1
|
Houen G. Auto-immuno-deficiency syndromes. Autoimmun Rev 2024; 23:103610. [PMID: 39209011 DOI: 10.1016/j.autrev.2024.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases constitute a broad, heterogenous group with many diverse and often overlapping symptoms. Even so, they are traditionally classified as either systemic, rheumatic diseases or organ-directed diseases. Several theories exist about autoimmune diseases, including defective self-recognition, altered self, molecular mimicry, bystander activation and epitope spreading. While there is no consensus about these theories, it is generally accepted that genetic, pre-disposing factors in combination with environmental factors can result in autoimmune disease. The relative contribution of genetic and environmental factors varies between diseases, as does the significance of individual contributing factors within related diseases. Among the genetic factors, molecules involved in antigen (Ag) recognition, processing, and presentation stand out (e.g., MHC I and II) together with molecules involved in immune signaling and regulation of cellular interactions (i.e., immuno-phenotypes). Also, various immuno-deficiencies have been linked to development of autoimmune diseases. Among the environmental factors, infections (e.g., viruses) have attracted most attention, but factors modulating the immune system have also been the subject of much research (e.g., sunlight and vitamin D). Multiple sclerosis currently stands out due to a very strong and proven association with Epstein-Barr virus infection, notably in cases of late infection and in cases of EBV-associated mononucleosis. Thus, a common picture is emerging that both systemic and organ-directed autoimmune diseases may appropriately be described as auto-immuno-deficiency syndromes (AIdeSs), a concept that emphasizes and integrates existing knowledge on the role of immuno-deficiencies and chronic infections with development of overlapping disease syndromes with variable frequencies of autoantibodies and/or autoreactive T cells. This review integrates and exemplifies current knowledge on the interplay of genetically determined immuno-phenotypes and chronic infections in the development of AIdeSs.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Neurology and Translational Research Center (TRACE), Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| |
Collapse
|
2
|
Liu Y, Sun K, Gan Y, Liu H, Yu J, Xu W, Zhang L, Chen D. RNA-Sequencing Reveals Gene Expression and Pathway Signatures in Umbilical Cord Blood Affected by Birth Delivery Mode. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:228-242. [PMID: 37325709 PMCID: PMC10260732 DOI: 10.1007/s43657-022-00086-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Cesarean section (CS) confers increased risk of type I diabetes, asthma, inflammatory bowel disease, celiac disease, overweight and obesity, etc., in the offspring. However, the underlying mechanism remains unknown. To investigate the influence of CS on gene expression in cord blood, we have performed RNA-sequencing followed by single-gene analysis, gene set enrichment analysis, gene co-expression network analysis, and interacting genes/proteins analysis in eight full-term infants born by elective CS and eight matched vaginally delivered (VD) infants. Crucial genes identified above were further validated in another 20 CS and 20 VD infants. We found for the first time that mRNA expression of genes involved in immune response (IL12A, INFG, IL1B, TNF, MIF, IL4, CA1, IFI27, HLA-DOB and EPHB1) and metabolism (DLK1, CYP2A6 and GATM) were significantly influenced by CS. Notably, serum TNF-α and IFN-γ were remarkably up-regulated in the CS infants (p = 5.0 × 10-4 and 3.0 × 10-3, respectively) compared to the VD infants. It is biologically plausible that CS may exert adverse impacts on offspring health through influencing expression of genes in the above processes. These findings will help understand the potential underlying mechanisms of the adverse health impacts of CS and identify biomarkers for future health of offspring born with different delivery modes. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00086-7.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Kun Sun
- Shenzhen Bay Laboratory, Shenzhen, 518107 China
| | - Yuexin Gan
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Han Liu
- Department of Obstetrics and Gynaecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Juehua Yu
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
- Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032 China
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Lin Zhang
- Ministry of Education and Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
- Department of Obstetrics and Gynaecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Dan Chen
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
- Shanghai Fosun Pharmaceutical Industrial Development, Co., Ltd, Shanghai, 200233 China
| |
Collapse
|
3
|
