1
|
Obare LM, Simmons J, Oakes J, Zhang X, Nochowicz C, Priest S, Bailin SS, Warren CM, Mashayekhi M, Beasley HK, Shao J, Meenderink LM, Sheng Q, Stolze J, Gangula R, Absi T, Ru Su Y, Neikirk K, Chopra A, Gabriel CL, Temu T, Pakala S, Wilfong EM, Gianella S, Phillips EJ, Harrison DG, Hinton A, Kalams SA, Kirabo A, Mallal SA, Koethe JR, Wanjalla CN. CD3+ T-cell: CD14+ monocyte complexes are dynamic and increased with HIV and glucose intolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae054. [PMID: 40073149 PMCID: PMC11952877 DOI: 10.1093/jimmun/vkae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/07/2024] [Indexed: 03/14/2025]
Abstract
Persistent systemic inflammation is associated with an elevated risk of cardiometabolic diseases. However, the characteristics of the innate and adaptive immune systems in individuals who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states. Using well-characterized clinical cohorts, including participants with controlled human immunodeficiency virus (HIV) as a model for chronic inflammation and increased immune cell interactions, we show that circulating CD14+ monocytes complexed to CD3+ T cells are dynamic, biologically relevant, and increased in individuals with diabetes after adjusting for confounding factors. The complexes form functional immune synapses with increased expression of proinflammatory cytokines and greater glucose utilization. Furthermore, in persons with HIV, the CD3+ T cell: CD14+ monocyte complexes had more HIV copies compared to matched CD14+ monocytes or CD4+ T cells alone. Our results demonstrate that circulating CD3+ T-cell: CD14+ monocyte pairs represent dynamic cellular interactions that may contribute to inflammation and cardiometabolic disease pathogenesis. CD3+ T-cell: CD14+ monocyte complexes may originate or be maintained, in part, by chronic viral infections. These findings provide a foundation for future studies investigating mechanisms linking T cell-monocyte cell-cell complexes to developing immune-mediated diseases, including HIV and diabetes.
Collapse
Affiliation(s)
- Laventa M Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joshua Simmons
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jared Oakes
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cindy Nochowicz
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Samuel S Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christian M Warren
- Veterans Affairs Flow Cytometry Core, Veterans AffairsTennessee Valley Healthcare System, Nashville, TN, United States
| | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, United States
| | - Leslie M Meenderink
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Joey Stolze
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Curtis L Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tecla Temu
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Suman Pakala
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin M Wilfong
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sara Gianella
- Division of Infectious Diseases, University of California, San Diego, CA, United States
| | - Elizabeth J Phillips
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David G Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Spyros A Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Simon A Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, United States
| | - John R Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Celestine N Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
2
|
Guajardo-Contreras GI, Abdalla AL, Chen A, Niu M, Beauchamp E, Berthiaume LG, Cochrane AW, Mouland AJ. HIV-1 N-myristoylation-dependent hijacking of late endosomes/lysosomes to drive Gag assembly in macrophages. J Cell Sci 2024; 137:jcs263588. [PMID: 39439384 DOI: 10.1242/jcs.263588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophages represent an important viral reservoir in HIV-1-infected individuals. Different from T cells, HIV-1 assembly in macrophages occurs at intracellular compartments termed virus-containing compartments (VCCs). Our previous research in HeLa cells - in which assembly resembles that found in infected T cells - suggested that late endosomes/lysosomes (LELs) play a role in HIV-1 trafficking towards its assembly sites. However, the role of LELs during assembly at VCCs is not fully understood. Herein, we used the HIV-1-inducible cell line THP-1 GagZip as a model to study HIV-1 Gag intracellular trafficking and assembly in macrophages. We demonstrated LEL involvement at VCCs using various microscopy techniques and biochemical approaches. Live-cell imaging revealed that HIV-1 repositions LELs towards the plasma membrane and modulates their motility. We showed that Arl8b-mediated LEL repositioning is not responsible for Gag trafficking to VCCs. Additionally, the inhibition of myristoylation by PCLX-001 decreased the presence of Gag on endosomes and inhibited VCC formation in both the THP-1 cell line and primary macrophages. In conclusion, we present evidence supporting the idea that HIV-1 manipulates the LEL trajectory to guide Gag to VCCs in an N-myristoylation-dependent manner.
Collapse
Affiliation(s)
- Gabriel I Guajardo-Contreras
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Ana L Abdalla
- Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alex Chen
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Meijuan Niu
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | | | - Luc G Berthiaume
- Pacylex Pharmaceuticals Inc., Edmonton, AB T5J 4P6, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Alan W Cochrane
- The Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew J Mouland
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
3
|
Santiago MJ, Chinnapaiyan S, Panda K, Rahman MS, Ghorai S, Rahman I, Black SM, Liu Y, Unwalla HJ. Altered Host microRNAomics in HIV Infections: Therapeutic Potentials and Limitations. Int J Mol Sci 2024; 25:8809. [PMID: 39201495 PMCID: PMC11354509 DOI: 10.3390/ijms25168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
microRNAs have emerged as essential regulators of health and disease, attracting significant attention from researchers across diverse disciplines. Following their identification as noncoding oligonucleotides intricately involved in post-transcriptional regulation of protein expression, extensive efforts were devoted to elucidating and validating their roles in fundamental metabolic pathways and multiple pathologies. Viral infections are significant modifiers of the host microRNAome. Specifically, the Human Immunodeficiency Virus (HIV), which affects approximately 39 million people worldwide and has no definitive cure, was reported to induce significant changes in host cell miRNA profiles. Identifying and understanding the effects of the aberrant microRNAome holds potential for early detection and therapeutic designs. This review presents a comprehensive overview of the impact of HIV on host microRNAome. We aim to review the cause-and-effect relationship between the HIV-induced aberrant microRNAome that underscores miRNA's therapeutic potential and acknowledge its limitations.
Collapse
Affiliation(s)
- Maria J. Santiago
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, USA;
| | - Stephen M. Black
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Hoshang J. Unwalla
- Department of Chemistry and Biochemistry, Biochemistry Ph.D. Program, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (M.J.S.); (Y.L.)
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.C.); (K.P.); (M.S.R.); (S.G.); (S.M.B.)
| |
Collapse
|
4
|
Obare LM, Simmons J, Oakes J, Zhang X, Nochowicz C, Priest S, Bailin SS, Warren CM, Mashayekhi M, Beasley HK, Shao J, Meenderink LM, Sheng Q, Stolze J, Gangula R, Absi T, Su YR, Neikirk K, Chopra A, Gabriel CL, Temu T, Pakala S, Wilfong EM, Gianella S, Phillips EJ, Harrison DG, Hinton A, Kalams SA, Kirabo A, Mallal SA, Koethe JR, Wanjalla CN. CD3 + T-cell: CD14 +monocyte complexes are dynamic and increased with HIV and glucose intolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538020. [PMID: 37162990 PMCID: PMC10168203 DOI: 10.1101/2023.04.24.538020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An increased risk of cardiometabolic disease accompanies persistent systemic inflammation. Yet, the innate and adaptive immune system features in persons who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states. Using well-characterized clinical cohorts, including participants with controlled HIV as a model for chronic inflammation and increased immune cell interactions, we show that circulating CD14+ monocytes complexed to CD3+ T cells are dynamic, biologically relevant, and increased in individuals with diabetes after adjusting for confounding factors. The complexes form functional immune synapses with increased expression of proinflammatory cytokines and greater glucose utilization. Furthermore, in persons with HIV, the CD3+T-cell: CD14+monocyte complexes had more HIV copies compared to matched CD14+ monocytes or CD4+ T cells alone. Our results demonstrate that circulating CD3+T-cell:CD14+monocyte pairs represent dynamic cellular interactions that may contribute to inflammation and cardiometabolic disease pathogenesis and may originate or be maintained, in part, by chronic viral infections. These findings provide a foundation for future studies investigating mechanisms linking T cellmonocyte cell-cell complexes to developing immune-mediated diseases, including HIV and diabetes.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua Simmons
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jared Oakes
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Nochowicz
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel S. Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Leslie M. Meenderink
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Joey Stolze
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Suman Pakala
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin M. Wilfong
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Gianella
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J. Phillips
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Spyros A. Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
5
|
Tada T, Zhang Y, Kong D, Tanaka M, Yao W, Kameoka M, Ueno T, Fujita H, Tokunaga K. Further Characterization of the Antiviral Transmembrane Protein MARCH8. Cells 2024; 13:698. [PMID: 38667313 PMCID: PMC11049619 DOI: 10.3390/cells13080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The cellular transmembrane protein MARCH8 impedes the incorporation of various viral envelope glycoproteins, such as the HIV-1 envelope glycoprotein (Env) and vesicular stomatitis virus G-glycoprotein (VSV-G), into virions by downregulating them from the surface of virus-producing cells. This downregulation significantly reduces the efficiency of virus infection. In this study, we aimed to further characterize this host protein by investigating its species specificity and the domains responsible for its antiviral activity, as well as its ability to inhibit cell-to-cell HIV-1 infection. We found that the antiviral function of MARCH8 is well conserved in the rhesus macaque, mouse, and bovine versions. The RING-CH domains of these versions are functionally important for inhibiting HIV-1 Env and VSV-G-pseudovirus infection, whereas tyrosine motifs are crucial for the former only, consistent with findings in human MARCH8. Through analysis of chimeric proteins between MARCH8 and non-antiviral MARCH3, we determined that both the N-terminal and C-terminal cytoplasmic tails, as well as presumably the N-terminal transmembrane domain, of MARCH8 are critical for its antiviral activity. Notably, we found that MARCH8 is unable to block cell-to-cell HIV-1 infection, likely due to its insufficient downregulation of Env. These findings offer further insights into understanding the biology of this antiviral transmembrane protein.
