1
|
Ribó-Molina P, Groen K, Susma B, van Nieuwkoop S, Funk M, Fouchier RAM, van den Hoogen BG. The role of M2 proteins of pneumoviruses in transcription regulation, prevention of hypermutation, and activation of the type I interferon pathway. J Virol 2025; 99:e0124324. [PMID: 39835813 PMCID: PMC11852930 DOI: 10.1128/jvi.01243-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Human metapneumovirus (HMPV) is an important causative agent of respiratory tract disease. Fundamental knowledge of the interaction between HMPV and the innate immune system could lead to the design of novel antiviral therapies. Previously, we demonstrated that HMPV M2-2 deletion mutants had hypermutated genomes and contained defective interfering particles (DIs), which are potent inducers of the IFN response. Here, we investigated the role of the HMPV M2-2 protein as IFN antagonist using chimeric HMPV expressing M2 proteins of other pneumoviruses: respiratory syncytial virus (RSV) and avian metapneumovirus type C (AMPV/C). Chimeric HMPVs expressing the M2 proteins of RSV or AMPV/C were attenuated in HEp-2 cells but did not activate the IFN response, and their genomes were not hypermutated. In contrast, chimeric HMPVs expressing the M2-2 proteins of RSV and AMPV/C, in combination with HMPV M2-1, did activate the IFN response, and their genomes were hypermutated. Investigation of the role of the pneumovirus M2 proteins in transcription regulation demonstrated that the M2-2 protein, only in concerted action with autologous M2-1 protein, acted as a transcription elongation factor. As a second approach, chimeric RSV in which the IFN antagonists NS1 and NS2 were replaced by the HMPV M2-2 gene failed to suppress an IFN response, indicating that the HMPV M2-2 protein is not a potent IFN antagonist. These data indicate that expression of autologous M2-1 and M2-2 proteins is important for the fidelity of the RNA-dependent RNA polymerase, necessary to prevent the accumulation of mutations, and possibly DIs, thereby preventing activation of the IFN responses.IMPORTANCEThe M2-2 protein of human metapneumovirus is suggested to function as a type I interferon antagonist, a function so far not assigned to the M2 proteins of other pneumoviruses. Although M2-2 deletion mutants of HMPV activate the type I interferon pathway, these mutants have hypermutated genomes and contain defective interfering RNAs, known to activate the interferon pathway. Here, we show that the M2-2 protein, in concerted action with autologous M2-1 protein, acts as a transcription elongation factor, which could explain the accumulation of DIs in M2-2 deletion mutants. Additionally, chimeric RSV in which the IFN antagonists NS1 and NS2 were replaced by the HMPV M2-2 gene failed to suppress an IFN response. These data indicate that expression of autologous M2-1 and M2-2 proteins is required for the fidelity of the RNA-dependent RNA polymerase to prevent genome hypermutation and activation of the type I IFN pathway.
Collapse
Affiliation(s)
- Pau Ribó-Molina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kevin Groen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | - Mathis Funk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
2
|
Gao Y, Raghavan A, Espinosa Garcia SA, Deng B, Hurtado de Mendoza D, Liang B. In vitro higher-order oligomeric assembly of the respiratory syncytial virus M2-1 protein with longer RNAs. J Virol 2024; 98:e0104624. [PMID: 39016557 PMCID: PMC11334520 DOI: 10.1128/jvi.01046-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anirudh Raghavan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bowei Deng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Stokes AH, Planty C, Pion J, Ancian P, Rogue A, Bansard C, Silvano J, Papineau D, Ben Abdeljelil N, Maruggi G, Song H, Spickler C, Blouin K, Dubois G, Rodriguez LA, Baumeister J, Steff AM, Destexhe E. Repeated-Dose Toxicity, Biodistribution, and Shedding Assessments With a ChAd155 Respiratory Syncytial Virus Vaccine Candidate Evaluated in Rabbits and Rats. Int J Toxicol 2022; 41:263-275. [PMID: 35653115 DOI: 10.1177/10915818221101788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections (LRTI) in infants, and toddlers and vaccines are not yet available. A pediatric RSV vaccine (ChAd155-RSV) is being developed to protect infants against RSV disease. The ChAd155-RSV vaccine consists of a recombinant replication-deficient chimpanzee-derived adenovirus (ChAd) group C vector engineered to express the RSV antigens F, N, and M2-1. The local and systemic effects of three bi-weekly intramuscular injections of the ChAd155-RSV vaccine was tested in a repeated-dose toxicity study in rabbits. After three intramuscular doses, the ChAd155-RSV vaccine was considered well-tolerated. Changes due to the vaccine-elicited inflammatory reaction/immune response were observed along with transient decreases in platelet count without physiological consequences, already reported for other adenovirus-based vaccines. In addition, the biodistribution and shedding of ChAd155-RSV were also characterized in two studies in rats. The distribution and persistence of the ChAd155-RSV vaccine candidate was consistent with other similar adenovector-based vaccines, with quantifiable levels of ChAd155-RSV observed at the injection site (muscle) and the draining lymph nodes up to 69 days post administration. The shedding results demonstrated that ChAd155-RSV was generally not detectable in any secretions or excreta samples. In conclusion, the ChAd155-RSV vaccine was well-tolerated locally and systemically.