Nudel R, Allesøe RL, Werge T, Thompson WK, Rasmussen S, Benros ME. An immunogenetic investigation of 30 autoimmune and autoinflammatory diseases and their links to psychiatric disorders in a nationwide sample. Immunology 2023; 168:622-639. [PMID: 36273265 DOI: 10.1111/imm.13597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune and autoinflammatory diseases (AIIDs) involve a deficit in an individual's immune system function, whereby the immune reaction is directed against self-antigens. Many AIIDs have a strong genetic component, but they can also be triggered by environmental factors. AIIDs often have a highly negative impact on the individual's physical and mental wellbeing. Understanding the genetic underpinning of AIIDs is thus crucial both for diagnosis and for identifying individuals at high risk of an AIID and mental illness as a result thereof. The aim of the present study was to perform systematic statistical and genetic analyses to assess the role of human leukocyte antigen (HLA) alleles in 30 AIIDs and to study the links between AIIDs and psychiatric disorders. We leveraged the Danish iPSYCH Consortium sample comprising 65 534 individuals diagnosed with psychiatric disorders or selected as part of a random population sample, for whom we also had genetic data and diagnoses of AIIDs. We employed regression analysis to examine comorbidities between AIIDs and psychiatric disorders and associations between AIIDs and HLA alleles across seven HLA genes. Our comorbidity analyses showed that overall AIID and five specific AIIDs were associated with having a psychiatric diagnosis. Our genetic analyses found 81 significant associations between HLA alleles and AIIDs. Lastly, we show connections across AIIDs, psychiatric disorders and infection susceptibility through network analysis of significant HLA associations in these disease classes. Combined, our results include both novel associations as well as replications of previously reported associations in a large sample, and highlight the genetic and epidemiological links between AIIDs and psychiatric disorders.
Collapse
Affiliation(s)
- Ron Nudel
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Rosa Lundbye Allesøe
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Werge
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wesley K Thompson
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, California, USA
| | - Simon Rasmussen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael E Benros
- CORE-Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Nigi L, Brusco N, Grieco GE, Fignani D, Licata G, Formichi C, Aiello E, Marselli L, Marchetti P, Krogvold L, Jorgensen KD, Sebastiani G, Dotta F. Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors. Front Immunol 2022; 13:833141. [PMID: 35359976 PMCID: PMC8963204 DOI: 10.3389/fimmu.2022.833141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and β-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- *Correspondence: Laura Nigi,
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giuseppina E. Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Elena Aiello
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lars Krogvold
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Knut Dahl Jorgensen
- Paediatric Department, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
5
|
An insight into the mechanisms of COVID-19, SARS-CoV2 infection severity concerning β-cell survival and cardiovascular conditions in diabetic patients. Mol Cell Biochem 2022; 477:1681-1695. [PMID: 35235124 PMCID: PMC8889522 DOI: 10.1007/s11010-022-04396-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/16/2022] [Indexed: 01/08/2023]
Abstract
A significantly high percentage of hospitalized COVID-19 patients with diabetes mellitus (DM) had severe conditions and were admitted to ICU. In this review, we have delineated the plausible molecular mechanisms that could explain why there are increased clinical complications in patients with DM that become critically ill when infected with SARS-CoV2. RNA viruses have been classically implicated in manifestation of new onset diabetes. SARS-CoV2 infection through cytokine storm leads to elevated levels of pro-inflammatory cytokines creating an imbalance in the functioning of T helper cells affecting multiple organs. Inflammation and Th1/Th2 cell imbalance along with Th17 have been associated with DM, which can exacerbate SARS-CoV2 infection severity. ACE-2-Ang-(1-7)-Mas axis positively modulates β-cell and cardiac tissue function and survival. However, ACE-2 receptors dock SARS-CoV2, which internalize and deplete ACE-2 and activate Renin-angiotensin system (RAS) pathway. This induces inflammation promoting insulin resistance that has positive effect on RAS pathway, causes β-cell dysfunction, promotes inflammation and increases the risk of cardiovascular complications. Further, hyperglycemic state could upregulate ACE-2 receptors for viral infection thereby increasing the severity of the diabetic condition. SARS-CoV2 infection in diabetic patients with heart conditions are linked to worse outcomes. SARS-CoV2 can directly affect cardiac tissue or inflammatory response during diabetic condition and worsen the underlying heart conditions.
