1
|
Sen K, Harrar D, Pariseau N, Tucker K, Keenan J, Zhang A, Gropman A. Seizure Characteristics and EEG Features in Intoxication Type and Energy Deficiency Neurometabolic Disorders in the Pediatric Intensive Care Unit: Single-Center Experience Over 10 Years. Neurocrit Care 2025; 42:562-572. [PMID: 39138714 DOI: 10.1007/s12028-024-02073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Acute metabolic crises in inborn errors of metabolism (such as urea cycle disorders, organic acidemia, maple syrup urine disease, and mitochondrial disorders) are neurological emergencies requiring management in the pediatric intensive care unit (PICU). There is a paucity of data pertaining to electroencephalograms (EEG) characteristics in this cohort. We hypothesized that the incidence of background abnormalities and seizures in this cohort would be high. Neuromonitoring data from our center's PICU over 10 years are presented in this article. METHODS Data were collected by retrospective chart review for patients with the aforementioned disorders who were admitted to the PICU at our institution because of metabolic/neurologic symptoms from 2008 to 2018. Descriptive statistics (χ2 test or Fisher's exact test) were used to study the association between EEG parameters and outcomes. RESULTS Our cohort included 40 unique patients (8 with urea cycle disorder, 7 with organic acidemia, 3 with maple syrup urine disease, and 22 with mitochondrial disease) with 153 admissions. Presenting symptoms included altered mentation (36%), seizures (41%), focal weakness (5%), and emesis (28%). Continuous EEG was ordered in 34% (n = 52) of admissions. Twenty-three admissions were complicated by seizures, including eight manifesting as status epilepticus (seven nonconvulsive and one convulsive). Asymmetry and focal slowing on EEG were associated with seizures. Moderate background slowing or worse was noted in 75% of EEGs. Among those patients monitored on EEG, 4 (8%) died, 3 (6%) experienced a worsening of their Pediatric Cerebral Performance Category (PCPC) score as compared to admission, and 44 (86%) had no change (or improvement) in their PCPC score during admission. CONCLUSIONS This study shows a high incidence of clinical and subclinical seizures during metabolic crisis in patients with inborn errors of metabolism. EEG background features were associated with risk of seizures as well as discharge outcomes. This is the largest study to date to investigate EEG features and risk of seizures in patients with neurometabolic disorders admitted to the PICU. These data may be used to inform neuromonitoring protocols to improve mortality and morbidity in inborn errors of metabolism.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA.
| | - Dana Harrar
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Nicole Pariseau
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
- Division of Pediatric Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Karis Tucker
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Julia Keenan
- Division of Child Neurology, Children's National Hospital, Washington, DC, USA
| | - Anqing Zhang
- Department of Biostatistics, Children's National Hospital, Washington, DC, USA
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Center for Neuroscience and Behavioral Medicine, GWU School of Medicine and Health Sciences, Children's National Hospital, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| |
Collapse
|
2
|
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem 2022; 636:114343. [PMID: 34637785 PMCID: PMC8671367 DOI: 10.1016/j.ab.2021.114343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States
| | - Matthew Whitehead
- Division of Radiology, Children's National Hospital, Washington D.C., United States
| | | | - Ljubica Caldovic
- Childrens' Research Institute, Children's National Hospital, Washington D.C., United States
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States.
