. Recently, PIs, particularly Nelfinavir, were reported to disrupt Notch signaling in the HIV-related endothelial cell neoplasm, Kaposi's sarcoma. Given the importance of maintaining proper cerebral endothelial cell signaling at the blood brain barrier during HIV infection, we considered potential signaling pathways such as Notch, that may be vulnerable to dysregulation during exposure to PI-based anti-retroviral regimens. Notch processing by γ-secretase results in cleavage of the notch intracellular domain that travels to the nucleus to regulate expression of genes such as vascular endothelial cell growth factor and NFκB that are critical in endothelial cell functioning. Since, the effects of HIV PIs on γ-secretase substrate pathways in cerebral endothelial cell signaling have not been addressed, we sought to determine the effects of HIV PIs on Notch and amyloid precursor protein. Results Exposure to reported physiological levels of Saquinavir, Indinavir, Nelfinavir and Ritonavir, significantly increased reactive oxygen species in cerebral endothelial cells, but had no effect on cell survival. Likewise, PIs decreased Notch 4-protein expression, but had no effect on Notch 1 or amyloid precursor protein expression. On the other hand, only Nelfinavir increased significantly Notch 4 processing, Notch4 intracellular domain nuclear localization and the expression of notch intracellular domain targets NFκB and matrix metalloproteinase 2. Pre-treatment with the antioxidant Vitamin E prevented PI-induced reactive oxygen species generation and partially prevented Nelfinavir-induced changes in both Notch 4 processing, and cellular localization patterns. Moreover, in support of increased expression of pro-angiogenic genes after Nelfinavir treatment, Nelfinavir did not inhibit angiogenic capacity. Conclusion Nelfinavir affects Notch 4 processing that results in induction of expression of the pro-angiogenic genes NFκB and matrix metalloproteinase 2 in cerebral endothelial cells.
Collapse
Affiliation(s)
- Aline Grigorian
- Department of Pathology, University of California San Diego, La Jolla, USA.
| | | | | | | | | |
Collapse
|
49
|
Discovery and characterization of substituted diphenyl heterocyclic compounds as potent and selective inhibitors of hepatitis C virus replication. Antimicrob Agents Chemother 2008; 52:1419-29. [PMID: 18227176 DOI: 10.1128/aac.00525-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A novel small-molecule inhibitor, referred to here as R706, was discovered in a high-throughput screen of chemical libraries against Huh-7-derived replicon cells carrying autonomously replicating subgenomic RNA of hepatitis C virus (HCV). R706 was highly potent in blocking HCV RNA replication as measured by real-time reverse transcription-PCR and Western blotting of R706-treated replicon cells. Structure-activity iterations of the R706 series yielded a lead compound, R803, that was more potent and highly specific for HCV replication, with no significant inhibitory activity against a panel of HCV-related positive-stranded RNA viruses. Furthermore, HCV genotype 1 replicons displayed markedly higher sensitivity to R803 treatment than a genotype 2a-derived replicon. In addition, R803 was tested by a panel of biochemical and cell-based assays for on-target and off-target activities, and the data suggested that the compound had a therapeutic window close to 100-fold, while its exact mechanism of action remained elusive. We found that R803 was more effective than alpha interferon (IFN-alpha) at blocking HCV RNA replication in the replicon model. In combination studies, R803 showed a weak synergistic effect with IFN-alpha/ribavirin but only additive effects with a protease inhibitor and an allosteric inhibitor of RNA-dependent RNA polymerase (20). We conclude that R803 and related heterocyclic compounds constitute a new class of HCV-specific inhibitors that could potentially be developed as a treatment for HCV infection.
Collapse
|
50
|
Wu X, Ohrngren P, Ekegren JK, Unge J, Unge T, Wallberg H, Samuelsson B, Hallberg A, Larhed M. Two-carbon-elongated HIV-1 protease inhibitors with a tertiary-alcohol-containing transition-state mimic. J Med Chem 2008; 51:1053-7. [PMID: 18215014 DOI: 10.1021/jm070680h] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new generation of HIV-1 protease inhibitors encompassing a tertiary-alcohol-based transition-state mimic has been developed. By elongation of the core structure of recently reported inhibitors with two carbon atoms and by varying the P1' group of the compounds, efficient inhibitors were obtained with Ki down to 2.3 nM and EC50 down to 0.17 microM. Two inhibitor-enzyme X-ray structures are reported.
Collapse
Affiliation(s)
- Xiongyu Wu
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, BMC, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|