1
|
Santostefano G, Corrado A, Malzone C, Di Pietro S, Di Bussolo V, De Ricco R. Glycoconjugate Vaccine Quantification: An Overview on Present and Future Trends in Analytical Development. Anal Chem 2025. [PMID: 40293143 DOI: 10.1021/acs.analchem.4c04546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Affiliation(s)
- Giovanni Santostefano
- GSK, Via Fiorentina 1, Siena 53100, Italy
- Department of Pharmacy, University of Pisa, Pisa 56126, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Feng L, Zhang J, Ma C, Li K, Zhai J, Cai S, Yin J. Application prospect of polysaccharide in the development of vaccine adjuvants. Int J Biol Macromol 2025; 297:139845. [PMID: 39824409 DOI: 10.1016/j.ijbiomac.2025.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system. Adjuvants have long been incorporated into vaccines to enhance the body's immune response, allowing for reduced dosage and lower production costs. Despite the development of numerous vaccine adjuvants, few exhibit the necessary potency and low toxicity for clinical use, often due to limited efficacy or adverse side effects. This underscores the urgent need for novel human vaccine adjuvants that are safe, effective, and cost-efficient. Recent studies have identified certain natural polysaccharides as promising human vaccine adjuvants due to their immunostimulatory properties, low toxicity, and high safety profiles, which enhance both humoral and cellular immunity. These natural polysaccharides are primarily derived from traditional Chinese medicine (TCM) plants, bacteria, and yeast. This review comprehensively analyzes several promising polysaccharide adjuvants, discussing their clinical applications, market potential, and immunoregulatory activities. In summary, the future prospects of polysaccharides provide valuable insights for the application and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jiarui Zhang
- Department of Intensive Care Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Khodak YA. Heterologous Expression of Recombinant Proteins and Their Derivatives Used as Carriers for Conjugate Vaccines. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1248-1266. [PMID: 37770392 DOI: 10.1134/s0006297923090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023]
Abstract
Carrier proteins that provide an effective and long-term immune response to weak antigens has become a real breakthrough in the disease prevention, making it available to a wider range of patients and making it possible to obtain reliable vaccines against a variety of pathogens. Currently, research is continuing both to identify new peptides, proteins, and their complexes potentially suitable for use as carriers, and to develop new methods for isolation, purification, and conjugation of already known and well-established proteins. The use of recombinant proteins has a number of advantages over isolation from natural sources, such as simpler cultivation of the host organism, the possibility of modifying genetic constructs, use of numerous promoter variants, signal sequences, and other regulatory elements. This review is devoted to the methods of obtaining both traditional and new recombinant proteins and their derivatives already being used or potentially suitable for use as carrier proteins in conjugate vaccines.
Collapse
Affiliation(s)
- Yuliya A Khodak
- Institute of Bioengineering, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
4
|
Gonzalez-Miro M, Pawlowski A, Lehtonen J, Cao D, Larsson S, Darsley M, Kitson G, Fischer PB, Johansson-Lindbom B. Safety and immunogenicity of the group B streptococcus vaccine AlpN in a placebo-controlled double-blind phase 1 trial. iScience 2023; 26:106261. [PMID: 36915681 PMCID: PMC10005905 DOI: 10.1016/j.isci.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Group B streptococcus (GBS) is a leading cause of life-threatening neonatal infections and subsets of adverse pregnancy outcomes. Essentially all GBS strains possess one allele of the alpha-like protein (Alp) family. A maternal GBS vaccine, consisting of the fused N-terminal domains of the Alps αC and Rib (GBS-NN), was recently demonstrated to be safe and immunogenic in healthy adult women. To enhance antibody responses to all clinically relevant Alps, a second-generation vaccine has been developed (AlpN), also containing the N-terminal domain of Alp1 and the one shared by Alp2 and Alp3. In this study, the safety and immunogenicity of AlpN is assessed in a randomized, double-blind, placebo-controlled, and parallel-group phase I study, involving 60 healthy non-pregnant women. AlpN is well tolerated and elicits similarly robust and persistent antibody responses against all four Alp-N-terminal domains, resulting in enhanced opsonophagocytic killing of all Alp serotypes covered by the vaccine.
Collapse
Affiliation(s)
| | | | - Janne Lehtonen
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Duojia Cao
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | - Sara Larsson
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | | | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
6
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
7
|
Donahue TC, Zong G, O'Brien NA, Ou C, Gildersleeve JC, Wang LX. Synthesis and Immunological Study of N-Glycan-Bacteriophage Qβ Conjugates Reveal Dominant Antibody Responses to the Conserved Chitobiose Core. Bioconjug Chem 2022; 33:1350-1362. [PMID: 35687881 DOI: 10.1021/acs.bioconjchem.2c00211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Glycosylation plays an important role in many biological recognition processes. However, very few N-glycan-specific antibodies are available for functional studies and potentially for therapeutic development. In this study, we sought to synthesize bacteriophage Qβ conjugates with representative N-glycans and investigate their immunogenicity for raising N-glycan-specific antibodies. An array of Qβ glycoconjugates bearing five different human N-glycans and two different chemical linkers were synthesized, and the immunization of the N-glycan-Qβ conjugates was performed in mice. We found that the N-glycan-Qβ conjugates raised significant IgG antibodies that recognize N-glycans, but, surprisingly, most of the glycan-dependent antibodies were directed to the shared chitobiose core and were nonspecific for respective N-glycan structures. The linker chemistry was found to affect antibody specificity with adipic acid-linked N-glycan-Qβ immunogens raising antibodies capable of recognizing both the N-acetylglucosamine (GlcNAc) moieties of the chitobiose core. In contrast, antibodies raised by N-glycan-Qβ immunogens with a triazole linker preferentially recognized the innermost N-acetylglucosamine moiety at the reducing end. We also found that sialylation of the N-glycans significantly suppressed the immune response. Furthermore, the N-glycan-Qβ immunogens with an adipic acid linker elicited higher glycan-specific antibody titers than the N-glycan-triazole-Qβ immunogens. These findings delineate several challenges in eliciting mammalian N-glycan-specific antibodies through the conventional glycoconjugate vaccine design and immunization.
