1
|
Santacroce L, Magrone T. Molluscum Contagiosum Virus: Biology and Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:151-170. [PMID: 38801577 DOI: 10.1007/978-3-031-57165-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Molluscum contagiosum virus is a poxvirus belonging to the Poxviridae family, which includes Orthopoxvirus, Parapoxvirus, Yantapoxvirus, Molluscipoxvirus, Smallpox virus, Cowpox virus and Monkeypox virus. MCV belongs to the genus Molluscipoxvirus and has a tropism for skin tissue. MCV infects keratinocytes and, after an incubation period of 2 weeks to 6 weeks, causes a breakdown of the skin barrier with the development of papules of variable size depending on the proper functioning of the immune response (both adaptive and acquired). MCV only infects humans and does not cause viraemia. MCV encodes for several inhibitory proteins responsible to circumvent the immune response through different signalling pathways. Individuals who can be infected with MCV are children, immunocompromised individuals such as organ transplant recipients and Human Immunodeficiency Virus (HIV)-infected individuals. Current treatments to manage MCV-induced lesions are different and include the use of immunomodulators, which, however, do not provide an effective response.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy.
| | - Thea Magrone
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
2
|
Reiss BT, Bouza L, Thomas S, Suarez CD, Hill ER, Nichols DB. The MC160 protein of the molluscum contagiosum virus dampens cGAS/STING-induced interferon-β activation. Exp Mol Pathol 2023; 134:104876. [PMID: 37890651 DOI: 10.1016/j.yexmp.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Molluscum contagiosum virus (MCV) is a poxvirus that causes benign, persistent skin lesions. MCV encodes a variety of immune evasion molecules to dampen host immune responses. Two of these proteins are the MC159 and MC160 proteins. Both MC159 and MC160 contain two tandem death effector domains and share homology to the cellular FLIPs, FADD, and procaspase-8. MC159 and MC160 dampen several innate immune responses such as NF-κB activation and mitochondrial antiviral signaling (MAVS)-mediated induction of type 1 interferon (IFN). The type 1 IFN response is also activated by the cytosolic DNA sensors cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). Both cGAS and STING play a vital role in sensing a poxvirus infection. In this study, we demonstrate that there are nuanced differences between both MC160 and MC159 in terms of how the viral proteins modulate the cGAS/STING and MAVS pathways. Specifically, MC160 expression, but not MC159 expression, dampens cGAS/STING-mediated induction of IFN in HEK 293 T cells. Further, MC160 expression prevented the K63-ubiquitination of both STING and TBK1, a kinase downstream of cGAS/STING. Ectopic expression of the MC160 protein, but not the MC159 protein, resulted in a measurable decrease in the TBK1 protein levels as detected via immunoblotting. Finally, using a panel of MC160 truncation mutants, we report that the MC160 protein requires both DEDs to inhibit cGAS/STING-induced activation of IFN-β. Our model indicates MC160 likely alters the TBK1 signaling complex to decrease IFN-β activation at the molecular intersection of the cGAS/STING and MAVS signaling pathways.
Collapse
Affiliation(s)
- Brian T Reiss
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Lissette Bouza
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Swagath Thomas
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Catherine D Suarez
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Erik R Hill
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
3
|
Ward BM, Riccio DA, Cartwright M, Maeda-Chubachi T. The Antiviral Effect of Berdazimer Sodium on Molluscum Contagiosum Virus Using a Novel In Vitro Methodology. Viruses 2023; 15:2360. [PMID: 38140601 PMCID: PMC10747301 DOI: 10.3390/v15122360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Molluscum contagiosum (MC) is characterized by skin lesions containing the highly contagious molluscum contagiosum poxvirus (MCV). MCV primarily infects children, with one US Food and Drug Administration (FDA)-approved drug-device treatment in use but no approved medications. Assessing antivirals is hindered by the inability of MCV to replicate in vitro. Here, we use vaccinia virus as a surrogate to provide evidence of the anti-poxvirus properties of berdazimer sodium, a new chemical entity, and the active substance in berdazimer gel, 10.3%, a nitric oxide-releasing topical in phase 3 development for the treatment of MC. We show that berdazimer sodium reduced poxvirus replication and, through a novel methodology, demonstrate that cells infected with drug-treated MCV virions have reduced early gene expression. Specifically, this is accomplished by studying the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB)-blocking protein MC160 as an example of an early gene. The results provide a plausible unique antiviral mechanism of action supporting increased MCV resolution observed in patients treated with berdazimer gel, 10.3% and describe a novel methodology that overcomes limitations in investigating MCV response in vitro to a potential new MC topical medication.
Collapse
Affiliation(s)
- Brian M. Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | | | | | | |
Collapse
|
4
|
Kuehnle N, Osborne SM, Liang Z, Manzano M, Gottwein E. CRISPR screens identify novel regulators of cFLIP dependency and ligand-independent, TRAIL-R1-mediated cell death. Cell Death Differ 2023; 30:1221-1234. [PMID: 36801923 PMCID: PMC10154404 DOI: 10.1038/s41418-023-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). PEL cell lines require expression of the cellular FLICE inhibitory protein (cFLIP) for survival, although KSHV encodes a viral homolog of this protein (vFLIP). Cellular and viral FLIP proteins have several functions, including, most importantly, the inhibition of pro-apoptotic caspase 8 and modulation of NF-κB signaling. To investigate the essential role of cFLIP and its potential redundancy with vFLIP in PEL cells, we first performed rescue experiments with human or viral FLIP proteins known to affect FLIP target pathways differently. The long and short isoforms of cFLIP and molluscum contagiosum virus MC159L, which are all strong caspase 8 inhibitors, efficiently rescued the loss of endogenous cFLIP activity in PEL cells. KSHV vFLIP was unable to fully rescue the loss of endogenous cFLIP and is therefore functionally distinct. Next, we employed genome-wide CRISPR/Cas9 synthetic rescue screens to identify loss of function perturbations that can compensate for cFLIP knockout. Results from these screens and our validation experiments implicate the canonical cFLIP target caspase 8 and TRAIL receptor 1 (TRAIL-R1 or TNFRSF10A) in promoting constitutive death signaling in PEL cells. However, this process was independent of TRAIL receptor 2 or TRAIL, the latter of which is not detectable in PEL cell cultures. The requirement for cFLIP is also overcome by inactivation of the ER/Golgi resident chondroitin sulfate proteoglycan synthesis and UFMylation pathways, Jagunal homolog 1 (JAGN1) or CXCR4. UFMylation and JAGN1, but not chondroitin sulfate proteoglycan synthesis or CXCR4, contribute to TRAIL-R1 expression. In sum, our work shows that cFLIP is required in PEL cells to inhibit ligand-independent TRAIL-R1 cell death signaling downstream of a complex set of ER/Golgi-associated processes that have not previously been implicated in cFLIP or TRAIL-R1 function.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Scout Mask Osborne
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA
| | - Mark Manzano
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
6
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
7
|
Suraweera CD, Hinds MG, Kvansakul M. Poxviral Strategies to Overcome Host Cell Apoptosis. Pathogens 2020; 10:pathogens10010006. [PMID: 33374867 PMCID: PMC7823800 DOI: 10.3390/pathogens10010006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cellular suicide initiated either via extracellular (extrinsic apoptosis) or intracellular (intrinsic apoptosis) cues. This form of programmed cell death plays a crucial role in development and tissue homeostasis in multicellular organisms and its dysregulation is an underlying cause for many diseases. Intrinsic apoptosis is regulated by members of the evolutionarily conserved B-cell lymphoma-2 (Bcl-2) family, a family that consists of pro- and anti-apoptotic members. Bcl-2 genes have also been assimilated by numerous viruses including pox viruses, in particular the sub-family of chordopoxviridae, a group of viruses known to infect almost all vertebrates. The viral Bcl-2 proteins are virulence factors and aid the evasion of host immune defenses by mimicking the activity of their cellular counterparts. Viral Bcl-2 genes have proved essential for the survival of virus infected cells and structural studies have shown that though they often share very little sequence identity with their cellular counterparts, they have near-identical 3D structures. However, their mechanisms of action are varied. In this review, we examine the structural biology, molecular interactions, and detailed mechanism of action of poxvirus encoded apoptosis inhibitors and how they impact on host–virus interactions to ultimately enable successful infection and propagation of viral infections.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
8
|
MC159 of Molluscum Contagiosum Virus Suppresses Autophagy by Recruiting Cellular SH3BP4 via an SH3 Domain-Mediated Interaction. J Virol 2019; 93:JVI.01613-18. [PMID: 30842330 DOI: 10.1128/jvi.01613-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
MC159 is a viral FLIP (FLICE inhibitory protein) encoded by the molluscum contagiosum virus (MCV) enabling MCV to evade antiviral immunity and to establish persistent infections in humans. Here, we show that MC159 contains a functional SH3 binding motif, which mediates avid and selective binding to SH3BP4, a signaling protein known to regulate endocytic trafficking and suppress cellular autophagy. The capacity to bind SH3BP4 was dispensable for regulation of NF-κB-mediated transcription and suppression of proapoptotic caspase activation but contributed to inhibition of amino acid starvation-induced autophagy by MC159. These results provide new insights into the cellular functions of MC159 and reveal SH3BP4 as a novel host cell factor targeted by a viral immune evasion protein.IMPORTANCE After the eradication of smallpox, molluscum contagiosum virus (MCV) is the only poxvirus restricted to infecting humans. MCV infection is common and causes benign skin lesions that usually resolve spontaneously but may persist for years and grow large, especially in immunocompromised individuals. While not life threatening, MCV infections pose a significant global health burden. No vaccine or specific anti-MCV therapy is available. MCV encodes several proteins that enable it to evade antiviral immunity, a notable example of which is the MC159 protein. In this study, we describe a novel mechanism of action for MC159 involving hijacking of a host cell protein called SH3BP4 to suppress autophagy, a cellular recycling mechanism important for antiviral immunity. This study contributes to our understanding of the host cell interactions of MCV and the molecular function of MC159.
