1
|
Aljabali AAA, Obeid MA, Gammoh O, El-Tanani M, Mishra V, Mishra Y, Kapre S, Srivatsa Palakurthi S, Hassan SS, Nawn D, Lundstrom K, Hromić-Jahjefendić A, Serrano-Aroca Á, Redwan EM, Uversky VN, Tambuwala MM. Nanomaterial-Driven Precision Immunomodulation: A New Paradigm in Therapeutic Interventions. Cancers (Basel) 2024; 16:2030. [PMID: 38893150 PMCID: PMC11171400 DOI: 10.3390/cancers16112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Immunotherapy is a rapidly advancing field of research in the treatment of conditions such as cancer and autoimmunity. Nanomaterials can be designed for immune system manipulation, with precise targeted delivery and improved immunomodulatory efficacy. Here, we elaborate on various strategies using nanomaterials, including liposomes, polymers, and inorganic NPs, and discuss their detailed design intricacies, mechanisms, and applications, including the current regulatory issues. This type of nanomaterial design for targeting specific immune cells or tissues and controlling release kinetics could push current technological frontiers and provide new and innovative solutions for immune-related disorders and diseases without off-target effects. These materials enable targeted interactions with immune cells, thereby enhancing the effectiveness of checkpoint inhibitors, cancer vaccines, and adoptive cell therapies. Moreover, they allow for fine-tuning of immune responses while minimizing side effects. At the intersection of nanotechnology and immunology, nanomaterial-based platforms have immense potential to revolutionize patient-centered immunotherapy and reshape disease management. By prioritizing safety, customization, and compliance with regulatory standards, these systems can make significant contributions to precision medicine, thereby significantly impacting the healthcare landscape.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan; (A.A.A.A.); (M.A.O.)
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA; (S.K.); (S.S.P.)
| | - Sk. Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram, Paschim Medinipur 721140, West Bengal, India;
| | - Debaleena Nawn
- Indian Research Institute for Integrated Medicine (IRIIM), Unsani, Howrah 711302, West Bengal, India;
| | | | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Elrashdy M. Redwan
- Department of Biological Science, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M. Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
2
|
Yin J, Diao N, Tian T, Wang Q, Ma S, He N, Zhou H, Zhou Z, Jia W, Wang X, Shi K, Du R. ARHGEF18 can promote BVDV NS5B activation of the host NF-κB signaling pathway by combining with the NS5B-palm domain. Vet Microbiol 2024; 291:109911. [PMID: 38367539 DOI: 10.1016/j.vetmic.2023.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 02/19/2024]
Abstract
Rho guanine nucleotide exchange factor 18 (ARHGEF18) is a member of the Rho guanine nucleotide exchange factor (RhoGEF) family. RhoGEF plays an important role in the occurrence of tumors and neurological diseases; however, its involvement in host cell resistance against pathogenic microorganisms is mostly unknown. Herein, we report that bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) can activate the nuclear factor kappa B (NF-κB) signaling pathway to induce an immune response. To clarify the functional domains of NS5B that activate NF-κB signaling, the six structural domains of NS5B were expressed separately: NS5B-core, NS5B-finger, NS5B-palm, NS5B-thumb, NS5B-N and NS5B-c domain. We preliminarily determined that the functional domains of NS5B that activate NF-κB signaling are the finger and palm domains. We used a bovine kidney cell cDNA library and yeast two-hybrid technology to identify that the host protein ARHGEF18 interacts with NS5B. Co-immunoprecipitation assays showed that ARHGEF18 interacts strongly with NS5B-palm. Interestingly ARHGEF18 could promote NF-κB signaling activation by BVDV NS5B. In addition silencing ARHGEF18 significantly inhibited NS5B-palm activation of NF-κB signaling. We concluded that ARHGEF18 can bind to BVDV NS5B through the palm domain to activate the NF-κB pathway. These findings provide direct evidence that BVDV NS5B induces immune responses by activating NF-κB signaling.