Collapse
Affiliation(s)
- Thomas C Donahue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Nicholas A O'Brien
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Luong P, Ghosh A, Moulton KD, Kulkarni SS, Dube DH. Synthesis and Application of Rare Deoxy Amino l-Sugar Analogues to Probe Glycans in Pathogenic Bacteria. ACS Infect Dis 2022; 8:889-900. [PMID: 35302355 PMCID: PMC9445936 DOI: 10.1021/acsinfecdis.2c00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial cell envelope glycans are compelling antibiotic targets as they are critical for strain fitness and pathogenesis yet are virtually absent from human cells. However, systematic study and perturbation of bacterial glycans remains challenging due to their utilization of rare deoxy amino l-sugars, which impede traditional glycan analysis and are not readily available from natural sources. The development of chemical tools to study bacterial glycans is a crucial step toward understanding and altering these biomolecules. Here we report an expedient methodology to access azide-containing analogues of a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose. Azide-containing l-sugar analogues facilitated metabolic profiling of bacterial glycans in a range of Gram-negative bacteria and revealed differential utilization of l-sugars in symbiotic versus pathogenic bacteria. Further application of these probes will refine our knowledge of the glycan repertoire in diverse bacteria and aid in the design of novel antibiotics.
Collapse
Affiliation(s)
- Phuong Luong
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Antara Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Karen D. Moulton
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400-076, India
| | - Danielle H. Dube
- Department of Chemistry & Biochemistry, Bowdoin College, 6600 College Station, Brunswick, Maine 04011, United States
| |
Collapse
|
9
|
Semi- and fully synthetic carbohydrate vaccines against pathogenic bacteria: recent developments. Biochem Soc Trans 2021; 49:2411-2429. [PMID: 34495299 PMCID: PMC8589429 DOI: 10.1042/bst20210766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022]
Abstract
The importance of vaccine-induced protection was repeatedly demonstrated over the last three decades and emphasized during the recent COVID-19 pandemic as the safest and most effective way of preventing infectious diseases. Vaccines have controlled, and in some cases, eradicated global viral and bacterial infections with high efficiency and at a relatively low cost. Carbohydrates form the capsular sugar coat that surrounds the outer surface of human pathogenic bacteria. Specific surface-exposed bacterial carbohydrates serve as potent vaccine targets that broadened our toolbox against bacterial infections. Since first approved for commercial use, antibacterial carbohydrate-based vaccines mostly rely on inherently complex and heterogenous naturally derived polysaccharides, challenging to obtain in a pure, safe, and cost-effective manner. The introduction of synthetic fragments identical with bacterial capsular polysaccharides provided well-defined and homogenous structures that resolved many challenges of purified polysaccharides. The success of semisynthetic glycoconjugate vaccines against bacterial infections, now in different phases of clinical trials, opened up new possibilities and encouraged further development towards fully synthetic antibacterial vaccine solutions. In this mini-review, we describe the recent achievements in semi- and fully synthetic carbohydrate vaccines against a range of human pathogenic bacteria, focusing on preclinical and clinical studies.
Collapse
|
10
|
Grant LR, Slack MPE, Yan Q, Trzciński K, Barratt J, Sobczyk E, Appleby J, Cané A, Jodar L, Isturiz RE, Gessner BD. The epidemiologic and biologic basis for classifying older age as a high-risk, immunocompromising condition for pneumococcal vaccine policy. Expert Rev Vaccines 2021; 20:691-705. [PMID: 34233558 DOI: 10.1080/14760584.2021.1921579] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Immunosenescence is a normal biologic process involving deterioration of protective immune responses. Consequently, older adults experience increased risk of infectious diseases, particularly pneumonia, and its leading bacterial cause, Streptococcus pneumoniae. Pneumococcal vaccine recommendations are often limited to adults with specific medical conditions despite similar disease risks among older adults due to immunosenescence. AREAS COVERED This article reviews epidemiologic, biologic, and clinical evidence supporting the consideration of older age due to immunosenescence as an immunocompromising condition for the purpose of pneumococcal vaccine policy and the role vaccination can play in healthy aging. EXPERT OPINION Epidemiologic and biologic evidence suggest that pneumococcal disease risk increases with age and is comparable for healthy older adults and younger adults with immunocompromising conditions. Because immunocompromising conditions are already indicated for pneumococcal conjugate vaccines (PCVs), a comprehensive public health strategy would also recognize immunosenescence. Moreover, older persons should be vaccinated before reaching the highest risk ages, consistent with the approach for other immunocompromising conditions. To facilitate PCV use among older adults, vaccine technical committees (VTCs) could classify older age as an immunocompromising condition based on the process of immunosenescence. With global aging, VTCs will need to consider immunosenescence and vaccine use during healthy aging.