Collapse
Affiliation(s)
- Takuya Tada
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yanzhao Zhang
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Dechuan Kong
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Michiko Tanaka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
| | - Weitong Yao
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
- Shenzhen Bay Laboratory, Institute of Chemical Biology, Shenzhen 518132, China
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe 650-0017, Japan;
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan;
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.T.); (Y.Z.); (D.K.); (W.Y.)
| |
Collapse
|
6
|
Lou E, Vérollet C, Winkler F, Zurzolo C, Valdebenito-Silva S, Eugenin E. Tunneling nanotubes and tumor microtubes-Emerging data on their roles in intercellular communication and pathophysiology: Summary of an International FASEB Catalyst Conference October 2023. FASEB J 2024; 38:e23514. [PMID: 38466151 DOI: 10.1096/fj.202302551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.
Collapse
Affiliation(s)
- Emil Lou
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, Centre National de la Recherche Scientifique, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Eliseo Eugenin
- Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, Texas, USA
| |
Collapse
|
7
|
Cowell E, Jaber H, Kris LP, Fitzgerald MG, Sanders VM, Norbury AJ, Eyre NS, Carr JM. Vav proteins do not influence dengue virus replication but are associated with induction of phospho-ERK, IL-6, and viperin mRNA following DENV infection in vitro. Microbiol Spectr 2024; 12:e0239123. [PMID: 38054722 PMCID: PMC10782993 DOI: 10.1128/spectrum.02391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Dengue disease is characterized by an inflammatory-mediated immunopathology, with elevated levels of circulating factors including TNF-α and IL-6. If the damaging inflammatory pathways could be blocked without loss of antiviral responses or exacerbating viral replication, then this would be of potential therapeutic benefit. The study here has investigated the Vav guanine exchange factors as a potential alternative signaling pathway that may drive dengue virus (DENV)-induced inflammatory responses, with a focus on Vav1 and 2. While Vav proteins were positively associated with mRNA for inflammatory cytokines, blocking Vav signaling didn't affect DENV replication but prevented DENV-induction of p-ERK and enhanced IL-6 (inflammatory) and viperin (antiviral) mRNA. These initial data suggest that Vav proteins could be a target that does not compromise control of viral replication and should be investigated further for broader impact on host inflammatory responses, in settings such as antibody-dependent enhancement of infection and in different cell types.
Collapse
Affiliation(s)
- Evangeline Cowell
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Hawraa Jaber
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Luke P. Kris
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Madeleine G. Fitzgerald
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Valeria M. Sanders
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Aidan J. Norbury
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas S. Eyre
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Jillian M. Carr
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Liu W, Lu JY, Wang YJ, Xu XX, Chen YC, Yu SX, Xiang XW, Chen XZ, Jiu Y, Gao H, Sheng M, Chen ZJ, Hu X, Li D, Maiuri P, Huang X, Ying T, Xu GL, Pang DW, Zhang ZL, Liu B, Liu YJ. Vaccinia virus induces EMT-like transformation and RhoA-mediated mesenchymal migration. J Med Virol 2023; 95:e29041. [PMID: 37621182 DOI: 10.1002/jmv.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jia-Yin Lu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xiao-Wei Xiang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xue-Zhu Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Xinxin Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, Frontiers Science Center for Cell Responses, College of Chemistry, Nankai University, Tianjin, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Bruce JW, Park E, Magnano C, Horswill M, Richards A, Potts G, Hebert A, Islam N, Coon JJ, Gitter A, Sherer N, Ahlquist P. HIV-1 virological synapse formation enhances infection spread by dysregulating Aurora Kinase B. PLoS Pathog 2023; 19:e1011492. [PMID: 37459363 PMCID: PMC10374047 DOI: 10.1371/journal.ppat.1011492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/27/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
HIV-1 spreads efficiently through direct cell-to-cell transmission at virological synapses (VSs) formed by interactions between HIV-1 envelope proteins (Env) on the surface of infected cells and CD4 receptors on uninfected target cells. Env-CD4 interactions bring the infected and uninfected cellular membranes into close proximity and induce transport of viral and cellular factors to the VS for efficient virion assembly and HIV-1 transmission. Using novel, cell-specific stable isotope labeling and quantitative mass spectrometric proteomics, we identified extensive changes in the levels and phosphorylation states of proteins in HIV-1 infected producer cells upon mixing with CD4+ target cells under conditions inducing VS formation. These coculture-induced alterations involved multiple cellular pathways including transcription, TCR signaling and, unexpectedly, cell cycle regulation, and were dominated by Env-dependent responses. We confirmed the proteomic results using inhibitors targeting regulatory kinases and phosphatases in selected pathways identified by our proteomic analysis. Strikingly, inhibiting the key mitotic regulator Aurora kinase B (AURKB) in HIV-1 infected cells significantly increased HIV activity in cell-to-cell fusion and transmission but had little effect on cell-free infection. Consistent with this, we found that AURKB regulates the fusogenic activity of HIV-1 Env. In the Jurkat T cell line and primary T cells, HIV-1 Env:CD4 interaction also dramatically induced cell cycle-independent AURKB relocalization to the centromere, and this signaling required the long (150 aa) cytoplasmic C-terminal domain (CTD) of Env. These results imply that cytoplasmic/plasma membrane AURKB restricts HIV-1 envelope fusion, and that this restriction is overcome by Env CTD-induced AURKB relocalization. Taken together, our data reveal a new signaling pathway regulating HIV-1 cell-to-cell transmission and potential new avenues for therapeutic intervention through targeting the Env CTD and AURKB activity.
Collapse
Affiliation(s)
- James W. Bruce
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Eunju Park
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Chris Magnano
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mark Horswill
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alicia Richards
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Gregory Potts
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Alexander Hebert
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nafisah Islam
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Anthony Gitter
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Computer Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Valdebenito S, Ono A, Rong L, Eugenin EA. The role of tunneling nanotubes during early stages of HIV infection and reactivation: implications in HIV cure. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:169-186. [PMID: 37476291 PMCID: PMC10355284 DOI: 10.1515/nipt-2022-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2022] [Indexed: 07/22/2023]
Abstract
Tunneling nanotubes (TNTs), also called cytonemes or tumor microtubes, correspond to cellular processes that enable long-range communication. TNTs are plasma membrane extensions that form tubular processes that connect the cytoplasm of two or more cells. TNTs are mostly expressed during the early stages of development and poorly expressed in adulthood. However, in disease conditions such as stroke, cancer, and viral infections such as HIV, TNTs proliferate, but their role is poorly understood. TNTs function has been associated with signaling coordination, organelle sharing, and the transfer of infectious agents such as HIV. Here, we describe the critical role and function of TNTs during HIV infection and reactivation, as well as the use of TNTs for cure strategies.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Akira Ono
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Libin Rong
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Eliseo A. Eugenin
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
11
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
12
|
Rachel G, Vembuli H, Kumar C P G, Hanna LE. Immune cell cross talk in the establishment of HIV-1 latency. AIDS Res Hum Retroviruses 2023. [PMID: 36825522 DOI: 10.1089/aid.2022.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Revolutionary progress in combinational antiretroviral therapy (cART) has transformed Human Immunodeficiency Virus (HIV) infection into a chronic manageable disease; yet there exists an uneasy truce between the virus and the immune cells, where inflammation is limited but infection continues to fester from latent reservoirs of the virus. Clinical studies have identified the major immune cell types that constitute the latent HIV-1 reservoirs as monocytes/macrophages and CD4+ T cells. Latency probing approaches have thrown some light on the interaction between the virus and the reservoir cells from the time of onset of infection. However, research combining latency reversal strategies and immunotherapies face daunting obstacles in clinical trials because of the lack of in-depth knowledge on viral pathogenesis and mechanisms of viral evasion, leaving us behind in the battle for HIV cure. This article reviews existing knowledge on the cells and mechanisms that contribute to the establishment and survival of HIV reservoirs in infected individuals.
Collapse
Affiliation(s)
- Gladys Rachel
- National Institute of Epidemiology, 29893, Laboratory Division, TNHB Colony, ICMR-NIE, Chennai, Tamil Nadu, India, 600077;
| | - Hemanathan Vembuli
- ICMR-National Institute for Research in Tuberculosis, 29888, Department of HIV/AIDS, Chennai, Tamil Nadu, India;
| | - Girish Kumar C P
- National Institute of Epidemiology, 29893, Laboratory Division, Chennai, Tamil Nadu, India;
| | - Luke Elizabeth Hanna
- ICMR-National Institute for Research in Tuberculosis, 29888, Department of HIV/AIDS, Chennai, Tamil Nadu, India;
| |
Collapse
|
13
|
Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochem Cell Biol 2022; 159:47-60. [PMID: 36175690 PMCID: PMC9521873 DOI: 10.1007/s00418-022-02152-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 02/07/2023]
Abstract
The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.