Collapse
Affiliation(s)
- Jiying Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Tian Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Shuqi Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ning He
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongming Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zehui Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenyi Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaonan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kun Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
4
|
Chothe SK, Nissly RH, Lim L, Bhushan G, Bird I, Radzio-Basu J, Jayarao BM, Kuchipudi SV. NLRC5 Serves as a Pro-viral Factor During Influenza Virus Infection in Chicken Macrophages. Front Cell Infect Microbiol 2020; 10:230. [PMID: 32509599 PMCID: PMC7248199 DOI: 10.3389/fcimb.2020.00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 01/09/2023] Open
Abstract
Avian influenza viruses (AIVs) cause major economic losses to the global poultry industry. Many host factors have been identified that act as regulators of the inflammatory response and virus replication in influenza A virus (IAV) infected cells including nucleotide-binding oligomerization domain (NOD) like receptor (NLR) family proteins. Evidence is emerging that NLRC5, the largest NLR member, is a regulator of host immune responses against invading pathogens including viruses; however, its role in the avian immune system and AIV pathogenesis has not been fully explored. In this study, we found that NLRC5 is activated by a range of low and highly pathogenic AIVs in primary chicken lung cells and a chicken macrophage cell line. Further, siRNA mediated NLRC5 knockdown in chicken macrophages resulted in a significant reduction in AIV replication which was associated with the upregulation of genes associated with activated NFκB signaling pathway. The knockdown of NLRC5 enhanced the expression of genes known to be associated with viral defense and decreased innate cytokine gene expression following AIV infection. Overall, our investigation strongly suggests that NLRC5 is a pro-viral factor during IAV infection in chicken and may contribute to pathogenesis through innate cytokine regulation. Further studies are warranted to investigate the IAV protein(s) that may regulate activation of NLRC5.
Collapse
Affiliation(s)
- Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Gitanjali Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Jessica Radzio-Basu
- Applied Biological and Biosecurity Research Laboratory, Pennsylvania State University, University Park, PA, United States
| | - Bhushan M Jayarao
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Ambrose RL, Liu YC, Adams TE, Bean AGD, Stewart CR. C6orf106 is a novel inhibitor of the interferon-regulatory factor 3-dependent innate antiviral response. J Biol Chem 2018; 293:10561-10573. [PMID: 29802199 DOI: 10.1074/jbc.ra117.001491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Host recognition of intracellular viral RNA and subsequent induction of cytokine signaling are tightly regulated at the cellular level and are a target for manipulation by viruses and therapeutics alike. Here, we characterize chromosome 6 ORF 106 (C6orf106) as an evolutionarily conserved inhibitor of the innate antiviral response. C6orf106 suppresses the synthesis of interferon (IFN)-α/β and proinflammatory tumor necrosis factor (TNF) α in response to the dsRNA mimic poly(I:C) and to Sendai virus infection. Unlike canonical inhibitors of antiviral signaling, C6orf106 blocks interferon-regulatory factor 3 (IRF3) and, to a lesser extent, NF-κB activity without modulating their activation, nuclear translocation, cellular expression, or degradation. Instead, C6orf106 interacts with IRF3 and inhibits IRF3 recruitment to type I IFN promoter sequences while also reducing the nuclear levels of the coactivator proteins p300 and CREB-binding protein (CBP). In summary, we have defined C6orf106 as a negative regulator of antiviral immunity that blocks IRF3-dependent cytokine production via a noncanonical and poorly defined mechanism. This work presents intriguing implications for antiviral immunity, autoimmune disorders, and cancer.
Collapse
Affiliation(s)
- Rebecca L Ambrose
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| | - Yu Chih Liu
- CSIRO Manufacturing, Parkville, Victoria 3052, Australia
| | | | - Andrew G D Bean
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| | - Cameron R Stewart
- From the Australian Animal Health Laboratory, Commonwealth Scientific and Industrial Research Organisation (CSIRO) Health and Biosecurity, Geelong, Victoria 3220, Australia and
| |
Collapse
|
6
|
Cheemarla NR, Guerrero-Plata A. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice. Viruses 2017; 9:v9100310. [PMID: 29065494 PMCID: PMC5691661 DOI: 10.3390/v9100310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 10/21/2017] [Indexed: 12/22/2022] Open
Abstract
Human Metapneumovirus (HMPV) is a leading respiratory pathogen that causes lower respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used an experimental mouse model of HMPV infection to demonstrate that the attachment (G) protein of HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV infection and furthers our understanding on virus induced inflammatory responses in the airways.
