1
|
Wang J, Zhu M, Sun J, Feng L, Yang M, Sun B, Mao L. Gene therapy of adeno-associated virus (AAV) vectors in preclinical models of ischemic stroke. CNS Neurosci Ther 2023; 29:3725-3740. [PMID: 37551863 PMCID: PMC10651967 DOI: 10.1111/cns.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
Stroke has been associated with devastating clinical outcomes, with current treatment strategies proving largely ineffective. Therefore, there is a need to explore alternative treatment options for addressing post-stroke functional deficits. Gene therapy utilizing adeno-associated viruses (AAVs) as a critical gene vector delivering genes to the central nervous system (CNS) gene delivery has emerged as a promising approach for treating various CNS diseases. This review aims to provide an overview of the biological characteristics of AAV vectors and the therapeutic advancements observed in preclinical models of ischemic stroke. The study further investigates the potential of manipulating AAV vectors in preclinical applications, emphasizing the challenges and prospects in the selection of viral vectors, drug delivery strategies, immune reactions, and clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mengna Zhu
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Jingyi Sun
- Department of Spinal SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Lina Feng
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Mingfeng Yang
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Baoliang Sun
- Medical College of Qingdao UniversityQingdaoChina
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Leilei Mao
- Institute for Neurological Research, The Second Affiliated HospitalSchool of Basic Medical Sciences of Shandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
2
|
Piletska E, Veron P, Bertin B, Mingozzi F, Jones D, Norman RL, Earley J, Karim K, Garcia-Cruz A, Piletsky S. Analysis of Adeno-Associated Virus Serotype 8 (AAV8)-antibody complexes using epitope mapping by molecular imprinting leads to the identification of Fab peptides that potentially evade AAV8 neutralisation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102691. [PMID: 37329939 DOI: 10.1016/j.nano.2023.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy is a promising approach for treating genetic disorders by delivering therapeutic genes to replace or correct malfunctioning genes. However, the introduced gene therapy vector can trigger an immune response, leading to reduced efficacy and potential harm to the patient. To improve the efficiency and safety of gene therapy, preventing the immune response to the vector is crucial. This can be achieved through the use of immunosuppressive drugs, vector engineering to evade the immune system, or delivery methods that bypass the immune system altogether. By reducing the immune response, gene therapy can deliver therapeutic genes more effectively and potentially cure genetic diseases. In this study, a novel molecular imprinting technique, combined with mass-spectrometry and bioinformatics, was used to identify four antigen-binding fragments (Fab) sequences of Adeno-Associated Virus (AAV) - neutralising antibodies capable of binding to AAV. The identified Fab peptides were shown to prevent AAV8's binding to antibodies, demonstrating their potential to improve gene therapy efficiency by preventing the immune response.
Collapse
Affiliation(s)
- Elena Piletska
- School of Chemistry, University of Leicester, LE1 7RH, UK.
| | - Philippe Veron
- Laboratory of Immunology, Genethon, 91002 Evry Cedex, France
| | | | | | - Donald Jones
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK; Department of Cancer Studies, University of Leicester, Leicester LE2 7LX, UK
| | - Rachel L Norman
- Cancer Research Centre, RKCSB, University of Leicester, Leicester LE1 7RH, UK; Van Geest MS Omics Facility, University of Leicester, Leicester LE1 9HN, UK
| | - Joseph Earley
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | - Kal Karim
- School of Chemistry, University of Leicester, LE1 7RH, UK
| | | | | |
Collapse
|
3
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
4
|
Chang KJ, Wu HY, Yarmishyn AA, Li CY, Hsiao YJ, Chi YC, Lo TC, Dai HJ, Yang YC, Liu DH, Hwang DK, Chen SJ, Hsu CC, Kao CL. Genetics behind Cerebral Disease with Ocular Comorbidity: Finding Parallels between the Brain and Eye Molecular Pathology. Int J Mol Sci 2022; 23:9707. [PMID: 36077104 PMCID: PMC9456058 DOI: 10.3390/ijms23179707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral visual impairments (CVIs) is an umbrella term that categorizes miscellaneous visual defects with parallel genetic brain disorders. While the manifestations of CVIs are diverse and ambiguous, molecular diagnostics stand out as a powerful approach for understanding pathomechanisms in CVIs. Nevertheless, the characterization of CVI disease cohorts has been fragmented and lacks integration. By revisiting the genome-wide and phenome-wide association studies (GWAS and PheWAS), we clustered a handful of renowned CVIs into five ontology groups, namely ciliopathies (Joubert syndrome, Bardet-Biedl syndrome, Alstrom syndrome), demyelination diseases (multiple sclerosis, Alexander disease, Pelizaeus-Merzbacher disease), transcriptional deregulation diseases (Mowat-Wilson disease, Pitt-Hopkins disease, Rett syndrome, Cockayne syndrome, X-linked alpha-thalassaemia mental retardation), compromised peroxisome disorders (Zellweger spectrum disorder, Refsum disease), and channelopathies (neuromyelitis optica spectrum disorder), and reviewed several mutation hotspots currently found to be associated with the CVIs. Moreover, we discussed the common manifestations in the brain and the eye, and collated animal study findings to discuss plausible gene editing strategies for future CVI correction.