Collapse
|
9
|
De Martini W, Coutu J, Bugert J, Iversen T, Cottrell J, Nichols DB. The molluscum contagiosum virus protein MC163 inhibits TNF-α-induced NF-κB activation. Future Virol 2019. [DOI: 10.2217/fvl-2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: The molluscum contagiosum virus (MCV) expresses several immune evasion molecules that inhibit activation of NF-κB. Presumably, inhibition of inflammatory responses mediated by NF-κB allows MCV to cause persistent infections. Materials & methods: MC163-IKK-α interactions were detected by immunoprecipitations. Results: Here, we identify a novel MCV inhibitor of NF-κB. Ectopic expression of the MC163 protein resulted in a significant decrease in TNF-α-induced NF-κB activation. However, MC163 had no detectable effect on mitochondrial antiviral-signaling protein-induced activation of the IFN-β-promoter. MC163 dampened NF-κB activation induced via the overexpression of either IKK-α or IKK-β suggesting MC163 targets the IKK complex. Conclusion: Our data highlight a previously unknown function for the MC163 protein and may represent an additional strategy used by MCV to subvert host immune responses.
Collapse
Affiliation(s)
- William De Martini
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
- Department of Microbiology, Oregon State University, Dryden Hall 106A, Corvallis, OR 97333, USA
| | - Joachim Bugert
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, 80937 München, Germany
| | - Timothy Iversen
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, USA
| |
Collapse
|
10
|
Biswas S, Smith GL, Roy EJ, Ward B, Shisler JL. A comparison of the effect of molluscum contagiosum virus MC159 and MC160 proteins on vaccinia virus virulence in intranasal and intradermal infection routes. J Gen Virol 2019; 99:246-252. [PMID: 29393023 DOI: 10.1099/jgv.0.001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Molluscum contagiosum virus (MCV) causes persistent, benign skin neoplasm in children and adults. MCV is refractive to growth in standard tissue culture and there is no relevant animal model of infection. Here we investigated whether another poxvirus (vaccinia virus; VACV) could be used to examine MCV immunoevasion protein properties in vivo. The MCV MC159L or MC160L genes, which encode NF-κB antagonists, were inserted into an attenuated VACV lacking an NF-κB antagonist (vΔA49), creating vMC159 and vMC160. vMC160 slightly increased vΔA49 virulence in the intranasal and intradermal routes of inoculation. vMC159 infection was less virulent than vΔA49 in both inoculation routes. vMC159-infected ear pinnae did not form lesions, but virus replication still occurred. Thus, the lack of lesions was not due to abortive virus replication. This system provides a new approach to examine MCV immunoevasion proteins within the context of a complete and complex immune system.
Collapse
Affiliation(s)
- Sunetra Biswas
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey L Smith
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge, UK
| | - Edward J Roy
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | - Brian Ward
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Nichols DB, De Martini W, Cottrell J. Poxviruses Utilize Multiple Strategies to Inhibit Apoptosis. Viruses 2017; 9:v9080215. [PMID: 28786952 PMCID: PMC5580472 DOI: 10.3390/v9080215] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
Cells have multiple means to induce apoptosis in response to viral infection. Poxviruses must prevent activation of cellular apoptosis to ensure successful replication. These viruses devote a substantial portion of their genome to immune evasion. Many of these immune evasion products expressed during infection antagonize cellular apoptotic pathways. Poxvirus products target multiple points in both the extrinsic and intrinsic apoptotic pathways, thereby mitigating apoptosis during infection. Interestingly, recent evidence indicates that poxviruses also hijack cellular means of eliminating apoptotic bodies as a means to spread cell to cell through a process called apoptotic mimicry. Poxviruses are the causative agent of many human and veterinary diseases. Further, there is substantial interest in developing these viruses as vectors for a variety of uses including vaccine delivery and as oncolytic viruses to treat certain human cancers. Therefore, an understanding of the molecular mechanisms through which poxviruses regulate the cellular apoptotic pathways remains a top research priority. In this review, we consider anti-apoptotic strategies of poxviruses focusing on three relevant poxvirus genera: Orthopoxvirus, Molluscipoxvirus, and Leporipoxvirus. All three genera express multiple products to inhibit both extrinsic and intrinsic apoptotic pathways with many of these products required for virulence.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - William De Martini
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| | - Jessica Cottrell
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07039, USA.
| |
Collapse
|
12
|
Molluscum Contagiosum Virus MC159 Abrogates cIAP1-NEMO Interactions and Inhibits NEMO Polyubiquitination. J Virol 2017; 91:JVI.00276-17. [PMID: 28515292 DOI: 10.1128/jvi.00276-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is a dermatotropic poxvirus that causes benign skin lesions. MCV lesions persist because of virally encoded immune evasion molecules that inhibit antiviral responses. The MCV MC159 protein suppresses NF-κB activation, a powerful antiviral response, via interactions with the NF-κB essential modulator (NEMO) subunit of the IκB kinase (IKK) complex. Binding of MC159 to NEMO does not disrupt the IKK complex, implying that MC159 prevents IKK activation via an as-yet-unidentified strategy. Here, we demonstrated that MC159 inhibited NEMO polyubiquitination, a posttranslational modification required for IKK and downstream NF-κB activation. Because MCV cannot be propagated in cell culture, MC159 was expressed independent of infection or during a surrogate vaccinia virus infection to identify how MC159 prevented polyubiquitination. Cellular inhibitor of apoptosis protein 1 (cIAP1) is a cellular E3 ligase that ubiquitinates NEMO. Mutational analyses revealed that MC159 and cIAP1 each bind to the same NEMO region, suggesting that MC159 may competitively inhibit cIAP1-NEMO interactions. Indeed, MC159 prevented cIAP1-NEMO interactions. MC159 also diminished cIAP1-mediated NEMO polyubiquitination and cIAP1-induced NF-κB activation. These data suggest that MC159 competitively binds to NEMO to prevent cIAP1-induced NEMO polyubiquitination. To our knowledge, this is the first report of a viral protein disrupting NEMO-cIAP1 interactions to strategically suppress IKK activation. All viruses must antagonize antiviral signaling events for survival. We hypothesize that MC159 inhibits NEMO polyubiquitination as a clever strategy to manipulate the host cell environment to the benefit of the virus.IMPORTANCE Molluscum contagiosum virus (MCV) is a human-specific poxvirus that causes persistent skin neoplasms. The persistence of MCV has been attributed to viral downregulation of host cell immune responses such as NF-κB activation. We show here that the MCV MC159 protein interacts with the NEMO subunit of the IKK complex to prevent NEMO interactions with the cIAP1 E3 ubiquitin ligase. This interaction correlates with a dampening of cIAP1 to polyubiquitinate NEMO and to activate NF-κB. This inhibition of cIAP1-NEMO interactions is a new viral strategy to minimize IKK activation and to control NEMO polyubiquitination. This research provides new insights into mechanisms that persistent viruses may use to cause long-term infection of host cells.
