1
|
Fountain-Jones NM, Packer C, Troyer JL, VanderWaal K, Robinson S, Jacquot M, Craft ME. Linking social and spatial networks to viral community phylogenetics reveals subtype-specific transmission dynamics in African lions. J Anim Ecol 2017; 86:1469-1482. [PMID: 28884827 DOI: 10.1111/1365-2656.12751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/14/2017] [Indexed: 11/29/2022]
Abstract
Heterogeneity within pathogen species can have important consequences for how pathogens transmit across landscapes; however, discerning different transmission routes is challenging. Here, we apply both phylodynamic and phylogenetic community ecology techniques to examine the consequences of pathogen heterogeneity on transmission by assessing subtype-specific transmission pathways in a social carnivore. We use comprehensive social and spatial network data to examine transmission pathways for three subtypes of feline immunodeficiency virus (FIVPle ) in African lions (Panthera leo) at multiple scales in the Serengeti National Park, Tanzania. We used FIVPle molecular data to examine the role of social organization and lion density in shaping transmission pathways and tested to what extent vertical (i.e., father- and/or mother-offspring relationships) or horizontal (between unrelated individuals) transmission underpinned these patterns for each subtype. Using the same data, we constructed subtype-specific FIVPle co-occurrence networks and assessed what combination of social networks, spatial networks or co-infection best structured the FIVPle network. While social organization (i.e., pride) was an important component of FIVPle transmission pathways at all scales, we find that FIVPle subtypes exhibited different transmission pathways at within- and between-pride scales. A combination of social and spatial networks, coupled with consideration of subtype co-infection, was likely to be important for FIVPle transmission for the two major subtypes, but the relative contribution of each factor was strongly subtype-specific. Our study provides evidence that pathogen heterogeneity is important in understanding pathogen transmission, which could have consequences for how endemic pathogens are managed. Furthermore, we demonstrate that community phylogenetic ecology coupled with phylodynamic techniques can reveal insights into the differential evolutionary pressures acting on virus subtypes, which can manifest into landscape-level effects.
Collapse
Affiliation(s)
| | - Craig Packer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USA
| | | | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| | - Stacie Robinson
- National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Maude Jacquot
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
2
|
Carrillo FYE, Sanjuán R, Moya A, Cuevas JM. Enhanced adaptation of vesicular stomatitis virus in cells infected with vaccinia virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2008; 8:614-620. [PMID: 18534922 DOI: 10.1016/j.meegid.2008.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 02/07/2023]
Abstract
Infections involving different viruses (multiple infections) are common in nature and can take place between different strains of the same virus or between different virus species, including DNA and RNA viruses. The influence of multiple infections on viral evolution has been previously studied using different populations of the same virus. Here, we took a step forward by studying the evolution of an RNA virus (vesicular stomatitis virus, VSV) in the presence of a resident DNA virus (vaccinia virus, VV). Cell cultures were infected with a constant amount of VV, and VSV was added at four different post-VV-inoculation times and four different population sizes. The results showed that the presence of VV accelerates the adaptation of VSV to a cellular environment, especially at high population sizes. The effect of VV on VSV evolution was stronger when cells were incubated for longer times with VV prior to the addition of VSV. Our results suggest that cooperation between the two viruses rather than competition might be responsible for the enhanced rate of adaptation of VSV. Further studies are needed to discern whether infections involving different viruses could have an increased ability to escape antiviral strategies.