Collapse
|
14
|
Bellinger DL, Lorton D. Sympathetic Nerves and Innate Immune System in the Spleen: Implications of Impairment in HIV-1 and Relevant Models. Cells 2022; 11:cells11040673. [PMID: 35203323 PMCID: PMC8870141 DOI: 10.3390/cells11040673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022] Open
Abstract
The immune and sympathetic nervous systems are major targets of human, murine and simian immunodeficiency viruses (HIV-1, MAIDS, and SIV, respectively). The spleen is a major reservoir for these retroviruses, providing a sanctuary for persistent infection of myeloid cells in the white and red pulps. This is despite the fact that circulating HIV-1 levels remain undetectable in infected patients receiving combined antiretroviral therapy. These viruses sequester in immune organs, preventing effective cures. The spleen remains understudied in its role in HIV-1 pathogenesis, despite it hosting a quarter of the body’s lymphocytes and diverse macrophage populations targeted by HIV-1. HIV-1 infection reduces the white pulp, and induces perivascular hyalinization, vascular dysfunction, tissue infarction, and chronic inflammation characterized by activated epithelial-like macrophages. LP-BM5, the retrovirus that induces MAIDS, is a well-established model of AIDS. Immune pathology in MAIDs is similar to SIV and HIV-1 infection. As in SIV and HIV, MAIDS markedly changes splenic architecture, and causes sympathetic dysfunction, contributing to inflammation and immune dysfunction. In MAIDs, SIV, and HIV, the viruses commandeer splenic macrophages for their replication, and shift macrophages to an M2 phenotype. Additionally, in plasmacytoid dendritic cells, HIV-1 blocks sympathetic augmentation of interferon-β (IFN-β) transcription, which promotes viral replication. Here, we review viral–sympathetic interactions in innate immunity and pathophysiology in the spleen in HIV-1 and relevant models. The situation remains that research in this area is still sparse and original hypotheses proposed largely remain unanswered.
Collapse
|
15
|
Barhoumi T, Alghanem B, Shaibah H, Mansour FA, Alamri HS, Akiel MA, Alroqi F, Boudjelal M. SARS-CoV-2 Coronavirus Spike Protein-Induced Apoptosis, Inflammatory, and Oxidative Stress Responses in THP-1-Like-Macrophages: Potential Role of Angiotensin-Converting Enzyme Inhibitor (Perindopril). Front Immunol 2021; 12:728896. [PMID: 34616396 PMCID: PMC8488399 DOI: 10.3389/fimmu.2021.728896] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022] Open
Abstract
A purified spike (S) glycoprotein of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) coronavirus was used to study its effects on THP-1 macrophages, peripheral blood mononuclear cells (PBMCs), and HUVEC cells. The S protein mediates the entry of SARS-CoV-2 into cells through binding to the angiotensin-converting enzyme 2 (ACE2) receptors. We measured the viability, intracellular cytokine release, oxidative stress, proinflammatory markers, and THP-1-like macrophage polarization. We observed an increase in apoptosis, ROS generation, MCP-1, and intracellular calcium expression in the THP-1 macrophages. Stimulation with the S protein polarizes the THP-1 macrophages towards proinflammatory futures with an increase in the TNFα and MHC-II M1-like phenotype markers. Treating the cells with an ACE inhibitor, perindopril, at 100 µM reduced apoptosis, ROS, and MHC-II expression induced by S protein. We analyzed the sensitivity of the HUVEC cells after the exposure to a conditioned media (CM) of THP-1 macrophages stimulated with the S protein. The CM induced endothelial cell apoptosis and MCP-1 expression. Treatment with perindopril reduced these effects. However, the direct stimulation of the HUVEC cells with the S protein, slightly increased HIF1α and MCP-1 expression, which was significantly increased by the ACE inhibitor treatment. The S protein stimulation induced ROS generation and changed the mitogenic responses of the PBMCs through the upregulation of TNFα and interleukin (IL)-17 cytokine expression. These effects were reduced by the perindopril (100 µM) treatment. Proteomic analysis of the S protein stimulated THP-1 macrophages with or without perindopril (100 µM) exposed more than 400 differentially regulated proteins. Our results provide a mechanistic analysis suggesting that the blood and vascular components could be activated directly through S protein systemically present in the circulation and that the activation of the local renin angiotensin system may be partially involved in this process. Graphical Suggested pathways that might be involved at least in part in S protein inducing activation of inflammatory markers (red narrow) and angiotensin-converting enzyme inhibitor (ACEi) modulation of this process (green narrow).
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bandar Alghanem
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hayat Shaibah
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Fatmah A Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hassan S Alamri
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Maaged A Akiel
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Fayhan Alroqi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mohammad Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia.,Department of Clinical Laboratory Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Circumcision as an Intervening Strategy against HIV Acquisition in the Male Genital Tract. Pathogens 2021; 10:pathogens10070806. [PMID: 34201976 PMCID: PMC8308621 DOI: 10.3390/pathogens10070806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Unsafe sex with HIV-infected individuals remains a major route for HIV transmission, and protective strategies, such as the distribution of free condoms and pre-or post-prophylaxis medication, have failed to control the spread of HIV, particularly in resource-limited settings and high HIV prevalence areas. An additional key strategy for HIV prevention is voluntary male circumcision (MC). International health organizations (e.g., the World Health Organization, UNAIDS) have recommended this strategy on a larger scale, however, there is a general lack of public understanding about how MC effectively protects against HIV infection. This review aims to discuss the acquisition of HIV through the male genital tract and explain how and why circumcised men are more protected from HIV infection during sexual activity than uncircumcised men who are at higher risk of HIV acquisition.
Collapse
|
17
|
The large extracellular loop of CD63 interacts with gp41 of HIV-1 and is essential for establishing the virological synapse. Sci Rep 2021; 11:10011. [PMID: 33976357 PMCID: PMC8113602 DOI: 10.1038/s41598-021-89523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) persists lifelong in infected individuals and has evolved unique strategies in order to evade the immune system. One of these strategies is the direct cell-to-cell spread of HIV-1. The formation of a virological synapse (VS) between donor and target cell is important for this process. Tetraspanins are cellular proteins that are actively involved in the formation of a VS. However, the molecular mechanisms of recruiting host proteins for the cell–cell transfer of particles to the VS remains unclear. Our study has mapped the binding site for the transmembrane envelope protein gp41 of HIV-1 within the large extracellular loop (LEL) of CD63 and showed that this interaction occurs predominantly at the VS between T cells where viral particles are transferred. Mutations within the highly conserved CCG motif of the tetraspanin superfamily abrogated recruiting of expressed HIV-1 GFP fused Gag core protein and CD63 to the VS. This demonstrates the biological significance of CD63 for enhanced formation of a VS. Since cell–cell spread of HIV-1 is a major route of persistent infection, these results highlight the central role of CD63 as a member of the tetraspanin superfamily during HIV-1 infection and pathogenesis.
Collapse
|
18
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
19
|
Leroy H, Han M, Woottum M, Bracq L, Bouchet J, Xie M, Benichou S. Virus-Mediated Cell-Cell Fusion. Int J Mol Sci 2020; 21:E9644. [PMID: 33348900 PMCID: PMC7767094 DOI: 10.3390/ijms21249644] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-cell fusion between eukaryotic cells is a general process involved in many physiological and pathological conditions, including infections by bacteria, parasites, and viruses. As obligate intracellular pathogens, viruses use intracellular machineries and pathways for efficient replication in their host target cells. Interestingly, certain viruses, and, more especially, enveloped viruses belonging to different viral families and including human pathogens, can mediate cell-cell fusion between infected cells and neighboring non-infected cells. Depending of the cellular environment and tissue organization, this virus-mediated cell-cell fusion leads to the merge of membrane and cytoplasm contents and formation of multinucleated cells, also called syncytia, that can express high amount of viral antigens in tissues and organs of infected hosts. This ability of some viruses to trigger cell-cell fusion between infected cells as virus-donor cells and surrounding non-infected target cells is mainly related to virus-encoded fusion proteins, known as viral fusogens displaying high fusogenic properties, and expressed at the cell surface of the virus-donor cells. Virus-induced cell-cell fusion is then mediated by interactions of these viral fusion proteins with surface molecules or receptors involved in virus entry and expressed on neighboring non-infected cells. Thus, the goal of this review is to give an overview of the different animal virus families, with a more special focus on human pathogens, that can trigger cell-cell fusion.
Collapse
Affiliation(s)
- Héloïse Leroy
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Mingyu Han
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Marie Woottum
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| | - Lucie Bracq
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland;
| | - Jérôme Bouchet
- Laboratory Orofacial Pathologies, Imaging and Biotherapies UR2496, University of Paris, 92120 Montrouge, France;
| | - Maorong Xie
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Serge Benichou
- Institut Cochin, Inserm U1016, 75014 Paris, France; (H.L.); (M.H.); (M.W.)