Collapse
|
13
|
López-Bueno A, Parras-Moltó M, López-Barrantes O, Belda S, Alejo A. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2. J Gen Virol 2017; 98:1073-1079. [PMID: 28555548 DOI: 10.1099/jgv.0.000759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Collapse
Affiliation(s)
- Alberto López-Bueno
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | - Marcos Parras-Moltó
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, Madrid 28049, Spain
| | | | - Sylvia Belda
- Unidad de cuidados intensivos pediátricos, Hospital 12 de Octubre, Madrid 28041, Spain
| | - Alí Alejo
- Centro de Investigación en Sanidad Animal; Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| |
Collapse
|
14
|
Beaury M, Velagapudi UK, Weber S, Soto C, Talele TT, Nichols DB. The molluscum contagiosum virus death effector domain containing protein MC160 RxDL motifs are not required for its known viral immune evasion functions. Virus Genes 2017; 53:522-531. [PMID: 28425034 DOI: 10.1007/s11262-017-1456-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
The molluscum contagiosum virus (MCV) uses a variety of immune evasion strategies to antagonize host immune responses. Two MCV proteins, MC159 and MC160, contain tandem death effector domains (DEDs). They are reported to inhibit innate immune signaling events such as NF-κB and IRF3 activation, and apoptosis. The RxDL motif of MC159 is required for inhibition of both apoptosis and NF-κB activation. However, the role of the conserved RxDL motif in the MC160 DEDs remained unknown. To answer this question, we performed alanine mutations to neutralize the arginine and aspartate residues present in the MC160 RxDL in both DED1 and DED2. These mutations were further modeled against the structure of the MC159 protein. Surprisingly, the RxDL motif was not required for MC160's ability to inhibit MAVS-induced IFNβ activation. Further, unlike previous results with the MC159 protein, mutations within the RxDL motif of MC160 had no effect on the ability of MC160 to dampen TNF-α-induced NF-κB activation. Molecular modeling predictions revealed no overall changes to the structure in the MC160 protein when the amino acids of both RxDL motifs were mutated to alanine (DED1 = R67A D69A; DED2 = R160A D162A). Taken together, our results demonstrate that the RxDL motifs present in the MC160 DEDs are not required for known functions of the viral protein.
Collapse
Affiliation(s)
- Michael Beaury
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sarah Weber
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Cassandra Soto
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 South Orange Ave., South Orange, NJ, 07039, USA.
| |
Collapse
|
15
|
Coutu J, Ryerson MR, Bugert J, Brian Nichols D. The Molluscum Contagiosum Virus protein MC163 localizes to the mitochondria and dampens mitochondrial mediated apoptotic responses. Virology 2017; 505:91-101. [PMID: 28235685 DOI: 10.1016/j.virol.2017.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/30/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Apoptosis is a powerful host cell defense to prevent viruses from completing replication. Poxviruses have evolved complex means to dampen cellular apoptotic responses. The poxvirus, Molluscum Contagiosum Virus (MCV), encodes numerous host interacting molecules predicted to antagonize immune responses. However, the function of the majority of these MCV products has not been characterized. Here, we show that the MCV MC163 protein localized to the mitochondria via an N-terminal mitochondrial localization sequence and transmembrane domain. Transient expression of the MC163 protein prevented mitochondrial membrane permeabilization (MMP), an event central to cellular apoptotic responses, induced by either Tumor Necrosis Factor alpha (TNF-α) or carbonyl cyanide 3-chlorophenylhydrazone (CCCP). MC163 expression prevented the release of a mitochondrial intermembrane space reporter protein when cells were challenged with TNF-α. Inhibition of MMP was also observed in cell lines stably expressing MC163. MC163 expression may contribute to the persistence of MCV lesions by dampening cellular apoptotic responses.
Collapse
Affiliation(s)
- Jesse Coutu
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States
| | - Melissa R Ryerson
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave., Champaign-Urbana, IL 61801, United States
| | - Joachim Bugert
- Institut für Mikrobiologie der Bundeswehr, Neuherbergstrasse, 1180937 München, Germany
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 S. Orange Ave, South Orange, NJ 07079, United States.
| |
Collapse
|
16
|
Crow MS, Lum KK, Sheng X, Song B, Cristea IM. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses. Crit Rev Biochem Mol Biol 2016; 51:452-481. [PMID: 27650455 PMCID: PMC5285405 DOI: 10.1080/10409238.2016.1226250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent on the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments.
Collapse
Affiliation(s)
- Marni S. Crow
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Bokai Song
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544
| |
Collapse
|
17
|
Gates LT, Shisler JL. cFLIPL Interrupts IRF3-CBP-DNA Interactions To Inhibit IRF3-Driven Transcription. THE JOURNAL OF IMMUNOLOGY 2016; 197:923-33. [PMID: 27342840 DOI: 10.4049/jimmunol.1502611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Type I IFN induction is critical for antiviral and anticancer defenses. Proper downregulation of type I IFN is equally important to avoid deleterious imbalances in the immune response. The cellular FLIP long isoform protein (cFLIPL) controls type I IFN production, but opposing publications show it as either an inhibitor or inducer of type I IFN synthesis. Regardless, the mechanistic basis for cFLIPL regulation is unknown. Because cFLIPL is important in immune cell development and proliferation, and is a target for cancer therapies, it is important to identify how cFLIPL regulates type I IFN production. Data in this study show that cFLIPL inhibits IFN regulatory factor 3 (IRF3), a transcription factor central for IFN-β and IFN-stimulated gene expression. This inhibition occurs during virus infection, cellular exposure to polyinosinic-polycytidylic acid, or TBK1 overexpression. This inhibition is independent of capase-8 activity. cFLIPL binds to IRF3 and disrupts IRF3 interaction with its IFN-β promoter and its coactivator protein (CREB-binding protein). Mutational analyses reveal that cFLIPL nuclear localization is necessary and sufficient for inhibitory function. This suggests that nuclear cFLIPL prevents IRF3 enhanceosome formation. Unlike other cellular IRF3 inhibitors, cFLIPL did not degrade or dephosphorylate IRF3. Thus, cFLIPL represents a different cellular strategy to inhibit type I IFN production. This new cFLIPL function must be considered to accurately understand how cFLIPL affects immune system development and regulation.
Collapse
Affiliation(s)
- Lauren T Gates
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
18
|
Molluscum Contagiosum Virus Transcriptome in Abortively Infected Cultured Cells and a Human Skin Lesion. J Virol 2016; 90:4469-4480. [PMID: 26889040 DOI: 10.1128/jvi.02911-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Molluscum contagiosum virus (MOCV), the only circulating human-specific poxvirus, has a worldwide distribution and causes benign skin lesions that may persist for months in young children and severe infections in immunosuppressed adults. Studies of MOCV are restricted by the lack of an efficient animal model or a cell culture replication system. We used next-generation sequencing to analyze and compare polyadenylated RNAs from abortive MOCV infections of several cell lines and a human skin lesion. Viral RNAs were detected for 14 days after MOCV infection of cultured cells; however, there was little change in the RNA species during this time and a similar pattern occurred in the presence of an inhibitor of protein synthesis, indicating a block preventing postreplicative gene expression. Moreover, a considerable number of MOCV RNAs mapped to homologs of orthopoxvirus early genes, but few did so to homologs of intermediate or late genes. The RNAs made during in vitro infections represent a subset of RNAs detected in human skin lesions which mapped to homologs of numerous postreplicative as well as early orthopoxvirus genes. Transfection experiments using fluorescent protein and luciferase reporters demonstrated that vaccinia virus recognized MOCV intermediate and late promoters, indicating similar gene regulation. The specific recognition of the intermediate promoter in MOCV-infected cells provided evidence for the synthesis of intermediate transcription factors, which are products of early genes, but not for late transcription factors. Transcriptome sequencing (RNA-seq) and reporter gene assays may be useful for testing engineered cell lines and conditions that ultimately could provide an in vitro replication system. IMPORTANCE The inability to propagate molluscum contagiosum virus, which causes benign skin lesions in young children and more extensive infections in immunosuppressed adults, has constrained our understanding of the biology of this human-specific virus. In the present study, we characterized the RNAs synthesized in abortively infected cultured cells and a human skin lesion by next-generation sequencing. These studies provided an initial transcription map of the MOCV genome, suggested temporal regulation of gene expression, and indicated that the in vitro replication block occurs prior to intermediate and late gene expression. RNA-seq and reporter assays, as described here, may help to further evaluate MOCV gene expression and define conditions that could enable MOCV replication in vitro.