Collapse
Affiliation(s)
- Francy Y E Carrillo
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, P.O. Box 22085, 46071 València, Spain
| | | | | | | |
Collapse
|
3
|
Wang B, Lau KA, Ong LY, Shah M, Steain MC, Foley B, Dwyer DE, Chew CB, Kamarulzaman A, Ng KP, Saksena NK. Complex patterns of the HIV-1 epidemic in Kuala Lumpur, Malaysia: Evidence for expansion of circulating recombinant form CRF33_01B and detection of multiple other recombinants. Virology 2007; 367:288-97. [PMID: 17604072 DOI: 10.1016/j.virol.2007.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/10/2007] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
The HIV protease-reverse transcriptase (PR-RT) (1047 bp), gp120-env (891 bp) and gp41-env (547 bp) regions from the plasma of 115 HIV-1-infected patients in Kuala Lumpur (KL), Malaysia were sequenced. Detailed phylogenetic and bootscanning analyses were performed to determine the mosaic structure of the HIV-1 strains and their recombination breakpoint(s). Among the 50 patient samples in which all three regions could be amplified, the HIV-1 CRF01_AE subtype (46%) was predominant followed by subtypes B (10%) and B' (6%). A total of 9/50 (18%) patients were infected with a CRF01_AE/B inter-subtype recombinant, displaying a recombinant form (RF)(PR-RT), CRF01_AE(gp120-env) and CRF01_AE(gp41-env). This RF was derived from the Thai variants of CRF01_AE and B' subtype, with two distinct B' subtype segments in the backbone of CRF01_AE, similar to the newly identified CRF33_01B. In addition, one sample demonstrated a close structural relationship with the new CRF33_01B in the PR-RT region but displayed B' segment in part of the env region (RF(PR-RT), CRF01_AE/B'(gp120-env) and B'(gp41-env)) indicating continuing evolution of CRF33_01B. The remaining 18% of samples were identified as unique recombinant forms (URFs).
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Division, Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, Westmead NSW, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Carrillo FYE, Sanjuán R, Moya A, Cuevas JM. The effect of co- and superinfection on the adaptive dynamics of vesicular stomatitis virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2007; 7:69-73. [PMID: 16807134 DOI: 10.1016/j.meegid.2006.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/21/2006] [Accepted: 04/25/2006] [Indexed: 02/07/2023]
Abstract
In many infectious diseases, hosts are often simultaneously infected with several genotypes of the same pathogen. Much theoretical work has been done on modelling multiple infection dynamics, but empirical evidences are relatively scarce. Previous studies have demonstrated that coinfection allows faster adaptation than single infection in RNA viruses. Here, we use experimental populations of the vesicular stomatitis Indiana virus derived from an infectious cDNA, to show that superinfection dynamics promotes faster adaptation than single infection. In addition, we have analysed two different periodicities of multiple infection, daily and separated 5 days in time. Daily multiple infections allow higher fitness increases than multiple infections taking place every 5 days. We propose that the effect of superinfection on fitness is mainly influenced by the time elapsed between the first and the second infection, since shorter time intervals offer more opportunities to competition between resident and invading populations.
Collapse
Affiliation(s)
- Francy Y E Carrillo
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, PO Box 22085, 46071 València, Spain
| | | | | | | |
Collapse
|
5
|
Steain MC, Wang B, Dwyer DE, Saksena NK. HIV-1 co-infection, superinfection and recombination. Sex Health 2006; 1:239-50. [PMID: 16335754 DOI: 10.1071/sh04024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As the human immunodeficiency virus (HIV) pandemic progresses, an increasing number of recombinant viruses have been identified and in many geographical regions they are now the predominating strain. These recombinants are formed when an individual has acquired a co-infection or superinfection with more than one HIV-1 strain or subtype. Thus, dually infected individuals provide opportunities for studying HIV recombinants and viral interactions between infecting strains in vivo. The possible epidemiological, clinical and therapeutic implications of dual infections and recombination are many. Recombination may result in the emergence of more pathogenic and virulent HIV strains with altered fitness, tropism, and resistance to multiple drugs, and may hamper the development of subtype-based vaccines. This review is aimed at providing a more thorough understanding of dual infections (both co-infection and super-infection) and the possible consequences of the emergence of recombinant HIV-1 strains.