Collapse
Affiliation(s)
- Nagarjuna R Cheemarla
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
- Center for Experimental Infectious Disease Research; Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
7
|
Zhao J, He S, Minassian A, Li J, Feng P. Recent advances on viral manipulation of NF-κB signaling pathway. Curr Opin Virol 2015; 15:103-11. [PMID: 26385424 PMCID: PMC4688235 DOI: 10.1016/j.coviro.2015.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/09/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
Abstract
NF-κB transcription factors regulate the expression of hundreds of genes primarily involved in immune responses. Signaling events leading to NF-κB activation constitute a major antiviral immune pathway. To replicate and persist within their hosts, viruses have evolved diverse strategies to evade and exploit cellular NF-κB immune signaling cascades for their benefit. We summarize recent studies concerning viral manipulation of the NF-κB signaling pathway downstream of pattern recognition receptors. Signal transduction mediated by pattern recognition receptors is a research frontier for both infectious disease and innate immunology.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Shanping He
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Arlet Minassian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Junhua Li
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, United States.
| |
Collapse
|
8
|
Fredericksen F, Carrasco G, Villalba M, Olavarría VH. Cytopathic BVDV-1 strain induces immune marker production in bovine cells through the NF-κB signaling pathway. Mol Immunol 2015; 68:213-22. [PMID: 26330089 DOI: 10.1016/j.molimm.2015.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/10/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022]
Abstract
The bovine viral diarrhea virus (BVDV-1) is a pathogen responsible for high economic losses in the cattle industry worldwide. This virus has the capacity to modulate the immune system of several higher vertebrates, but there is little information available on the cell infection mechanism. To further investigate the effects of BVDV-1 on the activation of the immune response, the Madin-Darby bovine kidney cell line was infected with the cytopathic CH001 field isolate of BVDV-1, and the proinflammatory and antiviral cytokine expression profiles were analyzed. The results showed that BVDV-1 was able to induce the production of BCL3, IL-1β, IL-8, IL-15, IL-18, Mx-1, IRF-1, and IRF-7 in a way similar to polyinosinic-polycytidylic acid. Interestingly, all BVDV-1 activities were blocked by pharmacological inhibitors of the NF-κB signaling pathway. These results, together with in silico analyses showing the presence of several regulatory consensus target motifs, suggest that BVDV-1 regulates gene expression in bovines through the activation of several key transcription factors. Collectively, these data identified BVDV-1 as a viral regulator of immune marker expression, even from early infection. Additionally, this is the first report to find BVDV-1 modulating the activation of cytokine production and transcriptions factors mainly through the NF-κB pathway in vertebrates.
Collapse
Affiliation(s)
- Fernanda Fredericksen
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Gonzalo Carrasco
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Melina Villalba
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile
| | - Víctor H Olavarría
- Facultad de Ciencias, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Campus Isla Teja S/N, Valdivia, Chile.
| |
Collapse
|
9
|
Hrincius ER, Liedmann S, Finkelstein D, Vogel P, Gansebom S, Samarasinghe AE, You D, Cormier SA, McCullers JA. Acute Lung Injury Results from Innate Sensing of Viruses by an ER Stress Pathway. Cell Rep 2015; 11:1591-603. [PMID: 26051937 PMCID: PMC4682876 DOI: 10.1016/j.celrep.2015.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/25/2015] [Accepted: 05/07/2015] [Indexed: 01/22/2023] Open
Abstract
Incursions of new pathogenic viruses into humans from animal reservoirs are occurring with alarming frequency. The molecular underpinnings of immune recognition, host responses, and pathogenesis in this setting are poorly understood. We studied pandemic influenza viruses to determine the mechanism by which increasing glycosylation during evolution of surface proteins facilitates diminished pathogenicity in adapted viruses. ER stress during infection with poorly glycosylated pandemic strains activated the unfolded protein response, leading to inflammation, acute lung injury, and mortality. Seasonal strains or viruses engineered to mimic adapted viruses displaying excess glycans on the hemagglutinin did not cause ER stress, allowing preservation of the lungs and survival. We propose that ER stress resulting from recognition of non-adapted viruses is utilized to discriminate “non-self” at the level of protein processing and to activate immune responses, with unintended consequences on pathogenesis. Understanding this mechanism should improve strategies for treating acute lung injury from zoonotic viral infections. ER stress pathways can mediate immune recognition of zoonotic viruses Glycosylation status of viral proteins regulates activation of ER stress Acute lung injury from pandemic influenza viruses is dependent on this activation Adaptation through glycan addition mediates immune escape of seasonal IAV
Collapse
Affiliation(s)
- Eike R Hrincius
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Swantje Liedmann
- Institute of Molecular Virology (IMV), University of Muenster, Muenster 48149, Germany
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Department of Veterinary Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shane Gansebom
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Dahui You
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Stephania A Cormier
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA
| | - Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN 38103, USA.