Collapse
|
6
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
7
|
Ouyang H, Wen J, Song K. Decreased interleukin-35 levels and CD4 +EBI3 + T cells in patients with type 1 diabetes and the effects of the antibody against CD20 (rituximab). Arch Med Sci 2021; 17:258-261. [PMID: 33488880 PMCID: PMC7811298 DOI: 10.5114/aoms.2020.101510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/07/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Han Ouyang
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Wen
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Song
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Kirak O, Ke E, Yang KY, Schwarz A, Plate L, Nham A, Abadejos JR, Valencia A, Wiseman RL, Lui KO, Ku M. Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts. Int J Mol Sci 2020; 21:ijms21165743. [PMID: 32796510 PMCID: PMC7460978 DOI: 10.3390/ijms21165743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Autoimmune diabetes is a complex multifactorial disease with genetic and environmental factors playing pivotal roles. While many genes associated with the risk of diabetes have been identified to date, the mechanisms by which external triggers contribute to the genetic predisposition remain unclear. Here, we derived embryonic stem (ES) cell lines from diabetes-prone non-obese diabetic (NOD) and healthy C57BL/6 (B6) mice. While overall pluripotency markers were indistinguishable between newly derived NOD and B6 ES cells, we discovered several differentially expressed genes that normally are not expressed in ES cells. Several genes that reside in previously identified insulin-dependent diabetics (Idd) genomic regions were up-regulated in NOD ES cells. Gene set enrichment analysis showed that different groups of genes associated with immune functions are differentially expressed in NOD. Transcriptomic analysis of NOD blastocysts validated several differentially overexpressed Idd genes compared to B6. Genome-wide mapping of active histone modifications using ChIP-Seq supports active expression as the promoters and enhancers of activated genes are also marked by active histone modifications. We have also found that NOD ES cells secrete more inflammatory cytokines. Our data suggest that the known genetic predisposition of NOD to autoimmune diabetes leads to epigenetic instability of several Idd regions.
Collapse
Affiliation(s)
- Oktay Kirak
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center—University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Correspondence: (O.K.); (M.K.)
| | - Eugene Ke
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Kevin Y. Yang
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (K.Y.Y.); (K.O.L.)
| | - Anna Schwarz
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.P.); (R.L.W.)
| | - Amy Nham
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Justin R. Abadejos
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Anna Valencia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.P.); (R.L.W.)
| | - Kathy O. Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (K.Y.Y.); (K.O.L.)
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center—University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Correspondence: (O.K.); (M.K.)
| |
Collapse
|
9
|
Nigi L, Maccora C, Dotta F, Sebastiani G. From immunohistological to anatomical alterations of human pancreas in type 1 diabetes: New concepts on the stage. Diabetes Metab Res Rev 2020; 36:e3264. [PMID: 31850667 DOI: 10.1002/dmrr.3264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
The histological analysis of human pancreatic samples in type 1 diabetes (T1D) has been proven essential to move forward in the evaluation of in situ events characterizing T1D. Increasing availability of pancreatic tissues collected from diabetic multiorgan donors by centralized biorepositories, which have shared tissues among researchers in the field, has allowed a deeper understanding of T1D pathophysiology, using novel immunohistological and high-throughput methods. In this review, we provide a comprehensive update of the main recent advancements in the characterization of cellular and molecular events involving endocrine and exocrine pancreas as well as the immune system in the onset and progression of T1D. Additionally, we underline novel elements, which provide evidence that T1D pathological changes affect not only islet β-cells but also the entire pancreas.
Collapse
Affiliation(s)
- Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Carla Maccora
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Interleukin-6 and Interleukin-15 as Possible Biomarkers of the Risk of Autoimmune Diabetes Development. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4734063. [PMID: 31772933 PMCID: PMC6854156 DOI: 10.1155/2019/4734063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023]
Abstract
Aim The aim of our study was to assay circulating interleukin-15 (IL-15) and interleukin-6 (IL-6) levels and insulin resistance measured by two different methods in newly diagnosed autoimmune diabetes (AD) patients, their I° relatives, and healthy controls. Material and Methods The group studied consisted of 54 patients with AD (28 with Latent Autoimmune Diabetes in Adults (LADA) and 26 with type 1 diabetes (T1D)), 70 first-degree relatives, and 60 controls. IL-6, IL-15, and anti-islet antibodies concentrations were measured by ELISA method. Homeostatic model assessment-insulin resistance (HOMAIR) and estimated glucose disposal rate (eGDR) were calculated. Results The patients with AD had significantly higher IL-15, IL-6, and HOMAIR and lower eGDR than the controls (p < 0.001, respectively) and first-degree relatives (p < 0.001, respectively). Significantly higher IL-15 and IL-6 were shown in the relatives with positive Ab as compared to the relatives without antibodies (p < 0.001, respectively) and the controls (p < 0.001, respectively). IL-15 negatively correlated with eGDR (r = −0.436, p = 0.021) in LADA and positively with HOMAIR in LADA and T1D (r = 0.507, p < 0.001; r = 0.4209, p < 0.001). Conclusions Significantly higher IL-15 and IL-6 concentrations, HOMAIR, and markedly lower eGDR in newly diagnosed AD patients and first-degree relatives with positive anti-islet antibodies might suggest the role of these pro-inflammatory cytokines and insulin resistance in the pathogenesis of autoimmune diabetes. IL-15 and IL-6 might be used as biomarkers of the risk of autoimmune diabetes development, in particular IL-15 for LADA. Both methods of IR measurement appear equally useful for calculating insulin resistance in autoimmune diabetes.