Collapse
Affiliation(s)
- Megan C Steain
- Retroviral Genetics Laboratory, Center for Virus Research, Westmead Millennium Institute, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
6
|
Koblavi-Dème S, Kestens L, Hanson D, Otten RA, Borget MY, Bilé C, Wiktor SZ, Roels TH, Chorba T, Nkengasong JN. Differences in HIV-2 plasma viral load and immune activation in HIV-1 and HIV-2 dually infected persons and those infected with HIV-2 only in Abidjan, Côte D'Ivoire. AIDS 2004; 18:413-9. [PMID: 15090792 DOI: 10.1097/00002030-200402200-00006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To determine whether blood plasma levels of HIV-2 RNA viral loads and immune activation markers differ between persons infected with HIV-2 only and those dually infected with HIV-1 and HIV-2. METHODS Between September 1996 and February 2000, we collected, analyzed and compared levels of HIV-2 RNA in plasma and immune activation markers among 52 persons infected with HIV-2 alone and 75 with confirmed dual infection. We also compared viral load and immune activation in patients who were infected with HIV-1 only and those who were dually infected. RESULTS When we conducted a CD4 T-cell count-stratified multivariate analysis of HIV-2 viral load, controlling for difference in CD4 T-cell counts, age and sex: at < 200 x 10 CD4 T cells/l, HIV-2 viral load was 2.0 log10 copies/ml lower in dually infected patients than in HIV-2 only patients (P < 0.0001). At CD4 T-cell counts between 200 x 10 and 500 x 10/l, HIV-2 viral load was 0.3 log10 copies/ml lower in dually infected patients (P = 0.45). However, at CD4 T-cells counts > 500 x 10/l, HIV-2 viral load was 0.9 log10 copies/ml higher in dually infected patients (P < 0.0001). Dually infected persons with undetectable HIV-2 viral loads had significantly higher median levels of CD8 T cells expressing CD38 (P < 0.001) and HLA-DR (P = 0.01) than HIV-2 only infected patients. CONCLUSION These results suggest that in dual infection, the level of HIV-2 replication depends on the immune status of the patients, with HIV-1 out-replicating HIV-2 as disease progress.
Collapse
Affiliation(s)
- Stéphania Koblavi-Dème
- Projet RETRO-CI, Abidjan, Côte d'Ivoire, the Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Abstract
Two strains of human immunodeficiency virus type 1 (HIV-1) expressing different reporters, human placental alkaline phosphatase (PLAP) and murine heat stable antigen (HSA, CD24), were used for dual infection. Flow cytometric analysis enabled us to distinguish cells not only infected with individual reporter virus but also superinfected with both reporter viruses. When the CD4 positive T cell line, PM1, was dually infected by both reporter viruses with different coreceptor utilization, coinfection with CXCR4-tropic HIV-1 (X4 HIV-1) expressing one reporter increased the rate of cells infected with HIV-1 expressing another reporter. This enhancement was accompanied by an increased level of p24 antigen Gag in culture supernatant, indicating that infectivity of HIV-1 was augmented by X4 HIV-1 coinfection. The CXCR4 antagonist, T140 eliminated this enhancement, suggesting the role of X4 envelope via CXCR4. These results imply the role of X4 HIV-1 at the late stage of infection.
Collapse
Affiliation(s)
- Yosuke Maeda
- Department of Medical Virology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | |
Collapse
|
9
|
Painter SL, Biek R, Holley DC, Poss M. Envelope variants from women recently infected with clade A human immunodeficiency virus type 1 confer distinct phenotypes that are discerned by competition and neutralization experiments. J Virol 2003; 77:8448-61. [PMID: 12857914 PMCID: PMC165268 DOI: 10.1128/jvi.77.15.8448-8461.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Women infected with clade A human immunodeficiency virus type 1 harbor a virus population that is genetically diverse in the envelope gene, a fact that contrasts with the homogeneous virus population identified in newly infected men. It is not known whether viral genetic diversity at this early stage of infection is manifested as phenotypic diversity. This is a significant question because phenotypic diversity in the viral population that establishes infection in women may have important implications for pathogenesis and therapeutic intervention. Thus, in this study we compared the biological properties of three pairs of chimeric viruses that contained envelope genes representative of variant groups in each of three infected women-Q23, Q45, and Q47. Envelope chimeras were evaluated for replication in stimulated and resting peripheral blood mononuclear cells alone and in competition, for coreceptor use, and for neutralization sensitivity. All viruses utilized CCR5 exclusively and had a non-syncytium-inducing phenotype on MT-2 cells and in primary culture. There were no significant differences in replication parameters between paired variants in individual cultures. However, in competition experiments, one chimera of each variant pair always dominated. The dominant virus from Q23 and Q47, but not from Q45, infected a significantly higher number of CCR5- and CD4-expressing GHOST cells than the weaker chimeras. Significantly, chimeric viruses from Q47 and Q45 showed markedly different neutralization sensitivity to antibodies to CCR5 and gp120, respectively. These data indicate that distinct envelope genotypes identified in clade A-infected women near seroconversion confer unique phenotypes that affect viral fitness and that may be due, in part, to different requirements for relative configuration of CD4 and CCR5 on infected cells.