Collapse
|
19
|
Functional Comparison of Molluscum Contagiosum Virus vFLIP MC159 with Murine Cytomegalovirus M36/vICA and M45/vIRA Proteins. J Virol 2015; 90:2895-905. [PMID: 26719271 DOI: 10.1128/jvi.02729-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Molluscum contagiosum virus (MCV) gene MC159 encodes a viral FLICE inhibitory protein (vFLIP) that inhibits caspase-8-mediated apoptosis. The MC159 protein was also reported to inhibit programmed necrosis (necroptosis) and modulate NF-κB activation by interacting with RIP1 and NEMO. The importance of MC159 during MCV infection has remained unknown, as there is no system for propagation and genetic manipulation of this virus. Here we investigated the functions of MC159 during viral infection using murine cytomegalovirus (MCMV) as a surrogate virus. MC159 was inserted into the MCMV genome, replacing M36 or M45, two MCMV genes with functions similar to those reported for MC159. M36 encodes a viral inhibitor of caspase-8-induced apoptosis (vICA) and M45 a viral inhibitor of RIP activation (vIRA), which inhibits RIP1/RIP3-mediated necroptosis. The M45 protein also blocks NF-κB activation by interacting with NEMO. When expressed by MCMV, MC159 blocked tumor necrosis factor alpha (TNF-α)-induced apoptosis of infected cells and partially restored MCMV replication in macrophages. However, MC159 did not fully replace M45, as it did not inhibit necroptosis in murine cells, but it reduced TNF-α-induced necroptosis in MCMV-infected human HT-29 cells. MC159 also differed from M45 in its effect on NF-κB. While MCMV-encoded M45 blocked NF-κB activation by TNF-α and interleukin-1β (IL-1β), MC159 inhibited TNF-α- but not IL-1β-induced NF-κB activation in infected mouse fibroblasts. These results indicate that the spectrum of MC159's functions differs depending on cell type and expression system and that a cell culture system for the propagation of MCV is needed to determine the biological relevance of presumed viral gene functions. IMPORTANCE MCV is a human-pathogenic poxvirus that cannot be propagated in cell culture or laboratory animals. Therefore, MCV gene products have been studied predominantly in cells expressing individual viral genes. In this study, we analyzed the function of the MCV gene MC159 by expressing it from a different virus and comparing its functions to those of two well-characterized MCMV genes. In this system, MC159 displayed some but not all of the previously described functions, suggesting that the functions of a viral gene depend on the conditions under which it is expressed. Until a cell culture system for the analysis of MCV becomes available, it might be necessary to analyze MCV genes in several different systems to extrapolate their biological importance.
Collapse
|
20
|
Chen CW, Wu MS, Huang YJ, Lin PW, Shih CJ, Lin FP, Chang CY. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways. PLoS One 2015; 10:e0129071. [PMID: 26047333 PMCID: PMC4457926 DOI: 10.1371/journal.pone.0129071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Shan Wu
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Jen Huang
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Lin
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chueh-Ju Shih
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Pang Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yao Chang
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Fleming SB, Wise LM, Mercer AA. Molecular genetic analysis of orf virus: a poxvirus that has adapted to skin. Viruses 2015; 7:1505-39. [PMID: 25807056 PMCID: PMC4379583 DOI: 10.3390/v7031505] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022] Open
Abstract
Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been "captured" from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.
Collapse
Affiliation(s)
- Stephen B Fleming
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Lyn M Wise
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| | - Andrew A Mercer
- Department of Microbiology and Immunology, 720 Cumberland St, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
22
|
Abstract
Molluscum contagiosum virus (MCV) is the causative agent of molluscum contagiosum (MC), the third most common viral skin infection in children, and one of the five most prevalent skin diseases worldwide. No FDA-approved treatments, vaccines, or commercially available rapid diagnostics for MCV are available. This review discusses several aspects of this medically important virus including: physical properties of MCV, MCV pathogenesis, MCV replication, and immune responses to MCV infection. Sequencing of the MCV genome revealed novel immune evasion molecules which are highlighted here. Special attention is given to the MCV MC159 and MC160 proteins. These proteins are FLIPs with homologs in gamma herpesviruses and in the cell. They are of great interest because each protein regulates apoptosis, NF-κB, and IRF3. However, the mechanism that each protein uses to impart its effects is different. It is important to elucidate how MCV inhibits immune responses; this knowledge contributes to our understanding of viral pathogenesis and also provides new insights into how the immune system neutralizes virus infections.
Collapse
|
23
|
Emerging Roles for RIPK1 and RIPK3 in Pathogen-Induced Cell Death and Host Immunity. Curr Top Microbiol Immunol 2015; 403:37-75. [PMID: 26385769 DOI: 10.1007/82_2015_449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor-interacting protein kinases 1 and 3 (RIPK1 and RIPK3 ) are homologous serine-threonine kinases that were recognized for their roles in directing programmed necrotic cell death or necroptosis under a broad range of pathologic settings. Emerging evidence suggests new physiologic roles for RIPK1 and RIPK3 in mediating cell death of innate immune responses. Our review discusses current evidence on the mechanisms and the impact of RIPK1- and/or RIPK3-dependent cell death in responses to a variety of viral and bacterial pathogens. Furthermore, the discussion also summarizes emerging roles for RIPK1 and RIPK3 in other facets of host immunity, including the maintenance of epithelial barrier function and pro-inflammatory processes that may, in some cases, manifest independent of cell death. Finally, we briefly consider the therapeutic opportunities in targeting RIPK1- and RIPK3-dependent processes in infection and immunity.
Collapse
|
24
|
Viral and cellular FLICE-inhibitory proteins: a comparison of their roles in regulating intrinsic immune responses. J Virol 2014; 88:6539-41. [PMID: 24719415 DOI: 10.1128/jvi.00276-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
FLICE-inhibitory proteins (FLIPs) are a family of viral (poxvirus and herpesvirus) and cellular proteins. The hallmark of this family is the presence of tandem death-effector domains (DEDs). Despite this shared motif, each protein possesses different abilities to modulate apoptosis, NF-κB, and interferon regulatory factor 3 (IRF3). These similarities and differences are discussed and highlighted here. The comparative study of FLIPs provides a unique basis to understand virus-host interactions, viral pathogenesis, and cellular regulation of immune system signal transduction pathways.
Collapse
|
25
|
Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. Proc Natl Acad Sci U S A 2013; 111:E265-72. [PMID: 24379396 DOI: 10.1073/pnas.1314569111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Apoptosis, NF-κB activation, and IRF3 activation are a triad of intrinsic immune responses that play crucial roles in the pathogenesis of infectious diseases, cancer, and autoimmunity. FLIPs are a family of viral and cellular proteins initially found to inhibit apoptosis and more recently to either up- or down-regulate NF-κB. As such, a broad role for FLIPs in disease regulation is postulated, but exactly how a FLIP performs such multifunctional roles remains to be established. Here we examine FLIPs (MC159 and MC160) encoded by the molluscum contagiosum virus, a dermatotropic poxvirus causing skin infections common in children and immunocompromised individuals, to better understand their roles in viral pathogenesis. While studying their molecular mechanisms responsible for NF-κB inhibition, we discovered that each protein inhibited IRF3-controlled luciferase activity, identifying a unique function for FLIPs. MC159 and MC160 each inhibited TBK1 phosphorylation, confirming this unique function. Surprisingly, MC159 coimmunoprecipitated with TBK1 and IKKε but MC160 did not, suggesting that these homologs use distinct molecular mechanisms to inhibit IRF3 activation. Equally surprising was the finding that the FLIP regions necessary for TBK1 inhibition were distinct from those MC159 or MC160 regions previously defined to inhibit NF-κB or apoptosis. These data reveal previously unappreciated complexities of FLIPs, and that subtle differences within the conserved regions of FLIPs possess distinct molecular and structural fingerprints that define crucial differences in biological activities. A future comparison of mechanistic differences between viral FLIP proteins can provide new means of precisely manipulating distinct aspects of intrinsic immune responses.
Collapse
|
26
|
Abstract
The molluscum contagiosum (MC) virus (MCV) is a dermatotropic poxvirus, and the causative agent of MC. Unlike smallpox and human monkeypox diseases, MC is nonlethal, common and worldwide. Additionally, little inflammation is associated with MC papules, and MC can persist for months to years. Such a prolonged infection implies that MCV successfully manipulates the host environment. This review highlights recent findings that reveal how MCV infections manipulate localized host immune responses and which immune response are key for the eventual resolution of MC. Also highlighted here are the MCV proteins that inhibit apoptosis, inflammation and immune cell recruitment or that induce cellular proliferation, with discussion as to how these proteins dampen localized antiviral immune responses. Lastly, this review discusses how the immune evasion tactics of MCV have led to insights about specific functions of the human innate and adaptive immune responses.