Collapse
Affiliation(s)
- Lindsay R Grant
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Mary P E Slack
- School of Medicine, Griffith University Gold Coast Campus, Australia
| | - Qi Yan
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jane Barratt
- International Federation on Ageing, Toronto, Ontario, Canada
| | | | - James Appleby
- The Gerontological Society of America, Washington, D.C., USA
| | - Alejandro Cané
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Raul E Isturiz
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Bradford D Gessner
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
11
|
Zhang R, Wang C, Guan Y, Wei X, Sha M, Yi M, Jing M, Lv M, Guo W, Xu J, Wan Y, Jia XM, Jiang Z. Manganese salts function as potent adjuvants. Cell Mol Immunol 2021; 18:1222-1234. [PMID: 33767434 PMCID: PMC8093200 DOI: 10.1038/s41423-021-00669-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines. To date, only a few adjuvants have been approved for use in humans, among which aluminum-containing adjuvants are the only ones widely used. However, the medical need for potent and safe adjuvants is currently continuously increasing, especially those triggering cellular immune responses for cytotoxic T lymphocyte activation, which are urgently needed for the development of efficient virus and cancer vaccines. Manganese is an essential micronutrient required for diverse biological activities, but its functions in immunity remain undefined. We previously reported that Mn2+ is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn2+ alone directly activates cGAS independent of dsDNA, leading to an unconventional catalytic synthesis of 2'3'-cGAMP. Herein, we found that Mn2+ strongly promoted immune responses by facilitating antigen uptake, presentation, and germinal center formation via both cGAS-STING and NLRP3 activation. Accordingly, a colloidal manganese salt (Mn jelly, MnJ) was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses, inducing antibody production and CD4+/CD8+ T-cell proliferation and activation by either intramuscular or intranasal immunization. When administered intranasally, MnJ also worked as a mucosal adjuvant, inducing high levels of secretory IgA. MnJ showed good adjuvant effects for all tested antigens, including T cell-dependent and T cell-independent antigens, such as bacterial capsular polysaccharides, thus indicating that it is a promising adjuvant candidate.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengyin Sha
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengran Yi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Miao Jing
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wen Guo
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
12
|
Huang YF, Aoki K, Akase S, Ishihara M, Liu YS, Yang G, Kizuka Y, Mizumoto S, Tiemeyer M, Gao XD, Aoki-Kinoshita KF, Fujita M. Global mapping of glycosylation pathways in human-derived cells. Dev Cell 2021; 56:1195-1209.e7. [PMID: 33730547 PMCID: PMC8086148 DOI: 10.1016/j.devcel.2021.02.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023]
Abstract
Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.
Collapse
Affiliation(s)
- Yi-Fan Huang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sachiko Akase
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Kiyoko F Aoki-Kinoshita
- Graduate School of Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan; Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Zhao J, Hu G, Huang Y, Huang Y, Wei X, Shi J. Polysaccharide conjugate vaccine: A kind of vaccine with great development potential. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Hodžić A, Mateos-Hernández L, de la Fuente J, Cabezas-Cruz A. α-Gal-Based Vaccines: Advances, Opportunities, and Perspectives. Trends Parasitol 2020; 36:992-1001. [PMID: 32948455 DOI: 10.1016/j.pt.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Humans and crown catarrhines evolved with the inability to synthesize the oligosaccharide galactose-α-1,3-galactose (α-Gal). In turn, they naturally produce high quantities of the glycan-specific antibodies that can be protective against infectious agents exhibiting the same carbohydrate modification on their surface coat. The protective immunity induced by α-Gal is ensured through an antibody-mediated adaptive and cell-mediated innate immune response. Therefore, the α-Gal antigen represents an attractive and feasible target for developing glycan-based vaccines against multiple diseases. In this review article we provide an insight into our current understanding of the mechanisms involved in the protective immunity to α-Gal and discuss the possibilities and challenges in developing a single-antigen pan-vaccine for prevention and control of parasitic diseases of medical and veterinary concern.
Collapse
Affiliation(s)
- Adnan Hodžić
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Lourdes Mateos-Hernández
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France.
| |
Collapse
|
16
|
Guan L, Zhang L, Xue Y, Yang J, Zhao Z. Molecular pathogenesis of the hyaluronic acid capsule of Pasteurella multocida. Microb Pathog 2020; 149:104380. [PMID: 32645423 DOI: 10.1016/j.micpath.2020.104380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Pasteurella multocida possesses a viscous capsule polysaccharide on the cell surface, which is a critical structural component and virulence factor. Capsular polysaccharides are structurally similar to vertebrate glycosaminoglycans, providing an immunological mechanism for bacterial molecular mimicry, resistance to phagocytosis, and immune evasion during the infection process. Based on the capsular antigen, P. multocida is divided into A, B, D, E, and F five serogroups. Previously, we systematically reported the biosynthesis and regulation mechanisms of the P. multocida capsule. In this paper, we take serogroup A capsular polysaccharide as the representative, systematically illuminating the P. multocida capsular virulence and epidemiology, molecular camouflage, adhesion and colonization, anti-phagocytosis, anti-complement system, cell invasion and signal transduction mechanism, to provide a theoretical basis for the research of molecular pathogenic mechanism of P. multocida capsule and the development of polysaccharides vaccine.