Collapse
|
11
|
Park S, Liu M, Kang S. Alcohol Intake Interacts with CDKAL1, HHEX, and OAS3 Genetic Variants, Associated with the Risk of Type 2 Diabetes by Lowering Insulin Secretion in Korean Adults. Alcohol Clin Exp Res 2018; 42:2326-2336. [PMID: 30207601 DOI: 10.1111/acer.13888] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Since alcohol intake increases the prevalence of type 2 diabetes (T2DM) in Koreans, we tested the hypothesis that the interactions of genetic variants involved in β-cell function and mass with alcohol intake increase the T2DM risk. METHODS The single nucleotide polymorphisms (SNPs) were selected by genome-wide association study for insulin secretion after adjusting for age, gender, area of residence, body mass index, and alcohol intake (p < 1 × 10-4 ) in 8,842 middle-aged adults in the Ansan/Ansung cohort. Genetic risk scores (GRSs) were calculated by summing the risk alleles of 4 selected SNPs, CDKAL1 rs7754840 and rs9460546, HHEX rs5015480, and OAS3 rs2072134. The GRSs were categorized into 3 groups by tertiles, and the association between GRS and insulin secretion was measured using logistic regression after adjusting for confounding factors in the Ansan/Ansung cohort. The results were confirmed by the Rural cohort. RESULTS HOMA-IR was higher and HOMA-B was much lower in the High-GRS than the Low-GRS in both cohorts. T2DM risk was higher by approximately 1.5-fold in the High-GRS than in the Low-GRS in both cohorts. In the High-GRS group, HOMA-B decreased by 0.89- and 0.62-fold in comparison with the Low-GRS in the Ansan/Ansung cohort and Rural cohort. The GRS interacted with alcohol intake to increase the risk of developing T2DM in the Ansan/Ansung cohort (p = 0.036) and Rural cohort (p = 0.071). The risk of T2DM increased in the High-GRS group with high alcohol intake and it was associated with decreased HOMA-B. High alcohol intake decreased HOMA-B regardless of GRS, and HOMA-B was lower in the descending order of Medium-GRS, Low-GRS, and High-GRS. However, HOMA-IR was not altered by alcohol intake, but was elevated in the High-GRS more than in the other groups. CONCLUSIONS Subjects with a High-GRS had an elevated risk of T2DM even with moderate alcohol intakes due to lower HOMA-B. High alcohol intake appears to be a risk factor for all Asians regardless of alcohol intake.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Meiling Liu
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, South Korea
| |
Collapse
|
12
|
Thakur A, Qureshi A, Kumar M. vhfRNAi: a web-platform for analysis of host genes involved in viral infections discovered by genome wide RNAi screens. MOLECULAR BIOSYSTEMS 2018; 13:1377-1387. [PMID: 28561835 DOI: 10.1039/c6mb00841k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knockdown of host genes using high-throughput genome-wide RNA interference screens has identified numerous host factors that affect viral infections, which would be helpful in understanding host-virus interactions. We have developed a vhfRNAi web resource based on genome-wide RNAi experiments for viruses. It contains experimental details of 12 249 entries (host factors + restriction factors) for 18 viruses. Simultaneously, this resource encompasses analysis of overlapping genes, genome wide association studies, gene ontology (GO), pathogen interacting proteins, interaction networks and pathway enrichment. Using overlap analysis, it was found that Influenza A virus shared overlapping host genes with the majority of viruses including Hepatitis C virus and Dengue virus 2. In the genome wide association studies analysis, 429 diseases/traits were mapped, of which obesity-related traits were the most common. GO analysis revealed that the major categories belonged to metabolic processes, molecule transport, signal transduction, proteolysis, etc. In the pathogen interacting protein analysis, protein interaction data from different resources can be explored for further understanding of host-virus biology. By pathway enrichment analysis, a total of 8955 genes were mapped on 303 pathways with most of the hits coming from metabolic pathways. We have found 491 genes that are not essential for the host but essential for the virus and can be targeted to inhibit the virus. These may be explored as potential candidates for drug targets. The resource is freely accessible at and will be useful in understanding host-virus biology as well as identification of targets for the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Anamika Thakur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39-A, Chandigarh-160036, India.