| |
Collapse
|
10
|
Hodgson A, Wier EM, Fu K, Sun X, Yu H, Zheng W, Sham HP, Johnson K, Bailey S, Vallance BA, Wan F. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog 2015; 11:e1004705. [PMID: 25756944 PMCID: PMC4355070 DOI: 10.1371/journal.ppat.1004705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/26/2015] [Indexed: 11/18/2022] Open
Abstract
Attaching/Effacing (A/E) pathogens including enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and the rodent equivalent Citrobacter rodentium are important causative agents of foodborne diseases. Upon infection, a myriad of virulence proteins (effectors) encoded by A/E pathogens are injected through their conserved type III secretion systems (T3SS) into host cells where they interfere with cell signaling cascades, in particular the nuclear factor kappaB (NF-κB) signaling pathway that orchestrates both innate and adaptive immune responses for host defense. Among the T3SS-secreted non-LEE-encoded (Nle) effectors, NleC, a metalloprotease, has been recently elucidated to modulate host NF-κB signaling by cleaving NF-κB Rel subunits. However, it remains elusive how NleC recognizes NF-κB Rel subunits and how the NleC-mediated cleavage impacts on host immune responses in infected cells and animals. In this study, we show that NleC specifically targets p65/RelA through an interaction with a unique N-terminal sequence in p65. NleC cleaves p65 in intestinal epithelial cells, albeit a small percentage of the molecule, to generate the p65¹⁻³⁸ fragment during C. rodentium infection in cultured cells. Moreover, the NleC-mediated p65 cleavage substantially affects the expression of a subset of NF-κB target genes encoding proinflammatory cytokines/chemokines, immune cell infiltration in the colon, and tissue injury in C. rodentium-infected mice. Mechanistically, the NleC cleavage-generated p65¹⁻³⁸ fragment interferes with the interaction between p65 and ribosomal protein S3 (RPS3), a 'specifier' subunit of NF-κB that confers a subset of proinflammatory gene transcription, which amplifies the effect of cleaving only a small percentage of p65 to modulate NF-κB-mediated gene expression. Thus, our results reveal a novel mechanism for A/E pathogens to specifically block NF-κB signaling and inflammatory responses by cleaving a small percentage of p65 and targeting the p65/RPS3 interaction in host cells, thus providing novel insights into the pathogenic mechanisms of foodborne diseases.
Collapse
Affiliation(s)
- Andrea Hodgson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric M. Wier
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xin Sun
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hongbing Yu
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Wenxin Zheng
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ho Pan Sham
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kaitlin Johnson
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Scott Bailey
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, BC’s Children’s Hospital and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Khan T, Salunke DM. Adjustable locks and flexible keys: plasticity of epitope-paratope interactions in germline antibodies. THE JOURNAL OF IMMUNOLOGY 2014; 192:5398-405. [PMID: 24790145 DOI: 10.4049/jimmunol.1302143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag recognition by independent primary Abs against a small flexible Ag with overlapping epitopes was analyzed to address the determinants of Ag specificity during the initial encounter. Crystal structures of two distinct dodecapeptide Ags, GDPRPSYISHLL and PPYPAWHAPGNI, in complex with the germline mAb 36-65 were determined and compared with the structures of the same Ags bound to another independent germline mAb, BBE6.12H3. For each peptide Ag, the two germline mAbs recognized overlapping epitopes, but in different topologies. The peptide structures differed, and the two paratopes attained discrete conformations, leading to different surface topologies, in a mode that can be described as adjustable locks and flexible keys. This is in contrast to mature mAbs, in which conformational convergence of different paratopes while binding to a common epitope in a similar conformation has been reported. These results suggest that the primary immune receptor repertoire is highly versatile as compared with its mature counterpart. Germline and mature mAbs adopt distinct mechanisms for recognizing a flexible epitope. Whereas conservation of conformational repertoire is a key characteristic of mature mAbs achieved through affinity maturation, the germline mAbs, at the initial stages of Ag encounter, maintain substantial plasticity, accommodating a broad specificity repertoire.