Collapse
Affiliation(s)
- Lijun Guan
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, China
| | - Yun Xue
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinqian Yang
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
17
|
MacCalman TE, Phillips-Jones MK, Harding SE. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 2020; 35:93-125. [PMID: 32048549 DOI: 10.1080/02648725.2019.1703614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycoconjugate vaccines use protein carriers to improve the immune response to polysaccharide antigens. The protein component allows the vaccine to interact with T cells, providing a stronger and longer-lasting immune response than a polysaccharide interacting with B cells alone. Whilst in theory the mere presence of a protein component in a vaccine should be sufficient to improve vaccine efficacy, the extent of improvement varies. In the present review, a comparison of the performances of vaccines developed with and without a protein carrier are presented. The usefulness of analytical tools for macromolecular integrity assays, in particular nuclear magnetic resonance, circular dichroism, analytical ultracentrifugation and SEC coupled to multi-angle light scattering (MALS) is indicated. Although we focus mainly on bacterial capsular polysaccharide-protein vaccines, some consideration is also given to research on experimental cancer vaccines using zwitterionic polysaccharides which, unusually for polysaccharides, are able to invoke T-cell responses and have been used in the development of potential all-polysaccharide-based cancer vaccines.A general trend of improved immunogenicity for glycoconjugate vaccines is described. Since the immunogenicity of a vaccine will also depend on carrier protein type and the way in which it has been linked to polysaccharide, the effects of different carrier proteins and production methods are also reviewed. We suggest that, in general, there is no single best carrier for use in glycoconjugate vaccines. This indicates that the choice of carrier protein is optimally made on a case-by-case basis, based on what generates the best immune response and can be produced safely in each individual case.Abbreviations: AUC: analytical ultracentrifugation; BSA: bovine serum albumin; CD: circular dichroism spectroscopy; CPS: capsular polysaccharide; CRM197: Cross Reactive Material 197; DT: diphtheria toxoid; Hib: Haemophilius influenzae type b; MALS: multi-angle light scattering; Men: Neisseria menigitidis; MHC-II: major histocompatibility complex class II; NMR: nuclear magnetic resonance spectroscopy; OMP: outer membrane protein; PRP: polyribosyl ribitol phosphate; PSA: Polysaccharide A1; Sa: Salmonella; St.: Streptococcus; SEC: size exclusion chromatography; Sta: Staphylococcus; TT: tetanus toxoid; ZPS: zwitterionic polysaccharide(s).
Collapse
Affiliation(s)
- Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK.,Kulturhistorisk Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Muñoz VL, Porsch EA, St Geme JW. Virulence determinants of the emerging pathogen Kingella kingae. Curr Opin Microbiol 2020; 54:37-42. [PMID: 32035372 DOI: 10.1016/j.mib.2020.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
Kingella kingae is a gram-negative coccobacillus that is a fastidious commensal organism in the oropharynx and is being recognized increasingly as a common cause of osteoarticular infections and other invasive diseases in young children. The pathogenesis of K. kingae disease begins with bacterial adherence to respiratory epithelium, followed by translocation across the epithelial barrier, survival in the bloodstream, and dissemination to distant sites, including bones, joints, and the endocardium, among others. Characterization of the determinants of K. kingae pathogenicity has revealed a novel model of adherence that involves the interplay of type IV pili, a non-pilus adhesin, and a polysaccharide capsule and a novel model of resistance to serum killing and neutrophil killing that involves complementary functions of a polysaccharide capsule and an exopolysaccharide. These models likely apply to other bacterial pathogens as well.
Collapse
Affiliation(s)
- Vanessa L Muñoz
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric A Porsch
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph W St Geme
- The Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Malachowa N, Kobayashi SD, Porter AR, Freedman B, Hanley PW, Lovaglio J, Saturday GA, Gardner DJ, Scott DP, Griffin A, Cordova K, Long D, Rosenke R, Sturdevant DE, Bruno D, Martens C, Kreiswirth BN, DeLeo FR. Vaccine Protection against Multidrug-Resistant Klebsiella pneumoniae in a Nonhuman Primate Model of Severe Lower Respiratory Tract Infection. mBio 2019; 10:e02994-19. [PMID: 31848292 PMCID: PMC6918093 DOI: 10.1128/mbio.02994-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/07/2023] Open
Abstract
