1
|
Kang H, Park J, Bae H, Chung YJ, Oh EJ. Single-Cell RNA Sequencing of Baseline Immune Profiles After Third Vaccination Associated with Subsequent SARS-CoV-2 Infection in Naïve Individuals. Int J Mol Sci 2025; 26:3494. [PMID: 40331973 PMCID: PMC12027237 DOI: 10.3390/ijms26083494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Even though vaccines protected many from infection, not all were protected, and vaccinated individuals displayed a wide range of clinical outcomes, from complete protection against infection to multiple breakthrough infections. This study aimed to identify baseline differences following identical ChAdOx1/ChAdOx1/BNT162b2 in infection-free and breakthrough-infected individuals to find molecular signatures linked to enhanced SARS-CoV-2 protection. Samples from a previous longitudinal study were analyzed, classifying subjects as 'Protected' or 'Infected' based on infection status over two years. SARS-CoV-2-specific immunological assays and single-cell RNA sequencing evaluated baseline differences. Although humoral response measurements showed no significant difference, enhanced cellular responses via enzyme-linked immunospot assays were observed in the Protected group. Differentially expressed genes and pathway analysis of T/NK subsets showed the Infected group had reduced inflammation and interferon responses. The Infected group also displayed downregulated interaction with CD4+ T cells. B subset analysis revealed more memory B cells in the Infected group, accompanied by downregulation of immune regulatory genes and upregulation of the small ubiquitin-related modifier pathway. Our findings revealed differential molecular signatures in the baseline immune subsets of vaccinated individuals with prolonged protection and breakthrough infection. Reduced immune regulation and altered cell interactions may contribute to breakthrough infection, providing insights for future vaccine development and targeted protective strategies.
Collapse
Affiliation(s)
- Hyunhye Kang
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Laboratory Medicine, Shinwon Medical Foundation, Gwangmyeong-si 14316, Republic of Korea
| | - Junseong Park
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyunjoo Bae
- Department of Medical Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Yeun-Jun Chung
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Research and Development Institute for In Vitro Diagnostic Medical Devices, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
Orsini F, Bosica M, Martucci A, De Paola M, Comolli D, Pascente R, Forloni G, Fraser PE, Arancio O, Fioriti L. SARS-CoV-2 Nucleocapsid Protein Induces Tau Pathological Changes That Can Be Counteracted by SUMO2. Int J Mol Sci 2024; 25:7169. [PMID: 39000276 PMCID: PMC11241313 DOI: 10.3390/ijms25137169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Neurologic manifestations are an immediate consequence of SARS-CoV-2 infection, the etiologic agent of COVID-19, which, however, may also trigger long-term neurological effects. Notably, COVID-19 patients with neurological symptoms show elevated levels of biomarkers associated with brain injury, including Tau proteins linked to Alzheimer's pathology. Studies in brain organoids revealed that SARS-CoV-2 alters the phosphorylation and distribution of Tau in infected neurons, but the mechanisms are currently unknown. We hypothesize that these pathological changes are due to the recruitment of Tau into stress granules (SGs) operated by the nucleocapsid protein (NCAP) of SARS-CoV-2. To test this hypothesis, we investigated whether NCAP interacts with Tau and localizes to SGs in hippocampal neurons in vitro and in vivo. Mechanistically, we tested whether SUMOylation, a posttranslational modification of NCAP and Tau, modulates their distribution in SGs and their pathological interaction. We found that NCAP and Tau colocalize and physically interact. We also found that NCAP induces hyperphosphorylation of Tau and causes cognitive impairment in mice infected with NCAP in their hippocampus. Finally, we found that SUMOylation modulates NCAP SG formation in vitro and cognitive performance in infected mice. Our data demonstrate that NCAP induces Tau pathological changes both in vitro and in vivo. Moreover, we demonstrate that SUMO2 ameliorates NCAP-induced Tau pathology, highlighting the importance of the SUMOylation pathway as a target of intervention against neurotoxic insults, such as Tau oligomers and viral infection.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Marco Bosica
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Annacarla Martucci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Massimiliano De Paola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Davide Comolli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Rosaria Pascente
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada;
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, MI, Italy; (F.O.); (M.B.); (A.M.); (M.D.P.); (D.C.); (R.P.); (G.F.)