Collapse
Affiliation(s)
- Kao-Jung Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Yu Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | | | - Cheng-Yi Li
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yu-Jer Hsiao
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chun Chi
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tzu-Chen Lo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - He-Jhen Dai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Chiang Yang
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - De-Kuang Hwang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chih-Chien Hsu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
5
|
Esmaeilzadeh A, Pouyan S, Erfanmanesh M. Is Interleukin-38 a key player cytokine in atherosclerosis immune gene therapy? Med Hypotheses 2019; 125:139-143. [PMID: 30902143 DOI: 10.1016/j.mehy.2019.02.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/01/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries associated with lipids and other metabolic alterations is a leading cause of death all around the world and its rate is raising as a result of unhealthy lifestyles. Reports by World Health Organization indicate that 31% of all death occurrences are due to heart attacks and strokes. Today, the most common medicines for treating atherosclerosis are statins which are HMG-coA reductase inhibitors. Beside their benefits in treating atherosclerosis, some side effects have been reported as well. Thus, therapeutic methods based on statins should be evaluated to result in more beneficial effects. Since atherosclerosis is an inflammatory disorder, an anti-inflammatory component can decrease the impact of this disease. Interleukin-38, a newly discovered anti-inflammatory cytokine, which acts as an Interleukin-36 receptor antagonist can block Nuclear Factor KB and Activator protein-1 signaling pathways, and block atherogenic core formation accordingly. This novel proposed immune gene therapy can be applied to atherosclerosis treatment in a trial study. In this hypothesis, Interleukin-38 gene is transferred into bone marrow Mesenchymal Stem Cells of atherosclerotic mouse model Apo E-/- via an adenoviral vector. It is expected that Interleukin-38 gene expression by Mesenchymal Stem Cells can efficiently remedy atherosclerosis without the side effects of statins.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Shabnam Pouyan
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Erfanmanesh
- Young Researchers and Elite Club, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
6
|
Wegmann S, Bennett RE, Amaral AS, Hyman BT. Studying tau protein propagation and pathology in the mouse brain using adeno-associated viruses. Methods Cell Biol 2017; 141:307-322. [PMID: 28882310 DOI: 10.1016/bs.mcb.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The progressive spread of pathological brain lesions containing aggregated tau protein is a hallmark of Alzheimer's disease and other neurodegenerative diseases. In AD, this process follows a distinct pattern along neuronal connections from the entorhinal cortex to hippocampal areas and further on through the limbic system. In other tauopathies, the spread of tau appears less hierarchical throughout the brain, and also nonpathological tau is reported to cross-synaptic connections in the brain. To be able to study the process of cell-to-cell transport of tau and the associated neurotoxicity in the brain in vivo, adeno-associated virus-mediated expression of tau can be used to express different forms of tau in distinct brain areas in rodent models. As an example, we describe how the expression of FTD-mutant human tauP301L in the entorhinal cortex of wild-type mice can be used to study the propagation of tau to connected neurons and to determine pathological consequences such as tau hyperphosphorylation, misfolding, and gliosis. The approach described can easily be translated to study other aggregating and/or propagating proteins in the brain such as synuclein, Abeta, or SOD1.