| |
Collapse
|
3
|
Sen K, Anderson AA, Whitehead MT, Gropman AL. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front Neurol 2021; 12:632307. [PMID: 33995244 PMCID: PMC8113618 DOI: 10.3389/fneur.2021.632307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The urea cycle disorders (UCD) are rare genetic disorder due to a deficiency of one of six enzymes or two transport proteins that act to remove waste nitrogen in form of ammonia from the body. In this review, we focus on neuroimaging studies in OTCD and Arginase deficiency, two of the UCD we have extensively studied. Ornithine transcarbamylase deficiency (OTCD) is the most common of these, and X-linked. Hyperammonemia (HA) in OTCD is due to deficient protein handling. Cognitive impairments and neurobehavioral disorders have emerged as the major sequelae in Arginase deficiency and OTCD, especially in relation to executive function and working memory, impacting pre-frontal cortex (PFC). Clinical management focuses on neuroprotection from HA, as well as neurotoxicity from other known and yet unclassified metabolites. Prevention and mitigation of neurological injury is a major challenge and research focus. Given the impact of HA on neurocognitive function of UCD, neuroimaging modalities, especially multi-modality imaging platforms, can bring a wealth of information to understand the neurocognitive function and biomarkers. Such information can further improve clinical decision making, and result in better therapeutic interventions. In vivo investigations of the affected brain using multimodal neuroimaging combined with clinical and behavioral phenotyping hold promise. MR Spectroscopy has already proven as a tool to study biochemical aberrations such as elevated glutamine surrounding HA as well as to diagnose partial UCD. Functional Near Infrared Spectroscopy (fNIRS), which assesses local changes in cerebral hemodynamic levels of cortical regions, is emerging as a non-invasive technique and will serve as a surrogate to fMRI with better portability. Here we review two decades of our research using non-invasive imaging and how it has contributed to an understanding of the cognitive effects of this group of genetic conditions.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Afrouz A Anderson
- Department of Research, Focus Foundation, Crofton, MD, United States
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
McGowan M, Ferreira C, Whitehead M, Basu SK, Chang T, Gropman A. The Application of Neurodiagnostic Studies to Inform the Acute Management of a Newborn Presenting With Sarbamoyl Shosphate Synthetase 1 Deficiency. Child Neurol Open 2021; 8:2329048X20985179. [PMID: 33644249 PMCID: PMC7841664 DOI: 10.1177/2329048x20985179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
Neonatal-onset urea cycle disorders (UCDs) may result in hyperammonemic (HA) encephalopathy presenting with several neurologic sequelae including seizures, coma, and death. However, no recommendations are given in how and when neurodiagnostic studies should be used to screen or assess for these neurologic complications. We present a case of carbamoyl phosphate synthetase 1 (CPS1) deficiency in a newborn female in which electroencephalogram monitoring to assess encephalopathy and seizures, and magnetic resonance imaging measurements of brain metabolites were used to guide care during her hyperammonemic crisis. Her neurologic course and response to treatment characterizes the significant neurologic impact of HA encephalopathy. Our group herein proposes a clinical neurodiagnostic pathway for managing acute HA encephalopathy.
Collapse
Affiliation(s)
- Meaghan McGowan
- University of Illinois College of Medicine, Chicago, IL,
USA
| | - Carlos Ferreira
- Medical Genomics and Metabolic Genetics Branch, National
Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Matthew Whitehead
- Neuroradiology, Children’s National Hospital, George
Washington University School of Medicine, Washington, DC, USA
| | - Sudeepta K. Basu
- Neonatology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Andrea Gropman
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| |
Collapse
|
5
|
Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency. Sci Rep 2017; 7:40190. [PMID: 28067279 PMCID: PMC5220341 DOI: 10.1038/srep40190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior.
Collapse
|
6
|
Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis 2013; 36:595-612. [PMID: 23109059 DOI: 10.1007/s10545-012-9546-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 12/21/2022]
Abstract
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Collapse
Affiliation(s)
- Olivier Braissant
- Service of Biomedicine, Lausanne University Hospital, Avenue Pierre-Decker 2, CI 02/33, CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
7
|
Abstract
Intracranial hypertension caused by brain edema and associated astrocyte swelling is a potentially lethal complication of acute liver failure (ALF). Mechanisms of edema formation are not well understood, but elevated levels of blood and brain ammonia and its by-product glutamine have been implicated in this process. Since aquaporin-4 (AQP4) has been implicated in brain edema in other conditions, we examined its role in a rat model of ALF induced by the hepatotoxin thioacetamide. Rats with ALF showed increased AQP4 protein in the plasma membrane (PM). Total tissue levels of AQP4 protein and mRNA levels were not altered, indicating that increased AQP4 is not transcriptionally mediated but likely reflects a more stable anchoring of AQP4 to the PM and/or interference with its degradation. An increase inAQP4 immunoreactivity in thePM was observed in perivascular astrocytes in ALF. Rats with ALF also showed increased levels of α-syntrophin, a protein involved in anchoringAQP4 to perivascular astrocytic end-feet. Increased AQP4 andα-syntrophin levels were inhibited by L-histidine, an inhibitor of glutamine transport into mitochondria, suggesting a role for glutamine in the increase of PM levels of AQP4. These results indicate that increased AQP4 PM levels in perivascular astrocytic end-feet are likely critical to the development of brain edema in ALF.