Collapse
Affiliation(s)
| | - Camille Planty
- 33139GSK, Rixensart, Belgium.,Current affiliation: CapGemini Engineering, Brussels, Belgium
| | - Johanne Pion
- Charles River Laboratories, Laval (Québec), Canada
| | | | | | | | | | | | | | | | - Haifeng Song
- 33139GSK, Rockville, MD, USA.,Current affiliation: Suzhou Abogen Bioscience Ltd, Suzhou (Jiangsu), China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Te Velthuis AJW, Grimes JM, Fodor E. Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 2021; 19:303-318. [PMID: 33495561 PMCID: PMC7832423 DOI: 10.1038/s41579-020-00501-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
RNA viruses include many important human and animal pathogens, such as the influenza viruses, respiratory syncytial virus, Ebola virus, measles virus and rabies virus. The genomes of these viruses consist of single or multiple RNA segments that assemble with oligomeric viral nucleoprotein into ribonucleoprotein complexes. Replication and transcription of the viral genome is performed by ~250-450 kDa viral RNA-dependent RNA polymerases that also contain capping or cap-snatching activity. In this Review, we compare recent high-resolution X-ray and cryoelectron microscopy structures of RNA polymerases of negative-sense RNA viruses with segmented and non-segmented genomes, including orthomyxoviruses, peribunyaviruses, phenuiviruses, arenaviruses, rhabdoviruses, pneumoviruses and paramyxoviruses. In addition, we discuss how structural insights into these enzymes contribute to our understanding of the molecular mechanisms of viral transcription and replication, and how we can use these insights to identify targets for antiviral drug design.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
An Amplicon-Based Approach for the Whole-Genome Sequencing of Human Metapneumovirus. Viruses 2021; 13:v13030499. [PMID: 33803613 PMCID: PMC8003040 DOI: 10.3390/v13030499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of upper and lower respiratory tract disease in individuals of all ages. It is estimated that most individuals will be infected by HMPV by the age of five years old. Despite this burden of disease, there remain caveats in our knowledge of global genetic diversity due to a lack of HMPV sequencing, particularly at the whole-genome scale. The purpose of this study was to create a simple and robust approach for HMPV whole-genome sequencing to be used for genomic epidemiological studies. To design our assay, all available HMPV full-length genome sequences were downloaded from the National Center for Biotechnology Information (NCBI) GenBank database and used to design four primer sets to amplify long, overlapping amplicons spanning the viral genome and, importantly, specific to all known HMPV subtypes. These amplicons were then pooled and sequenced on an Illumina iSeq 100 (Illumina, San Diego, CA, USA); however, the approach is suitable to other common sequencing platforms. We demonstrate the utility of this method using a representative subset of clinical samples and examine these sequences using a phylogenetic approach. Here we present an amplicon-based method for the whole-genome sequencing of HMPV from clinical extracts that can be used to better inform genomic studies of HMPV epidemiology and evolution.
Collapse
|
6
|
A Respiratory Syncytial Virus Attachment Gene Variant Associated with More Severe Disease in Infants Decreases Fusion Protein Expression, Which May Facilitate Immune Evasion. J Virol 2020; 95:JVI.01201-20. [PMID: 33115881 DOI: 10.1128/jvi.01201-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.
Collapse
|
7
|
Abstract
Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales, known as nonsegmented negative-sense (NNS) RNA viruses, are a class of pathogenic and sometimes deadly viruses that include rabies virus (RABV), human respiratory syncytial virus (HRSV), and Ebola virus (EBOV). Unfortunately, no effective vaccines and antiviral therapeutics against many Mononegavirales are currently available. Viral polymerases have been attractive and major antiviral therapeutic targets. Therefore, Mononegavirales polymerases have been extensively investigated for their structures and functions. Mononegavirales mimic RNA synthesis of their eukaryotic counterparts by utilizing multifunctional RNA polymerases to replicate entire viral genomes and transcribe viral mRNAs from individual viral genes as well as synthesize 5′ methylated cap and 3′ poly(A) tail of the transcribed viral mRNAs. The catalytic subunit large protein (L) and cofactor phosphoprotein (P) constitute the Mononegavirales polymerases. In this review, we discuss the shared and unique features of RNA synthesis, the monomeric multifunctional enzyme L, and the oligomeric multimodular adapter P of Mononegavirales. We outline the structural analyses of the Mononegavirales polymerases since the first structure of the vesicular stomatitis virus (VSV) L protein determined in 2015 and highlight multiple high-resolution cryo-electron microscopy (cryo-EM) structures of the polymerases of Mononegavirales, namely, VSV, RABV, HRSV, human metapneumovirus (HMPV), and human parainfluenza virus (HPIV), that have been reported in recent months (2019 to 2020). We compare the structures of those polymerases grouped by virus family, illustrate the similarities and differences among those polymerases, and reveal the potential RNA synthesis mechanisms and models of highly conserved Mononegavirales. We conclude by the discussion of remaining questions, evolutionary perspectives, and future directions.
Collapse
|
8
|
Gao Y, Cao D, Pawnikar S, John KP, Ahn HM, Hill S, Ha JM, Parikh P, Ogilvie C, Swain A, Yang A, Bell A, Salazar A, Miao Y, Liang B. Structure of the Human Respiratory Syncytial Virus M2-1 Protein in Complex with a Short Positive-Sense Gene-End RNA. Structure 2020; 28:979-990.e4. [PMID: 32697936 DOI: 10.1016/j.str.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
Abstract
The M2-1 protein of human respiratory syncytial virus (HRSV) is a transcription anti-terminator that regulates the processivity of the HRSV RNA-dependent RNA polymerase (RdRP). Here, we report a crystal structure of HRSV M2-1 bound to a short positive-sense gene-end RNA (SH7) at 2.7 Å resolution. We identified multiple critical residues of M2-1 involved in RNA interaction and examined their roles using mutagenesis and MicroScale Thermophoresis (MST) assay. We found that hydrophobic residue Phe23 is indispensable for M2-1 to recognize the base of RNA. We also captured spontaneous binding of RNA (SH7) to M2-1 in all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method. Both experiments and simulations revealed that the interactions of RNA with two separate domains of M2-1, the zinc-binding domain (ZBD) and the core domain (CD), are independent of each other. Collectively, our results provided a structural basis for RNA recognition by HRSV M2-1.
Collapse
Affiliation(s)
- Yunrong Gao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Dongdong Cao
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shristi Pawnikar
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Karen P John
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA
| | - Hyunjun Max Ahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Shaylan Hill
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Ju Mi Ha
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Priyal Parikh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Claire Ogilvie
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Anshuman Swain
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy Yang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amber Bell
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Angela Salazar
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66047, USA.