Collapse
Affiliation(s)
- Crystal M H Randall
- Department of Microbiology, B103 Chemical & Life Sciences Labs, 601 S Goodwin Avenue, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical & Life Sciences Labs, 601 S Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Abstract
Viral infection constitutes an unwanted intrusion that needs to be eradicated by host cells. On one hand, one of the first protective barriers set up to prevent viral replication, spread or persistence involves the induction of apoptotic cell death that aims to limit the availability of the cellular components for viral amplification. On the other hand, while they completely depend on the host molecular machinery, viruses also need to evade the cellular responses that are meant to destroy them. The existence of numerous antiapoptotic products within the viral kingdom proves that apoptosis constitutes a major threat that should better be bypassed. Among the different strategies developed to deal with apoptosis, one is based on what viruses do best: backfiring the cell on itself. Several unrelated viruses have been described to take advantage of apoptosis induction by expressing proteins targeted by caspases, the key effectors of apoptotic cell death. Caspase cleavage of these proteins results in various consequences, from logical apoptosis inhibition to more surprising enhancement or attenuation of viral replication. The present review aims at discussing the characterization and relevance of this post-translational modification that adds a new complexity in the already intricate host-apoptosis-virus triangle.
Collapse
|
28
|
Randall CMH, Jokela JA, Shisler JL. The MC159 protein from the molluscum contagiosum poxvirus inhibits NF-κB activation by interacting with the IκB kinase complex. THE JOURNAL OF IMMUNOLOGY 2012; 188:2371-9. [PMID: 22301546 DOI: 10.4049/jimmunol.1100136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molluscum contagiosum virus (MCV) causes persistent neoplasms in healthy and immunocompromised people. Its ability to persist likely is due to its arsenal of viral immunoevasion proteins. For example, the MCV MC159 protein inhibits TNF-R1-induced NF-κB activation and apoptosis. The MC159 protein is a viral FLIP and, as such, possesses two tandem death effector domains (DEDs). We show in this article that, in human embryonic kidney 293 T cells, the expression of wild-type MC159 or a mutant MC159 protein containing the first DED (MC159 A) inhibited TNF-induced NF-κB, or NF-κB activated by PMA or MyD88 overexpression, whereas a mutant protein lacking the first DED (MC159 B) did not. We hypothesized that the MC159 protein targeted the IκB kinase (IKK) complex to inhibit these diverse signaling events. Indeed, the MC159 protein, but not MC159 B, coimmunoprecipitated with IKKγ. MC159 coimmunoprecipitated with IKKγ when using mouse embryonic fibroblasts that lack either IKKα or IKKβ, suggesting that the MC159 protein interacted directly with IKKγ. MC159-IKKγ coimmunoprecipitations were detected during infection of cells with either MCV isolated from human lesions or with a recombinant MC159-expressing vaccinia virus. MC159 also interacts with TRAF2, a signaling molecule involved in NF-κB activation. However, mutational analysis of MC159 failed to reveal a correlation between MC159-TRAF2 interactions and MC159's inhibitory function. We propose that MC159-IKK interactions, but not MC159-TRAF2 interactions, are responsible for inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Crystal M H Randall
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
29
|
Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 2010; 8:44-54. [PMID: 20638641 DOI: 10.1016/j.chom.2010.06.007] [Citation(s) in RCA: 327] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/01/2010] [Accepted: 06/21/2010] [Indexed: 01/24/2023]
Abstract
Viral and microbial infections often elicit programmed cell death as part of the host defense system or as a component of the survival strategy of the pathogen. It is thus not surprising that pathogens have evolved an array of toxins and virulence factors to modulate host cell death pathways. Apoptosis, necrosis, and pyroptosis constitute the three major cell death modes for elimination of infected cells. Herein, we discuss the signaling pathways underlying the principal host cell death mechanisms and provide an overview of the strategies employed by viral and microbial pathogens to manipulate these cell death processes.
Collapse
Affiliation(s)
- Mohamed Lamkanfi
- Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium.
| | | |
Collapse
|
30
|
Farina B, Pirone L, Russo L, Viparelli F, Doti N, Pedone C, Pedone EM, Fattorusso R. NMR backbone dynamics studies of human PED/PEA-15 outline protein functional sites. FEBS J 2010; 277:4229-40. [PMID: 20825483 DOI: 10.1111/j.1742-4658.2010.07812.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PED/PEA-15 (phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes) is a ubiquitously expressed protein and a key regulator of cell growth and glucose metabolism. PED/PEA-15 mediates both homotypic and heterotypic interactions and is constituted by an N-terminal canonical death effector domain and a C-terminal tail. In the present study, the backbone dynamics of PED/PEA-15 via (15)N R(1) and R(2) and steady-state [(1)H]-(15)N NOE measurements is reported. The dynamic parameters were analyzed using both Lipari-Szabo model-free formalism and a reduced spectral density mapping approach. The results obtained define a polar and charged surface of the death effector domain characterized by internal motions in the micro- to millisecond timescale, which is crucial for the multiple heterotypic functional protein-protein interactions in which PED/PEA-15 is involved. The present study contributes to a better understanding of the molecular basis of the PED/PEA-15 functional interactions and provides a more detailed surface for the design and development of PED/PEA-15 binders.
Collapse
|
31
|
Galluzzi L, Kepp O, Morselli E, Vitale I, Senovilla L, Pinti M, Zitvogel L, Kroemer G. Viral strategies for the evasion of immunogenic cell death. J Intern Med 2010; 267:526-42. [PMID: 20433579 DOI: 10.1111/j.1365-2796.2010.02223.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viral strategies for the evasion of immunogenic cell death (Symposium). J Intern Med 2010; 267: 526-542. Driven by co-evolutionary forces, viruses have refined a wide arsenal of strategies to interfere with the host defences. On one hand, viruses can block/retard programmed cell death in infected cells, thereby suppressing one of the most ancient mechanisms against viral dissemination. On the other hand, multiple viral factors can efficiently trigger the death of infected cells and uninfected cells from the immune system, which favours viral spreading and prevents/limits an active antiviral response, respectively. Moreover, several viruses are able to inhibit the molecular machinery that drives the translocation of calreticulin to the surface of dying cells. Thereby, viruses block the exposure of an engulfment signal that is required for the efficient uptake of dying cells by dendritic cells and for the induction of the immune response. In this review, we discuss a variety of mechanisms by which viruses interfere with the cell death machinery and, in particular, by which they subvert immunogenic cell death.
Collapse
|
32
|
The full-length isoform of human papillomavirus 16 E6 and its splice variant E6* bind to different sites on the procaspase 8 death effector domain. J Virol 2009; 84:1453-63. [PMID: 19906919 DOI: 10.1128/jvi.01331-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus 16 is a causative agent of most cases of cervical cancer and has also been implicated in the development of some head and neck cancers. The early viral E6 gene codes for two alternatively spliced isoforms, E6(large) and E6*. We have previously demonstrated the differential effects of E6(large) and E6* binding on the expression and stability of procaspase 8, a key mediator of the apoptotic pathway. Additionally, we have reported that E6 binds to the FADD death effector domain (DED) at a novel E6 binding domain. Sequence similarities between the FADD and procaspase 8 DEDs suggested a specific region for E6(large)/procaspase 8 binding, which was subsequently confirmed by mutational analysis as well as by the ability of peptides capable of blocking E6/FADD binding to also block E6(large)/caspase 8 binding. However, the binding of the smaller isoform, E6*, to procaspase 8 occurs at a different region, as deletion and point mutations that disrupt E6(large)/caspase 8 DED binding do not disrupt E6*/caspase 8 DED binding. In addition, peptide inhibitors that can block E6(large)/procaspase 8 binding do not affect the binding of E6* to procaspase 8. These results demonstrate that the residues that mediate E6*/procaspase 8 DED binding localize to a different region on the protein and employ a separate binding motif. This provides a molecular explanation for our initial findings that the two E6 isoforms affect procaspase 8 stability in an opposing manner.