Collapse
|
8
|
Abstract
Urea cycle disorders (UCD) represent a group of rare inborn errors of metabolism that carry a high risk of mortality and neurological morbidity resulting from the effects of accumulation of ammonia and other biochemical intermediates. These disorders result from single gene defects involved in the detoxification pathway of ammonia to urea. UCD include deficiencies in any of the six enzymes and two membrane transporters involved in urea biosynthesis. It has previously been reported that approximately half of infants who present with hyperammonemic coma in the newborn period die of cerebral edema; and those who survive 3days or more of coma invariably have intellectual disability [1]. In children with partial defects there is an association between the number and severity of recurrent hyperammonemic (HA) episodes (i.e. with or without coma) and subsequent cognitive and neurologic deficits [2]. However, the effects of milder or subclinical HA episodes on the brain are largely unknown. This review discusses the results of neuroimaging studies performed as part of the NIH funded Rare Diseases Clinical Research Center in Urea Cycle Disorders and focuses on biomarkers of brain injury in ornithine transcarbamylase deficiency (OTCD). We used anatomic imaging, functional magnetic resonance imaging (fMRI), diffusion-tensor imaging (DTI), and (1)H/(13)C magnetic resonance spectroscopy (MRS) to study clinically stable adults with partial OTCD. This allowed us to determine alterations in brain biochemistry associated with changes in cell volume and osmolarity and permitted us to identify brain biomarkers of HA. We found that white matter tracts underlying specific pathways involved in working memory and executive function are altered in subjects with OTCD (as measured by DTI), including those heterozygous women who were previously considered asymptomatic. An understanding of the pathogenesis of brain injury in UCD is likely to advance our knowledge of more common disorders of liver dysfunction.
Collapse
Affiliation(s)
- Andrea Gropman
- Department of Neurology, Children's National Medical Center, Center for Neuroscience and Behavioral Medicine, Washington, DC 20010, USA.
| |
Collapse
|
9
|
Braissant O. Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab 2010; 100 Suppl 1:S3-S12. [PMID: 20227314 DOI: 10.1016/j.ymgme.2010.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 02/08/2010] [Indexed: 12/14/2022]
Abstract
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Collapse
Affiliation(s)
- Olivier Braissant
- Inborn Errors of Metabolism, Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Lausanne, Switzerland.
| |
Collapse
|
10
|
Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis 2007; 30:865-79. [PMID: 18038189 PMCID: PMC3758693 DOI: 10.1007/s10545-007-0709-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 10/13/2007] [Accepted: 10/18/2007] [Indexed: 12/19/2022]
Abstract
The urea cycle disorders constitute a group of rare congenital disorders caused by a deficiency of the enzymes or transport proteins required to remove ammonia from the body. Via a series of biochemical steps, nitrogen, the waste product of protein metabolism, is removed from the blood and converted into urea. A consequence of these disorders is hyperammonaemia, resulting in central nervous system dysfunction with mental status changes, brain oedema, seizures, coma, and potentially death. Both acute and chronic hyperammonaemia result in alterations of neurotransmitter systems. In acute hyperammonaemia, activation of the NMDA receptor leads to excitotoxic cell death, changes in energy metabolism and alterations in protein expression of the astrocyte that affect volume regulation and contribute to oedema. Neuropathological evaluation demonstrates alterations in the astrocyte morphology. Imaging studies, in particular (1)H MRS, can reveal markers of impaired metabolism such as elevations of glutamine and reduction of myoinositol. In contrast, chronic hyperammonaemia leads to adaptive responses in the NMDA receptor and impairments in the glutamate-nitric oxide-cGMP pathway, leading to alterations in cognition and learning. Therapy of acute hyperammonaemia has relied on ammonia-lowering agents but in recent years there has been considerable interest in neuroprotective strategies. Recent studies have suggested restoration of learning abilities by pharmacological manipulation of brain cGMP with phosphodiesterase inhibitors. Thus, both strategies are intriguing areas for potential investigation in human urea cycle disorders.