Klebsiella pneumoniae is a human gut communal organism and notorious opportunistic pathogen. The relative high burden of asymptomatic colonization by K. pneumoniae is often compounded by multidrug resistance-a potential problem for individuals with significant comorbidities or other risk factors for infection. A carbapenem-resistant K. pneumoniae strain classified as multilocus sequence type 258 (ST258) is widespread in the United States and is usually multidrug resistant. Thus, treatment of ST258 infections is often difficult. Inasmuch as new preventive and/or therapeutic measures are needed for treatment of such infections, we developed an ST258 pneumonia model in cynomolgus macaques and tested the ability of an ST258 capsule polysaccharide type 2 (CPS2) vaccine to moderate disease severity. Compared with sham-vaccinated animals, those vaccinated with ST258 CPS2 had significantly less disease as assessed by radiography 24 h after intrabronchial installation of 108 CFU of ST258. All macaques vaccinated with CPS2 ultimately developed ST258-specific antibodies that significantly enhanced serum bactericidal activity and killing of ST258 by macaque neutrophils ex vivo Consistent with a protective immune response to CPS2, transcripts encoding inflammatory mediators were increased in infected lung tissues obtained from CPS-vaccinated animals compared with control, sham-vaccinated macaques. Taken together, our data provide support for the idea that vaccination with ST258 CPS can be used to prevent or moderate infections caused by ST258. As with studies performed decades earlier, we propose that this prime-boost vaccination approach can be extended to include multiple capsule types.IMPORTANCE Multidrug-resistant bacteria continue to be a major problem worldwide, especially among individuals with significant comorbidities and other risk factors for infection. K. pneumoniae is among the leading causes of health care-associated infections, and the organism is often resistant to multiple classes of antibiotics. A carbapenem-resistant K. pneumoniae strain known as multilocus sequence type 258 (ST258) is the predominant carbapenem-resistant Enterobacteriaceae in the health care setting in the United States. Infections caused by ST258 are often difficult to treat and new prophylactic measures and therapeutic approaches are needed. To that end, we developed a lower respiratory tract infection model in cynomolgus macaques in which to test the ability of ST258 CPS to protect against severe ST258 infection.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brett Freedman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg A Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Donald J Gardner
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Amanda Griffin
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kathleen Cordova
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Daniel E Sturdevant
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Daniel Bruno
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Barry N Kreiswirth
- Center for Discovery & Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
20
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
21
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
22
|
Xu P, Korcová J, Baráth P, Čížová A, Valáriková J, Qadri F, Kelly M, O’Connor RD, Ryan ET, Bystrický S, Kováč P. Isolation, Purification, Characterization and Direct Conjugation of the Lipid A-Free Lipopolysaccharide of Vibrio cholerae O139. Chemistry 2019; 25:12946-12956. [PMID: 31306528 PMCID: PMC6783332 DOI: 10.1002/chem.201902263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Indexed: 11/05/2022]
Abstract
The lipopolysaccharide (LPS) of Vibrio cholerae O139, strain CIRS245, was isolated conventionally, and the lipid A was removed by mild acid hydrolysis (0.1 m NaOAc buffer containing 1 % SDS, pH 4.2, 95 °C, 8 h). The crude product was a complex mixture consisting mainly of constituent fragments of the O-specific polysaccharide-core (OSPc). The OSPc was only a minor component in the mixture. Two-stage purification of the crude OSPc by HPLC gave pure OSPc fragment of the LPS, as shown by NMR spectroscopy, analytical HPLC and ESI-MS. This material is the purest OSPc fragment of the LPS from Vibrio cholerae O139 reported to date. The purified OSPc was readily converted to the corresponding methyl squarate derivative and the latter was conjugated to BSA. The conjugate, when examined by ELISA, showed immunoreactivity with sera from patients in Bangladesh recovering from cholera caused by V. cholerae O139, but not O1.
Collapse
Affiliation(s)
- Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville, Bethesda, MD 20892-0815, USA
| | - Jana Korcová
- Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
- Institute of Epidemiology, Faculty of Medicine, Comenius University, Špitálska 24, 813 72, Bratislava, Slovak Republic
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
| | - Jana Valáriková
- Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert D. O’Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville, Bethesda, MD 20892-0815, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, 84238 Bratislava, Slovak Republic
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville, Bethesda, MD 20892-0815, USA
| |
Collapse
|
23
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
24
|
Gerlach D, Guo Y, Stehle T, Peschel A. Reply to: Do not discard Staphylococcus aureus WTA as a vaccine antigen. Nature 2019; 572:E3-E4. [DOI: 10.1038/s41586-019-1417-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Wang H, Li S, Xiong C, Jin G, Chen Z, Gu G, Guo Z. Biochemical studies of a β-1,4-rhamnoslytransferase from Streptococcus pneumonia serotype 23F. Org Biomol Chem 2019; 17:1071-1075. [PMID: 30648163 DOI: 10.1039/c8ob02795a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new β-rhamnoslytransferase Cps23FT from Streptococcus pneumonia serotype 23F was expressed and characterized. Its enzymatic activity and function were confirmed for the first time by utilizing enzymatically prepared dTDP-Rha and chemically synthesized Glcα-PP-(CH2)11-OPh as substrates. This reaction gave the desired disaccharide Rhaβ-1,4-Glcα-PP-(CH2)11-OPh in a good isolated yield (67%), suggesting the potential of Cps23FT as a tool enzyme for the synthesis of complex oligosaccharides containing difficult β-rhamnosyl linkages. Furthermore, site-directed mutagenesis of Cps23FT disclosed that its 271DKD273 motif was critical for the enzymatic activity and most likely the binding site for the required divalent metal cation.