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA.
| |
Collapse
|
9
|
Ferla S, Manganaro R, Benato S, Paulissen J, Neyts J, Jochmans D, Brancale A, Bassetto M. Rational modifications, synthesis and biological evaluation of new potential antivirals for RSV designed to target the M2-1 protein. Bioorg Med Chem 2020; 28:115401. [PMID: 32143992 DOI: 10.1016/j.bmc.2020.115401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) is the main cause of lower respiratory tract diseases in infants and young children, with potentially serious and fatal consequences associated with severe infections. Despite extensive research efforts invested in the identification of therapeutic measures, no vaccine is currently available, while treatment options are limited to ribavirin and palivizumab, which both present significant limitations. While clinical and pre-clinical candidates mainly target the viral fusion protein, the nucleocapsid protein or the viral polymerase, our focus has been the identification of new antiviral compounds targeting the viral M2-1 protein, thanks to the presence of a zinc-ejecting group in their chemical structure. Starting from an anti-RSV hit we had previously identified with an in silico structure-based approach, we have designed, synthesised and evaluated a new series of dithiocarbamate analogues, with which we have explored the antiviral activity of this scaffold. The findings presented in this work may provide the basis for the identification of a new antiviral lead to treat RSV infections.
Collapse
Affiliation(s)
- Salvatore Ferla
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK.
| | - Roberto Manganaro
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Sara Benato
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Jasmine Paulissen
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK
| | - Marcella Bassetto
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK; Department of Chemistry, Swansea University, Swansea, UK
| |
Collapse
|
10
|
Piedra FA, Qiu X, Teng MN, Avadhanula V, Machado AA, Kim DK, Hixson J, Bahl J, Piedra PA. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS One 2020; 15:e0227558. [PMID: 31923213 PMCID: PMC6953876 DOI: 10.1371/journal.pone.0227558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented negative-strand RNA virus (NSV) and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3’ promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription extending across the genome, with the highest level of mRNA coming from the most promoter-proximal gene, the first nonstructural (NS1) gene, and mRNA levels from subsequent genes dropping until reaching a minimum at the most promoter-distal gene, the polymerase (L) gene. However, recent reports show non-gradient levels of mRNA, with higher than expected levels from the attachment (G) gene. It is unknown to what extent different transcript stabilities might shape measured mRNA levels. It is also unclear whether patterns of RSV gene expression vary, or show strain- or genotype-dependence. To address this, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and in cotton rats infected with RSV isolates belonging to four genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were non-gradient and genotype-specific, where mRNA levels from the G gene exceeded those from the more promoter-proximal nucleocapsid (N) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. Our results indicate that gene expression from a small but diverse set of RSV genotypes is non-gradient and genotype-dependent. We propose novel models of RSV transcription that can account for non-gradient transcription.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| | - Xueting Qiu
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Michael N. Teng
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Annette A. Machado
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Do-Kyun Kim
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - James Hixson
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - Justin Bahl
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Pedro A. Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
11
|
Selvaraj M, Yegambaram K, Todd EJAA, Richard CA, Dods RL, Pangratiou GM, Trinh CH, Moul SL, Murphy JC, Mankouri J, Éléouët JF, Barr JN, Edwards TA. The Structure of the Human Respiratory Syncytial Virus M2-1 Protein Bound to the Interaction Domain of the Phosphoprotein P Defines the Orientation of the Complex. mBio 2018; 9:e01554-18. [PMID: 30425144 PMCID: PMC6234862 DOI: 10.1128/mbio.01554-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a negative-stranded RNA virus that causes a globally prevalent respiratory infection, which can cause life-threatening illness, particularly in the young, elderly, and immunocompromised. HRSV multiplication depends on replication and transcription of the HRSV genes by the virus-encoded RNA-dependent RNA polymerase (RdRp). For replication, this complex comprises the phosphoprotein (P) and the large protein (L), whereas for transcription, the M2-1 protein is also required. M2-1 is recruited to the RdRp by interaction with P and also interacts with RNA at overlapping binding sites on the M2-1 surface, such that binding of these partners is mutually exclusive. The molecular basis for the transcriptional requirement of M2-1 is unclear, as is the consequence of competition between P and RNA for M2-1 binding, which is likely a critical step in the transcription mechanism. Here, we report the crystal structure at 2.4 Å of M2-1 bound to the P interaction domain, which comprises P residues 90 to 110. The P90-110 peptide is alpha helical, and its position on the surface of M2-1 defines the orientation of the three transcriptase components within the complex. The M2-1/P interface includes ionic, hydrophobic, and hydrogen bond interactions, and the critical contribution of these contacts to complex formation was assessed using a minigenome assay. The affinity of M2-1 for RNA and P ligands was quantified using fluorescence anisotropy, which showed high-affinity RNAs could outcompete P. This has important implications for the mechanism of transcription, particularly the events surrounding transcription termination and synthesis of poly(A) sequences.IMPORTANCE Human respiratory syncytial virus (HRSV) is a leading cause of respiratory illness, particularly in the young, elderly, and immunocompromised, and has also been linked to the development of asthma. HRSV replication depends on P and L, whereas transcription also requires M2-1. M2-1 interacts with P and RNA at overlapping binding sites; while these interactions are necessary for transcriptional activity, the mechanism of M2-1 action is unclear. To better understand HRSV transcription, we solved the crystal structure of M2-1 in complex with the minimal P interaction domain, revealing molecular details of the M2-1/P interface and defining the orientation of M2-1 within the tripartite complex. The M2-1/P interaction is relatively weak, suggesting high-affinity RNAs may displace M2-1 from the complex, providing the basis for a new model describing the role of M2-1 in transcription. Recently, the small molecules quercetin and cyclopamine have been used to validate M2-1 as a drug target.
Collapse
Affiliation(s)
- Muniyandi Selvaraj
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Kavestri Yegambaram
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Eleanor J A A Todd
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Charles-Adrien Richard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel L Dods
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Georgia M Pangratiou
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Sophie L Moul
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - James C Murphy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Jean-François Éléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - John N Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Uche IK, Guerrero-Plata A. Interferon-Mediated Response to Human Metapneumovirus Infection. Viruses 2018; 10:v10090505. [PMID: 30231515 PMCID: PMC6163993 DOI: 10.3390/v10090505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory diseases in infants and children worldwide. Although this pathogen infects mainly young children, elderly and immunocompromised people can be also seriously affected. To date, there is no commercial vaccine available against it. Upon HMPV infection, the host innate arm of defense produces interferons (IFNs), which are critical for limiting HMPV replication. In this review, we offer an updated landscape of the HMPV mediated-IFN response in different models as well as some of the defense tactics employed by the virus to circumvent IFN response.