Collapse
Affiliation(s)
- Sally L Painter
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | | | | | | |
Collapse
|
10
|
Saldaña J, Elena SF, Solé RV. Coinfection and superinfection in RNA virus populations: a selection-mutation model. Math Biosci 2003; 183:135-60. [PMID: 12711408 DOI: 10.1016/s0025-5564(03)00038-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this paper, we present a general selection-mutation model of evolution on a one-dimensional continuous fitness space. The formulation of our model includes both the classical diffusion approach to mutation process as well as an alternative approach based on an integral operator with a mutation kernel. We show that both approaches produce fundamentally equivalent results. To illustrate the suitability of our model, we focus its analytical study into its application to recent experimental studies of in vitro viral evolution. More specifically, these experiments were designed to test previous theoretical predictions regarding the effects of multiple infection dynamics (i.e., coinfection and superinfection) on the virulence of evolving viral populations. The results of these experiments, however, did not match with previous theory. By contrast, the model we present here helps to understand the underlying viral dynamics on these experiments and makes new testable predictions about the role of parameters such the time between successive infections and the growth rates of resident and invading populations.
Collapse
Affiliation(s)
- Joan Saldaña
- Departament d'Informàtica i Matemàtica Aplicada, Campus Montilivi, Universitat de Girona, Spain.
| | | | | |
Collapse
|
11
|
Nájera R, Delgado E, Pérez-Alvarez L, Thomson MM. Genetic recombination and its role in the development of the HIV-1 pandemic. AIDS 2003; 16 Suppl 4:S3-16. [PMID: 12698994 DOI: 10.1097/00002030-200216004-00002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rafael Nájera
- Department of Viral Patogénesis, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | |
Collapse
|
12
|
Wang B, Dyer WB, Zaunders JJ, Mikhail M, Sullivan JS, Williams L, Haddad DN, Harris G, Holt JAG, Cooper DA, Miranda-Saksena M, Boadle R, Kelleher AD, Saksena NK. Comprehensive analyses of a unique HIV-1-infected nonprogressor reveal a complex association of immunobiological mechanisms in the context of replication-incompetent infection. Virology 2002; 304:246-64. [PMID: 12504566 DOI: 10.1006/viro.2002.1706] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that a unique HIV-1-infected nonprogressor was infected with a nonevolving replication-incompetent HIV-1 strain, showing a total absence of viral evolution in vivo. Potent immune responses against HIV-1 were observed in his PBMC, despite an apparent lack of viral replication for at least 8 years. His PBMC resisted superinfection with CCR5, CXCR4, and dual-tropic HIV-1 strains, although highly purified CD4+ T cells supported infection, but without any visible cytopathic effect. Potent noncytolytic CD8+ T cell antiviral activity was shown to protect his PBMC from productive infection. This activity was not mediated by several known chemokines or IFN-gamma, which were produced at high levels after PHA activation of his CD8+ T cells, indicating the action of other CAF-like CD8 factors. This antiviral activity was a memory response, induced by HIV-specific stimulation to similar levels observed by PHA stimulation, but absent in ex vivo resting T cells. Immunological mechanisms associated with this antiviral suppressive activity included vigorous Gag-specific helper T cell proliferative responses and high-level IFN-gamma release by both CD4 and CD8 T cells. These responses were broadly directed against multiple Gag epitopes, both previously reported and some novel epitopes. Strong HIV-specific helper T cell function was also associated with strong neutralizing antibodies. Understanding how to induce these protective immune responses in other individuals could provide a major step forward in the design of effective immunotherapies or vaccines against HIV infection.