Collapse
Affiliation(s)
- Hong Wang
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gas-Pascual E, Ichikawa HT, Sheikh MO, Serji MI, Deng B, Mandalasi M, Bandini G, Samuelson J, Wells L, West CM. CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem 2018; 294:1104-1125. [PMID: 30463938 DOI: 10.1074/jbc.ra118.006072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/12/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii is a major health risk owing to birth defects, its chronic nature, ability to reactivate to cause blindness and encephalitis, and high prevalence in human populations. Unlike most eukaryotes, Toxoplasma propagates in intracellular parasitophorous vacuoles, but like nearly all other eukaryotes, Toxoplasma glycosylates many cellular proteins and lipids and assembles polysaccharides. Toxoplasma glycans resemble those of other eukaryotes, but species-specific variations have prohibited deeper investigations into their roles in parasite biology and virulence. The Toxoplasma genome encodes a suite of likely glycogenes expected to assemble N-glycans, O-glycans, a C-glycan, GPI-anchors, and polysaccharides, along with their precursors and membrane transporters. To investigate the roles of specific glycans in Toxoplasma, here we coupled genetic and glycomics approaches to map the connections between 67 glycogenes, their enzyme products, the glycans to which they contribute, and cellular functions. We applied a double-CRISPR/Cas9 strategy, in which two guide RNAs promote replacement of a candidate gene with a resistance gene; adapted MS-based glycomics workflows to test for effects on glycan formation; and infected fibroblast monolayers to assess cellular effects. By editing 17 glycogenes, we discovered novel Glc0-2-Man6-GlcNAc2-type N-glycans, a novel HexNAc-GalNAc-mucin-type O-glycan, and Tn-antigen; identified the glycosyltransferases for assembling novel nuclear O-Fuc-type and cell surface Glc-Fuc-type O-glycans; and showed that they are important for in vitro growth. The guide sequences, editing constructs, and mutant strains are freely available to researchers to investigate the roles of glycans in their favorite biological processes.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | | | | | | | - Bowen Deng
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Msano Mandalasi
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602
| | - Giulia Bandini
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - John Samuelson
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts 02118
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Athens, Georgia 30602; Center for Tropical and Emerging Global Diseases, Athens, Georgia 30602; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602.
| |
Collapse
|
27
|
Fong R, Kajihara K, Chen M, Hotzel I, Mariathasan S, Hazenbos WL, Lupardus PJ. Structural investigation of human S. aureus-targeting antibodies that bind wall teichoic acid. MAbs 2018; 10:979-991. [PMID: 30102105 PMCID: PMC6204806 DOI: 10.1080/19420862.2018.1501252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a growing health threat worldwide. Efforts to identify novel antibodies that target S. aureus cell surface antigens are a promising direction in the development of antibiotics that can halt MRSA infection. We biochemically and structurally characterized three patient-derived MRSA-targeting antibodies that bind to wall teichoic acid (WTA), which is a polyanionic surface glycopolymer. In S. aureus, WTA exists in both α- and β-forms, based on the stereochemistry of attachment of a N-acetylglucosamine residue to the repeating phosphoribitol sugar unit. We identified a panel of antibodies cloned from human patients that specifically recognize the α or β form of WTA, and can bind with high affinity to pathogenic wild-type strains of S. aureus bacteria. To investigate how the β-WTA specific antibodies interact with their target epitope, we determined the X-ray crystal structures of the three β-WTA specific antibodies, 4462, 4497, and 6078 (Protein Data Bank IDs 6DWI, 6DWA, and 6DW2, respectively), bound to a synthetic WTA epitope. These structures reveal that all three of these antibodies, while utilizing distinct antibody complementarity-determining region sequences and conformations to interact with β-WTA, fulfill two recognition principles: binding to the β-GlcNAc pyranose core and triangulation of WTA phosphate residues with polar contacts. These studies reveal the molecular basis for targeting a unique S. aureus cell surface epitope and highlight the power of human patient-based antibody discovery techniques for finding novel pathogen-targeting therapeutics.
Collapse
Affiliation(s)
- Rina Fong
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Kimberly Kajihara
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Matthew Chen
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Isidro Hotzel
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Sanjeev Mariathasan
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Wouter L.W. Hazenbos
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Patrick J. Lupardus
- Department of Structural Biology, Genentech, South San Francisco, CA, USA,Departments of Infectious Diseases, Genentech, South San Francisco, CA, USA,Departments of Antibody Engineering, Genentech, South San Francisco, CA, USA,CONTACT Patrick J. Lupardus Department of Structural Biology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
28
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Schumann B, Reppe K, Kaplonek P, Wahlbrink A, Anish C, Witzenrath M, Pereira CL, Seeberger PH. Development of an Efficacious, Semisynthetic Glycoconjugate Vaccine Candidate against Streptococcus pneumoniae Serotype 1. ACS CENTRAL SCIENCE 2018; 4:357-361. [PMID: 29632881 PMCID: PMC5879475 DOI: 10.1021/acscentsci.7b00504] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Indexed: 05/15/2023]
Abstract
Infections with Streptococcus pneumoniae are a major health burden. Glycoconjugate vaccines based on capsular polysaccharides (CPSs) successfully protect from infection, but not all pneumococcal serotypes are covered with equal potency. Marketed glycoconjugate vaccines induce low levels of functional antibodies against the highly invasive serotype 1 (ST1), presumably due to the obscuring of protective epitopes during chemical activation and conjugation to carrier proteins. Synthetic oligosaccharide antigens can be designed to carry linkers for site-selective protein conjugation while keeping protective epitopes intact. Here, we developed an efficacious semisynthetic ST1 glycoconjugate vaccine candidate. A panel of synthetic oligosaccharides served to reveal a critical role of the rare aminosugar, 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (d-AAT), for ST1 immune recognition. A monovalent ST1 trisaccharide carrying d-AAT at the nonreducing end induced a strong antibacterial immune response in rabbits and outperformed the ST1 component of the multivalent blockbuster vaccine Prevenar 13, paving the way for a more efficacious vaccine.