Collapse
Affiliation(s)
- Susanne Wegmann
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States.
| | - Rachel E Bennett
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| | - Ana S Amaral
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| | - Bradley T Hyman
- Massachusetts General Hospital, Harvard Medical School, Mass. Institute for Neurodegenerative Diseases (MIND), Boston, MA, United States
| |
Collapse
|
7
|
Shenegelegn Mern D, Tschugg A, Hartmann S, Thomé C. Self-complementary adeno-associated virus serotype 6 mediated knockdown of ADAMTS4 induces long-term and effective enhancement of aggrecan in degenerative human nucleus pulposus cells: A new therapeutic approach for intervertebral disc disorders. PLoS One 2017; 12:e0172181. [PMID: 28207788 PMCID: PMC5313142 DOI: 10.1371/journal.pone.0172181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Inhibition of intervertebral disc (IVD) degeneration, which is often accompanied by painful inflammatory and immunopathological processes, is challenging. Current IVD gene therapeutic approaches are based on adenoviral gene delivery systems, which are limited by immune reactions to their viral proteins. Their applications in IVDs near to sensitive neural structure could provoke toxicity and immunological side-effects with neurological deficits. Self-complementary adeno-associated virus (scAAV) vectors, which do not express any viral gene and are not linked with any known disease in humans, are attractive therapeutic gene delivery vectors in degenerative IVDs. However, scAAV-based silencing of catabolic or inflammatory factor has not yet been investigated in human IVD cells. Therefore, we used scAAV6, the most suitable serotype for transduction of human nucleus pulposus (NP) cells, to knockdown the major catabolic gene (ADAMTS4) of IVD degeneration. IVD degeneration grades were determined by preoperative magnetic resonance imaging. Lumbar NP tissues of degeneration grade III were removed from 12 patients by nucleotomy. NP cells were isolated and cultured with low-glucose. Titre of recombinant scAAV6 vectors targeting ADAMTS4, transduction efficiencies, transduction units, cell viabilities and expression levels of target genes were analysed using quantitative PCR, fluorescence microscopy, fluorescence-activated cell sorting, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assays, quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assays during 48 days of post-transduction. Transduction efficiencies between 98.2% and 37.4% and transduction units between 611 and 245 TU/cell were verified during 48 days of post-transduction (p<0.001). scAAV6-mediated knockdown of ADAMTS4 with maximum 87.7% and minimum 40.1% was confirmed on day 8 and 48 with enhanced the level of aggrecan 48.5% and 30.2% respectively (p<0.001). scAAV6-mediated knockdown of ADAMTS4 showed no impact on cell viability and expression levels of other inflammatory catabolic proteins. Thus, our results are promising and may help to design long-term and less immunogenic gene therapeutic approaches in IVD disorders, which usually need prolonged therapeutic period between weeks and months.
Collapse
Affiliation(s)
| | - Anja Tschugg
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Sebastian Hartmann
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
8
|
Klapper SD, Swiersy A, Bamberg E, Busskamp V. Biophysical Properties of Optogenetic Tools and Their Application for Vision Restoration Approaches. Front Syst Neurosci 2016; 10:74. [PMID: 27642278 PMCID: PMC5009148 DOI: 10.3389/fnsys.2016.00074] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
Optogenetics is the use of genetically encoded light-activated proteins to manipulate cells in a minimally invasive way using light. The most prominent example is channelrhodopsin-2 (ChR2), which allows the activation of electrically excitable cells via light-dependent depolarization. The combination of ChR2 with hyperpolarizing-light-driven ion pumps such as the Cl(-) pump halorhodopsin (NpHR) enables multimodal remote control of neuronal cells in culture, tissue, and living animals. Very soon, it became obvious that this method offers a chance of gene therapy for many diseases affecting vision. Here, we will give a brief introduction to retinal function and retinal diseases; optogenetic vision restoration strategies will be highlighted. We will discuss the functional and structural properties of rhodopsin-based optogenetic tools and analyze the potential for the application of vision restoration.