| | | | | |
Collapse
|
13
|
Isaacs SR, Wang J, Kim KW, Yin C, Zhou L, Mi QS, Craig ME. MicroRNAs in Type 1 Diabetes: Complex Interregulation of the Immune System, β Cell Function and Viral Infections. Curr Diab Rep 2016; 16:133. [PMID: 27844276 DOI: 10.1007/s11892-016-0819-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Since the discovery of the first mammalian microRNA (miRNA) more than two decades ago, a plethora of miRNAs has been identified in humans, now amounting to more than 2500. Essential for post-transcriptional regulation of gene networks integral for developmental pathways and immune response, it is not surprising that dysregulation of miRNAs is often associated with the aetiology of complex diseases including cancer, diabetes and autoimmune disorders. Despite massive expansion of small RNA studies and extensive investigation in diverse disease contexts, the role of miRNAs in type 1 diabetes has only recently been explored. Key studies using human islets have recently implicated virus-induced miRNA dysregulation as a pivotal mechanism of β cell destruction, while the interplay between miRNAs, the immune system and β cell survival has been illustrated in studies using animal and cellular models of disease. The role of specific miRNAs as major players in immune system homeostasis highlights their exciting potential as therapeutics and prognostic biomarkers of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R Isaacs
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Jie Wang
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Ki Wook Kim
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia
| | - Congcong Yin
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Qing Sheng Mi
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Dermatology, Henry Ford Health System, Detroit, MI, 48202, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Maria E Craig
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
- UNSW and POWH Virology Research Laboratory, Prince of Wales Hospital, Sydney, NSW, 2031, Australia.
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, 2145, Australia.
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
14
|
Abstract
BACKGROUND T-cells are important in the pathogenesis of Type 1 diabetes (T1D). However, the exact role of T-cell subpopulations in this pathway remains unknown. The purpose of this study was to assess the expression pattern of T helper 1 (Th1) interferon-gamma (IFN-γ) and Th2 interleukin-4 (IL-4) cytokines and their relationship with sex and disease duration in T1D patients. MATERIALS AND METHODS This study was conducted on 21 T1D patients and 22 healthy subjects. Gene expression analysis of peripheral blood mononuclear cells (PBMCs) was performed using real-time reverse transcriptase polymerase chain reaction. RESULTS IFN-γ gene expression was significantly lower in T1D patients compared with controls (P < 0.05). Conversely, IL-4 mRNAs were significantly increased in the PBMCs from patients as compared to controls (P < 0.05). There was no significant difference in the expression of IL-4 and IFN-γ between men and women with T1D (P > 0.05) while IL-4 mRNA expression in male patients was about 1.9 folds higher than female patients. Moreover, IFN-γ mRNA expression in female patients was about 1.8 folds lower than male patients. Patients were divided into two groups regarding their disease duration: <10 years and >10 years. A significant increase in the IL-4 expression was observed between two groups of patients compared to controls (P < 0.0001). Conversely, there was a significant difference in the expression of IFN-γ only between patients with more than 10 years of disease duration (P = 0.02). CONCLUSION These data propose supplementary implications for the role of Th1/Th2 imbalance in T1D immunopathogenesis. Moreover, factors such as sex and disease duration may have some influence on cytokine mRNA expression.