Collapse
Affiliation(s)
- Ifeanyi K Uche
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Experimental Infectious Disease Research, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
13
|
Molina IG, Esperante SA, Marino-Buslje C, Chemes LB, de Prat-Gay G. Cooperative RNA Recognition by a Viral Transcription Antiterminator. J Mol Biol 2018; 430:777-792. [PMID: 29414675 DOI: 10.1016/j.jmb.2018.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 01/18/2023]
Abstract
RNA transcription of mononegavirales decreases gradually from the 3' leader promoter toward the 5' end of the genome, due to a decay in polymerase processivity. In the respiratory syncytial virus and metapneumovirus, the M2-1 protein ensures transcription anti-termination. Despite being a homotetramer, respiratory syncytial virus M2-1 binds two molecules of RNA of 13mer or longer per tetramer, and temperature-sensitive secondary structure in the RNA ligand is unfolded by stoichiometric interaction with M2-1. Fine quantitative analysis shows positive cooperativity, indicative of conformational asymmetry in the tetramer. RNA binds to M2-1 through a fast bimolecular association followed by slow rearrangements corresponding to an induced-fit mechanism, providing a sequential description of the time events of cooperativity. The first binding event of half of the RNA molecule to one of the sites increases the affinity of the second binding event on the adjacent contacting protomer by 15-fold, product of increased effective concentration caused by the entropic link. This mechanism allows for high-affinity binding with an otherwise relaxed sequence specificity, and instead suggests a yet undefined structural recognition signature in the RNA for modulating gene transcription. This work provides a basis for an essential event for understanding transcription antitermination in pneumoviruses and its counterpart Ebola virus VP30.
Collapse
Affiliation(s)
- Ivana G Molina
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Cristina Marino-Buslje
- Structural Bioinformatics Unit, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.
| |
Collapse
|
14
|
Muniyandi S, Pangratiou G, Edwards TA, Barr JN. Structure and Function of the Human Respiratory Syncytial Virus M2-1 Protein. Subcell Biochem 2018; 88:245-260. [PMID: 29900500 DOI: 10.1007/978-981-10-8456-0_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a non-segmented negative stranded RNA virus and is recognized as the most important viral agent of lower respiratory tract infection worldwide, responsible for up to 199,000 deaths each year. The only FDA-approved regime to prevent HRSV-mediated disease is pre-exposure administration of a humanized HRSV-specific monoclonal antibody, which although being effective, is not in widespread usage due to its cost. No HRSV vaccine exists and so there remains a strong need for alternative and complementary anti-HRSV therapies. The HRSV M2-1 protein is a transcription factor and represents an attractive target for the development of antiviral compounds, based on its essential role in the viral replication cycle. To this end, a detailed analysis of M2-1 structure and functions will aid in identifying rational targets for structure-based antiviral drug design that can be developed in future translational research. Here we present an overview of the current understanding of the structure and function of HRSV M2-1, drawing on additional information derived from its structural homologues from other related viruses.
Collapse
Affiliation(s)
- Selvaraj Muniyandi
- School of Molecular and Cellular Biology, and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Georgia Pangratiou
- School of Molecular and Cellular Biology, and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - John N Barr
- School of Molecular and Cellular Biology, and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
15
|
Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering. Sci Rep 2017; 7:14865. [PMID: 29093501 PMCID: PMC5665942 DOI: 10.1038/s41598-017-14448-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative‐strand RNA viruses. P positions the viral polymerase onto its nucleoprotein–RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (Pcore) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of Pcore with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.
Collapse
|
16
|
Whelan JN, Reddy KD, Uversky VN, Teng MN. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. MOLECULAR BIOSYSTEMS 2017; 12:1507-26. [PMID: 27062995 DOI: 10.1039/c6mb00122j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication.
Collapse
Affiliation(s)
- Jillian N Whelan
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
17
|
Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior. J Virol 2015; 90:1898-909. [PMID: 26656691 DOI: 10.1128/jvi.02341-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. IMPORTANCE Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis-active elements. These findings are important not only for the design of recombinant filoviruses but also for the design of other replicon systems widely used as surrogate systems to study the filovirus replication cycle under low biosafety levels. Insights into the complex regulation of EBOV transcription conveyed by noncoding sequences will also help to interpret the importance of mutations that have been detected within these regions, including in isolates of the current outbreak.
Collapse
|
18
|
In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Res 2015; 122:46-50. [PMID: 26259810 DOI: 10.1016/j.antiviral.2015.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is the major cause for respiratory tract disease in infants and young children. Currently, no licensed vaccine or a selective antiviral drug against RSV infections are available. Here, we describe a structure-based drug design approach that led to the synthesis of a novel series of zinc-ejecting compounds active against RSV replication. 30 compounds, sharing a common dithiocarbamate moiety, were designed and prepared to target the zinc finger motif of the M2-1 protein. A library of ∼ 12,000 small fragments was docked to explore the area surrounding the zinc ion. Among these, seven ligands were selected and used for the preparation of the new derivatives. The results reported here may help the development of a lead compound for the treatment of RSV infections.
Collapse
|
19
|
Sequencing and analysis of globally obtained human respiratory syncytial virus A and B genomes. PLoS One 2015; 10:e0120098. [PMID: 25793751 PMCID: PMC4368745 DOI: 10.1371/journal.pone.0120098] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
Abstract
Background Human respiratory syncytial virus (RSV) is the leading cause of respiratory tract infections in children globally, with nearly all children experiencing at least one infection by the age of two. Partial sequencing of the attachment glycoprotein gene is conducted routinely for genotyping, but relatively few whole genome sequences are available for RSV. The goal of our study was to sequence the genomes of RSV strains collected from multiple countries to further understand the global diversity of RSV at a whole-genome level. Methods We collected RSV samples and isolates from Mexico, Argentina, Belgium, Italy, Germany, Australia, South Africa, and the USA from the years 1998-2010. Both Sanger and next-generation sequencing with the Illumina and 454 platforms were used to sequence the whole genomes of RSV A and B. Phylogenetic analyses were performed using the Bayesian and maximum likelihood methods of phylogenetic inference. Results We sequenced the genomes of 34 RSVA and 23 RSVB viruses. Phylogenetic analysis showed that the RSVA genome evolves at an estimated rate of 6.72 × 10-4 substitutions/site/year (95% HPD 5.61 × 10-4 to 7.6 × 10-4) and for RSVB the evolutionary rate was 7.69 × 10-4 substitutions/site/year (95% HPD 6.81 × 10-4 to 8.62 × 10-4). We found multiple clades co-circulating globally for both RSV A and B. The predominant clades were GA2 and GA5 for RSVA and BA for RSVB. Conclusions Our analyses showed that RSV circulates on a global scale with the same predominant clades of viruses being found in countries around the world. However, the distribution of clades can change rapidly as new strains emerge. We did not observe a strong spatial structure in our trees, with the same three main clades of RSV co-circulating globally, suggesting that the evolution of RSV is not strongly regionalized.
