1
|
Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and Astrocytes: A Homeostatic and Neuroprotective Relationship. Front Mol Neurosci 2022; 15:937789. [PMID: 35866158 PMCID: PMC9294388 DOI: 10.3389/fnmol.2022.937789] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/17/2022] [Indexed: 12/20/2022] Open
Abstract
Taurine is considered the most abundant free amino acid in the brain. Even though there are endogenous mechanisms for taurine production in neural cells, an exogenous supply of taurine is required to meet physiological needs. Taurine is required for optimal postnatal brain development; however, its brain concentration decreases with age. Synthesis of taurine in the central nervous system (CNS) occurs predominantly in astrocytes. A metabolic coupling between astrocytes and neurons has been reported, in which astrocytes provide neurons with hypotaurine as a substrate for taurine production. Taurine has antioxidative, osmoregulatory, and anti-inflammatory functions, among other cytoprotective properties. Astrocytes release taurine as a gliotransmitter, promoting both extracellular and intracellular effects in neurons. The extracellular effects include binding to neuronal GABAA and glycine receptors, with subsequent cellular hyperpolarization, and attenuation of N-methyl-D-aspartic acid (NMDA)-mediated glutamate excitotoxicity. Taurine intracellular effects are directed toward calcium homeostatic pathway, reducing calcium overload and thus preventing excitotoxicity, mitochondrial stress, and apoptosis. However, several physiological aspects of taurine remain unclear, such as the existence or not of a specific taurine receptor. Therefore, further research is needed not only in astrocytes and neurons, but also in other glial cells in order to fully comprehend taurine metabolism and function in the brain. Nonetheless, astrocyte’s role in taurine-induced neuroprotective functions should be considered as a promising therapeutic target of several neuroinflammatory, neurodegenerative and psychiatric diseases in the near future. This review provides an overview of the significant relationship between taurine and astrocytes, as well as its homeostatic and neuroprotective role in the nervous system.
Collapse
Affiliation(s)
- Sofía Ramírez-Guerrero
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Santiago Guardo-Maya
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Germán J. Medina-Rincón
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Eduardo E. Orrego-González
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Ricardo Cabezas-Pérez
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de Medicina, Universidad Antonio Nariño, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Rodrigo E. González-Reyes,
| |
Collapse
|
2
|
Expedition into Taurine Biology: Structural Insights and Therapeutic Perspective of Taurine in Neurodegenerative Diseases. Biomolecules 2020; 10:biom10060863. [PMID: 32516961 PMCID: PMC7355587 DOI: 10.3390/biom10060863] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by the accumulation of misfolded proteins. The hallmarks of protein aggregation in NDs proceed with impairment in the mitochondrial function, besides causing an enhancement in endoplasmic reticulum (ER) stress, neuroinflammation and synaptic loss. As accumulation of misfolded proteins hampers normal neuronal functions, it triggers ER stress, which leads to the activation of downstream effectors formulating events along the signaling cascade—referred to as unfolded protein response (UPRER) —thereby controlling cellular gene expression. The absence of disease-modifying therapeutic targets in different NDs, and the exponential increase in the number of cases, makes it critical to explore new approaches to treating these devastating diseases. In one such approach, osmolytes (low molecular weight substances), such as taurine have been found to promote protein folding under stress conditions, thereby averting aggregation of the misfolded proteins. Maintaining the structural integrity of the protein, taurine-mediated resumption of protein folding prompts a shift in folding homeostasis more towards functionality than towards aggregation and degradation. Together, taurine enacts protection in NDs by causing misfolded proteins to refold, so as to regain their stability and functionality. The present study provides recent and useful insights into understanding the progression of NDs, besides summarizing the genetics of NDs in correlation with mitochondrial dysfunction, ER stress, neuroinflammation and synaptic loss. It also highlights the structural and functional aspects of taurine in imparting protection against the aggregation/misfolding of proteins, thereby shifting the focus more towards the development of effective therapeutic modules that could avert the development of NDs.