Collapse
Affiliation(s)
- Hajar Vaseghi
- Department of Biology, Faculty of Biological Sciences, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Zohreh Jadali
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Uusitalo U, Liu X, Yang J, Aronsson CA, Hummel S, Butterworth M, Lernmark Å, Rewers M, Hagopian W, She JX, Simell O, Toppari J, Ziegler AG, Akolkar B, Krischer J, Norris JM, Virtanen SM. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study. JAMA Pediatr 2016; 170:20-8. [PMID: 26552054 PMCID: PMC4803028 DOI: 10.1001/jamapediatrics.2015.2757] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IMPORTANCE Probiotics have been hypothesized to affect immunologic responses to environmental exposures by supporting healthy gut microbiota and could therefore theoretically be used to prevent the development of type 1 diabetes mellitus (T1DM)-associated islet autoimmunity. OBJECTIVE To examine the association between supplemental probiotic use during the first year of life and islet autoimmunity among children at increased genetic risk of T1DM. DESIGN, SETTING, AND PARTICIPANTS In this ongoing prospective cohort study that started September 1, 2004, children from 6 clinical centers, 3 in the United States (Colorado, Georgia/Florida, and Washington) and 3 in Europe (Finland, Germany, and Sweden), were followed up for T1DM-related autoantibodies. Blood samples were collected every 3 months between 3 and 48 months of age and every 6 months thereafter to determine persistent islet autoimmunity. Details of infant feeding, including probiotic supplementation and infant formula use, were monitored from birth using questionnaires and diaries. We applied time-to-event analysis to study the association between probiotic use and islet autoimmunity, stratifying by country and adjusting for family history of type 1 diabetes, HLA-DR-DQ genotypes, sex, birth order, mode of delivery, exclusive breastfeeding, birth year, child's antibiotic use, and diarrheal history, as well as maternal age, probiotic use, and smoking. Altogether 8676 infants with an eligible genotype were enrolled in the follow-up study before the age of 4 months. The final sample consisted of 7473 children with the age range of 4 to 10 years (as of October 31, 2014). EXPOSURES Early intake of probiotics. MAIN OUTCOMES AND MEASURES Islet autoimmunity revealed by specific islet autoantibodies. RESULTS Early probiotic supplementation (at the age of 0-27 days) was associated with a decreased risk of islet autoimmunity when compared with probiotic supplementation after 27 days or no probiotic supplementation (hazard ratio [HR], 0.66; 95% CI, 0.46-0.94). The association was accounted for by children with the DR3/4 genotype (HR, 0.40; 95% CI, 0.21-0.74) and was absent among other genotypes (HR, 0.97; 95% CI, 0.62-1.54). CONCLUSIONS AND RELEVANCE Early probiotic supplementation may reduce the risk of islet autoimmunity in children at the highest genetic risk of T1DM. The result needs to be confirmed in further studies before any recommendation of probiotics use is made.
Collapse
Affiliation(s)
- Ulla Uusitalo
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Xiang Liu
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Jimin Yang
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | | | - Sandra Hummel
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and Forschergruppe Diabetes e.V., Munich, Germany
| | - Martha Butterworth
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| | - Jin-Xiong She
- Medical College of Georgia, Georgia Regents University, Augusta
| | - Olli Simell
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland8Department of Physiology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and Forschergruppe Diabetes e.V., Munich, Germany
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora
| | - Suvi M Virtanen
- National Institute for Health and Welfare, Nutrition Unit, Helsinki, Finland12School of Health Sciences and Center for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland 13The Science Center of Pirkanmaa Hospita
| |
Collapse
|
16
|
Gibbs PEM, Miralem T, Lerner-Marmarosh N, Maines MD. Nanoparticle Delivered Human Biliverdin Reductase-Based Peptide Increases Glucose Uptake by Activating IRK/Akt/GSK3 Axis: The Peptide Is Effective in the Cell and Wild-Type and Diabetic Ob/Ob Mice. J Diabetes Res 2016; 2016:4712053. [PMID: 27294151 PMCID: PMC4886063 DOI: 10.1155/2016/4712053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/18/2016] [Indexed: 01/11/2023] Open
Abstract
Insulin's stimulation of glucose uptake by binding to the IRK extracellular domain is compromised in diabetes. We have recently described an unprecedented approach to stimulating glucose uptake. KYCCSRK (P2) peptide, corresponding to the C-terminal segment of hBVR, was effective in binding to and inducing conformational change in the IRK intracellular kinase domain. Although myristoylated P2, made of L-amino acids, was effective in cell culture, its use for animal studies was unsuitable. We developed a peptidase-resistant formulation of the peptide that was efficient in both mice and cell culture systems. The peptide was constructed of D-amino acids, in reverse order, and blocked at both termini. Delivery of the encapsulated peptide to HepG2 and HSKM cells was confirmed by its prolonged effect on stimulation of glucose uptake (>6 h). The peptide improved glucose clearance in both wild-type and Ob/Ob mice; it lowered blood glucose levels and suppressed glucose-stimulated insulin secretion. IRK activity was stimulated in the liver of treated mice and in cultured cells. The peptide potentiated function of IRK's downstream effector, Akt-GSK3-(α, β) axis. Thus, P2-based approach can be used for improving glucose uptake by cells. Also, it allows for screening peptides in vitro and in animal models for treatment of diabetes.