- Centre National de la Recherche Scientifique CNRS, UMR8104, 75014 Paris, France
- Faculty of Health, University of Paris, 75014 Paris, France
| |
Collapse
|
20
|
Elucidating the Basis for Permissivity of the MT-4 T-Cell Line to Replication of an HIV-1 Mutant Lacking the gp41 Cytoplasmic Tail. J Virol 2020; 94:JVI.01334-20. [PMID: 32938764 DOI: 10.1128/jvi.01334-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
HIV-1 encodes an envelope glycoprotein (Env) that contains a long cytoplasmic tail (CT) harboring trafficking motifs implicated in Env incorporation into virus particles and viral transmission. In most physiologically relevant cell types, the gp41 CT is required for HIV-1 replication, but in the MT-4 T-cell line the gp41 CT is not required for a spreading infection. To help elucidate the role of the gp41 CT in HIV-1 transmission, in this study, we investigated the viral and cellular factors that contribute to the permissivity of MT-4 cells to gp41 CT truncation. We found that the kinetics of HIV-1 production and virus release are faster in MT-4 than in the other T-cell lines tested, but MT-4 cells express equivalent amounts of HIV-1 proteins on a per-cell basis relative to cells not permissive to CT truncation. MT-4 cells express higher levels of plasma-membrane-associated Env than nonpermissive cells, and Env internalization from the plasma membrane is less efficient than that from another T-cell line, SupT1. Paradoxically, despite the high levels of Env on the surface of MT-4 cells, 2-fold less Env is incorporated into virus particles produced from MT-4 than SupT1 cells. Contact-dependent transmission between cocultured 293T and MT-4 cells is higher than in cocultures of 293T with most other T-cell lines tested, indicating that MT-4 cells are highly susceptible to cell-to-cell infection. These data help to clarify the long-standing question of how MT-4 cells overcome the requirement for the HIV-1 gp41 CT and support a role for gp41 CT-dependent trafficking in Env incorporation and cell-to-cell transmission in physiologically relevant cell lines.IMPORTANCE The HIV-1 Env cytoplasmic tail (CT) is required for efficient Env incorporation into nascent particles and viral transmission in primary CD4+ T cells. The MT-4 T-cell line has been reported to support multiple rounds of infection of HIV-1 encoding a gp41 CT truncation. Uncovering the underlying mechanism of MT-4 T-cell line permissivity to gp41 CT truncation would provide key insights into the role of the gp41 CT in HIV-1 transmission. This study reveals that multiple factors contribute to the unique ability of a gp41 CT truncation mutant to spread in cultures of MT-4 cells. The lack of a requirement for the gp41 CT in MT-4 cells is associated with the combined effects of rapid HIV-1 protein production, high levels of cell-surface Env expression, and increased susceptibility to cell-to-cell transmission compared to nonpermissive cells.
Collapse
|
21
|
Abstract
A critical step in the life cycle of a virus is spread to a new target cell, which generally involves the release of new viral particles from the infected cell which can then initiate infection in the next target cell. While cell-free viral particles released into the extracellular environment are necessary for long distance spread, there are disadvantages to this mechanism. These include the presence of immune system components, the low success rate of infection by single particles, and the relative fragility of viral particles in the environment. Several mechanisms of direct cell-to-cell spread have been reported for animal viruses which would avoid the issues associated with cell-free particles. A number of viruses can utilize several different mechanisms of direct cell-to-cell spread, but our understanding of the differential usage by these pathogens is modest. Although the mechanisms of cell-to-cell spread differ among viruses, there is a common exploitation of key pathways and components of the cellular cytoskeleton. Remarkably, some of the viral mechanisms of cell-to-cell spread are surprisingly similar to those used by bacteria. Here we summarize the current knowledge of the conventional and non-conventional mechanisms of viral spread, the common methods used to detect viral spread, and the impact that these mechanisms can have on viral pathogenesis.
Collapse
Affiliation(s)
- Nicolas Cifuentes-Munoz
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Santiago, Chile
| | - Farah El Najjar
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
22
|
Lubow J, Collins KL. Vpr Is a VIP: HIV Vpr and Infected Macrophages Promote Viral Pathogenesis. Viruses 2020; 12:E809. [PMID: 32726944 PMCID: PMC7472745 DOI: 10.3390/v12080809] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
HIV infects several cell types in the body, including CD4+ T cells and macrophages. Here we review the role of macrophages in HIV infection and describe complex interactions between viral proteins and host defenses in these cells. Macrophages exist in many forms throughout the body, where they play numerous roles in healthy and diseased states. They express pattern-recognition receptors (PRRs) that bind viral, bacterial, fungal, and parasitic pathogens, making them both a key player in innate immunity and a potential target of infection by pathogens, including HIV. Among these PRRs is mannose receptor, a macrophage-specific protein that binds oligosaccharides, restricts HIV replication, and is downregulated by the HIV accessory protein Vpr. Vpr significantly enhances infection in vivo, but the mechanism by which this occurs is controversial. It is well established that Vpr alters the expression of numerous host proteins by using its co-factor DCAF1, a component of the DCAF1-DDB1-CUL4 ubiquitin ligase complex. The host proteins targeted by Vpr and their role in viral replication are described in detail. We also discuss the structure and function of the viral protein Env, which is stabilized by Vpr in macrophages. Overall, this literature review provides an updated understanding of the contributions of macrophages and Vpr to HIV pathogenesis.
Collapse
Affiliation(s)
- Jay Lubow
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kathleen L. Collins
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Hattaf K, Dutta H. Modeling the dynamics of viral infections in presence of latently infected cells. CHAOS, SOLITONS, AND FRACTALS 2020; 136:109916. [PMID: 32518473 PMCID: PMC7271877 DOI: 10.1016/j.chaos.2020.109916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
The study aims to develop a new mathematical model in order to explain the dynamics of viral infections in vivo such as HIV infection. The model includes three classes of cells, takes into account the cure of infected cells in latent period and also incorporates three modes of transmission. The mention modes are modeled by three general incidence functions covering several special cases available in the literature. The basic properties of the model as well as its stability analysis have been carried out rigorously. Further, an application is given and also numerical simulation results have been incorporated supporting the analytical results.
Collapse
Affiliation(s)
- Khalid Hattaf
- Centre Régional des Métiers de l’Education et de la Formation (CRMEF), 20340 Derb Ghalef, Casablanca, Morocco
- Laboratory of Analysis, Modeling and Simulation (LAMS), Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, P.O Box 7955 Sidi Othman, Casablanca, Morocco
| | - Hemen Dutta
- Department of Mathematics, Gauhati University, Guwahati 781014, India
| |
Collapse
|
24
|
Modeling the role of macrophages in HIV persistence during antiretroviral therapy. J Math Biol 2020; 81:369-402. [PMID: 32583031 DOI: 10.1007/s00285-020-01513-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/13/2020] [Indexed: 12/17/2022]
Abstract
HIV preferentially infects activated CD4+ T cells. Current antiretroviral therapy cannot eradicate the virus. Viral infection of other cells such as macrophages may contribute to viral persistence during antiretroviral therapy. In addition to cell-free virus infection, macrophages can also get infected when engulfing infected CD4+ T cells as innate immune sentinels. How macrophages affect the dynamics of HIV infection remains unclear. In this paper, we develop an HIV model that includes the infection of CD4+ T cells and macrophages via cell-free virus infection and cell-to-cell viral transmission. We derive the basic reproduction number and obtain the local and global stability of the steady states. Sensitivity and viral dynamics simulations show that even when the infection of CD4+ T cells is completely blocked by therapy, virus can still persist and the steady-state viral load is not sensitive to the change of treatment efficacy. Analysis of the relative contributions to viral replication shows that cell-free virus infection leads to the majority of macrophage infection. Viral transmission from infected CD4+ T cells to macrophages during engulfment accounts for a small fraction of the macrophage infection and has a negligible effect on the total viral production. These results suggest that macrophage infection can be a source contributing to HIV persistence during suppressive therapy. Improving drug efficacies in heterogeneous target cells is crucial for achieving HIV eradication in infected individuals.
Collapse
|
25
|
Dupont M, Sattentau QJ. Macrophage Cell-Cell Interactions Promoting HIV-1 Infection. Viruses 2020; 12:E492. [PMID: 32354203 PMCID: PMC7290394 DOI: 10.3390/v12050492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Many pathogens infect macrophages as part of their intracellular life cycle. This is particularly true for viruses, of which HIV-1 is one of the best studied. HIV-1 infection of macrophages has important consequences for viral persistence and pathogenesis, but the mechanisms of macrophage infection remain to be fully elucidated. Despite expressing viral entry receptors, macrophages are inefficiently infected by cell-free HIV-1 virions, whereas direct cell-cell spread is more efficient. Different modes of cell-cell spread have been described, including the uptake by macrophages of infected T cells and the fusion of infected T cells with macrophages, both leading to macrophage infection. Cell-cell spread can also transmit HIV-1 between macrophages and from macrophages to T cells. Here, we describe the current state of the field concerning the cell-cell spread of HIV-1 to and from macrophages, discuss mechanisms, and highlight potential in vivo relevance.