Collapse
|
33
|
Deane D, Ueda N, Wise LM, Wood AR, Percival A, Jepson C, Inglis NF, Fleming SB, Mercer AA, McInnes CJ. Conservation and variation of the parapoxvirus GM-CSF-inhibitory factor (GIF) proteins. J Gen Virol 2009; 90:970-977. [PMID: 19264672 DOI: 10.1099/vir.0.006692-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The GIF protein of orf virus (ORFV) binds and inhibits the ovine cytokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-2). An equivalent protein has so far not been found in any of the other poxvirus genera and we therefore investigated whether it was conserved in the parapoxviruses. The corresponding genes from both the bovine-specific pseudocowpox virus (PCPV) and bovine papular stomatitis virus (BPSV) were cloned and sequenced. The predicted amino acid sequences of the PCPV and BPSV proteins shared 88 and 37 % identity, respectively, with the ORFV protein. Both retained the six cysteine residues and the WSXWS-like motif that are required for biological activity of the ORFV protein. However, an analysis of the biological activity of the two recombinant proteins revealed that, whilst the PCPV GIF protein bound to both ovine and bovine GM-CSF and IL-2 with very similar binding affinities to the ORFV GIF protein, no GM-CSF- or IL-2-binding activity was found for the BPSV protein.
Collapse
Affiliation(s)
- D Deane
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| | - N Ueda
- Virus Research Unit, University of Otago, Dunedin, New Zealand
| | - L M Wise
- Virus Research Unit, University of Otago, Dunedin, New Zealand
| | - A R Wood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| | - A Percival
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| | - C Jepson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| | - N F Inglis
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| | - S B Fleming
- Virus Research Unit, University of Otago, Dunedin, New Zealand
| | - A A Mercer
- Virus Research Unit, University of Otago, Dunedin, New Zealand
| | - C J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, Scotland, UK
| |
Collapse
|
34
|
Poxvirus host range protein CP77 contains an F-box-like domain that is necessary to suppress NF-kappaB activation by tumor necrosis factor alpha but is independent of its host range function. J Virol 2009; 83:4140-52. [PMID: 19211746 DOI: 10.1128/jvi.01835-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) activates the nuclear factor kappaB (NF-kappaB) signaling pathway that regulates expression of many cellular factors playing important roles in innate immune responses and inflammation in infected hosts. Poxviruses employ many strategies to inhibit NF-kappaB activation in cells. In this report, we describe a poxvirus host range protein, CP77, which blocked NF-kappaB activation by TNF-alpha. Immunofluorescence analyses revealed that nuclear translocation of NF-kappaB subunit p65 protein in TNF-alpha-treated HeLa cells was blocked by CP77. CP77 did so without blocking IkappaBalpha phosphorylation, suggesting that upstream kinase activation was not affected by CP77. Using GST pull-down, we showed that CP77 bound to the NF-kappaB subunit p65 through the N-terminal six-ankyrin-repeat region in vitro. CP77 also bound to Cullin-1 and Skp1 of the SCF complex through a C-terminal 13-amino-acid F-box-like sequence. Both regions of CP77 are required to block NF-kappaB activation. We thus propose a model in which poxvirus CP77 suppresses NF-kappaB activation by two interactions: the C-terminal F-box of CP77 binding to the SCF complex and the N-terminal six ankyrins binding to the NF-kappaB subunit p65. In this way, CP77 attenuates innate immune response signaling in cells. Finally, we expressed CP77 or a CP77 F-box deletion protein from a vaccinia virus host range mutant (VV-hr-GFP) and showed that either protein was able to rescue the host range defect, illustrating that the F-box region, which is important for NF-kappaB modulation and binding to SCF complex, is not required for CP77's host range function. Consistently, knocking down the protein level of NF-kappaB did not relieve the growth restriction of VV-hr-GFP in HeLa cells.
Collapse
|
35
|
Poxvirus MC160 protein utilizes multiple mechanisms to inhibit NF-kappaB activation mediated via components of the tumor necrosis factor receptor 1 signal transduction pathway. J Virol 2009; 83:3162-74. [PMID: 19158250 DOI: 10.1128/jvi.02009-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Poxviruses express proteins that limit host immune responses to infection. For example, the molluscum contagiosum virus MC160 protein inhibits tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation. This event correlates with MC160-induced IKK1 protein degradation, suggesting a mechanism for the above-mentioned phenotype. IKK1 is stabilized when it associates with the cellular heat shock protein 90 (Hsp90). Here, Hsp90 overexpression restored IKK1 levels in MC160-expressing cells, suggesting that MC160 competitively interacted with Hsp90. In support of this, further investigation showed that a mutant MC160 protein comprising only the C-terminal region (C protein) immunoprecipitated with Hsp90. In contrast, Hsp90 IP with a mutant MC160 protein consisting of only the N-terminal tandem death effector domains (DEDs) (N protein) was dramatically decreased. Since cells expressing either the N or C mutant MC160 protein remained similarly resistant to TNF-alpha-induced NF-kappaB activation, the N mutant protein probably utilized a different mechanism for inhibiting NF-kappaB. One likely mechanism for the N protein lies in its association with the DED-containing procaspase-8 protein, a cellular apoptosis precursor protein that regulates NF-kappaB activation. Here, IPs revealed that this association relied on the presence of the DED-containing N terminus of the MC160 protein but not the C-terminal portion. These interactions appear to have relevance with NF-kappaB activation, since the expression of the viral DEDs strongly inhibited procaspase-8-mediated NF-kappaB activation, an event not substantially altered by the C protein. Thus, the MC160 protein utilizes at least two distinct mechanisms for impeding NF-kappaB activation, association with Hsp90 to result in IKK1 protein degradation or interaction with procaspase-8.
Collapse
|
36
|
Targeting the retinoblastoma protein by MC007L, gene product of the molluscum contagiosum virus: detection of a novel virus-cell interaction by a member of the poxviruses. J Virol 2008; 82:10625-33. [PMID: 18701596 DOI: 10.1128/jvi.01187-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogenic poxvirus molluscum contagiosum virus (MCV) is the causative agent of benign neoplasm, with worldwide incidence, characterized by intraepidermal hyperplasia and hypertrophy of cells. Here, we present evidence that the MC007L protein of MCV targets retinoblastoma protein (pRb) via a conserved LxCxE motif, which is present in many viral oncoproteins. The deregulation of the pRb pathway plays a central role in tumor pathogenesis. The oncoproteins of small DNA viruses contain amino acid sequences that bind to and inactivate pRb. Isolated expression of these oncoproteins induces apoptosis, cell proliferation, and cellular transformation. The MC007L gene displays no homology to other genes within the poxvirus family. The protein anchors into the outer mitochondrial membrane via an N-terminal mitochondrial targeting sequence. Through the LxCxE motifs, MC007L induces a cytosolic sequestration of pRb at mitochondrial membranes, leading to the inactivation of the protein by mislocalization. MC007L precipitates the endogenous pRb/E2F-1 complex. Moreover, MC007L is able to cooperate to transform primary rat kidney cells. The interaction between MC007L and pRb provides a novel mechanism by which a virus can perturb the cell cycle.
Collapse
|
37
|
The interaction between human papillomavirus type 16 and FADD is mediated by a novel E6 binding domain. J Virol 2008; 82:9600-14. [PMID: 18632871 DOI: 10.1128/jvi.00538-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk strains of human papillomavirus, such as types 16 and 18, have been etiologically linked to cervical cancer. Most cervical cancer tissues are positive for both the E6 and E7 oncoproteins, since it is their cooperation that results in successful transformation and immortalization of infected cells. We have reported that E6 binds to tumor necrosis factor receptor 1 and to Fas-associated death domain (FADD) and, in doing so, prevents E6-expressing cells from responding to apoptotic stimuli. The binding site of E6 to FADD localizes to the first 23 amino acids of FADD and has now been further characterized by the use of deletion and site-directed mutants of FADD in pull-down and functional assays. The results from these experiments revealed that mutations of serine 16, serine 18, and leucine 20 obstruct FADD binding to E6, suggesting that these residues are part of the E6 binding domain on FADD. Because FADD does not contain the two previously identified E6 binding motifs, the LxxphiLsh motif, and the PDZ motif, a novel binding domain for E6 has been identified on FADD. Furthermore, peptides that correspond to this region can block E6/FADD binding in vitro and can resensitize E6-expressing cells to apoptotic stimuli in vivo. These results demonstrate the existence of a novel E6 binding domain.
Collapse
|
38
|
Tungteakkhun SS, Duerksen-Hughes PJ. Cellular binding partners of the human papillomavirus E6 protein. Arch Virol 2008; 153:397-408. [PMID: 18172569 PMCID: PMC2249614 DOI: 10.1007/s00705-007-0022-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
Abstract
The high-risk strains of human papillomavirus (HR-HPV) are known to be causative agents of cervical cancer and have recently also been implicated in cancers of the oropharynx. E6 is a potent oncogene of HR-HPVs, and its role in the progression to malignancy has been and continues to be explored. E6 is known to interact with and subsequently inactivate numerous cellular proteins pivotal in the mediation of apoptosis, transcription of tumor suppressor genes, maintenance of epithelial organization, and control of cell proliferation. Binding of E6 to these proteins cumulatively contributes to the oncogenic potential of HPV. This paper provides an overview of these cellular protein partners of HR-E6, the motifs known to mediate oncoprotein binding, and the agents that have the potential to interfere with E6 expression and activity and thus prevent the subsequent progression to oncogenesis.