Collapse
Affiliation(s)
- Tarique Khan
- National Institute of Immunology, New Delhi 110067, India; and
| | - Dinakar M Salunke
- National Institute of Immunology, New Delhi 110067, India; and Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
12
|
Swaminathan G, Martin-Garcia J, Navas-Martin S. RNA viruses and microRNAs: challenging discoveries for the 21st century. Physiol Genomics 2013; 45:1035-48. [PMID: 24046280 DOI: 10.1152/physiolgenomics.00112.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by RNA viruses remains controversial. However, modulation of the miRNA machinery by RNA viruses may confer multiple benefits for enhanced viral replication and survival in host cells. In this review, we discuss the current literature on RNA viruses that may encode miRNAs and the varied advantages of engineering RNA viruses to express miRNAs as potential vectors for gene therapy. In addition, we review how different families of RNA viruses can alter miRNA machinery for productive replication, evasion of antiviral immune responses, and prolonged survival. We underscore the need to further explore the complex interactions of RNA viruses with host miRNAs to augment our understanding of host-virus interplay.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
13
|
Fitch PM, Henderson P, Schwarze J. Respiratory and gastrointestinal epithelial modulation of the immune response during viral infection. Innate Immun 2012; 18:179-89. [PMID: 21239454 DOI: 10.1177/1753425910391826] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Respiratory and enteric viral infections cause significant morbidity and mortality world-wide and represent a major socio-economic burden. Many of these viruses have received unprecedented public and media interest in recent years. A popular public misconception is that viruses are a threat to which the human body has only limited defences. However, the majority of primary and secondary exposures to virus are asymptomatic or induce only minor symptoms. The mucosal epithelial surfaces are the main portal of entry for viral pathogens and are centrally involved in the initiation, maintenance and polarisation of the innate and adaptive immune response to infection. This review describes the defences employed by the epithelium of the respiratory and gastrointestinal tracts during viral infections with focus on epithelial modulation of the immune response at the innate/adaptive interface.
Collapse
Affiliation(s)
- Paul M Fitch
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, UK.
| | | | | |
Collapse
|
14
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF-κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF-κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF-κB signalling circuitry to favour the continued survival of the pathogen.
Collapse
Affiliation(s)
- Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, 1600 SW Archer Road, PO Box 100266, Gainesville, Florida, USA
| | | |
Collapse
|
15
|
Renkonen J, Joenväärä S, Parviainen V, Mattila P, Renkonen R. Network analysis of single nucleotide polymorphisms in asthma. J Asthma Allergy 2010; 3:177-86. [PMID: 21437052 PMCID: PMC3047920 DOI: 10.2147/jaa.s14459] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Asthma is a chronic inflammatory disease of the airways with a complex genetic background. In this study, we carried out a meta-analysis of single nucleotide polymorphisms (SNPs) thought to be associated with asthma. METHODS The literature (PubMed) was searched for SNPs within genes relevant in asthma. The SNP-modified genes were converted to corresponding proteins, and their protein-protein interactions were searched from six different databases. This interaction network was analyzed using annotated vocabularies (ontologies), such as the Gene Ontology and Nature pathway interaction databases. RESULTS In total, 127 genes with SNPs related to asthma were found in the literature. The corresponding proteins were then entered into a large protein-protein interaction network with the help of various databases. Ninety-six SNP-related proteins had more than one interacting protein each, and a network containing 309 proteins and 644 connections was generated. This network was significantly enriched with a gene ontology entitled "protein binding" and several of its daughter categories, including receptor binding and cytokine binding, when compared with the background human proteome. In the detailed analysis, the chemokine network, including eight proteins and 13 toll-like receptors, were shown to interact with each other. Of great interest are the nonsynonymous SNPs which code for an alternative amino acid sequence of proteins and, of the toll-like receptor network, TLR1, TLR4, TLR5, TLR6, TLR10, IL4R, and IL13 are among these. CONCLUSIONS Protein binding, toll-like receptors, and chemokines dominated in the asthma-related protein interaction network. Systems level analysis of allergy-related mutations can provide new insights into the pathogenetic mechanisms of disease.
Collapse
Affiliation(s)
- Jutta Renkonen
- Transplantation Laboratory and Infection Biology Research Program, Haartman Institute, University of Helsinki, Helsinki
| | | | | | | | | |
Collapse
|
16
|
|