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
3
|
Weng SC, Shiao SH. SUMOylation Is Essential for Dengue Virus Replication and Transmission in the Mosquito Aedes aegypti. Front Microbiol 2022; 13:801284. [PMID: 35572621 PMCID: PMC9093690 DOI: 10.3389/fmicb.2022.801284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a reversible post-translational protein modifier. Protein SUMOylation regulates a wide variety of cellular processes and is important for controlling virus replication. Earlier studies suggest that dengue virus envelope protein interacts with Ubc9, the sole E2-conjugating enzyme required for protein SUMOylation in mammalian cells. However, little is known about the effect of protein SUMOylation on dengue virus replication in the major dengue vector, Aedes aegypti. Thus, in this study, we investigated the impact of protein SUMOylation on dengue virus replication in A. aegypti. The transcription of A. aegypti Ubc9 was significantly increased in the midgut after a normal blood meal. Silencing AaUbc9 resulted in significant inhibition of dengue virus NS1 protein production, viral genome transcription, and reduced viral titer in the mosquito saliva. In addition, we showed that dengue virus E proteins and prM proteins were SUMOylated post-infection. The amino acid residues K51 and K241 of dengue virus E protein were essential for protein SUMOylation. Taken together, our results reveal that protein SUMOylation contributes to dengue virus replication and transmission in the mosquito A. aegypti. This study introduces the possibility that protein SUMOylation is beneficial for virus replication and facilitates virus transmission from the mosquito.
Collapse
Affiliation(s)
- Shih-Che Weng
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shin-Hong Shiao
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
K. ST, Joshi G, Arya P, Mahajan V, Chaturvedi A, Mishra RK. SUMO and SUMOylation Pathway at the Forefront of Host Immune Response. Front Cell Dev Biol 2021; 9:681057. [PMID: 34336833 PMCID: PMC8316833 DOI: 10.3389/fcell.2021.681057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Pathogens pose a continuous challenge for the survival of the host species. In response to the pathogens, the host immune system mounts orchestrated defense responses initiating various mechanisms both at the cellular and molecular levels, including multiple post-translational modifications (PTMs) leading to the initiation of signaling pathways. The network of such pathways results in the recruitment of various innate immune components and cells at the site of infection and activation of the adaptive immune cells, which work in synergy to combat the pathogens. Ubiquitination is one of the most commonly used PTMs. Host cells utilize ubiquitination for both temporal and spatial regulation of immune response pathways. Over the last decade, ubiquitin family proteins, particularly small ubiquitin-related modifiers (SUMO), have been widely implicated in host immune response. SUMOs are ubiquitin-like (Ubl) proteins transiently conjugated to a wide variety of proteins through SUMOylation. SUMOs primarily exert their effect on target proteins by covalently modifying them. However, SUMO also engages in a non-covalent interaction with the SUMO-interacting motif (SIM) in target proteins. Unlike ubiquitination, SUMOylation alters localization, interactions, functions, or stability of target proteins. This review provides an overview of the interplay of SUMOylation and immune signaling and development pathways in general. Additionally, we discuss in detail the regulation exerted by covalent SUMO modifications of target proteins, and SIM mediated non-covalent interactions with several effector proteins. In addition, we provide a comprehensive review of the literature on the importance of the SUMO pathway in the development and maintenance of a robust immune system network of the host. We also summarize how pathogens modulate the host SUMO cycle to sustain infectability. Studies dealing mainly with SUMO pathway proteins in the immune system are still in infancy. We anticipate that the field will see a thorough and more directed analysis of the SUMO pathway in regulating different cells and pathways of the immune system. Our current understanding of the importance of the SUMO pathway in the immune system necessitates an urgent need to synthesize specific inhibitors, bioactive regulatory molecules, as novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeev T. K.