Collapse
|
20
|
Leyrat C, Renner M, Harlos K, Huiskonen JT, Grimes JM. Drastic changes in conformational dynamics of the antiterminator M2-1 regulate transcription efficiency in Pneumovirinae. eLife 2014; 3:e02674. [PMID: 24842877 PMCID: PMC4051120 DOI: 10.7554/elife.02674] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022] Open
Abstract
The M2-1 protein of human metapneumovirus (HMPV) is a zinc-binding transcription antiterminator which is highly conserved among pneumoviruses. We report the structure of tetrameric HMPV M2-1. Each protomer features a N-terminal zinc finger domain and an α-helical tetramerization motif forming a rigid unit, followed by a flexible linker and an α-helical core domain. The tetramer is asymmetric, three of the protomers exhibiting a closed conformation, and one an open conformation. Molecular dynamics simulations and SAXS demonstrate a dynamic equilibrium between open and closed conformations in solution. Structures of adenosine monophosphate- and DNA- bound M2-1 establish the role of the zinc finger domain in base-specific recognition of RNA. Binding to 'gene end' RNA sequences stabilized the closed conformation of M2-1 leading to a drastic shift in the conformational landscape of M2-1. We propose a model for recognition of gene end signals and discuss the implications of these findings for transcriptional regulation in pneumoviruses.DOI: http://dx.doi.org/10.7554/eLife.02674.001.
Collapse
Affiliation(s)
- Cedric Leyrat
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Max Renner
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Karl Harlos
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Juha T Huiskonen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Jonathan M Grimes
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom Diamond Light Source Ltd, Didcot, United Kingdom
| |
Collapse
|
21
|
Obata K, Kojima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa A, Murata M, Tanaka S, Fuchimoto J, Fujii N, Tsutsumi H, Himi T, Sawada N. Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS One 2013; 8:e70225. [PMID: 24058438 PMCID: PMC3776807 DOI: 10.1371/journal.pone.0070225] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
The human nasal epithelium is the first line of defense during respiratory virus infection. Respiratory syncytial virus (RSV) is the major cause of bronchitis, asthma and severe lower respiratory tract disease in infants and young children. We previously reported in human nasal epithelial cells (HNECs), the replication and budding of RSV and the epithelial responses, including release of proinflammatory cytokines and enhancement of the tight junctions, are in part regulated via an NF-κB pathway. In this study, we investigated the effects of the NF-κB in HNECs infected with RSV. Curcumin prevented the replication and budding of RSV and the epithelial responses to it without cytotoxicity. Furthermore, the upregulation of the epithelial barrier function caused by infection with RSV was enhanced by curcumin. Curcumin also has wide pharmacokinetic effects as an inhibitor of NF-κB, eIF-2α dephosphorylation, proteasome and COX2. RSV-infected HNECs were treated with the eIF-2α dephosphorylation blocker salubrinal and the proteasome inhibitor MG132, and inhibitors of COX1 and COX2. Treatment with salubrinal, MG132 and COX2 inhibitor, like curcumin, prevented the replication of RSV and the epithelial responses, and treatment with salubrinal and MG132 enhanced the upregulation of tight junction molecules induced by infection with RSV. These results suggest that curcumin can prevent the replication of RSV and the epithelial responses to it without cytotoxicity and may act as therapy for severe lower respiratory tract disease in infants and young children caused by RSV infection.
Collapse
Affiliation(s)
- Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- * E-mail:
| | - Tomoyuki Masaki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamaki Okabayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shinichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Hirakawa
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuaki Nomura
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Jun Fuchimoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobuhiro Fujii
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
22
|
Kolli D, Bao X, Casola A. Human metapneumovirus antagonism of innate immune responses. Viruses 2012; 4:3551-71. [PMID: 23223197 PMCID: PMC3528279 DOI: 10.3390/v4123551] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/03/2022] Open
Abstract
Human metapneumovirus (hMPV) is a recently identified RNA virus belonging to the Paramyxoviridae family, which includes several major human and animal pathogens. Epidemiological studies indicate that hMPV is a significant human respiratory pathogen with worldwide distribution. It is associated with respiratory illnesses in children, adults, and immunocompromised patients, ranging from upper respiratory tract infections to severe bronchiolitis and pneumonia. Interferon (IFN) represents a major line of defense against virus infection, and in response, viruses have evolved countermeasures to inhibit IFN production as well as IFN signaling. Although the strategies of IFN evasion are similar, the specific mechanisms by which paramyxoviruses inhibit IFN responses are quite diverse. In this review, we will present an overview of the strategies that hMPV uses to subvert cellular signaling in airway epithelial cells, the major target of infection, as well as in primary immune cells.
Collapse
Affiliation(s)
- Deepthi Kolli
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Xiaoyong Bao
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
| | - Antonella Casola
- Departments of Pediatrics, University of Texas Medical Branch at Galveston, Texas, USA; E-Mail: (D.K.); (X.B.)