Collapse
Affiliation(s)
- A L Gropman
- Department of Neurology, Children's National Medical Center and the George Washington University of the Health Sciences, 111 Michigan Avenue, N. W., Washington, DC 20010, USA.
| | | | | |
Collapse
|
11
|
Cagnon L, Braissant O. Hyperammonemia-induced toxicity for the developing central nervous system. ACTA ACUST UNITED AC 2007; 56:183-97. [PMID: 17881060 DOI: 10.1016/j.brainresrev.2007.06.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 12/12/2022]
Abstract
In pediatric patients, hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle deficiencies or organic acidemias. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood. Hyperammonemia can provoke irreversible damages to the developing central nervous system that lead to cortical atrophy, ventricular enlargement and demyelination, responsible for cognitive impairment, seizures and cerebral palsy. Until recently, the mechanisms leading to these irreversible cerebral damages were poorly understood. Using experimental models allowing the analysis of the neurotoxic effects of ammonium on the developing brain, these last years have seen the emergence of new clues showing that ammonium exposure alters several amino acid pathways and neurotransmitter systems, as well as cerebral energy metabolism, nitric oxide synthesis, oxidative stress, mitochondrial permeability transition and signal transduction pathways. Those alterations may explain neuronal loss and impairment of axonal and dendritic growth observed in the different models of congenital hyperammonemia. Some neuroprotective strategies such as the potential use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine have been suggested to counteract these toxic effects. Unraveling the molecular mechanisms involved in the chain of events leading to neuronal dysfunction under hyperammonemia may be useful to develop new potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Laurène Cagnon
- Clinical Chemistry Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CI 02/33, Avenue Pierre-Decker 2, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
12
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJH, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002; 110:1539-48. [PMID: 12438451 PMCID: PMC151816 DOI: 10.1172/jci16143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Apart from its role in the synthesis of protein and nitric oxide (NO), and in ammonia detoxification, the amino acid arginine exerts an immunosupportive function. We have studied the role of arginine in immune defense mechanisms in the developing postnatal immune system. In suckling mice, arginine is produced in the small intestine. In F/A-2(+/+) transgenic mice, which overexpress arginase in their enterocytes, circulating and tissue arginine concentrations are reduced to 30-35% of controls. In these mice, the development and composition of the T cell compartment did not reveal abnormalities. However, in peripheral lymphoid organs and the small intestine, B cell cellularity and the number and size of Peyer's patches were drastically reduced, and serum IgM levels were significantly decreased. These phenotypes could be traced to an impaired transition from the pro- to pre-B cell stage in the bone marrow. Cytokine receptor levels in the bone marrow were normal. The development of the few peripheral B cells and their proliferative response after in vitro stimulation was normal. The disturbance in B cell maturation was dependent on decreased arginine levels, as this phenotype disappeared upon arginine supplementation and was not seen in NO synthase- or ornithine transcarbamoylase-deficient mice. We conclude that arginine deficiency impairs early B cell maturation.
Collapse
Affiliation(s)
- Wouter J de Jonge
- Department of Anatomy and Embryology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJ, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH. Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 2002. [DOI: 10.1172/jci0216143] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha ). HNF4alpha regulates ornithine transcarbamylase in vivo. J Biol Chem 2002; 277:25257-65. [PMID: 11994307 DOI: 10.1074/jbc.m203126200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates the expression of many genes preferentially expressed in liver. HNF4alpha-null mice die during embryogenesis precluding the analysis of its function in the adult. To circumvent this problem, liver-specific HNF4alpha-null mice were produced. Mice lacking hepatic HNF4alpha expression exhibited increased serum ammonia and reduced serum urea. This disruption in ureagenesis may be explained by a marked decrease in expression and activity of hepatic ornithine transcarbamylase (OTC). To determine the molecular mechanisms involved in transcriptional regulation of the mouse OTC gene, the OTC promoter region was analyzed. Sequence analysis revealed the presence of two putative HNF4alpha-binding sites in the mouse OTC promoter region. By using transient transfection analysis, it was established that high levels of promoter activity were dependent on both HNF4alpha-binding sites and the expression of HNF4alpha. Furthermore, the proximal HNF4alpha-binding site was found to be more important than the distal one for transactivating OTC promoter. These data demonstrate that HNF4alpha is critical for urea homeostasis by direct regulation of the OTC gene in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
15
|
de Jonge WJ, Hallemeesch MM, Kwikkers KL, Ruijter JM, de Gier-de Vries C, van Roon MA, Meijer AJ, Marescau B, de Deyn PP, Deutz NEP, Lamers WH. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle, and lymphoid development. Am J Clin Nutr 2002; 76:128-40. [PMID: 12081826 DOI: 10.1093/ajcn/76.1.128] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arginine is required for the detoxification of ammonia and the synthesis of proteins, nitric oxide, agmatine, creatine, and polyamines, and it may promote lymphocyte function. In suckling mammals, arginine is synthesized in the enterocytes of the small intestine, but this capacity is lost after weaning. OBJECTIVE We investigated the significance of intestinal arginine production for neonatal development in a murine model of chronic arginine deficiency. DESIGN Two lines of transgenic mice that express different levels of arginase I in their enterocytes were analyzed. RESULTS Both lines suffer from a selective but quantitatively different reduction in circulating arginine concentration. The degree of arginine deficiency correlated with the degree of retardation of hair and muscle growth and with the development of the lymphoid tissue, in particular Peyer's patches. Expression of arginase in all enterocytes was necessary to elicit this phenotype. Phenotypic abnormalities were reversed by daily injections of arginine but not of creatine. The expression level of the very arginine-rich skin protein trichohyalin was not affected in transgenic mice. Finally, nitric oxide synthase-deficient mice did not show any of the features of arginine deficiency. CONCLUSIONS Enterocytes are important for maintaining arginine homeostasis in neonatal mice. Graded arginine deficiency causes graded impairment of skin, muscle, and lymphoid development. The effects of arginine deficiency are not mediated by impaired synthesis of creatine or by incomplete charging of arginyl-transfer RNA.