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Garima Joshi
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| | - Pooja Arya
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Vibhuti Mahajan
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Akanksha Chaturvedi
- National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, India
| |
Collapse
|
5
|
Yang CW, Shi ZL. Uncovering potential host proteins and pathways that may interact with eukaryotic short linear motifs in viral proteins of MERS, SARS and SARS2 coronaviruses that infect humans. PLoS One 2021; 16:e0246150. [PMID: 33534852 PMCID: PMC7857568 DOI: 10.1371/journal.pone.0246150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
A coronavirus pandemic caused by a novel coronavirus (SARS-CoV-2) has spread rapidly worldwide since December 2019. Improved understanding and new strategies to cope with novel coronaviruses are urgently needed. Viruses (especially RNA viruses) encode a limited number and size (length of polypeptide chain) of viral proteins and must interact with the host cell components to control (hijack) the host cell machinery. To achieve this goal, the extensive mimicry of SLiMs in host proteins provides an effective strategy. However, little is known regarding SLiMs in coronavirus proteins and their potential targets in host cells. The objective of this study is to uncover SLiMs in coronavirus proteins that are present within host cells. These SLiMs have a high possibility of interacting with host intracellular proteins and hijacking the host cell machinery for virus replication and dissemination. In total, 1,479 SLiM hits were identified in the 16 proteins of 590 coronaviruses infecting humans. Overall, 106 host proteins were identified that may interact with SLiMs in 16 coronavirus proteins. These SLiM-interacting proteins are composed of many intracellular key regulators, such as receptors, transcription factors and kinases, and may have important contributions to virus replication, immune evasion and viral pathogenesis. A total of 209 pathways containing proteins that may interact with SLiMs in coronavirus proteins were identified. This study uncovers potential mechanisms by which coronaviruses hijack the host cell machinery. These results provide potential therapeutic targets for viral infections.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Center for Applied Artificial Intelligence Research, Soochow University, Taipei, Taiwan
- * E-mail:
| | - Zhi-Ling Shi
- Ocean School of Fuzhou University, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, Valls R, Fernandez-Fuentes N, de la Haba-Rodriguez J, Olvera A, Barbera J, Morales R, Oliva B, Mas JM. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS One 2020; 15:e0240149. [PMID: 33006999 PMCID: PMC7531795 DOI: 10.1371/journal.pone.0240149] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
From January 2020, COVID-19 is spreading around the world producing serious respiratory symptoms in infected patients that in some cases can be complicated by the severe acute respiratory syndrome, sepsis and septic shock, multiorgan failure, including acute kidney injury and cardiac injury. Cost and time efficient approaches to reduce the burthen of the disease are needed. To find potential COVID-19 treatments among the whole arsenal of existing drugs, we combined system biology and artificial intelligence-based approaches. The drug combination of pirfenidone and melatonin has been identified as a candidate treatment that may contribute to reduce the virus infection. Starting from different drug targets the effect of the drugs converges on human proteins with a known role in SARS-CoV-2 infection cycle. Simultaneously, GUILDify v2.0 web server has been used as an alternative method to corroborate the effect of pirfenidone and melatonin against the infection of SARS-CoV-2. We have also predicted a potential therapeutic effect of the drug combination over the respiratory associated pathology, thus tackling at the same time two important issues in COVID-19. These evidences, together with the fact that from a medical point of view both drugs are considered safe and can be combined with the current standard of care treatments for COVID-19 makes this combination very attractive for treating patients at stage II, non-severe symptomatic patients with the presence of virus and those patients who are at risk of developing severe pulmonary complications.