- Microbiology and Immunology, University of Texas Medical Branch at Galveston, Texas, USA
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Texas, USA
| |
Collapse
|
23
|
Human metapneumovirus M2-2 protein inhibits innate cellular signaling by targeting MAVS. J Virol 2012; 86:13049-61. [PMID: 23015697 DOI: 10.1128/jvi.01248-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of respiratory infections in pediatric populations globally, with no prophylactic or therapeutic measures. Recently, a recombinant hMPV lacking the M2-2 protein (rhMPV-ΔM2-2) demonstrated reduced replication in the respiratory tract of animal models, making it a promising live vaccine candidate. However, the exact nature of the interaction between the M2-2 protein and host cells that regulates viral infection/propagation is largely unknown. By taking advantage of the available reverse genetics system and ectopic expression system for viral protein, we found that M2-2 not only promotes viral gene transcription and replication but subverts host innate immunity, therefore identifying M2-2 as a novel virulence factor, in addition to the previously described hMPV G protein. Since we have shown that the RIG-I/MAVS pathway plays an important role in hMPV-induced signaling in airway epithelial cells, we investigated whether M2-2 antagonizes the host cellular responses by targeting this pathway. Reporter gene assays and coimmunoprecipitation studies indicated that M2-2 targets MAVS, an inhibitory mechanism different from what we previously reported for hMPV G, which affects RIG-I- but not MAVS-dependent gene transcription. In addition, we found that the domains of M2-2 responsible for the regulation of viral gene transcription and antiviral signaling are different. Our findings collectively demonstrate that M2-2 contributes to hMPV immune evasion through the inhibition of MAVS-dependent cellular responses.
Collapse
|
24
|
Blondot ML, Dubosclard V, Fix J, Lassoued S, Aumont-Nicaise M, Bontems F, Eléouët JF, Sizun C. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein. PLoS Pathog 2012; 8:e1002734. [PMID: 22675274 PMCID: PMC3364950 DOI: 10.1371/journal.ppat.1002734] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 04/20/2012] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177) core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177), as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.
Collapse
Affiliation(s)
- Marie-Lise Blondot
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Virginie Dubosclard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Jenna Fix
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Safa Lassoued
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | | | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette, France
| |
Collapse
|
25
|
Whole genome sequencing and evolutionary analysis of human respiratory syncytial virus A and B from Milwaukee, WI 1998-2010. PLoS One 2011; 6:e25468. [PMID: 21998661 PMCID: PMC3188560 DOI: 10.1371/journal.pone.0025468] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
Background Respiratory Syncytial Virus (RSV) is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. Methodology/Principal Findings We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998–2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7) with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. Conclusions/Significance The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics.
Collapse
|
26
|
Zhang W, Lockey RF, Mohapatra SS. Respiratory syncytial virus: immunopathology and control. Expert Rev Clin Immunol 2010; 2:169-79. [PMID: 20477096 DOI: 10.1586/1744666x.2.1.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the primary cause of serious upper and lower respiratory tract infections in infants and children worldwide. RSV infection in infancy may lead to the onset of asthma or other health problems later in life. An effective vaccine is not yet available against RSV infection. Humans respond to RSV infection by mounting an immune response, but the antiviral immunity is incomplete, thus repeat RSV infections continue throughout life. The precise mechanism of RSV-induced infection and immunopathology remains unclear. The limited knowledge of RSV immunity is a major problem in designing a protective vaccine. In this review, the biology of RSV infection, its immunopathology, the role of innate and adaptive immunity, as well as the understanding of how to control RSV infection based on prophylactic and therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Weidong Zhang
- Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | |
Collapse
|
27
|
Cowton VM, McGivern DR, Fearns R. Unravelling the complexities of respiratory syncytial virus RNA synthesis. J Gen Virol 2006; 87:1805-1821. [PMID: 16760383 DOI: 10.1099/vir.0.81786-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order Mononegavirales and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3' ends of the genome and antigenome RNAs, short cis-acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate cis-acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.
Collapse
MESH Headings
- Base Sequence
- DNA-Directed RNA Polymerases/metabolism
- Genome, Viral
- Humans
- Models, Biological
- Molecular Sequence Data
- Mononegavirales/genetics
- Mononegavirales/physiology
- Nucleocapsid/biosynthesis
- Nucleocapsid/genetics
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Transcription, Genetic
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Vanessa M Cowton
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - David R McGivern
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| | - Rachel Fearns
- Division of Pathology and Neuroscience, University of Dundee Medical School, Dundee DD1 9SY, UK
| |
Collapse
|
28
|
Cheng X, Park H, Zhou H, Jin H. Overexpression of the M2-2 protein of respiratory syncytial virus inhibits viral replication. J Virol 2006; 79:13943-52. [PMID: 16254330 PMCID: PMC1280200 DOI: 10.1128/jvi.79.22.13943-13952.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The M2-2 protein of respiratory syncytial virus (RSV) is involved in regulation of viral RNA transcription and replication. Encoded by the next-to-last gene of RSV, the M2-2 open reading frame (ORF) overlaps with the upstream M2-1 ORF, suggesting that the production of the M2-2 protein might be tightly regulated during virus replication. To evaluate the effect of M2-2 overexpression on RSV replication, the M2-2 gene was separated from M2-1 by leaving it at the position prior to the M2-1 or moving it to the promoter proximal position as an independent transcriptional unit in the RSV A2 genome. Although recombinant viruses bearing the shuffled M2-2 gene were recovered and expressed higher levels of M2-2, most of these viruses grew poorly in HEp-2 cells. Sequence analysis revealed that various mutations (substitution, insertion, and deletion) occurred in the M2-2 gene, resulting in reduced M2-2 activity as measured by the RSV minigenome system. Further examination of the M2-2 sequence and its function showed that either one of the first two AUG codons located at the 5' end of M2-2 could be used to produce a functional M2-2 protein and that deletion of the first six amino acids from its N terminus or four amino acids from its C terminus greatly reduced its function. The effect of M2-2 protein on RSV replication was also studied by examining RSV replication in cells transiently expressing M2-2. The M2-2 protein expressed at a high level completely inhibited RSV replication. These results strongly suggested that the level of the M2-2 protein produced in the infected cells is critical to RSV replication.