Collapse
Affiliation(s)
- Simon D Klapper
- Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| | - Ernst Bamberg
- Max Planck Institute of Biophysics Frankfurt, Germany
| | - Volker Busskamp
- Center for Regenerative Therapies Dresden, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
9
|
Di Meo I, Lamperti C, Tiranti V. Mitochondrial diseases caused by toxic compound accumulation: from etiopathology to therapeutic approaches. EMBO Mol Med 2016. [PMID: 26194912 PMCID: PMC4604682 DOI: 10.15252/emmm.201505040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial disorders are a group of highly invalidating human conditions for which effective treatment is currently unavailable and characterized by faulty energy supply due to defective oxidative phosphorylation (OXPHOS). Given the complexity of mitochondrial genetics and biochemistry, mitochondrial inherited diseases may present with a vast range of symptoms, organ involvement, severity, age of onset, and outcome. Despite the wide spectrum of clinical signs and biochemical underpinnings of this group of dis-orders, some common traits can be identified, based on both pathogenic mechanisms and potential therapeutic approaches. Here, we will review two peculiar mitochondrial disorders, ethylmalonic encephalopathy (EE) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), caused by mutations in the ETHE1 and TYMP nuclear genes, respectively. ETHE1 encodes for a mitochondrial enzyme involved in sulfide detoxification and TYMP for a cytosolic enzyme involved in the thymidine/deoxyuridine catabolic pathway. We will discuss these two clinical entities as a paradigm of mitochondrial diseases caused by the accumulation of compounds normally present in traces, which exerts a toxic and inhibitory effect on the OXPHOS system.
Collapse
Affiliation(s)
- Ivano Di Meo
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Costanza Lamperti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| |
Collapse
|
10
|
Yoo SY, Jin HE, Choi DS, Kobayashi M, Farouz Y, Wang S, Lee SW. M13 Bacteriophage and Adeno-Associated Virus Hybrid for Novel Tissue Engineering Material with Gene Delivery Functions. Adv Healthc Mater 2016; 5:88-93. [PMID: 26010471 DOI: 10.1002/adhm.201500179] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 01/25/2023]
Affiliation(s)
- So Young Yoo
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
- BIO-IT Foundry Technology Institute; Pusan National University; Busan 609-735, and Research Institute for Convergence of Biomedical Science and Technology; Yangsan 626-770 Republic of Korea
| | - Hyo-Eon Jin
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Dong Shin Choi
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Masae Kobayashi
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Yohan Farouz
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
- Biology Department; Ecole Polytechnique Route de Saclay; 91128 Palaiseau Cedex France
| | - Sky Wang
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| | - Seung-Wuk Lee
- Department of Bioengineering; University of California, Berkeley; Physical Biosciences Division; Lawrence Berkeley National Laboratory; Berkeley Nanoscience and Nanoengineering Institute; Berkeley CA 94720 USA
| |
Collapse
|
11
|
Felberbaum RS. The baculovirus expression vector system: A commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 2015; 10:702-14. [PMID: 25800821 PMCID: PMC7159335 DOI: 10.1002/biot.201400438] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 01/09/2023]
Abstract
The baculovirus expression vector system (BEVS) platform has become an established manufacturing platform for the production of viral vaccines and gene therapy vectors. Nine BEVS-derived products have been approved - four for human use (Cervarix(®), Provenge(®), Glybera(®) and Flublok(®)) and five for veterinary use (Porcilis(®) Pesti, BAYOVAC CSF E2(®), Circumvent(®) PCV, Ingelvac CircoFLEX(®) and Porcilis(®) PCV). The BEVS platform offers many advantages, including manufacturing speed, flexible product design, inherent safety and scalability. This combination of features and product approvals has previously attracted interest from academic researchers, and more recently from industry leaders, to utilize BEVS to develop next generation vaccines, vectors for gene therapy, and other biopharmaceutical complex proteins. In this review, we explore the BEVS platform, detailing how it works, platform features and limitations and important considerations for manufacturing and regulatory approval. To underscore the growth in opportunities for BEVS-derived products, we discuss the latest product developments in the gene therapy and influenza vaccine fields that follow in the wake of the recent product approvals of Glybera(®) and Flublok(®), respectively. We anticipate that the utility of the platform will expand even further as new BEVS-derived products attain licensure. Finally, we touch on some of the areas where new BEVS-derived products are likely to emerge.
Collapse
|
12
|
Salazar-Montes AM, Hernández-Ortega LD, Lucano-Landeros MS, Armendariz-Borunda J. New gene therapy strategies for hepatic fibrosis. World J Gastroenterol 2015; 21:3813-3825. [PMID: 25852266 PMCID: PMC4385528 DOI: 10.3748/wjg.v21.i13.3813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/11/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient´s bed-side.