Collapse
Affiliation(s)
- Benjamin Schumann
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie
Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Katrin Reppe
- Division
of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary
Medicine, Charité-Universitätsmedizin
Berlin, Charitéplatz
1, 10117 Berlin, Germany
| | - Paulina Kaplonek
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie
Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annette Wahlbrink
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Chakkumkal Anish
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martin Witzenrath
- Division
of Pulmonary Inflammation, Department of Infectious Diseases and Pulmonary
Medicine, Charité-Universitätsmedizin
Berlin, Charitéplatz
1, 10117 Berlin, Germany
| | - Claney L. Pereira
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Freie
Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
- E-mail: ; Tel: +49 331 567-9300
| |
Collapse
|
30
|
Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med 2018; 50:110-120. [PMID: 29172780 DOI: 10.1080/07853890.2017.1407035] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vaccines are considered to be one of the greatest public health achievements of the last century. Depending on the biology of the infection, the disease to be prevented, and the targeted population, a vaccine may require the induction of different adaptive immune mechanisms to be effective. Understanding the basic concepts of different vaccines is therefore crucial to understand their mode of action, benefits, risks, and their potential real-life impact on protection. This review aims to provide healthcare professionals with background information about the main vaccine designs and concepts of protection in a simplified way to improve their knowledge and understanding, and increase their confidence in the science of vaccination ( Supplementary Material ). KEY MESSAGE Different vaccine designs, each with different advantages and limitations, can be applied for protection against a particular disease. Vaccines may contain live-attenuated pathogens, inactivated pathogens, or only parts of pathogens and may also contain adjuvants to stimulate the immune responses. This review explains the mode of action, benefits, risks and real-life impact of vaccines by highlighting key vaccine concepts. An improved knowledge and understanding of the main vaccine designs and concepts of protection will help support the appropriate use and expectations of vaccines, increase confidence in the science of vaccination, and help reduce vaccine hesitancy.
Collapse
Affiliation(s)
| | - Gülhan Denizer
- b Regulatory Affairs Department , MSD , Brussels , Belgium
| | | | | | - Marla Shapiro
- d Department of Family and Community Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
31
|
Meningococcal Vaccines: Current Status and Emerging Strategies. Vaccines (Basel) 2018; 6:vaccines6010012. [PMID: 29495347 PMCID: PMC5874653 DOI: 10.3390/vaccines6010012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Neisseria meningitidis causes most cases of bacterial meningitis. Meningococcal meningitis is a public health burden to both developed and developing countries throughout the world. There are a number of vaccines (polysaccharide-based, glycoconjugate, protein-based and combined conjugate vaccines) that are approved to target five of the six disease-causing serogroups of the pathogen. Immunization strategies have been effective at helping to decrease the global incidence of meningococcal meningitis. Researchers continue to enhance these efforts through discovery of new antigen targets that may lead to a broadly protective vaccine and development of new methods of homogenous vaccine production. This review describes current meningococcal vaccines and discusses some recent research discoveries that may transform vaccine development against N. meningitidis in the future.
Collapse
|
32
|
Soliman C, Walduck AK, Yuriev E, Richards JS, Cywes-Bentley C, Pier GB, Ramsland PA. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly- N-acetylglucosamine. J Biol Chem 2018; 293:5079-5089. [PMID: 29449370 DOI: 10.1074/jbc.ra117.001170] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Indexed: 01/19/2023] Open
Abstract
In response to the widespread emergence of antibiotic-resistant microbes, new therapeutic agents are required for many human pathogens. A non-mammalian polysaccharide, poly-N-acetyl-d-glucosamine (PNAG), is produced by bacteria, fungi, and protozoan parasites. Antibodies that bind to PNAG and its deacetylated form (dPNAG) exhibit promising in vitro and in vivo activities against many microbes. A human IgG1 mAb (F598) that binds both PNAG and dPNAG has opsonic and protective activities against multiple microbial pathogens and is undergoing preclinical and clinical assessments as a broad-spectrum antimicrobial therapy. Here, to understand how F598 targets PNAG, we determined crystal structures of the unliganded F598 antigen-binding fragment (Fab) and its complexes with N-acetyl-d-glucosamine (GlcNAc) and a PNAG oligosaccharide. We found that F598 recognizes PNAG through a large groove-shaped binding site that traverses the entire light- and heavy-chain interface and accommodates at least five GlcNAc residues. The Fab-GlcNAc complex revealed a deep binding pocket in which the monosaccharide and a core GlcNAc of the oligosaccharide were almost identically positioned, suggesting an anchored binding mechanism of PNAG by F598. The Fab used in our structural analyses retained binding to PNAG on the surface of an antibiotic-resistant, biofilm-forming strain of Staphylococcus aureus Additionally, a model of intact F598 binding to two pentasaccharide epitopes indicates that the Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain. Our findings unravel the structural basis for F598 binding to PNAG on microbial surfaces and biofilms.