Collapse
Affiliation(s)
- Xing Cheng
- MedImmune Vaccines Inc., 297 N. Bernardo Ave., Mountain View, CA 94043, USA
| | | | | | | |
Collapse
|
29
|
Moudy RM, Sullender WM, Wertz GW. Variations in intergenic region sequences of Human respiratory syncytial virus clinical isolates: analysis of effects on transcriptional regulation. Virology 2004; 327:121-33. [PMID: 15327903 DOI: 10.1016/j.virol.2004.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/01/2004] [Accepted: 06/08/2004] [Indexed: 11/18/2022]
Abstract
Sequences at the beginnings and ends of Human respiratory syncytial virus (HRSV) genes are necessary for efficient initiation and termination of transcription. The gene start sequences are well conserved and contain signals required for initiation, while the semi-conserved sequences at the gene ends direct transcriptional termination with varying efficiencies. The intergenic regions, which lie between the gene ends and the downstream gene start sequences, are not conserved in length or sequence, and certain positions have been reported to play a role in transcriptional regulation. We have previously shown that the gene end sequences in HRSV subgroup A clinical isolates are variable and that variations found at certain gene ends decreased transcriptional termination and downstream mRNA expression. Here, we have extended this work to examine variation in the intergenic regions between the genes of clinical isolates. We determined the sequences of the eight intergenic regions and the M2/L overlap from clinical isolates from the US and UK and found that all of these regions contained variations from the prototype A2 strain. The amount of variation observed was disparate among the different intergenic regions and did not correlate with length. The effects of selected variant sequences on transcription were examined in the context of subgenomic replicons. While some changes in the intergenic regions had minor effects, certain sequence variations significantly altered transcription termination or initiation. A single nucleotide deletion in the M/SH intergenic region decreased initiation at the SH gene start seven-fold, while changes in the F/M2 intergenic region were found that in some cases increased and in others decreased termination at the F gene end. The P/M intergenic region was the most variable, but none of the changes examined affected either termination at the P gene end or initiation of the downstream M gene start. These results show that in HRSV clinical isolates the intergenic region sequences are variable and that changes in these regions have the potential to affect transcriptional control at the gene junctions.
Collapse
Affiliation(s)
- Robin M Moudy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294,USA
| | | | | |
Collapse
|
30
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
31
|
Tran KC, Collins PL, Teng MN. Effects of altering the transcription termination signals of respiratory syncytial virus on viral gene expression and growth in vitro and in vivo. J Virol 2004; 78:692-9. [PMID: 14694100 PMCID: PMC368825 DOI: 10.1128/jvi.78.2.692-699.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonsegmented negative-sense RNA viruses (mononegaviruses) control viral gene expression largely through a transcription gradient such that promoter-proximal genes are transcribed more abundantly than downstream genes. For some paramyxoviruses, naturally occurring differences in the levels of efficiency of transcription termination by various gene end (GE) signals provide an additional level of regulation of gene expression. The first two genes (NS1 and NS2) of respiratory syncytial virus (RSV) are particularly inefficient in termination. We investigated whether altering the termination efficiency (TE) of these two genes in infectious recombinant virus would affect transcription of promoter-proximal and promoter-distal genes, production of viral proteins, and viral replication in cell culture and in the respiratory tract of mice. Recombinant RSVs were constructed with mutations that increased or decreased the TE of the NS1 GE signal, increased that of the NS2 GE signal, or increased that of both signals. Increasing the TE of either or both GE signals resulted in decreased production of the related polycistronic readthrough mRNAs, which normally arise due to the failure of the viral polymerase to recognize the GE signal. This was accompanied by a small increase in the levels of monocistronic NS1 and NS2 mRNAs. Conversely, decreasing the TE of the NS1 GE increased the production of readthrough mRNAs concomitant with a decrease of monocistronic NS1 and NS2 mRNA levels. These changes were reflected in the levels of NS1 and NS2 protein. All of the mutant viruses displayed growth kinetics and virus yields similar to wild-type recombinant RSV (rA2) in both HEp-2 and Vero cells. In addition, all mutants grew similarly to rA2 in the upper- and lower-respiratory tract of BALB/c mice, though some of the mutants displayed slightly decreased replication. These data suggest that the natural inefficiencies of transcription termination by the NS1 and NS2 GE signals do not play important roles in controlling the magnitude of RSV gene expression or the efficiency of virus replication. Furthermore, while changes in the TE of a GE signal clearly can affect the transcription of its gene as well as that of the one immediately downstream, these changes did not have a significant effect on the overall transcriptional gradient.
Collapse
Affiliation(s)
- Kim C Tran
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
32
|
Abstract
"Reverse genetics" or de novo synthesis of nonsegmented negative-sense RNA viruses (Mononegavirales) from cloned cDNA has become a reliable technique to study this group of medically important viruses. Since the first generation of a negative-sense RNA virus entirely from cDNA in 1994, reverse genetics systems have been established for members of most genera of the Rhabdo-, Paramyxo-, and Filoviridae families. These systems are based on intracellular transcription of viral full-length RNAs and simultaneous expression of viral proteins required to form the typical viral ribonucleoprotein complex (RNP). These systems are powerful tools to study all aspects of the virus life cycle as well as the roles of virus proteins in virus-host interplay and pathogenicity. In addition, recombinant viruses can be designed to have specific properties that make them attractive as biotechnological tools and live vaccines.
Collapse
Affiliation(s)
- K K Conzelmann
- Max von Pettenkofer-Institut and Genzentrum, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
33
|
Whelan SPJ, Barr JN, Wertz GW. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:61-119. [PMID: 15298168 DOI: 10.1007/978-3-662-06099-5_3] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nonsegmented negative-strand (NNS) RNA viruses of the order Mononegavirales include a wide variety of human, animal, and plant pathogens. The NNS RNA genomes of these viruses are templates for two distinct RNA synthetic processes: transcription to generate mRNAs and replication of the genome via production of a positive-sense antigenome that acts as template to generate progeny negative-strand genomes. The four virus families within the Mononegavirales all express the information encoded in their genomes by transcription of discrete subgenomic mRNAs. The key feature of transcriptional control in the NNS RNA viruses is entry of the virus-encoded RNA-dependent RNA polymerase at a single 3' proximal site followed by obligatory sequential transcription of the linear array of genes. Levels of gene expression are primarily regulated by position of each gene relative to the single promoter and also by cis-acting sequences located at the beginning and end of each gene and at the intergenic junctions. Obligatory sequential transcription dictates that termination of each upstream gene is required for initiation of downstream genes. Therefore, termination is a means to regulate expression of individual genes within the framework of a single transcriptional promoter. By engineering either whole virus genomes or subgenomic replicon derivatives, elements important for signaling transcript initiation, 5' end modification, 3' end polyadenylation, and transcription termination have been identified. Although the diverse families of NNS RNA virus use different sequences to control these processes, transcriptional termination is a common theme in controlling gene expression and overall transcriptional regulation is key in controlling the outcome of viral infection. The latest models for control of replication and transcription are discussed.