Collapse
Affiliation(s)
| | | | - Pedro Matos-Filipe
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Joaquim Aguirre-Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | | | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic—Universitat Central de Catalunya, Vic, Catalonia, Spain
| | - Juan de la Haba-Rodriguez
- Maimonides Biomedical Research Institute, Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Alex Olvera
- Institut de Recerca de la Sida—IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona), Spain
| | - Jose Barbera
- Servicio de Medicina interna—Unidad de Infecciosas, La Mancha—Centro Hospital, Alcázar de San Juan, Spain
| | - Rafael Morales
- Servicio de Medicina interna—Unidad de Infecciosas, La Mancha—Centro Hospital, Alcázar de San Juan, Spain
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | |
Collapse
|
7
|
Fung TS, Liu DX. Post-translational modifications of coronavirus proteins: roles and function. Future Virol 2018; 13:405-430. [PMID: 32201497 PMCID: PMC7080180 DOI: 10.2217/fvl-2018-0008] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Post-translational modifications (PTMs) refer to the covalent modifications of polypeptides after they are synthesized, adding temporal and spatial regulation to modulate protein functions. Being obligate intracellular parasites, viruses rely on the protein synthesis machinery of host cells to support replication, and not surprisingly, many viral proteins are subjected to PTMs. Coronavirus (CoV) is a group of enveloped RNA viruses causing diseases in both human and animals. Many CoV proteins are modified by PTMs, including glycosylation and palmitoylation of the spike and envelope protein, N- or O-linked glycosylation of the membrane protein, phosphorylation and ADP-ribosylation of the nucleocapsid protein, and other PTMs on nonstructural and accessory proteins. In this review, we summarize the current knowledge on PTMs of CoV proteins, with an emphasis on their impact on viral replication and pathogenesis. The ability of some CoV proteins to interfere with PTMs of host proteins will also be discussed.
Collapse
Affiliation(s)
- To Sing Fung
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China
| | - Ding Xiang Liu
- South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.,South China Agricultural University, Guangdong Province Key Laboratory Microbial Signals & Disease Co, & Integrative Microbiology Research Center, Guangzhou 510642, Guangdong, PR China.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
8
|
Huan CC, Wang HX, Sheng XX, Wang R, Wang X, Liao Y, Liu QF, Tong GZ, Ding C, Fan HJ, Wu JQ, Mao X. Porcine epidemic diarrhea virus nucleoprotein contributes to HMGB1 transcription and release by interacting with C/EBP-β. Oncotarget 2018; 7:75064-75080. [PMID: 27634894 PMCID: PMC5342723 DOI: 10.18632/oncotarget.11991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023] Open
Abstract
Porcine epidemic diarrhea is a devastating swine enteric disease, which is caused by porcine epidemic diarrhea virus (PEDV) infection. Our studies demonstrated that PEDV infection resulted in the up-regulation of proinflammatory cytokines. Meanwhile, PEDV infection and overexpression of viral nucleoprotein resulted in the acetylation and release of high mobility group box 1 proteins in vitro, an important proinflammatory response mediator, which contributes to the pathogenesis of various inflammatory diseases. Our studies also showed that SIRT1, histone acetyltransferase, and NF-κB regulated the acetylation and release of HMGB1. Chromatin immunoprecipitation, dual-luciferase reporter gene assay, and co-immunoprecipitation experiments illustrated that PEDV-N could induce HMGB1 transcription by interacting with C/EBP-β, which could bind to C/EBP motif in HMGB1 promotor region. Collectively, our data indicate PEDV-N contributes to HMGB1 transcription and the subsequent release/acetylation of HMGB1 during PEDV infection.