Collapse
|
3
|
Kilb W. Putative Role of Taurine as Neurotransmitter During Perinatal Cortical Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:281-292. [PMID: 28849463 DOI: 10.1007/978-94-024-1079-2_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurotransmitters and neuronal activity affect neurodevelopmental events like neurogenesis, neuronal migration, apoptosis and differentiation. Beside glutamate and gamma-amino butyric acid, the aminosulfonic acid taurine has been considered as possible neurotransmitter that influences early neuronal development. In this article I review recent studies of our group which demonstrate that taurine can affect a variety of identified neuronal populations in the immature neocortex and directly modulates neuronal activity. These experiments revealed that taurine evoke dose-dependent membrane responses in a variety of neocortical neuron populations, including Cajal-Retzius cells, subplate neurons and GABAergic interneurons. Taurine responses persist in the presence of GABA(A) receptor antagonists and are reduced by the addition of strychnine, suggesting that glycine receptors are involved in taurine-mediated membrane responses. Gramicidin-perforated patch-clamp and cell-attached recordings demonstrated that taurine evokes depolarizing and mainly excitatory membrane responses, in accordance with the high intracellular Cl- concentration in immature neurons. In addition, taurine increases the frequency of postsynaptic GABAergic currents (PSCs) in a considerable fraction of immature pyramidal neurons, indicating a specific activation of presynaptic GABAergic networks projecting toward and exciting pyramidal neurons. In summary, these results suggest that taurine may be critically involved in the regulation of network excitability in the immature neocortex and hippocampus via interactions with glycine receptors.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
5
|
Liu M, Liu X, Wang H, Xiao H, Jing F, Tang L, Li D, Zhang Y, Wu H, Yang H. Metabolomics study on the effects of Buchang Naoxintong capsules for treating cerebral ischemia in rats using UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:1-11. [PMID: 26806568 DOI: 10.1016/j.jep.2016.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buchang Naoxintong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. However, the therapeutic effects and mechanisms are not yet well understood. MATERIALS AND METHODS In this study, a UPLC/TOF-MS-based metabolomic study was conducted to explore potential biomarkers that will increase our understanding of cerebral ischemia and to assess the integral efficacy of BNC in a middle cerebral artery occlusion (MCAO) rat model. Plasma metabolic profiles were analyzed and metabolic biomarkers were identified through multivariate data analysis. RESULTS Clear separations were observed between the sham, MCAO and BNC-treated groups. We identified 28 biomarkers in the MCAO rats using variable importance for the projections (VIP) values (VIP>1) and a t-test (P<0.05). The identified biomarkers were mainly related to disturbances in monoamine neurotransmitter metabolism, amino acid metabolism, energy metabolism and lipid metabolism. Moreover, a correlation network diagram of the plasma biomarkers perturbed by MCAO was constructed. Some biomarkers, such as glutamine, PE (17:0), LysoPE (20:1), LysoPE (24:0), and the ratios of LysoPE (24:1) to LysoPE (24:0), LysoPE (24:2) to LysoPE (24:0), showed obvious changes and a tendency for returning to baseline values in BNC-treated MCAO rats. In addition, MCAO rats receiving BNC treatment had improved neurological deficits and reduced cerebral infarct size demonstrating the therapeutic potential of BNC for treating cerebral ischemia. CONCLUSION This study provides a useful approach for exploring the mechanism of MCAO-induced cerebral ischemia and evaluating the efficacy of BNC.
Collapse
Affiliation(s)
- Mengting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Xin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongbin Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Fang Jing
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| |
Collapse
|
6
|
Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. Neuroscience 2015; 291:331-40. [DOI: 10.1016/j.neuroscience.2014.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022]
|
7
|
Mikami N, Hosokawa M, Miyashita K. Dietary Combination of Fish Oil and Taurine Decreases Fat Accumulation and Ameliorates Blood Glucose Levels in Type 2 Diabetic/Obese KK-Ay Mice. J Food Sci 2012; 77:H114-20. [DOI: 10.1111/j.1750-3841.2012.02687.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Sun M, Xu C. Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cell Mol Neurobiol 2008; 28:593-611. [PMID: 17712625 PMCID: PMC11515008 DOI: 10.1007/s10571-007-9183-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 07/27/2007] [Indexed: 10/22/2022]
Abstract
AIMS Taurine as an endogenous substance possesses a number of cytoprotective properties. In the study, we have evaluated the neuroprotective effect of taurine and investigated whether taurine exerted neuroprotection through affecting calpain/calpastatin or caspase-3 actions during focal cerebral ischemia, since calpain and caspase-3 play central roles in ischemic neuronal death. METHODS Male Sprague-Dawley rats were subjected to 2 h of middle cerebral artery occlusion (MCAo), and 22 h of reperfusion. Taurine was administrated intravenously 1 h after MCAo. The dose-responses of taurine to MCAo were determined. Next, the effects of taurine on the activities of calpain, calpastatin and caspase-3, the levels of calpastatin, microtubule-associated protein-2 (MAP-2) and alphaII-spectrin, and the apoptotic cell death in penumbra were evaluated. RESULTS Taurine reduced neurological deficits and decreased the infarct volume 24 h after MCAo in a dose-dependent manner. Treatment with 50 mg/kg of taurine significantly increased the calpastatin protein levels and activities, and markedly reduced the m-calpain and caspase-3 activities in penumbra 24 h after MCAo, however, it had no significant effect on mu-calpain activity. Moreover, taurine significantly increased the MAP-2 and alphaII-spectrin protein levels, and markedly reduced the ischemia-induced TUNEL staining positive score within penumbra 24 h after MCAo. CONCLUSIONS Our data demonstrate the dose-dependent neuroprotection of taurine against transient focal cerebral ischemia, and suggest that one of protective mechanisms of taurine against ischemia may be blocking the m-calpain and caspase-3-mediated apoptotic cell death pathways.