Collapse
Affiliation(s)
- S P J Whelan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Mason SW, Aberg E, Lawetz C, DeLong R, Whitehead P, Liuzzi M. Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 2003; 77:10670-6. [PMID: 12970453 PMCID: PMC228475 DOI: 10.1128/jvi.77.19.10670-10676.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated protein-protein interactions among the respiratory syncytial virus (RSV) RNA polymerase subunits using affinity chromatography. Here we demonstrate a novel interaction of P and M2-1 proteins. Phosphorylation of either M2-1 or P appears to be dispensable for this interaction. Internal deletions within P mapped the M2-1-binding domain to a region between residues 100 and 120. Alanine-scanning mutagenesis within this region of P revealed that substitution of any one of the three residues, L101, Y102, and F109, prevented both M2-1 and P binding and expression of an M2-1-dependent luciferase reporter gene. However, these same mutations did not prevent the activity of an M2-1-independent chloramphenicol acetyltransferase minigenome, suggesting that these residues of P specifically affect M2-1-P interaction. On the basis of these observations, it is possible that the interaction between RSV M2-1 and P proteins is important for viral replication.
Collapse
Affiliation(s)
- Stephen W Mason
- Biological Sciences Department, Boehringer Ingelheim (Canada) Ltd, Laval, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Moudy RM, Harmon SB, Sullender WM, Wertz GW. Variations in transcription termination signals of human respiratory syncytial virus clinical isolates affect gene expression. Virology 2003; 313:250-60. [PMID: 12951037 DOI: 10.1016/s0042-6822(03)00299-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human respiratory syncytial virus (HRSV) has a single-stranded, negative-sense RNA genome with 10 genes encoding 11 proteins. Sequences at the beginning of the HRSV genes are highly conserved; however, the gene end sequences vary around a semiconserved consensus sequence, and the nontranscribed intergenic regions vary in both length and sequence. The regions at the junctions between HRSV genes (the gene end sequence of an upstream gene, intergenic region, and the gene start sequence of a downstream gene) contain elements required for efficient termination of the upstream gene and transcription of the downstream gene. Previous studies have examined variation in the HRSV coding sequences, but none have systematically analyzed the noncoding transcriptional control regions for variability. We determined the gene start and gene end sequences of each of the 10 HRSV genes from 14 clinical isolates for variations from the sequence of the prototype A2 strain. No changes were found in any of the gene start sequences. Eight of the 10 gene end sequences, however, contained variations. Several of these, a U(4)-tract instead of a U(6)- or U(5)-tract at the M and SH gene ends, respectively, (U(4)A) and an A-to-G change at position four in the G gene end (A4G), were predicted to affect termination and were examined for their effects on transcription. The changes were found to inhibit transcriptional termination, resulting in increased polycistronic readthrough and correspondingly reduced initiation of the downstream monocistronic mRNA. Viruses with the A4G variant G gene end sequence produced less F protein than those with A2-like G gene end sequences. Examination of additional G gene end sequences available in GenBank revealed that the observed A4G variation was restricted to one phylogenetic lineage of HRSV. All viruses examined within this lineage possessed this variant G gene end sequence. The data presented show that the gene end sequences of naturally occurring HRSV clinical isolates vary from those of the prototypic A2 strain and that certain of these changes inhibit efficient transcriptional termination and downstream gene expression.
Collapse
Affiliation(s)
- Robin M Moudy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
36
|
Cartee TL, Megaw AG, Oomens AGP, Wertz GW. Identification of a single amino acid change in the human respiratory syncytial virus L protein that affects transcriptional termination. J Virol 2003; 77:7352-60. [PMID: 12805433 PMCID: PMC164798 DOI: 10.1128/jvi.77.13.7352-7360.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious Human respiratory syncytial virus (HRSV) with an aberrant RNA synthesis pattern was recovered from a cDNA clone. The virus displayed increased levels of polycistronic readthrough mRNAs resulting from failure of the polymerase to terminate transcription efficiently at the gene ends. An asparagine (N) to aspartic acid (D) change at amino acid 1049 in the large (L) polymerase protein was found to be responsible for the readthrough phenotype. Virus encoding N at position 1049 displayed an RNA synthesis pattern indistinguishable from the A2 strain of HRSV. We compared the transcriptional activities of polymerases that encoded an N or D at position 1049 (L(1049N) or L(1049D)) by using dicistronic subgenomic replicons and found that the alteration of amino acid 1049 specifically affected transcriptional termination but had no effect on genome replication. L(1049N) recognized and terminated transcription at each of the naturally occurring gene junctions with differing efficiencies but at significantly higher efficiency than L(1049D). The abilities of the polymerases to recognize the cis-acting gene end signals required for termination were compared by examining the effect of single nucleotide changes at positions 1 to 8 of the M gene end and were found to be similar. This work identifies a single amino acid position in the polymerase that specifically affects the ability of the polymerase to terminate transcription, but which does not affect genome replication or interaction with the M2-1 protein. This work shows the critical importance of the previously defined cis-acting signals for termination, confirms differential termination at the varied gene junctions, and shows that the polymerase responds to the cis-acting sequences similarly, whether it has N or D at position 1049.
Collapse
Affiliation(s)
- Tara L Cartee
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
37
|
Harmon SB, Wertz GW. Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 2002; 300:304-15. [PMID: 12350361 DOI: 10.1006/viro.2002.1541] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes of respiratory syncytial (RS) virus are transcribed sequentially by the viral RNA polymerase from a single 3'-proximal promoter. Polyadenylation and termination are directed by a sequence at the end of each gene, after which the polymerase crosses an intergenic region and reinitiates at the start sequence of the next gene. The 10 viral genes have different gene end sequences and different termination efficiencies, which allow for regulation of gene expression, since termination of each gene is required for initiation of the downstream gene. RNA sequences within the previously characterized 13 nucleotide gene end, including a conserved sequence 3'-UCAAU-5' and a tract of U residues, are important for termination. In this study, two additional sequence elements outside of the 13 nucleotide gene end were found to modulate termination efficiency: the A residue upstream of the 3'-UCAAU-5' sequence, and the first nucleotide of the intergenic region when it follows a U(4) tract.
Collapse
Affiliation(s)
- Shawn B Harmon
- Department of Microbiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|