Collapse
Affiliation(s)
- Peter E. M. Gibbs
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Tihomir Miralem
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nicole Lerner-Marmarosh
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mahin D. Maines
- Department of Biophysics and Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- *Mahin D. Maines:
| |
Collapse
|
17
|
Lee HY, Lu CL, Chen HF, Su HF, Li CY. Perinatal and childhood risk factors for early-onset type 1 diabetes: a population-based case-control study in Taiwan. Eur J Public Health 2015; 25:1024-9. [PMID: 25841034 DOI: 10.1093/eurpub/ckv059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Certain factors originating from the perinatal and childhood periods are suspected of contributing to the recent increasing trend of childhood type 1 diabetes (T1D) incidence. This study sought to investigate the relationships between various perinatal and childhood risk factors and T1D incidence in young children (<10 years). METHODS We used a nested case-control design based on 1,478,573 live births born in 2000-05 in Taiwan. Cases were 632 incident cases of T1D between 2000 and 2008. Ten matched controls for each case were randomly selected. Information on various perinatal risk factors was also identified from claim data. Multiple conditional logistic regression was employed to estimate odds ratio (OR) and 95 confidence interval (CI) of T1D. RESULTS Childhood infection was significantly associated with an increased risk of T1D (OR = 1.46, 95% CI = 1.23-1.73). Increased risk of T1D was also noted in children born to younger mothers (<25 years) (OR = 1.94, 95% CI = 1.34-2.81), older fathers (>30 years) (OR = 1.56 (95% CI = 1.16-2.10) to 1.57 (95% CI = 1.19-2.05), mothers with Caesarean section (CS) (OR = 2.35, 95% CI = 1.52-3.64), and mothers with gestational diabetes mellitus (OR = 4.36, 95% CI = 2.76-7.77). Fathers with T1D (OR = 7.36, 95% CI = 1.02-57.21) or type 2 diabetes (OR = 1.54, 95% CI = 1.04-2.26) were observed to substantially increase the risk of offspring T1D. CONCLUSIONS Certain modifiable perinatal factors such as infection and CS may predispose incidence of T1D in young children.
Collapse
Affiliation(s)
- Hsin-Yu Lee
- 1 Department and Graduate Institute of Public Health, College of Medical, National Cheng-Kung University, Tainan, Taiwan
| | - Chin-Li Lu
- 1 Department and Graduate Institute of Public Health, College of Medical, National Cheng-Kung University, Tainan, Taiwan 2 Department of Medical Research, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Hua-Fen Chen
- 3 Department of Endocrinology, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Fang Su
- 4 Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chung-Yi Li
- 1 Department and Graduate Institute of Public Health, College of Medical, National Cheng-Kung University, Tainan, Taiwan 5 Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:326918. [PMID: 25883955 PMCID: PMC4389818 DOI: 10.1155/2015/326918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/07/2014] [Indexed: 12/16/2022]
Abstract
Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.
Collapse
|
19
|
He JS, Xie PS, Luo DS, Sun CJ, Zhang YG, Liu FX. Role of immune dysfunction in pathogenesis of type 1 diabetes mellitus in children. ASIAN PAC J TROP MED 2014; 7:823-6. [DOI: 10.1016/s1995-7645(14)60144-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/15/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022] Open
|
20
|
Abstract
The etiology and pathogenesis of type 1 diabetes (T1D) - one of the most frequent chronic, life-debilitating diseases in humans - have long fascinated endocrinologists, pathologists and biologists alike. Currently conventional wisdom portrays T1D as a chronic T cell-mediated autoimmune disease that leads to the specific destruction of pancreatic insulin-producing β cells. The process of β cell destruction is accompanied (or preceded) by the production of autoantibodies (autoAb) to β cell antigens (i.e. insulin, GAD65, IA-2 and ZnT8). These autoAb have proved to be instrumental in identifying subjects at risk of developing the disease prior to overt hyperglycemia, and they help to distinguish T1D from T2D patients (who have no autoAb), but are not deemed to be pathogenic. This review will examine to which extent this well-established disease-dogmas are sustained by experiments by nature, which should not suffer from the common biases and errors of experiments by humans.