Collapse
Affiliation(s)
- Maeva Dupont
- The Sir William Dunn School of Pathology, The University of Oxford, Oxford OX13RE, UK
| | | |
Collapse
|
26
|
HIV-2 Depletes CD4 T Cells through Pyroptosis despite Vpx-Dependent Degradation of SAMHD1. J Virol 2019; 93:JVI.00666-19. [PMID: 31578293 DOI: 10.1128/jvi.00666-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection results in a milder course of disease and slower progression to AIDS than does HIV-1. We hypothesized that this difference may be due to degradation of the sterile alpha motif and HD domain 1 (SAMHD1) host restriction factor by the HIV-2 Vpx gene product, thereby diminishing abortive infection and pyroptotic cell death within bystander CD4 T cells. We have compared CD4 T cell death in tonsil-derived human lymphoid aggregate cultures (HLACs) infected with wild-type HIV-2, HIV-2 ΔVpx, or HIV-1. In contrast to our hypothesis, HIV-2, HIV-2 ΔVpx, and HIV-1 induced similar levels of bystander CD4 T cell death. In all cases, cell death was blocked by AMD3100, a CXCR4 entry inhibitor, but not by raltegravir, an integrase, indicating that only early life cycle events were required. Cell death was also blocked by a caspase-1 inhibitor, a key enzyme promoting pyroptosis, but not by a caspase-3 inhibitor, an important enzyme in apoptosis. HIV-1-induced abortive infection and pyroptotic cell death were also not reduced by forced encapsidation of HIV-2 Vpx into HIV-1 virions. Together, these findings indicate that HIV-2 and HIV-1 support similar levels of CD4 T cell depletion in vitro despite HIV-2 Vpx-mediated degradation of the SAMHD1 transcription factor. The milder disease course observed with HIV-2 infection likely stems from factors other than abortive infection and caspase-1-dependent pyroptosis in bystander CD4 T cells.IMPORTANCE CD4 T cell depletion during HIV-1 infection involves the demise of bystander CD4 T cells due to abortive infection, viral DNA sensing, inflammasome assembly, and death by caspase-1-dependent pyroptosis. HIV-2 infection is associated with milder disease and lower rates of CD4 T cell loss. We hypothesized that HIV-2 infection produces lower levels of pyroptosis due to the action of its Vpx gene product. Vpx degrades the SAMHD1 restriction factor, potentially reducing abortive forms of infection. However, in tonsil cell cultures, HIV-2, HIV-2 ΔVpx, and HIV-1 induced indistinguishable levels of pyroptosis. Forced encapsidation of Vpx into HIV-1 virions also did not reduce pyroptosis. Thus, SAMHD1 does not appear to play a key role in the induction of bystander cell pyroptosis. Additionally, the milder clinical course of HIV-2-induced disease is apparently not explained by a decrease in this inflammatory form of programmed cell death.
Collapse
|
27
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
28
|
Showa SP, Nyabadza F, Hove-Musekwa SD. On the efficiency of HIV transmission: Insights through discrete time HIV models. PLoS One 2019; 14:e0222574. [PMID: 31532803 PMCID: PMC6750597 DOI: 10.1371/journal.pone.0222574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
There are different views on which of the two forms of viral spread is more efficient in vivo between cell-free and cell-associated virus. In this study, discrete time human immunodeficiency virus models are formulated and analysed with the goal of determining the form of viral spread that is more efficient in vivo. It is shown that on its own, cell-free viral spread cannot sustain an infection owing to the low infectivity of cell-free virus and cell-associated virus can sustain an infection because of the high infectivity of cell-associated virus. When acting concurrently, cell-associated virus is more efficient in spreading the infection upon exposure to the virus. However, in the long term, the two forms of viral spread contribute almost equally. Both forms of viral spread are shown to be able to initiate an infection.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Farai Nyabadza
- Department of Mathematics and Applied Mathematics, Auckland Park Campus, University of Johannesburg, Johannesburg, South Africa
| | - Senelani D Hove-Musekwa
- Department of Applied Mathematics, National University of Science and Technology, Bulawayo, Zimbabwe
| |
Collapse
|
29
|
HIV Infection Stabilizes Macrophage-T Cell Interactions To Promote Cell-Cell HIV Spread. J Virol 2019; 93:JVI.00805-19. [PMID: 31270227 DOI: 10.1128/jvi.00805-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Macrophages are susceptible to HIV infection and play an important role in viral dissemination through cell-cell contacts with T cells. However, our current understanding of macrophage-to-T cell HIV transmission is derived from studies that do not consider the robust migration and cell-cell interaction dynamics between these cells. Here, we performed live-cell imaging studies in 3-dimensional (3D) collagen that allowed CD4+ T cells to migrate and to locate and engage HIV-infected macrophages, modeling the dynamic aspects of the in situ environment in which these contacts frequently occur. We show that HIV+ macrophages form stable contacts with CD4+ T cells that are facilitated by both gp120-CD4 and LFA-1-ICAM-1 interactions and that prolonged contacts are a prerequisite for efficient viral spread. LFA-1-ICAM-1 adhesive contacts function to restrain highly motile T cells, since their blockade substantially destabilized macrophage-T cell contacts, resulting in abnormal tethering events that reduced cell-cell viral spread. HIV-infected macrophages displayed strikingly elongated podosomal extensions that were dependent on Nef expression but were dispensable for stable cell-cell contact formation. Finally, we observed persistent T cell infection in dynamic monocyte-derived macrophage (MDM)-T cell cocultures in the presence of single high antiretroviral drug concentrations but achieved complete inhibition with combination therapy. Together, our data implicate macrophages as drivers of T cell infection by altering physiological MDM-T cell contact dynamics to access and restrain large numbers of susceptible, motile T cells within lymphoid tissues.IMPORTANCE Once HIV enters the lymphoid organs, exponential viral replication in T cells ensues. Given the densely packed nature of these tissues, where infected and uninfected cells are in nearly constant contact with one another, efficient HIV spread is thought to occur through cell-cell contacts in vivo However, this has not been formally demonstrated. In this study, we performed live-cell imaging studies within a 3-dimensional space to recapitulate the dynamic aspects of the lymphoid microenvironment and asked whether HIV can alter the morphology, migration capacity, and cell-cell contact behaviors between macrophages and T cells. We show that HIV-infected macrophages can engage T cells in stable contacts through binding of virus- and host-derived adhesive molecules and that stable macrophage-T cell contacts were required for high viral spread. Thus, HIV alters physiological macrophage-T cell interactions in order to access and restrain large numbers of susceptible, motile T cells, thereby playing an important role in HIV progression.
Collapse
|
30
|
Pedro KD, Henderson AJ, Agosto LM. Mechanisms of HIV-1 cell-to-cell transmission and the establishment of the latent reservoir. Virus Res 2019; 265:115-121. [PMID: 30905686 DOI: 10.1016/j.virusres.2019.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023]
Abstract
HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection. In this review we will discuss general cell contact-dependent mechanisms that HIV-1 utilizes for its spread and the evidence pointing to cell-to-cell transmission as a mechanism for the establishment and maintenance of latent infection.
Collapse
Affiliation(s)
- Kyle D Pedro
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Andrew J Henderson
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA; Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
| | - Luis M Agosto
- Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA.
| |
Collapse
|
31
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|
32
|
Guo L, Zhang Y, Yang Z, Peng H, Wei R, Wang C, Feng M. Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma. ACS NANO 2019; 13:1078-1096. [PMID: 30608136 DOI: 10.1021/acsnano.8b08872] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is extremely difficult for cancer chemotherapy to control the peritoneal metastasis of advanced ovarian carcinoma given its inability to target disseminated tumors and the severe toxic side effects on healthy organs. Here, we report antitumor M1 macrophages developed as live-cell carriers that deliver anticancer drugs for the treatment of the metastatic ovarian carcinoma. Engineered doxorubicin-loaded M1 macrophages (M1-Dox) significantly enhanced tumor tropism by upregulation of CCR2 and CCR4 compared with their parent cells. Meanwhile, M1-Dox inhibited doxorubicin-induced tumor invasion, whereas commercial Lipo-Dox did not limit these side effects. Importantly, our data uncovered a drug delivery mechanism by which M1-Dox transferred drug cargoes into tumor cells via a tunneling nanotube pathway. The tunneling nanotube network acted as a transportation expressway for ultrafast drug delivery of M1-Dox, leading to efficient ovarian carcinoma cell death. Furthermore, genetic, pharmacological, and physical perturbations of these tunneling nanotubes obviously decreased drug transfer of M1-Dox, which further validated the evident correlation between drug delivery of M1-Dox and tunneling nanotubes. Finally, in peritoneal metastatic ovarian carcinoma-burdened mice, M1-Dox specifically penetrated into and accumulated deep within disseminated neoplastic lesions compared with commercial Lipo-Dox, resulting in reducing metastatic tumors to a nearly undetectable level and significantly increasing overall survival. Overall, the strategy of engineered macrophages for ultrafast and accurate drug delivery via the tunneling nanotubular expressway potentially revolutionizes the treatment of metastatic ovarian carcinoma.