Collapse
Affiliation(s)
- Sandy S. Tungteakkhun
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354 USA
| | | |
Collapse
|
39
|
Abstract
To prolong cell viability and facilitate replication, viruses have evolved multiple mechanisms to inhibit the host apoptotic response. Cellular proteases such as caspases and serine proteases are instrumental in promoting apoptosis. Thus, these enzymes are logical targets for virus-mediated modulation to suppress cell death. Four major classes of viral inhibitors antagonize caspase function: serpins, p35 family members, inhibitor of apoptosis proteins, and viral FLICE-inhibitory proteins. Viruses also subvert activity of the serine proteases, granzyme B and HtrA2/Omi, to avoid cell death. The combined efforts of viruses to suppress apoptosis suggest that this response should be avoided at all costs. However, some viruses utilize caspases during replication to aid virus protein maturation, progeny release, or both. Hence, a multifaceted relationship exists between viruses and the apoptotic response they induce. Examination of these interactions contributes to our understanding of both virus pathogenesis and the regulation of apoptotic enzymes in normal cellular functions.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| |
Collapse
|
40
|
Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 2007; 25:561-86. [PMID: 17201679 PMCID: PMC2904440 DOI: 10.1146/annurev.immunol.25.022106.141656] [Citation(s) in RCA: 418] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The death domain (DD) superfamily comprising the death domain (DD) subfamily, the death effector domain (DED) subfamily, the caspase recruitment domain (CARD) subfamily, and the pyrin domain (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfamily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this chapter, we review the molecular complexes assembled by these proteins, the structural and biochemical features of these domains, and the molecular interactions mediated by them. By analyzing the potential molecular basis for the function of these domains, we hope to provide a comprehensive understanding of the function, structure, interaction, and evolution of this important family of domains.
Collapse
Affiliation(s)
- Hyun Ho Park
- Department of Biochemistry, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Highly contagious pustular skin infections of sheep, goats and cattle that were unwittingly transmitted to humans from close contact with infected animals, have been the scourge of shepherds, herdsmen and dairy farmers for centuries. In more recent times we recognise that these proliferative pustular lesions are likely to be caused by a group of zoonotic viruses that are classified as parapoxviruses. In addition to infecting the above ungulates, parapoxviruses have more recently been isolated from seals, camels, red deer and reindeer and most have been shown to infect man. The parapoxviruses have one of the smallest genomes of the poxvirus family (140 kb) yet share over 70% of their genes with the most virulent members. Like other poxviruses, the central core of the genomes encode factors for virus transcription and replication, and structural proteins, whereas the terminal regions encode accessory factors that give the parapoxvirus group many of its unique features. Several genes of parapoxviruses are unique to this genus and encode factors that target inflammation, the innate immune responses and the development of acquired immunity. These factors include a homologue of mammalian interleukin (IL)-10, a chemokine binding protein and a granulocyte-macrophage colony stimulating factor /IL-2 binding protein. The ability of this group to reinfect their hosts, even though a cell-mediated memory response is induced during primary infection, may be related to their epitheliotropic niche and the immunomodulators they produce. In this highly localised environment, the secreted immunomodulators only interfere with the local immune response and thus do not compromise the host’s immune system. The discovery of a vascular endothelial growth factor-like gene may explain the highly vascular nature of parapoxvirus lesions. There are many genes of parapoxviruses which do not encode polypeptides with significant matches with protein sequences in public databases, separating this genus from most other mammalian poxviruses. These genes appear to be involved in inhibiting apoptosis, manipulating cell cycle progression and degradation of cellular proteins that may be involved in the stress response, thus allowing the virus to subvert intracellular antiviral mechanisms and enhance the availability of cellular molecules required for replication. Parapoxviruses in common with Molluscum contagiosum virus lack a number of genes that are highly conserved in other poxviruses, including factors for nucleotide metabolism, serine protease inhibitors and kelch-like proteins. It is apparent that parapoxviruses have evolved a unique repertoire of genes that have allowed adaptation to the highly specialised environment of the epidermis.
Collapse
|
42
|
Taylor JM, Barry M. Near death experiences: poxvirus regulation of apoptotic death. Virology 2006; 344:139-50. [PMID: 16364745 DOI: 10.1016/j.virol.2005.09.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/10/2005] [Indexed: 12/25/2022]
Abstract
Apoptosis, or programmed cell death, plays a critical role in the elimination of virus-infected cells. As a result, a growing number of viruses encode numerous potent anti-apoptotic proteins to counteract apoptosis in an effort to prolong their own survival. This review describes the numerous mechanisms by which poxviruses inhibit apoptosis thereby modulating life and death of the cell.
Collapse
Affiliation(s)
- John M Taylor
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | |
Collapse
|
43
|
Yoneda K, Demitsu T, Kon A, Sadahira C, Moriue T, Katsuura J, Matsuoka Y, Takai I, Noda M, Inagaki N, Kubota Y. Ubiquitination of molluscum body and its implications for pathophysiology. Br J Dermatol 2006; 154:786-9. [PMID: 16536836 DOI: 10.1111/j.1365-2133.2006.07147.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Abstract
Death receptor signaling is initiated by the assembly of the death-inducing signaling complex, which culminates in the activation of the initiator caspase, either caspase-8 or caspase-10. A family of viral and cellular proteins, known as FLIP, plays an essential role in the regulation of death receptor signaling. Viral FLIP (v-FLIP) and short cellular FLIP (c-FLIPS) inhibit apoptosis by interfering with death receptor signaling. The structure and mechanisms of v-FLIP and c-FLIPS remain largely unknown. Here we report a high resolution crystal structure of MC159, a v-FLIP derived from the molluscum contagiosum virus, which is a member of the human poxvirus family. Unexpectedly, the two tandem death effector domains (DEDs) of MC159 rigidly associate with each other through a hydrophobic interface. Structure-based sequence analysis suggests that this interface is conserved in the tandem DEDs from other v-FLIP, c-FLIPS, and caspase-8 and -10. Strikingly, the overall packing arrangement between the two DEDs of MC159 resembles that between the caspase recruitment domains of Apaf-1 and caspase-9. In addition, each DED of MC159 contains a highly conserved binding motif on the surface, to which loss-of-function mutations in MC159 map. These observations, in conjunction with published evidence, reveal significant insights into the function of v-FLIP and suggest a mechanism by which v-FLIP and c-FLIPS inhibit death receptor signaling.
Collapse
Affiliation(s)
- Feng-Yen Li
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
45
|
Nichols DB, Shisler JL. The MC160 protein expressed by the dermatotropic poxvirus molluscum contagiosum virus prevents tumor necrosis factor alpha-induced NF-kappaB activation via inhibition of I kappa kinase complex formation. J Virol 2006; 80:578-86. [PMID: 16378960 PMCID: PMC1346854 DOI: 10.1128/jvi.80.2.578-586.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pluripotent cytokine tumor necrosis factor alpha (TNF-alpha) binds to its cognate TNF receptor I (TNF-RI) to stimulate inflammation via activation of the NF-kappaB transcription factor. To prevent the detrimental effects of TNF-alpha in keratinocytes infected with the molluscum contagiosum virus (MCV), this poxvirus is expected to produce proteins that block at least one step of the TNF-RI signal transduction pathway. One such product, the MC160 protein, is predicted to interfere with this cellular response because of its homology to other proteins that regulate TNF-RI-mediated signaling. We report here that expression of MC160 molecules did significantly reduce TNF-alpha-mediated NF-kappaB activation in 293T cells, as measured by gene reporter and gel mobility shift assays. Since we observed that MC160 decreased other NF-kappaB activation pathways, namely those activated by receptor-interacting protein, TNF receptor-associated factor 2, NF-kappaB-inducing kinase, or MyD88, we hypothesized that the MC160 product interfered with I kappa kinase (IKK) activation, an event common to multiple signal transduction pathways. Indeed, MC160 protein expression was associated with a reduction in in vitro IKK kinase activity and IKK subunit phosphorylation. Further, IKK1-IKK2 interactions were not detected in MC160-expressing cells, under conditions demonstrated to induce IKK complex formation, but interactions between the MC160 protein and the major IKK subunits were undetectable. Surprisingly, MC160 expression correlated with a decrease in IKK1, but not IKK2 levels, suggesting a mechanism for MC160 disruption of IKK1-IKK2 interactions. MCV has probably retained its MC160 gene to inhibit NF-kappaB activation by interfering with signaling via multiple biological mediators. In the context of an MCV infection in vivo, MC160 protein expression may dampen the cellular production of proinflammatory molecules and enhance persistent infections in host keratinocytes.