Collapse
Affiliation(s)
- M Battaglia
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Sánchez-Zamora YI, Rodriguez-Sosa M. The role of MIF in type 1 and type 2 diabetes mellitus. J Diabetes Res 2014; 2014:804519. [PMID: 24527464 PMCID: PMC3910331 DOI: 10.1155/2014/804519] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/11/2013] [Indexed: 11/17/2022] Open
Abstract
Autoimmunity and chronic low-grade inflammation are hallmarks of diabetes mellitus type one (T1DM) and type two (T2DM), respectively. Both processes are orchestrated by inflammatory cytokines, including the macrophage migration inhibitory factor (MIF). To date, MIF has been implicated in both types of diabetes; therefore, understanding the role of MIF could affect our understanding of the autoimmune or inflammatory responses that influence diabetic pathology. This review highlights our current knowledge about the involvement of MIF in both types of diabetes in the clinical environment and in experimental disease models.
Collapse
Affiliation(s)
- Yuriko I. Sánchez-Zamora
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios No. 1, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico
- *Miriam Rodriguez-Sosa:
| |
Collapse
|
22
|
Abdulreda MH, Berggren PO. Islet inflammation in plain sight. Diabetes Obes Metab 2013; 15 Suppl 3:105-16. [PMID: 24003927 PMCID: PMC3777660 DOI: 10.1111/dom.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/10/2013] [Indexed: 01/09/2023]
Abstract
Although, diabetes is reaching pandemic proportions, the exact aetiology of either type 1 (T1D) or type 2 diabetes (T2D) remains to be determined. Mounting evidence, however, suggests that islet inflammation is a likely common denominator during early development of either type of the disease. In this review, we highlight some of the inflammatory mechanisms that appear to be shared between T1D and T2D, and we explore the utility of intravital imaging in the study of islet inflammation. Intravital imaging has emerged as an indispensable tool in biomedical research and a variety of in vivo imaging approaches have been developed to study pancreatic islet physiology and pathophysiology in the native environment in health and disease. However, given the scattered distribution of the islets of Langerhans within the 'sea' of the exocrine pancreas located deep within the body and the fact that the islets only constitute 1-2% of the total volume of pancreatic tissue, studying the pancreatic islet in situ has been challenging. Here, we focus on a new experimental approach that enables studying local islet inflammation with single-cell resolution in the relevant context of the in vivo environment non-invasively and longitudinally and, thereby improving our understanding of diabetes pathogenesis.
Collapse
Affiliation(s)
- Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Stockholm, Sweden
- Department of Surgery, University of Miami Miller School of Medicine, Stockholm, Sweden
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Stockholm, Sweden
- Department of Surgery, University of Miami Miller School of Medicine, Stockholm, Sweden
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Correspondence details: The Rolf Luft Research Center for Diabetes and Endocrinology Karolinska Institutet, Karolinska University Hospital L1 SE-171 76 Stockholm, Sweden Phone +46 8 517 757 31, +46 70 729 5731 Fax +46 8 517 717 81
| |
Collapse
|
23
|
Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F. The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:292-8. [PMID: 23743646 DOI: 10.1097/med.0b013e328362a7d7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the immune-mediated destruction of pancreatic insulin-producing cells because of the interaction among genetic susceptibility, the immune system and environmental factor(s). A possible role of viral infections in T1D pathogenesis has been hypothesized for some time; however, only in the most recent years, studies performed at the molecular and cellular level are starting to shed light on this issue. RECENT FINDINGS Studies in animal models and in man have shown that viruses can indeed infect pancreatic beta-cells, inducing islet inflammation and functional damage. In addition, recent in-situ investigations performed on pancreatic tissue samples have provided evidence that in addition to adaptive immune response, innate immunity is involved in T1D pathogenesis and the whole pancreas (not only its endocrine portion) is infiltrated by immune-mediated phenomena. SUMMARY The established role of inflammation in the insulitic process and the increasing evidence in support of the contribution of viral infections to a proinflammatory islet scenario are strongly suggestive that viruses may indeed contribute to beta-cell damage and dysfunction, thus setting the stage for the design of antiviral strategies (e.g. vaccines and antiviral drugs) aimed at protecting the beta-cells.
Collapse
Affiliation(s)
- Isabella Spagnuolo
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Toscana Life Science Park, Siena, Italy
| | | | | | | | | |
Collapse
|
24
|
Type 1 Diabetes in Children: The Bahraini Dilemma. Proc Nutr Soc 2013. [DOI: 10.1017/s002966511300325x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|