Collapse
Affiliation(s)
- Bin Wang
- Retroviral Genetics Laboratory, Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Westmead, New South Wales 2145, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Blackard JT, Cohen DE, Mayer KH. Human immunodeficiency virus superinfection and recombination: current state of knowledge and potential clinical consequences. Clin Infect Dis 2002; 34:1108-14. [PMID: 11915000 DOI: 10.1086/339547] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2001] [Revised: 12/19/2001] [Indexed: 11/03/2022] Open
Abstract
Superinfection with multiple strains or subtypes of the human and simian immunodeficiency viruses has been documented. Recent increases in the prevalences of both unprotected anal intercourse and sexually transmitted diseases among men who have sex with men indicate that these men continue to practice unsafe sex and, therefore, are at risk for superinfection with the human immunodeficiency virus (HIV). Recurrent exposure to HIV among seropositive individuals who engage in high-risk behaviors can have serious consequences, because superinfection is a necessary first step for viral recombination to occur. Recombination may produce more virulent viruses, drug-resistant viruses, or viruses with altered cell tropism. Additionally, recombinant viruses and superinfection can accelerate disease progression and increase the likelihood of sexual transmission by increasing virus load in the blood and genital tract. The extent of superinfection and recombination in persons living with HIV is unknown. The implications of HIV superinfection and the generation of recombinant viruses are discussed.
Collapse
Affiliation(s)
- Jason T Blackard
- Research and Evaluation Department, Fenway Community Health, Boston, MA, 02115, USA.
| | | | | |
Collapse
|
14
|
Casado C, García S, Rodríguez C, Del Romero J, Bello G, López-Galíndez C. Different evolutionary patterns are found within human immunodeficiency virus type 1-infected patients. J Gen Virol 2001; 82:2495-2508. [PMID: 11562542 DOI: 10.1099/0022-1317-82-10-2495] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In order to study the evolution in vivo of human immunodeficiency virus type 1 (HIV-1) in patients with normal clinical evolution, six individuals were selected from a group of 46 patients followed for 1 to 4 years. Patients were selected not by clinical progression characteristics but on the basis of virus genetic variability, as analysed by heteroduplex mobility assay and RNase A mismatch cleavage method. Two patients displayed a homogeneous virus population, two showed very heterogeneous quasispecies and two presented two distinct variants within the virus population. Virus quasispecies were studied by nucleotide sequencing of the C2-fusion domain of the env gene. Virus evolution was approached by analysing the distribution of genetic distances, calculation of divergence and heterogeneity as well as the K(a)/K(s) ratio and by the construction of the phylogenetic trees. Three patients displayed the same tree topology, characterized by the presence of independent clades supported by high bootstrap values, whereas this pattern was not present in the other three patients. In the three patients displaying independent clades, a recombination analysis was carried out between distinct subpopulations and recombinant variants were identified. In one patient of this group, different selective pressures were detected in distinct virus clades, measured by their corresponding K(a)/K(s) ratios, revealing that different evolutionary forces are occurring at the same time within the same patient. These results show that multiple evolutionary patterns can be found in typical HIV-1-infected patients.
Collapse
Affiliation(s)
- Concepción Casado
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain1
| | - Soledad García
- Centro de Salud Sandoval, Comunidad Autónoma de Madrid, Madrid 28010, Spain2
| | - Carmen Rodríguez
- Centro de Salud Sandoval, Comunidad Autónoma de Madrid, Madrid 28010, Spain2
| | - Jorge Del Romero
- Centro de Salud Sandoval, Comunidad Autónoma de Madrid, Madrid 28010, Spain2
| | - Gonzalo Bello
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain1
| | - Cecilio López-Galíndez
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain1
| |
Collapse
|