Collapse
Affiliation(s)
| | | | | | - Hui Peng
- Department of Surgery , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| | | | | | | |
Collapse
|
33
|
Rao S, Amorim R, Niu M, Breton Y, Tremblay MJ, Mouland AJ. Host mRNA decay proteins influence HIV-1 replication and viral gene expression in primary monocyte-derived macrophages. Retrovirology 2019; 16:3. [PMID: 30732620 PMCID: PMC6367771 DOI: 10.1186/s12977-019-0465-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 01/29/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mammalian cells harbour RNA quality control and degradative machineries such as nonsense-mediated mRNA decay that target cellular mRNAs for clearance from the cell to avoid aberrant gene expression. The role of the host mRNA decay pathways in macrophages in the context of human immunodeficiency virus type 1 (HIV-1) infection is yet to be elucidated. Macrophages are directly infected by HIV-1, mediate the dissemination of the virus and contribute to the chronic activation of the inflammatory response observed in infected individuals. Therefore, we characterized the effects of four host mRNA decay proteins, i.e., UPF1, UPF2, SMG6 and Staufen1, on viral replication in HIV-1-infected primary monocyte-derived macrophages (MDMs). RESULTS Steady-state expression levels of these host mRNA decay proteins were significantly downregulated in HIV-1-infected MDMs. Moreover, UPF2 and SMG6 inhibited HIV-1 gene expression in macrophages to a similar level achieved by SAMHD1, by directly influencing viral genomic RNA levels. Staufen1, a host protein also involved in UPF1-dependent mRNA decay and that acts at several HIV-1 replication steps, enhanced HIV-1 gene expression in MDMs. CONCLUSIONS These results provide new evidence for roles of host mRNA decay proteins in regulating HIV-1 replication in infected macrophages and can serve as potential targets for broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Shringar Rao
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Raquel Amorim
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Meijuan Niu
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada
| | - Yann Breton
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Glycosyl-Phosphatidylinositol-Anchored Anti-HIV Env Single-Chain Variable Fragments Interfere with HIV-1 Env Processing and Viral Infectivity. J Virol 2018; 92:JVI.02080-17. [PMID: 29321330 DOI: 10.1128/jvi.02080-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we demonstrated that single-chain variable fragments (scFvs) from anti-human immunodeficiency virus (HIV) Env monoclonal antibodies act as entry inhibitors when tethered to the surface of target cells by a glycosyl-phosphatidylinositol (GPI) anchor. Interestingly, even if a virus escapes inhibition at entry, its replication is ultimately controlled. We hypothesized that in addition to functioning as entry inhibitors, anti-HIV GPI-scFvs may also interact with Env in an infected cell, thereby interfering with the infectivity of newly produced virions. Here, we show that expression of the anti-HIV Env GPI-scFvs in virus-producing cells reduced the release of HIV from cells 5- to 22-fold, and infectivity of the virions that were released was inhibited by 74% to 99%. Additionally, anti-HIV Env GPI-scFv X5 inhibited virion production and infectivity after latency reactivation and blocked transmitter/founder virus production and infectivity in primary CD4+ T cells. In contrast, simian immunodeficiency virus (SIV) production and infectivity were not affected by the anti-HIV Env GPI-scFvs. Loss of infectivity of HIV was associated with a reduction in the amount of virion-associated Env gp120. Interestingly, an analysis of Env expression in cell lysates demonstrated that the anti-Env GPI-scFvs interfered with processing of Env gp160 precursors in cells. These data indicate that GPI-scFvs can inhibit Env processing and function, thereby restricting production and infectivity of newly synthesized HIV. Anti-Env GPI-scFvs therefore appear to be unique anti-HIV molecules as they derive their potent inhibitory activity by interfering with both early (receptor binding/entry) and late (Env processing and incorporation into virions) stages of the HIV life cycle.IMPORTANCE The restoration of immune function and persistence of CD4+ T cells in HIV-1-infected individuals without antiretroviral therapy requires a way to increase resistance of CD4+ T cells to infection by both R5- and X4-tropic HIV-1. Previously, we reported that anchoring anti-HIV-1 single-chain variable fragments (scFvs) via glycosyl-phosphatidylinositol (GPI) to the surface of permissive cells conferred a high level of resistance to HIV-1 variants at the level of entry. Here, we report that anti-HIV GPI-scFvs also derive their potent antiviral activity in part by blocking HIV production and Env processing, which consequently inhibits viral infectivity even in primary infection models. Thus, we conclude that GPI-anchored anti-HIV scFvs derive their potent blocking activity of HIV replication by interfering with successive stages of the viral life cycle. They may be effectively used in genetic intervention of HIV-1 infection.
Collapse
|
35
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
36
|
Ospina Stella A, Turville S. All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses 2018; 10:v10020063. [PMID: 29401736 PMCID: PMC5850370 DOI: 10.3390/v10020063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/21/2022] Open
Abstract
While significant progress has been made in terms of human immunodeficiency virus (HIV) therapy, treatment does not represent a cure and remains inaccessible to many people living with HIV. Continued mechanistic research into the viral life cycle and its intersection with many aspects of cellular biology are not only fundamental in the continued fight against HIV, but also provide many key observations of the workings of our immune system. Decades of HIV research have testified to the integral role of the actin cytoskeleton in both establishing and spreading the infection. Here, we review how the virus uses different strategies to manipulate cellular actin networks and increase the efficiency of various stages of its life cycle. While some HIV proteins seem able to bind to actin filaments directly, subversion of the cytoskeleton occurs indirectly by exploiting the power of actin regulatory proteins, which are corrupted at multiple levels. Furthermore, this manipulation is not restricted to a discrete class of proteins, but rather extends throughout all layers of the cytoskeleton. We discuss prominent examples of actin regulators that are exploited, neutralized or hijacked by the virus, and address how their coordinated deregulation can lead to changes in cellular behavior that promote viral spreading.
Collapse
Affiliation(s)
- Alberto Ospina Stella
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| | - Stuart Turville
- The Kirby Institute, University of New South Wales (UNSW), Sydney NSW 2052, Australia.
| |
Collapse
|
37
|
Dendritic cells efficiently transmit HIV to T Cells in a tenofovir and raltegravir insensitive manner. PLoS One 2018; 13:e0189945. [PMID: 29293546 PMCID: PMC5749731 DOI: 10.1371/journal.pone.0189945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cell (DC)-to-T cell transmission is an example of infection in trans, in which the cell transmitting the virus is itself uninfected. During this mode of DC-to-T cell transmission, uninfected DCs concentrate infectious virions, contact T cells and transmit these virions to target cells. Here, we investigated the efficiency of DC-to-T cell transmission on the number of cells infected and the sensitivity of this type of transmission to the antiretroviral drugs tenofovir (TFV) and raltegravir (RAL). We observed activated monocyte-derived and myeloid DCs amplified T cell infection, which resulted in drug insensitivity. This drug insensitivity was dependent on cell-to-cell contact and ratio of DCs to T cells in coculture. DC-mediated amplification of HIV-1 infection was efficient regardless of virus tropism or origin. The DC-to-T cell transmission of the T/F strain CH077.t/2627 was relatively insensitive to TFV compared to DC-free T cell infection. The input of virus modulated the drug sensitivity of DC-to-T cell infection, but not T cell infection by cell-free virus. At high viral inputs, DC-to-T cell transmission reduced the sensitivity of infection to TFV. Transmission of HIV by DCs in trans may have important implications for viral persistence in vivo in environments, where residual replication may persist in the face of antiretroviral therapy.
Collapse
|
38
|
Wang X, Tang S, Song X, Rong L. Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:455-483. [PMID: 27730851 DOI: 10.1080/17513758.2016.1242784] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
HIV can infect cells via virus-to-cell infection or cell-to-cell viral transmission. These two infection modes may occur in a synergistic way and facilitate viral spread within an infected individual. In this paper, we developed an HIV latent infection model including both modes of transmission and time delays between viral entry and integration or viral production. We analysed the model by defining the basic reproductive number, showing the existence, positivity and boundedness of the solution, and proving the local and global stability of the infection-free and infected steady states. Numerical simulations have been performed to illustrate the theoretical results and evaluate the effects of time delays and fractions of infection leading to latency on the virus dynamics. The estimates of the relative contributions to the HIV latent reservoir and the virus population from the two modes of transmission have also been provided.
Collapse
Affiliation(s)
- Xia Wang
- a College of Mathematics and Information Science , Xinyang Normal University , Xinyang , People's Republic of China
| | - Sanyi Tang
- b College of Mathematics and Information Science , Shaanxi Normal University , Xi'an , People's Republic of China
| | - Xinyu Song
- a College of Mathematics and Information Science , Xinyang Normal University , Xinyang , People's Republic of China
| | - Libin Rong
- c Department of Mathematics and Statistics , Oakland University , Rochester , MI , USA
| |
Collapse
|
39
|
The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. Proc Natl Acad Sci U S A 2017; 114:6104-6109. [PMID: 28533400 DOI: 10.1073/pnas.1704809114] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.
Collapse
|
40
|
JAK-STAT Signaling Pathways and Inhibitors Affect Reversion of Envelope-Mutated HIV-1. J Virol 2017; 91:JVI.00075-17. [PMID: 28202754 DOI: 10.1128/jvi.00075-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022] Open
Abstract
HIV can spread by both cell-free and cell-to-cell transmission. Here, we show that many of the amino acid changes in Env that are close to the CD4 binding pocket can affect HIV replication. We generated a number of mutant viruses that were unable to infect T cells as cell-free viruses but were nevertheless able to infect certain T cell lines as cell-associated viruses, which was followed by reversion to the wild type. However, the activation of JAK-STAT signaling pathways caused the inhibition of such cell-to-cell infection as well as the reversion of multiple HIV Env mutants that displayed differences in their abilities to bind to the CD4 receptor. Specifically, two T cell activators, interleukin-2 (IL-2) and phorbol 12-myristate 13-acetate (PMA), both capable of activation of JAK-STAT pathways, were able to inhibit cell-to-cell viral transmission. In contrast, but consistent with the above result, a number of JAK-STAT and mTOR inhibitors actually promoted HIV-1 transmission and reversion. Hence, JAK-STAT signaling pathways may differentially affect the replication of a variety of HIV Env mutants in ways that differ from the role that these pathways play in the replication of wild-type viruses.IMPORTANCE Specific alterations in HIV Env close to the CD4 binding site can differentially change the ability of HIV to mediate infection for cell-free and cell-associated viruses. However, such differences are dependent to some extent on the types of target cells used. JAK-STAT signaling pathways are able to play major roles in these processes. This work sheds new light on factors that can govern HIV infection of target cells.