Collapse
Affiliation(s)
- Ming Sun
- Department of Neurochemistry, Beijing Neurosurgical Institute, 6 Tiantan Xi Li, 100050 Beijing, P.R. China
| | - Chao Xu
- Department of Neurochemistry, Beijing Neurosurgical Institute, 6 Tiantan Xi Li, 100050 Beijing, P.R. China
| |
Collapse
|
9
|
|
10
|
Xu H, Wang W, Tang ZQ, Xu TL, Chen L. Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus. Hear Res 2006; 220:95-105. [PMID: 16949227 DOI: 10.1016/j.heares.2006.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 07/13/2006] [Accepted: 07/17/2006] [Indexed: 11/18/2022]
Abstract
Taurine is an important endogenous amino acid for neural development and for many physiological functions, but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at 1mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 microM strychnine, an antagonist of glycine receptors, but not by 10 microM bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neurotransmitter glycine.
Collapse
Affiliation(s)
- Han Xu
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | | |
Collapse
|
11
|
Bullerjahn A, Mentel T, Pflüger HJ, Stevenson PA. Nitric oxide: a co-modulator of efferent peptidergic neurosecretory cells including a unique octopaminergic neurone innervating locust heart. Cell Tissue Res 2006; 325:345-60. [PMID: 16568300 DOI: 10.1007/s00441-006-0188-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Our findings suggest that nitric oxide (NO) acts as peripheral neuromodulator in locusts, in which it is commonly co-localized with RF-like peptide in neurosecretory cells. We also present the first evidence for NO as a cardio-regulator in insects. Putative NO-producing neurones were detected in locust pre-genital free abdominal ganglia by NADPH-diaphorase histochemistry and with an antibody against NO synthase (NOS). With both methods, we identified the same 14 somata in each examined ganglion: two dorsal posterior midline somata; six ventral posterior midline somata; and three pairs of lateral somata. A combination of NOS-detection methods with nerve tracing and transmitter immunocytochemistry revealed that at least 12 of these cells were efferent, of which four were identified as peptidergic neurosecretory cells with an antiserum detecting RFamide-like peptides. One of the latter was unequivocally identified as an octopaminergic dorsal unpaired median (DUM) neurone, which specifically projected to the heart ("DUM-heart"). Its peripheral projections revealed by axon tracing appeared as a meshwork of varicose endings encapsulating the heart. NOS-like immunoreactive profiles were found in the heart nerve. NO donors caused a dose-dependent increase in heart rate. This cardio-excitatory effect was negatively correlated to resting heart rate and seemed to be dependent on the physiological state of the animal. Hence, NO released from neurones such as the rhythmically active DUM-heart might exert continuous control over the heart. Possible mechanisms for the actions of NO on the heart and interactions with other neuromodulators co-localized in the DUM-heart neurone (octopamine, taurine, RF-amide-like peptide) are discussed.
Collapse
Affiliation(s)
- Alexander Bullerjahn
- Institut für Biologie, Neurobiologie, Freie Universität Berlin, Königin-Luise-Strasse 28-30, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Oermann E, Warskulat U, Heller-Stilb B, Häussinger D, Zilles K. Taurine-transporter gene knockout-induced changes in GABAA, kainate and AMPA but not NMDA receptor binding in mouse brain. ACTA ACUST UNITED AC 2005; 210:363-72. [PMID: 16222546 DOI: 10.1007/s00429-005-0024-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to determine whether the knockout of the taurine-transporter gene in the mouse affects the densities of GABA(A), kainate, AMPA and NMDA receptors in the brain. The caudate-putamen, the hippocampus and its subregions, and the cerebellum of six homozygous taurine-transporter gene knockout mice and six wild-type (WT) animals were examined by means of quantitative receptor autoradiography. Saturation studies were carried out for all four receptor types in order to find possible intergroup differences in Bmax and K(D) values. Taurine-transporter gene knockout animals showed significantly higher GABA(A) receptor densities in the molecular layer of the hippocampal dentate gyrus and in the cerebellum than did WT animals. The densities of kainate receptors were significantly higher in the caudate-putamen, the CA1 and hilus regions of the hippocampus and in the cerebellum of knockout animals. The caudate-putamen and cerebellum of these mice also contained significantly higher AMPA receptor densities. However, there were no significant differences between knockout and WT animals concerning the densities of NMDA receptors. Reduced brain taurine levels are associated with increased GABA(A), kainate and AMPA receptor densities in some of the regions we examined.