Collapse
|
13
|
Liao YJ, Fang CC, Yen CH, Hsu SM, Wang CK, Huang SF, Liang YC, Lin YY, Chu YT, Arthur Chen YM. Niemann-Pick type C2 protein regulates liver cancer progression via modulating ERK1/2 pathway: Clinicopathological correlations and therapeutical implications. Int J Cancer 2015; 137:1341-51. [PMID: 25754535 DOI: 10.1002/ijc.29507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/23/2015] [Indexed: 01/06/2023]
Abstract
Primary hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third leading cause of cancer-related death. It is important to identify new targets for early diagnosis and treatment of HCC. Niemann-Pick type C2 (NPC2) plays an important role in the regulation of intracellular cholesterol homeostasis via direct binding with free cholesterol. However, little is known about the significance of NPC2 in HCC tumorigenesis. In this study, we showed that NPC2 is abundantly expressed in normal liver, but is downregulated in human HCC tissues. The patients with NPC2 downregulation expressed much higher α-fetoprotein, multiple tumor type, vascular invasion, later pathological stage and shorter survival rate. Knockdown NPC2 in liver cancer cell lines promote cell proliferation, migration and xenograft tumorigenesis. In contrast, NPC2 overexpression inhibits HuH7 promoted tumor growth. Furthermore, administration of hepatotropic adeno-associated virus 8 (AAV8) delivered NPC2 decreased the inflammatory infiltration, the expression of two early HCC markers-glypican 3 and survivin and suppressed the spontaneous HCC development in mice. To identify the NPC2-dependent mechanism, we emphasized on the status of MAPK/ERK signaling. MEK1/2 inhibitor treatment demonstrated that the expression of NPC2 affected the activation of ERK1/2 but not MEK1/2. In addition, cholesterol trafficking inhibitor treatment did not alter the cell proliferation and the activation of MEK/ERK. In conclusion, our study demonstrates that NPC2 may play an important role in negatively regulate cell proliferation and ERK1/2 activation that were independent of cholesterol accumulation. AAV-NPC2 may thus represent a new treatment strategy for liver cancer.
Collapse
Affiliation(s)
- Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Department and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of National Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ming Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Kwe Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei, Taiwan
| | - Shiu-Feng Huang
- Division of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ying-Yu Lin
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tseng Chu
- Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infections Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Center for Lipid and Glycomedicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Broussard GJ, Liang R, Tian L. Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 2014; 7:97. [PMID: 25538558 PMCID: PMC4256991 DOI: 10.3389/fnmol.2014.00097] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.
Collapse
Affiliation(s)
- Gerard J Broussard
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| | - Ruqiang Liang
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis Davis, CA, USA ; Neuroscience Graduate Group, University of California Davis Davis, CA, USA
| |
Collapse
|
15
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
16
|
Tellez J, Van Vliet K, Tseng YS, Finn JD, Tschernia N, Almeida-Porada G, Arruda VR, Agbandje-McKenna M, Porada CD. Characterization of naturally-occurring humoral immunity to AAV in sheep. PLoS One 2013; 8:e75142. [PMID: 24086458 PMCID: PMC3782463 DOI: 10.1371/journal.pone.0075142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
AAV vectors have shown great promise for clinical gene therapy (GT), but pre-existing human immunity against the AAV capsid often limits transduction. Thus, testing promising AAV-based GT approaches in an animal model with similar pre-existing immunity could better predict clinical outcome. Sheep have long been used for basic biological and preclinical studies. Moreover, we have re-established a line of sheep with severe hemophilia A (HA). Given the impetus to use AAV-based GT to treat hemophilia, we characterized the pre-existing ovine humoral immunity to AAV. ELISA revealed naturally-occurring antibodies to AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. For AAV2, AAV8, and AAV9 these inhibit transduction in a luciferase-based neutralization assay. Epitope mapping identified peptides that were common to the capsids of all AAV serotypes tested (AAV2, AAV5, AAV8 and AAV9), with each animal harboring antibodies to unique and common capsid epitopes. Mapping using X-ray crystallographic AAV capsid structures demonstrated that these antibodies recognized both surface epitopes and epitopes located within regions of the capsid that are internal or buried in the capsid structure. These results suggest that sheep harbor endogenous AAV, which induces immunity to both intact capsid and to capsid epitopes presented following proteolysis during the course of infection. In conclusion, their clinically relevant physiology and the presence of naturally-occurring antibodies to multiple AAV serotypes collectively make sheep a unique model in which to study GT for HA, and other diseases, and develop strategies to circumvent the clinically important barrier of pre-existing AAV immunity.