Collapse
Affiliation(s)
- Daniel Brian Nichols
- Department of Microbiology, College of Medicine, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
46
|
Thurau M, Everett H, Tapernoux M, Tschopp J, Thome M. The TRAF3-binding site of human molluscipox virus FLIP molecule MC159 is critical for its capacity to inhibit Fas-induced apoptosis. Cell Death Differ 2006; 13:1577-85. [PMID: 16410799 DOI: 10.1038/sj.cdd.4401847] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the viral Flice/caspase-8 inhibitory protein (v-FLIP) family prevent induction of apoptosis by death receptors through inhibition of the processing and activation of procaspase-8 and -10 at the level of the receptor-associated death-inducing signaling complex (DISC). Here, we have addressed the molecular function of the v-FLIP member MC159 of the human molluscum contagiosum virus. MC159 FLIP powerfully inhibited both caspase-dependent and caspase-independent cell death induced by Fas. The C-terminal region of MC159 bound TNF receptor-associated factor (TRAF)3, was necessary for optimal TRAF2 binding, and mediated the recruitment of both TRAFs into the Fas DISC. TRAF-binding-deficient mutants of MC159 showed impaired inhibition of FasL-induced caspase-8 processing and Fas internalization, and had reduced antiapoptotic activity. Our findings provide evidence that a MC159/TRAF2/TRAF3 complex regulates a new aspect of Fas signaling, and identify MC159 FLIP as a molecule that targets multiple features of Fas-induced cell death.
Collapse
Affiliation(s)
- M Thurau
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Yang JK, Wang L, Zheng L, Wan F, Ahmed M, Lenardo MJ, Wu H. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 2005; 20:939-49. [PMID: 16364918 PMCID: PMC2908330 DOI: 10.1016/j.molcel.2005.10.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 10/18/2005] [Accepted: 10/19/2005] [Indexed: 01/17/2023]
Abstract
The death-inducing signaling complex (DISC) comprising Fas, Fas-associated death domain (FADD), and caspase-8/10 is assembled via homotypic associations between death domains (DDs) of Fas and FADD and between death effector domains (DEDs) of FADD and caspase-8/10. Caspase-8/10 and FLICE/caspase-8 inhibitory proteins (FLIPs) that inhibit caspase activation at the DISC level contain tandem DEDs. Here, we report the crystal structure of a viral FLIP, MC159, at 1.2 Angstroms resolution. It reveals a noncanonical fold of DED1, a dumbbell-shaped structure with rigidly associated DEDs and a different mode of interaction in the DD superfamily. Whereas the conserved hydrophobic patch of DED1 interacts with DED2, the corresponding region of DED2 mediates caspase-8 recruitment and contributes to DISC assembly. In contrast, MC159 cooperatively assembles with Fas and FADD via an extensive surface that encompasses the conserved charge triad. This interaction apparently competes with FADD self-association and disrupts higher-order oligomerization required for caspase activation in the DISC.
Collapse
Affiliation(s)
- Jin Kuk Yang
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Murao LE, Shisler JL. The MCV MC159 protein inhibits late, but not early, events of TNF-α-induced NF-κB activation. Virology 2005; 340:255-64. [PMID: 16040075 DOI: 10.1016/j.virol.2005.06.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/06/2005] [Accepted: 06/22/2005] [Indexed: 11/21/2022]
Abstract
Tumor necrosis factor (TNF-alpha) triggers biphasic activation of the NF-kappaB transcriptional regulator. This process consists of an initial, IkappaBalpha-mediated transient phase and a later, persistent phase dependent on IkappaBbeta degradation. To presumably interfere with the fulfillment of this immunity-associated event in cells infected with the molluscum contagiosum virus (MCV), this pathogen produces the intracellular MC159 protein. To define the mode of action of MC159, the impact of TNF-alpha on HEK 293T cells ectopically expressing the MC159 protein was examined. In this regard, TNF-alpha-induced expression of an NF-kappaB-regulated luciferase reporter gene was partially inhibited by the MC159 protein. This ability was attributed to blockage of the persistent phase of TNF-alpha-induced NF-kappaB activation for the following reasons: (1) the initial phase of NF-kappaB transcriptional activation was not affected by the MC159 protein; (2) the MC159 protein inhibited TNF-alpha-directed degradation of IkappaBbeta, but not IkappaBalpha; and (3) expression of the late NF-kappaB-regulated cell genes, TNF-alpha and CCL2, was decreased in the presence of the MC159 protein while transcription of the early NF-kappaB-regulated cell gene, CXCL1, was not altered. Previously reported MC159-RIP interactions appear to be irrelevant for the MC159 inhibitory function. In contrast, MC159-TRAF2 associations are more relevant for inhibitory function since mutant MC159 proteins unable to bind TRAF2 also cannot inhibit TNF-mediated NF-kappaB activation. In vivo, the MC159 protein may act to prolong virus survival by preventing the infected cell from responding to TNF-alpha, ultimately preventing the cellular production of proinflammatory and immunoattractant molecules.
Collapse
Affiliation(s)
- Lyre Espada Murao
- Department of Microbiology, College of Medicine, University of Illinois, C222 CLSL, Urbana, 61801, USA
| | | |
Collapse
|
49
|
Li Q, Liston P, Moyer RW. Functional analysis of the inhibitor of apoptosis (iap) gene carried by the entomopoxvirus of Amsacta moorei. J Virol 2005; 79:2335-45. [PMID: 15681434 PMCID: PMC546542 DOI: 10.1128/jvi.79.4.2335-2345.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Accepted: 09/13/2004] [Indexed: 02/02/2023] Open
Abstract
The entomopoxvirus from Amsacta moorei (AmEPV) contains none of the commonly recognized vertebrate poxvirus apoptotic suppressor genes. However, AmEPV carries a single inhibitor of apoptosis (iap) gene (AMViap) not present in vertebrate poxviruses. The AMViap gene was active when coexpressed with the Drosophila proapoptotic gene hid in Ld652 cells and can rescue cells from apoptosis as shown by increased number of surviving cells and reduced levels of caspase-3-like activity. We also showed that expression of the AMViap gene rescued polyhedron production in Autographa californica M nucleopolyhedrovirus (AcMNPV)Deltap35-infected Sf9 cells during an otherwise abortive infection induced by apoptosis. Surprisingly, deletion of the AMViap gene from the AmEPV genome led to only a modest (10-fold) loss of virion production in infected Ld652 cells, indicating that the AMViap gene is nonessential for virus replication under these conditions. However, infection of Ld652 cells by AmEPV lacking a functional iap gene led to a more rapid induction of cytotoxicity and increased levels of caspase-3-like activity. Similar results were observed and were more pronounced in infected Sf9 and S2 cells. The purified AMVIAP protein also inhibits the enzymatic activities of human caspase-9 and caspase-3 in vitro. Our results indicate that while the AMViap gene was active in controlling apoptosis through the intrinsic pathway, the virus likely encodes additional proteins that also regulate apoptosis.
Collapse
Affiliation(s)
- Qianjun Li
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610-0266, USA
| | | | | |
Collapse
|
50
|
Gillet L, Vanderplasschen A. Viral Subversion of the Immune System. APPLICATIONS OF GENE-BASED TECHNOLOGIES FOR IMPROVING ANIMAL PRODUCTION AND HEALTH IN DEVELOPING COUNTRIES 2005. [PMCID: PMC7121541 DOI: 10.1007/1-4020-3312-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The continuous interactions between host and viruses during their co-evolution have shaped not only the immune system but also the countermeasures used by viruses. Studies in the last decade have described the diverse arrays of pathways and molecular targets that are used by viruses to elude immune detection or destruction, or both. These include targeting of pathways for major histocompatibility complex class I and class II antigen presentation, natural killer cell recognition, apoptosis, cytokine signalling, and complement activation. This paper provides an overview of the viral immune-evasion mechanisms described to date. It highlights the contribution of this field to our understanding of the immune system, and the importance of understanding this aspect of the biology of viral infection to develop efficacious and safe vaccines.
Collapse
|