Collapse
Affiliation(s)
- Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xiang-Xiang Sheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Qin-Fang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Guang-Zhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| | - Hong-Jie Fan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095
| | - Jia-Qiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China, 250100
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, China, 210095.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China, 200241
| |
Collapse
|
9
|
To J, Surya W, Fung TS, Li Y, Verdià-Bàguena C, Queralt-Martin M, Aguilella VM, Liu DX, Torres J. Channel-Inactivating Mutations and Their Revertant Mutants in the Envelope Protein of Infectious Bronchitis Virus. J Virol 2017; 91:e02158-16. [PMID: 27974570 PMCID: PMC5309962 DOI: 10.1128/jvi.02158-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
It has been shown previously in the severe acute respiratory syndrome coronavirus (SARS-CoV) that two point mutations, N15A and V25F, in the transmembrane domain (TMD) of the envelope (E) protein abolished channel activity and led to in vivo attenuation. Pathogenicity was recovered in mutants that also regained E protein channel activity. In particular, V25F was rapidly compensated by changes at multiple V25F-facing TMD residues located on a neighboring monomer, consistent with a recovery of oligomerization. Here, we show using infected cells that the same mutations, T16A and A26F, in the gamma-CoV infectious bronchitis virus (IBV) lead to, in principle, similar results. However, IBV E A26F did not abolish oligomer formation and was compensated by mutations at N- and C-terminal extramembrane domains (EMDs). The C-terminal EMD mutations clustered along an insertion sequence specific to gamma-CoVs. Nuclear magnetic resonance data are consistent with the presence of only one TMD in IBV E, suggesting that recovery of channel activity and fitness in these IBV E revertant mutants is through an allosteric interaction between EMDs and TMD. The present results are important for the development of IBV live attenuated vaccines when channel-inactivating mutations are introduced in the E protein.IMPORTANCE The ion channel activity of SARS-CoV E protein is a determinant of virulence, and abolishment of channel activity leads to viral attenuation. E deletion may be a strategy for generating live attenuated vaccines but can trigger undesirable compensatory mechanisms through modifications of other viral proteins to regain virulence. Therefore, a more suitable approach may be to introduce small but critical attenuating mutations. For this, the stability of attenuating mutations should be examined to understand the mechanisms of reversion. Here, we show that channel-inactivating mutations of the avian infectious bronchitis virus E protein introduced in a recombinant virus system are deficient in viral release and fitness and that revertant mutations also restored channel activity. Unexpectedly, most of the revertant mutations appeared at extramembrane domains, particularly along an insertion specific for gammacoronaviruses. Our structural data propose a single transmembrane domain in IBV E, suggesting an allosteric interaction between extramembrane and transmembrane domains.
Collapse
Affiliation(s)
- Janet To
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carmina Verdià-Bàguena
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Maria Queralt-Martin
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Vicente M Aguilella
- Department of Physics, Laboratory of Molecular Biophysics. Universitat Jaume I, Castelló, Spain
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Choi AG, Wong J, Marchant D, Luo H. The ubiquitin-proteasome system in positive-strand RNA virus infection. Rev Med Virol 2012; 23:85-96. [PMID: 22782620 PMCID: PMC7169083 DOI: 10.1002/rmv.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses. The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein degradation may also constitute a host defense process against some positive-stranded RNA viral infections. This issue will also be discussed in the current review.
Collapse
Affiliation(s)
- Alex GoEun Choi
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
11
|
Abstract
Since posttranslational modification (PTM) by the small ubiquitin-related modifiers (SUMOs) was discovered over a decade ago, a huge number of cellular proteins have been found to be reversibly modified, resulting in alteration of differential cellular pathways. Although the molecular consequences of SUMO attachment are difficult to predict, the underlying principle of SUMOylation is altering inter- and/or intramolecular interactions of the modified substrate, changing localization, stability, and/or activity. Unsurprisingly, many different pathogens have evolved to exploit the cellular SUMO modification system due to its functional flexibility and far-reaching functional downstream consequences. Although the extensive knowledge gained so far is impressive, a definitive conclusion about the role of SUMO modification during virus infection in general remains elusive and is still restricted to a few, yet promising concepts. Based on the available data, this review aims, first, to provide a detailed overview of the current state of knowledge and, second, to evaluate the currently known common principles/molecular mechanisms of how human pathogenic microbes, especially viruses and their regulatory proteins, exploit the host cell SUMO modification system.
Collapse
|