Collapse
Affiliation(s)
- Joseph Tellez
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, United States of America
| | - Kim Van Vliet
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan D. Finn
- University of Pennsylvania School of Medicine, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Nick Tschernia
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, United States of America
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
| | - Valder R. Arruda
- University of Pennsylvania School of Medicine, the Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, United States of America
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fu BF, Li SX, Ning SB. Effect of recombinant adenovirus-associated virus-mediated RNA interference on HBV replication and expression. Shijie Huaren Xiaohua Zazhi 2013; 21:814-819. [DOI: 10.11569/wcjd.v21.i9.814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of recombinant adenovirus-associated virus (rAAV)-mediated RNA interference on HBV replication and expression in HepG2.2.15 cells.
METHODS: The expression box of hu6-shRNA was placed between two ITRs of AAV and then ligated to the basic core promoter (BCP) of HBV and BCP-driven Rep gene of AAV, which resulted in rAAV. The rAAV was transfected into HepG2.2.15 cells (HCC cells in which the HBV gene was inserted). The expression of HBsAg and HBeAg and replication of HBV-DNA in cultured supernatant were determined on days 1, 2, 3 and 10 after transfection, and the AAVS1 region was sequenced on day 3 after transfection.
RESULTS: The target sequence-containing vectors PLRBR322-324, PLRBR522-324, PLRBR322-2424 and PLRBR522-2424 were successfully constructed. All the four vectors had inhibitory effects on the expression of HBsAg and HBeAg and on HBV-DNA replication, with the former two (PLRBR322-324 and PLRBR522-324) having more significant inhibitory effect on HBsAg expression, the latter two on HBeAg expression and the third on HBV-DNA replication. The inhibitory effects on HBsAg and HBeAg expression and HBV-DNA replication were most obvious on day 3 after transfection, and the inhibition rate remained high on day 10. Site-directed integration of the target sequence was located in the AAVS1 region.
CONCLUSION: The rAAV constructed by several elements of AAV and HBV, together with the help of site-directed integration mediated by Rep protein, is a good exploration to solve the problem of short-term effect of RNAi against HBV.
Collapse
|
18
|
Wei F, McConnell KI, Yu TK, Suh J. Conjugation of paclitaxel on adeno-associated virus (AAV) nanoparticles for co-delivery of genes and drugs. Eur J Pharm Sci 2012; 46:167-72. [PMID: 22406091 DOI: 10.1016/j.ejps.2012.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/22/2012] [Accepted: 02/26/2012] [Indexed: 01/07/2023]
Abstract
We have investigated the use of adeno-associated virus (AAV) nanoparticles as platforms for the co-delivery of genes and drugs to cancer cells. With its regular geometry, nanoscale dimensions, lack of pathogenicity, and high infection efficiency in a wide range of human cells and tissues, AAV is a promising vector for such applications. We tested the covalent conjugation of paclitaxel onto surface-exposed lysine residues present on the virus capsid. Immunoblotting results suggest successful attachment of drug molecules to the virus nanoparticles. Favorably, the reaction conditions did not reduce the gene delivery efficiency of the AAV vectors. Unfortunately, decrease in cancer cell viability was not observed with our AAV-taxol conjugates. For future attempts at conjugating drugs to the AAV nanoparticle, we have identified several improvements than can be considered to achieve the desired cytotoxicity in target cells.