Collapse
|
41
|
HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell. PLoS Pathog 2016; 12:e1005964. [PMID: 27812216 PMCID: PMC5094736 DOI: 10.1371/journal.ppat.1005964] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. How quickly infection occurs should be an important determinant of viral fitness, but mechanisms which could accelerate the onset of viral gene expression were previously undefined. In this work we use time-lapse microscopy to quantify the timing of the HIV viral cycle and show that onset of viral gene expression can be substantially accelerated. This occurs during cell-to-cell spread of HIV, a mode of directed viral infection where multiple virions are transmitted between cells. Surprisingly, we found that neither cooperativity between infecting viruses, nor trans-acting factors from already infected cells, influence the timing of infection. Rather, we show experimentally that a more rapid onset of infection is explained by a first-past-the-post mechanism, where the fastest expressing virus out of the infecting virus pool sets the time for the onset of viral gene expression of an individual cell independently of other infections of the same cell. Fast onset of viral gene expression in cell-to-cell spread may play an important role in seeding the HIV reservoir, which rapidly makes infection irreversible.
Collapse
|
42
|
The Envelope Cytoplasmic Tail of HIV-1 Subtype C Contributes to Poor Replication Capacity through Low Viral Infectivity and Cell-to-Cell Transmission. PLoS One 2016; 11:e0161596. [PMID: 27598717 PMCID: PMC5012655 DOI: 10.1371/journal.pone.0161596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/08/2016] [Indexed: 12/15/2022] Open
Abstract
The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.
Collapse
|
43
|
HIV-1 Gag, Envelope, and Extracellular Determinants Cooperate To Regulate the Stability and Turnover of Virological Synapses. J Virol 2016; 90:6583-6597. [PMID: 27170746 DOI: 10.1128/jvi.00600-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/02/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Retroviruses spread more efficiently when infected and uninfected cells form tight, physical interfaces known as virological synapses (VSs). VS formation is initiated by adhesive interactions between viral Envelope (Env) glycoproteins on the infected cell and CD4 receptor molecules on the uninfected cell. How high-avidity Env-CD4 linkages are resolved over time is unknown. We describe here a tractable two-color, long-term (>24 h) live cell imaging strategy to study VS turnover in the context of a large cell population, quantitatively. We show that Env's conserved cytoplasmic tail (CT) can potently signal the recruitment of Gag capsid proteins to the VS, a process also dependent on residues within Gag's N-terminal matrix (MA) domain. Additionally, we demonstrate that Env's CT and Gag's MA domain both regulate the duration of interactions between viral donor and target cells, as well as the stability of this interaction over time (i.e., its capacity to resolve or form a syncytium). Finally, we report the unexpected finding that modulating extracellular fluid viscosity markedly impacts target T cell trafficking and thus affects the duration, stability, and turnover of virus-induced cell-cell contacts. Combined, these results suggest a stepwise model for viral cell-to-cell transmission wherein (i) Env-receptor interactions anchor target cells to infected cells, (ii) Env signals Gag's recruitment to the cell-cell contact dependent on an intact Env CT and Gag MA, and (iii) Env CT and Gag MA, in conjunction with extracellular forces, combine to regulate VS stability and infectious outcomes. IMPORTANCE HIV-1 spreads efficiently at physical, cell-cell interfaces known as virological synapses (VSs). The VS provides for spatiotemporal coupling of virus assembly and entry into new host cells and may transmit signals relevant to pathogenesis. Disrupting this mode of transmission may be critical to the goal of abolishing viral persistence in infected individuals. We describe here a long-term live cell imaging strategy for studying virus-induced effects on cell behavior in the context of a large cell population. We demonstrate cooperative roles for viral Gag capsid proteins and Envelope glycoproteins in regulating VS formation and turnover. We also show that modulating fluid viscosity markedly affects T cell trafficking and VS stability. Thus, extracellular factors also play an important role in modulating the nature of infectious cell-cell interactions. In sum, our study provides new tools and insights relevant to exposing vulnerabilities in how HIV-1 and other viruses spread infection among cells, tissues, and people.
Collapse
|
44
|
Williams DW, Engle EL, Shirk EN, Queen SE, Gama L, Mankowski JL, Zink MC, Clements JE. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2068-2087. [PMID: 27322772 DOI: 10.1016/j.ajpath.2016.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/04/2016] [Accepted: 03/25/2016] [Indexed: 12/31/2022]
Abstract
The effects of HIV infection on spleen and its cellular subsets have not been fully characterized, particularly for macrophages in which diverse populations exist. We used an accelerated SIV-infected macaque model to examine longitudinal effects on T-cell and macrophage populations and their susceptibilities to infection. Substantial lymphoid depletion occurred, characterized by follicular burn out and a loss of CD3 T lymphocytes, which was associated with cellular activation and transient dysregulations in CD4/CD8 ratios and memory effector populations. In contrast, the loss of CD68 and CD163(+)CD68(+) macrophages and increase in CD163 cells was irreversible, which began during acute infection and persisted until terminal disease. Mac387 macrophages and monocytes were transiently recruited into spleen, but were not sufficient to mitigate the changes in macrophage subsets. Type I interferon, M2 polarizing genes, and chemokine-chemokine receptor signaling were up-regulated in spleen and drove macrophage alterations. SIV-infected T cells were numerous within the white pulp during acute infection, but were rarely observed thereafter. CD68, CD163, and Mac387 macrophages were highly infected, which primarily occurred in the red pulp independent of T cells. Few macrophages underwent apoptosis, indicating that they are a long-lasting target for HIV/SIV. Our results identify macrophages as an important contributor to HIV/SIV infection in spleen and in promoting morphologic changes through the loss of specific macrophage subsets that mediate splenic organization.
Collapse
Affiliation(s)
- Dionna W Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth L Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
45
|
Viruses exploit the tissue physiology of the host to spread in vivo. Curr Opin Cell Biol 2016; 41:81-90. [PMID: 27149407 DOI: 10.1016/j.ceb.2016.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/07/2023]
Abstract
Viruses are pathogens that strictly depend on their host for propagation. Over years of co-evolution viruses have become experts in exploiting the host cell biology and physiology to ensure efficient replication and spread. Here, we will first summarize the concepts that have emerged from in vitro cell culture studies to understand virus spread. We will then review the results from studies in living animals that reveal how viruses exploit the natural flow of body fluids, specific tissue architecture, and patterns of cell circulation and migration to spread within the host. Understanding tissue physiology will be critical for the design of antiviral strategies that prevent virus dissemination.
Collapse
|
46
|
A new cell line for high throughput HIV-specific antibody-dependent cellular cytotoxicity (ADCC) and cell-to-cell virus transmission studies. J Immunol Methods 2016; 433:51-8. [PMID: 26969387 PMCID: PMC4869150 DOI: 10.1016/j.jim.2016.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 03/03/2016] [Indexed: 12/28/2022]
Abstract
Several lines of evidence indicate that antibody-dependent cellular cytotoxicity (Wren et al., 2013) is important in the pathogenesis of HIV-1 infection. Namely, ADCC is induced during natural HIV-1 infection or in HIV-1 vaccine studies, the latter demonstrated by the RV144 vaccine trial. To expedite the assessment of ADCC in studies of HIV, we have developed a high throughput assay. We have optimized the rapid fluorometric antibody-mediated cytotoxicity assay (RFADCC) by transfecting the EGFP-CEM-NKr cell line to constitutively express SNAP-tagged CCR5. This cell line can then serve as a source of HIV-specific targets when coated with monomeric gp120, spinoculated with inactivated intact virions, infected by cell-free viral diffusion or infected by cell-to-cell transmission of virus. The optimized strategy has two significant advantages over the original RFADCC method: First, the preparation of detectable target cells is less labor intensive and faster as it does not rely on multiple staining and washing steps for target cells. Second, because the target cell markers GFP and SNAP are constitutively expressed, the assay provides highly reproducible data. These strengths make the optimized RFADCC assay suitable not only for studies of HIV-1 specific cytotoxicity but also for studies of cell–cell transmission of virus. In conclusion, this assay provides a new generation T cell line that can expedite large clinical studies as well as research studies in humans or non-human primates.