Collapse
Affiliation(s)
- Wouter J de Jonge
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Benzerrouk R, Qureshi IA. Hepatic mitochondrial proteins in congenitally hyperammonemic spf mice: effect of acetyl-L-carnitine. Biosci Biotechnol Biochem 2001; 65:495-500. [PMID: 11330659 DOI: 10.1271/bbb.65.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The sparse-fur (spf) mutant mouse has an X-linked deficiency of hepatic ornithine transcarbamylase (OTC), and develops hyperammonemia immediately after weaning and maintains it throughout its life span. We have studied the effects of acetyl-L-carnitine (ALCAR) on the hepatic mitochondrial proteins of the chronically hyperammonemic spf mice. Two different age groups of mice were studied, the weanlings (3 weeks) and the adult mice (8 weeks). Our results indicate that in the mitochondrial matrix, the untreated chronic hyperammonemia induced a significant increase in the quantity of 54.4-kDa protein in spf adult mice. After ALCAR treatment, in spf adult mice, the quantities of the 54.4-kDa, 63.8-kDa, and 129-kDa matrix proteins were significantly increased. In the mitochondrial inner membrane fraction of the spf weanling mice, a 53.5-kDa protein was significantly increased by ALCAR treatment. Our results show that: (a) chronic hyperammonemia has altered the mitochondrial matrix protein profile in spf mice, that (b) ALCAR has a modulating effect on various matrix and inner membrane proteins, and that (c) there was no effect of hyperammonemia or ALCAR treatment on the outer membrane proteins.
Collapse
Affiliation(s)
- R Benzerrouk
- Division of Medical Genetics, Sainte-Justine Hospital and University of Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
D'Hooge R, Marescau B, Qureshi IA, De Deyn PP. Impaired cognitive performance in ornithine transcarbamylase-deficient mice on arginine-free diet. Brain Res 2000; 876:1-9. [PMID: 10973586 DOI: 10.1016/s0006-8993(00)02589-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sparse-fur (spf) mice are a model for the congenital deficiency of ornithine transcarbamylase (OTC), the most common inborn error of urea synthesis in man. In this study, performance of clinically stable spf and control mice (8-10-weeks-old) on two learning tests was assessed under normal Arg(+) or arginine-free Arg(-) diet conditions. Used as an indicator of the metabolic status of the animals, plasma ammonia concentrations were significantly higher in spf than in controls on normal diet, and increased even more during the Arg(-) diet episode. Behaviourally, we found no difference in passive avoidance learning between control and spf mice on Arg(+) diet, whereas in spf mice receiving Arg(-) diet during training, retention performance was significantly reduced. In the hidden-platform water maze, spf mice on Arg(+) diet only showed decreased swimming velocity compared to controls. In mice on Arg(-) diet during the first week of acquisition training, performance on acquisition and retention (probe) trials showed that spf mice experienced more difficulties in actually locating the platform. Visible-platform control experiments only showed a reduction in swimming velocity in spf mice on either diet. We conclude that cognitive performance is impaired in spf mice as a consequence of Arg(-) diet-induced neurochemical alterations.
Collapse
Affiliation(s)
- R D'Hooge
- Laboratory of Neurochemistry and Behaviour, Born-Bunge Foundation, Antwerp University, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | | | | | | |
Collapse
|