Collapse
Affiliation(s)
- Fang Wei
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
19
|
Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW, Chan CC. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging 2012; 33:433.e1-10. [PMID: 21397984 PMCID: PMC3136657 DOI: 10.1016/j.neurobiolaging.2011.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/08/2011] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
To test the effects of adeno-associated virus encoding sFLT01 (AAV5.sFLT01) on the retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice, a model for age-related macular degeneration (AMD), AAV5.sFLT01 was injected into the subretinal space of the right eyes and the left eyes served as controls. Histology found no retinal toxicity due to the treatment after 3 months. The treated eyes showed lesion arrest compared with lesion progression in the left eyes by fundus monitoring monthly and histological evaluation 3 months after treatment. Retinal ultrastructure showed fewer lipofuscin and better preserved photoreceptors after the treatment. A2E, a major component of lipofuscin, was lower in the treated eyes than in the control eyes. Molecular analysis showed that AAV5.sFLT01 lowered retinal extracellular signal-regulated kinase (ERK) phosphorylation and inducible nitric oxide synthetase expression, which suggested the involvement of reactive nitrogen species in the retinal lesions of Ccl2(-/-)/Cx3cr1(-/-). We concluded that local delivery of AAV5.sFLT01 can stabilize retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. The findings provide further support for the potential beneficial effects of sFLT01 gene therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | | | - Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
- Department of Ophthalmology, People’s Hospital, Beijing University, Beijing, China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Jun Zhang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Abraham Scaria
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | | | - Peter Pechan
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | | | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| |
Collapse
|
20
|
Ojano-Dirain C, Glushakova LG, Zhong L, Zolotukhin S, Muzyczka N, Srivastava A, Stacpoole PW. An animal model of PDH deficiency using AAV8-siRNA vector-mediated knockdown of pyruvate dehydrogenase E1α. Mol Genet Metab 2010; 101:183-91. [PMID: 20685142 PMCID: PMC2950252 DOI: 10.1016/j.ymgme.2010.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 11/18/2022]
Abstract
We evaluated the feasibility of self-complementary adeno-associated virus (scAAV) vector-mediated knockdown of the pyruvate dehydrogenase complex using small interfering RNAs directed against the E1α subunit gene (PDHA1). AAV serotype 8 was used to stereotaxically deliver scAAV8-si3-PDHA1-Enhanced Green Fluorescent Protein (knockdown) or scAAV8-EGFP (control) vectors into the right striatum and substantia nigra of rats. Rotational asymmetry was employed to quantify abnormal rotation following neurodegeneration in the nigrostriatal system. By 20weeks after surgery, the siRNA-injected rats exhibited higher contralateral rotation during the first 10min following amphetamine administration and lower 90-min total rotations (p≤0.05). Expression of PDC E1α, E1β and E2 subunits in striatum was decreased (p≤0.05) in the siRNA-injected striatum after 14weeks. By week 25, both PDC activity and expression of E1α were lower (p≤0.05) in siRNA-injected striata compared to controls. E1α expression was associated with PDC activity (R(2)=0.48; p=0.006) and modestly associated with counterclockwise rotation (R(2)=0.51;p=0.07). The use of tyrosine-mutant scAAV8 vectors resulted in ~17-fold increase in transduction efficiency of rat striatal neurons in vivo. We conclude that scAAV8-siRNA vector-mediated knockdown of PDC E1α in brain regions typically affected in humans with PDC deficiency results in a reproducible biochemical and clinical phenotype in rats that may be further enhanced with the use of tyrosine-mutant vectors.
Collapse
Affiliation(s)
- Carolyn Ojano-Dirain
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lyudmyla G. Glushakova
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Li Zhong
- Powell Gene Therapy Center and Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sergei Zolotukhin
- Powell Gene Therapy Center and Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas Muzyczka
- Powell Gene Therapy Center and Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun Srivastava
- Powell Gene Therapy Center and Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- To whom correspondence should be addressed at P.O. Box 100226, University of Florida College of Medicine, Gainesville, FL 32610, USA. Tel: 352-273-9023, Fax: 352-273-9013,
| |
Collapse
|
21
|
Li Y, Ge X, Hon CC, Zhang H, Zhou P, Zhang Y, Wu Y, Wang LF, Shi Z. Prevalence and genetic diversity of adeno-associated viruses in bats from China. J Gen Virol 2010; 91:2601-9. [PMID: 20573859 DOI: 10.1099/vir.0.020032-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bats are increasingly being recognized as important natural reservoirs of different viruses. Adeno-associated viruses (AAVs) are widely distributed in primates and their distribution in bats is unknown. In this study, a total of 370 faecal swab samples from 19 bat species were collected from various provinces of China and examined for the presence of AAVs. The mean prevalence rate was 22.4% (83 positives out of 370 samples), ranging from 10 to 38.9% among different bat species. The genome sequence spanning the entire rep-cap ORFs was determined from one chosen AAV-positive sample (designated BtAAV-YNM). Phylogenetic analysis of the entire rep-cap ORF coding sequences suggested that BtAAV-YNM is relatively distant to known primate AAVs, but phylogenetically closer to porcine AAV strain Po3. Further analysis of the partial cap ORF sequences of bat AAV samples (n=49) revealed a remarkably large genetic diversity, with an average pairwise nucleotide identity of only 84.3%. Co-presence of multiple distinctive genotypes of bat AAV within an individual sample was also observed. These results demonstrated that diverse AAVs might be widely distributed in bat populations.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|