Collapse
Affiliation(s)
- Evelyn Oermann
- C and O Vogt Institute for Brain Research, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
13
|
Chai SC, Jerkins AA, Banik JJ, Shalev I, Pinkham JL, Uden PC, Maroney MJ. Heterologous expression, purification, and characterization of recombinant rat cysteine dioxygenase. J Biol Chem 2004; 280:9865-9. [PMID: 15623508 DOI: 10.1074/jbc.m413733200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase (CDO, EC 1.13.11.20) catalyzes the oxidation of cysteine to cysteine sulfinic acid, which is the first major step in cysteine catabolism in mammalian tissues. Rat liver CDO was cloned and expressed in Escherichia coli as a 26.8-kDa N-terminal fusion protein bearing a polyhistidine tag. Purification by immobilized metal affinity chromatography yielded homogeneous protein, which was catalytically active even in the absence of the secondary protein-A, which has been reported to be essential for activity in partially purified native preparations. As compared with those existing purification protocols for native CDO, the milder conditions used in the isolation of the recombinant CDO allowed a more controlled study of the properties and activity of CDO, clarifying conflicting findings in the literature. Apo-protein was inactive in catalysis and was only activated by iron. Metal analysis of purified recombinant protein indicated that only 10% of the protein contained iron and that the iron was loosely bound to the protein. Kinetic studies showed that the recombinant enzyme displayed a K(m) value of 2.5 +/- 0.4 mm at pH 7.5 and 37 degrees C. The enzyme was shown to be specific for l-cysteine oxidation, whereas homocysteine inhibited CDO activity.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemistry and Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Michel S, Schoch K, Stevenson PA. Amine and amino acid transmitters in the eye of the mollusc Bulla gouldiana: an immunocytochemical study. J Comp Neurol 2000; 425:244-56. [PMID: 10954843 DOI: 10.1002/1096-9861(20000918)425:2<244::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We identified putative transmitters of the photoreceptors and circadian pacemaker neurons and found candidates for efferent control in the eye of the marine mollusc Bulla gouldiana. Established antisera against octopamine, dopamine, serotonin, histamine, glutamate, gamma-aminobutyric acid (GABA), and taurine were used, and central ganglia were processed in parallel to evaluate general staining quality. Photoreceptors and circadian pacemaker cells both expressed immunoreactivity for glutamate and taurine. The eye and its sheath were devoid of GABA-like immunoreactive material, and none of the antisera directed against biogenic amines labelled cells or processes in the nervous tissue of the eye. However, dopamine and octopamine antisera stained large spherical granules (diameter 2-3 microm) contained in granular cells that are located in the connective tissue encapsulating the eye and the optic nerve. The serotonin antiserum revealed a sparse distribution of varicose axon fibers in the optic nerve and eye sheath. No histamine-immunoreactive processes were revealed in the eye. The functional significance of these findings for the molluscan eye and its circadian clock is discussed.
Collapse
Affiliation(s)
- S Michel
- Institut für Zoologie, Universität Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
15
|
Abstract
The expression of taurine immunoreactivity (TAU-IR) by neurones immunoreactive for octopamine (OA-IR), gamma-aminobutyric acid (GABA-IR), and the C-terminal peptide sequence arginine-phenylalanine (RFamide-IR) was investigated in the migratory locust (Locusta migratoria). TAU-IR is colocalised with OA-IR in the dorsal unpaired median neurones, which are efferent neuroparacrine cells. TAU-IR is not, however, expressed by OA-IR interneurones in the thoracic ganglia and brain. The only other TAU-IR somata found with peripheral axons are the medial neurosecretory cells in abdominal ganglia that project to the neurohaemal organs. These cells exhibit RFamide-IR. The majority of TAU-IR somata in the thoracic abdominal nervous system exhibit GABA-IR. These cells correspond to populations of identified local and intersegmentally projecting inhibitory interneurones. TAU-IR is not, however, exhibited by the well-known GABAergic common inhibitor neurones, which have peripherally projecting axons. This differential distribution of TAU-IR in basically two, functionally different, neuronal subsets (efferent neurosecretory and neuroparacrine cells, inhibitory interneurones) conforms with the concept of taurine acing as a depressive agent to limit excitation during stressful conditions.
Collapse
Affiliation(s)
- P A Stevenson
- Institut für Zoologie, Universität Leipzig, Germany.
| |
Collapse
|