Collapse
|
47
|
Iwami S, Takeuchi JS, Nakaoka S, Mammano F, Clavel F, Inaba H, Kobayashi T, Misawa N, Aihara K, Koyanagi Y, Sato K. Cell-to-cell infection by HIV contributes over half of virus infection. eLife 2015; 4. [PMID: 26441404 PMCID: PMC4592948 DOI: 10.7554/elife.08150] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell viral infection, in which viruses spread through contact of infected cell with surrounding uninfected cells, has been considered as a critical mode of virus infection. However, since it is technically difficult to experimentally discriminate the two modes of viral infection, namely cell-free infection and cell-to-cell infection, the quantitative information that underlies cell-to-cell infection has yet to be elucidated, and its impact on virus spread remains unclear. To address this fundamental question in virology, we quantitatively analyzed the dynamics of cell-to-cell and cell-free human immunodeficiency virus type 1 (HIV-1) infections through experimental-mathematical investigation. Our analyses demonstrated that the cell-to-cell infection mode accounts for approximately 60% of viral infection, and this infection mode shortens the generation time of viruses by 0.9 times and increases the viral fitness by 3.9 times. Our results suggest that even a complete block of the cell-free infection would provide only a limited impact on HIV-1 spread. DOI:http://dx.doi.org/10.7554/eLife.08150.001 Viruses such as HIV-1 replicate by invading and hijacking cells, forcing the cells to make new copies of the virus. These copies then leave the cell and continue the infection by invading and hijacking new cells. There are two ways that viruses may move between cells, which are known as ‘cell-free’ and ‘cell-to-cell’ infection. In cell-free infection, the virus is released into the fluid that surrounds cells and moves from there into the next cell. In cell-to-cell infection the virus instead moves directly between cells across regions where the two cells make contact. Previous research has suggested that cell-to-cell infection is important for the spread of HIV-1. However, it is not known how much the virus relies on this process, as it is technically challenging to perform experiments that prevent cell-free infection without also stopping cell-to-cell infection. Iwami, Takeuchi et al. have overcome this problem by combining experiments on laboratory-grown cells with a mathematical model that describes how the different infection methods affect the spread of HIV-1. This revealed that the viruses spread using cell-to-cell infection about 60% of the time, which agrees with results previously found by another group of researchers. Iwami, Takeuchi et al. also found that cell-to-cell infection increases how quickly viruses can infect new cells and replicate inside them, and improves the fitness of the viruses. The environment around cells in humans and other animals is different to that found around laboratory-grown cells, and so more research will be needed to check whether this difference affects which method of infection the virus uses. If the virus does spread in a similar way in the body, then blocking the cell-free method of infection would not greatly affect how well HIV-1 is able to infect new cells. It may instead be more effective to develop HIV treatments that prevent cell-to-cell infection by the virus. DOI:http://dx.doi.org/10.7554/eLife.08150.002
Collapse
Affiliation(s)
- Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Junko S Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Fabrizio Mammano
- INSERM-Genetics and Ecology of viruses, Hospital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - François Clavel
- INSERM-Genetics and Ecology of viruses, Hospital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hisashi Inaba
- Graduate School of Mathematical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomoko Kobayashi
- Laboratory for Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan.,Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kei Sato
- CREST, Japan Science and Technology Agency, Saitama, Japan.,Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Shunaeva A, Potashnikova D, Pichugin A, Mishina A, Filatov A, Nikolaitchik O, Hu WS, Mazurov D. Improvement of HIV-1 and Human T Cell Lymphotropic Virus Type 1 Replication-Dependent Vectors via Optimization of Reporter Gene Reconstitution and Modification with Intronic Short Hairpin RNA. J Virol 2015; 89:10591-601. [PMID: 26269177 PMCID: PMC4580202 DOI: 10.1128/jvi.01940-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cell-to-cell transmission is an efficient mechanism to disseminate human immunodeficiency virus type 1 (HIV-1) and human T cell lymphotropic virus type 1 (HTLV-1). However, it has been challenging to quantify the level of cell-to-cell transmission because the virus-producing cells cannot be easily distinguished from infected target cells. We have previously described replication-dependent vectors that can quantify infection events in cocultured cells. These vectors contain an antisense-oriented promoter and reporter gene interrupted by a sense-oriented intron from the human gamma-globin gene. This strategy prevents expression of the reporter gene in the transfected cells but permits its expression in target cells after infection. However, the gamma-globin intron is not efficiently removed by splicing in the aforementioned vectors, thereby reducing the level of reporter gene expression after transduction into target cells. Here, we used two approaches to improve the replication-dependent vectors. First, we improved the splicing events that remove the gamma-globin intron by optimizing the intron insertion site within the reporter gene. Second, we improved the packaging of the spliced RNA without the gamma-globin intron by targeting the intron-containing RNA via microRNA 30 (miR30)-based short hairpin RNAs. Using two optimized fluorescent reporter vectors and flow cytometry, we determined that multiply HIV-1-infected cells were generated at a higher frequency in coculture than in cell-free infection; furthermore, this increase was dependent upon viruses bearing HIV-1 Env. Compared with previously described vectors, these improved vectors can quantify the infection in lymphocytes and in primary cells with a higher sensitivity and allow the detection and quantitation of multiply infected cells, providing better tools to study retroviral cell-mediated infection. IMPORTANCE The human-pathogenic retroviruses HTLV-1 and HIV-1 can be transmitted more efficiently in vivo via direct contact of infected cells with healthy target cells than through cell-free virion-mediated infection. Despite its importance, cell-to-cell transmission has been difficult to quantify because the previously infected cells and the newly infected cells are mixed together in the same culture. In the current study, we generated vectors that are significantly improved over the previously described replication-dependent vectors. As a result, these improved vectors can efficiently detect and quantify cell-to-cell transmission or new infection events in cells in mixed culture. These luciferase- or fluorescence protein-based reporter vectors can be used to quantify and study HIV-1 or HTLV-1 cell-mediated infection in a simple one-step transfection/infection assay.
Collapse
Affiliation(s)
| | | | | | | | | | - Olga Nikolaitchik
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Wei-Shau Hu
- HIV Dynamics and Replication Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | |
Collapse
|
49
|
Gerber PP, Cabrini M, Jancic C, Paoletti L, Banchio C, von Bilderling C, Sigaut L, Pietrasanta LI, Duette G, Freed EO, Basile GDS, Moita CF, Moita LF, Amigorena S, Benaroch P, Geffner J, Ostrowski M. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J Cell Biol 2015; 209:435-52. [PMID: 25940347 PMCID: PMC4427790 DOI: 10.1083/jcb.201409082] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/01/2015] [Indexed: 12/22/2022] Open
Abstract
During the late stages of the HIV-1 replication cycle, the viral polyprotein Pr55(Gag) is recruited to the plasma membrane (PM), where it binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and directs HIV-1 assembly. We show that Rab27a controls the trafficking of late endosomes carrying phosphatidylinositol 4-kinase type 2 α (PI4KIIα) toward the PM of CD4(+) T cells. Hence, Rab27a promotes high levels of PM phosphatidylinositol 4-phosphate and the localized production of PI(4,5)P2, therefore controlling Pr55(Gag) membrane association. Rab27a also controls PI(4,5)P2 levels at the virus-containing compartments of macrophages. By screening Rab27a effectors, we identified that Slp2a, Slp3, and Slac2b are required for the association of Pr55(Gag) with the PM and that Slp2a cooperates with Rab27a in the recruitment of PI4KIIα to the PM. We conclude that by directing the trafficking of PI4KIIα-positive endosomes toward the PM, Rab27a controls PI(4,5)P2 production and, consequently, HIV-1 replication.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Mercedes Cabrini
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental-CONICET, Academia Nacional de Medicina, C1425AUM Buenos Aires, Argentina
| | - Luciana Paoletti
- Instituto de Biologia Molecular y Celular de Rosario-CONICET, S2000EZP Santa Fe, Argentina
| | - Claudia Banchio
- Instituto de Biologia Molecular y Celular de Rosario-CONICET, S2000EZP Santa Fe, Argentina
| | - Catalina von Bilderling
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Lía I Pietrasanta
- Instituto de Física de Buenos Aires-CONICET, Departamento de Física; and Centro de Microscopías Avanzadas; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Gabriel Duette
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Genevieve de Saint Basile
- Institut National de la Santé et de la Recherche Médicale U768 and Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France Institut National de la Santé et de la Recherche Médicale U768 and Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 75015 Paris, France
| | - Catarina Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Luis Ferreira Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Sebastian Amigorena
- Centre de Recherche, Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 75248 Paris, France
| | - Philippe Benaroch
- Centre de Recherche, Institut National de la Santé et de la Recherche Médicale U932, Institut Curie, 75248 Paris, France
| | - Jorge Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
50
|
Jain S, Trivett MT, Ayala VI, Ohlen C, Ott DE. African green monkey TRIM5α restriction in simian immunodeficiency virus-specific rhesus macaque effector CD4 T cells enhances their survival and antiviral function. J Virol 2015; 89:4449-56. [PMID: 25653448 PMCID: PMC4442388 DOI: 10.1128/jvi.03598-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/29/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIV(mac239)) replication in a transformed human T-cell line (L. V. Coren, et al., Retrovirology 12:11, 2015, http://dx.doi.org/10.1186/s12977-015-0137-9). To assess AgmTRIM5α restriction in primary cells, we transduced AgmTRIM5α into primary rhesus macaque CD4 T cells and infected them with SIV(mac239). Experiments with T-cell clones revealed that AgmTRIM5α could reproducibly restrict SIV(mac239) replication, and that this restriction synergizes with an intrinsic resistance to infection present in some CD4 T-cell clones. AgmTRIM5α transduction of virus-specific CD4 T-cell clones increased and prolonged their ability to suppress SIV spread in CD4 target cells. This increased antiviral function was strongly linked to decreased viral replication in the AgmTRIM5α-expressing effectors, consistent with restriction preventing the virus-induced cytopathogenicity that disables effector function. Taken together, our data show that AgmTRIM5α restriction, although not absolute, reduces SIV replication in primary rhesus CD4 T cells which, in turn, increases their antiviral function. These results support prior in vivo data indicating that the contribution of virus-specific CD4 T-cell effectors to viral control is limited due to infection. IMPORTANCE The potential of effector CD4 T cells to immunologically modulate SIV/HIV infection likely is limited by their susceptibility to infection and subsequent inactivation or elimination. Here, we show that AgmTRIM5α expression inhibits SIV spread in primary effector CD4 T cells in vitro. Importantly, protection of effector CD4 T cells by AgmTRIM5α markedly enhanced their antiviral function by delaying SIV infection, thereby extending their viability despite the presence of virus. Our in vitro data support prior in vivo HIV-1 studies suggesting that the antiviral CD4 effector response is impaired due to infection and subsequent cytopathogenicity. The ability of AgmTRIM5α expression to restrict SIV infection in primary rhesus effector CD4 T cells now opens an opportunity to use the SIV/rhesus macaque model to further elucidate the potential and scope of anti-AIDS virus effector CD4 T-cell function.
Collapse
Affiliation(s)
- Sumiti Jain
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew T Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Victor I Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David E Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|