Collapse
Affiliation(s)
- Caroline Soliman
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Anna K Walduck
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jack S Richards
- Disease Elimination Program, Burnet Institute, Melbourne, Victoria 3004, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Parkville, Victoria 3052, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria 3052, Australia.,Department of Infectious Diseases, Central Clinical School, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts 02115
| | - Paul A Ramsland
- From the School of Science, Royal Melbourne Institute of Technology (RMIT) University, Bundoora, Victoria 3083, Australia, .,Disease Elimination Program, Burnet Institute, Melbourne, Victoria 3004, Australia.,Department of Immunology, Central Clinical School, Monash University, Victoria 3004, Melbourne, Australia, and.,Department of Surgery Austin Health, University of Melbourne, Heidelberg, Victoria 3084
| |
Collapse
|
33
|
Affiliation(s)
- Mark L Lang
- a Department of Microbiology and Immunology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Binu Shrestha
- a Department of Microbiology and Immunology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
34
|
Kalograiaki I, Campanero-Rhodes MA, Proverbio D, Euba B, Garmendia J, Aastrup T, Solís D. Bacterial Surface Glycans: Microarray and QCM Strategies for Glycophenotyping and Exploration of Recognition by Host Receptors. Methods Enzymol 2017; 598:37-70. [PMID: 29306443 DOI: 10.1016/bs.mie.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial surfaces are decorated with a diversity of carbohydrate structures that play important roles in the bacteria-host relationships. They may offer protection against host defense mechanisms, elicit strong antigenic responses, or serve as ligands for host receptors, including lectins of the innate immune system. Binding by these lectins may trigger defense responses or, alternatively, promote attachment, thereby enhancing infection. The outcome will depend on the particular bacterial surface landscape, which may substantially differ among species and strains. In this chapter, we describe two novel methods for exploring interactions directly on the bacterial surface, based on the generation of bacterial microarrays and quartz crystal microbalance (QCM) sensor chips. Bacterial microarrays enable profiling of accessible carbohydrate structures and screening of their recognition by host receptors, also providing information on binding avidity, while the QCM approach allows determination of binding affinity and kinetics. In both cases, the chief element is the use of entire bacterial cells, so that recognition of the bacterial glycan epitopes is explored in their natural environment.
Collapse
Affiliation(s)
- Ioanna Kalograiaki
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - María A Campanero-Rhodes
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Begoña Euba
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Instituto de Agrobiotecnología, CSIC-UPNa-Gobierno Navarra, Mutilva, Spain
| | - Junkal Garmendia
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Instituto de Agrobiotecnología, CSIC-UPNa-Gobierno Navarra, Mutilva, Spain
| | | | - Dolores Solís
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
35
|
Jaurigue JA, Seeberger PH. Parasite Carbohydrate Vaccines. Front Cell Infect Microbiol 2017; 7:248. [PMID: 28660174 PMCID: PMC5467010 DOI: 10.3389/fcimb.2017.00248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Vaccination is an efficient means of combating infectious disease burden globally. However, routine vaccines for the world's major human parasitic diseases do not yet exist. Vaccines based on carbohydrate antigens are a viable option for parasite vaccine development, given the proven success of carbohydrate vaccines to combat bacterial infections. We will review the key components of carbohydrate vaccines that have remained largely consistent since their inception, and the success of bacterial carbohydrate vaccines. We will then explore the latest developments for both traditional and non-traditional carbohydrate vaccine approaches for three of the world's major protozoan parasitic diseases-malaria, toxoplasmosis, and leishmaniasis. The traditional prophylactic carbohydrate vaccine strategy is being explored for malaria. However, given that parasite disease biology is complex and often arises from host immune responses to parasite antigens, carbohydrate vaccines against deleterious immune responses in host-parasite interactions are also being explored. In particular, the highly abundant glycosylphosphatidylinositol molecules specific for Plasmodium, Toxoplasma, and Leishmania spp. are considered exploitable antigens for this non-traditional vaccine approach. Discussion will revolve around the application of these protozoan carbohydrate antigens for vaccines currently in preclinical development.
Collapse
Affiliation(s)
- Jonnel A. Jaurigue
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and InterfacesPotsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| |
Collapse
|
36
|
Sachdeva S, Palur RV, Sudhakar KU, Rathinavelan T. E. coli Group 1 Capsular Polysaccharide Exportation Nanomachinary as a Plausible Antivirulence Target in the Perspective of Emerging Antimicrobial Resistance. Front Microbiol 2017; 8:70. [PMID: 28217109 PMCID: PMC5290995 DOI: 10.3389/fmicb.2017.00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/11/2017] [Indexed: 02/02/2023] Open
Abstract
Bacteria evolving resistance against the action of multiple drugs and its ability to disseminate the multidrug resistance trait(s) across various strains of the same bacteria or different bacterial species impose serious threat to public health. Evolution of such multidrug resistance is due to the fact that, most of the antibiotics target bacterial survival mechanisms which exert selective pressure on the bacteria and aids them to escape from the action of antibiotics. Nonetheless, targeting bacterial virulence strategies such as bacterial surface associated polysaccharides biosynthesis and their surface accumulation mechanisms may be an attractive strategy, as they impose less selective pressure on the bacteria. Capsular polysaccharide (CPS) or K-antigen that is located on the bacterial surface armors bacteria from host immune response. Thus, unencapsulating bacteria would be a good strategy for drug design, besides CPS itself being a good vaccine target, by interfering with CPS biosynthesis and surface assembly pathway. Gram-negative Escherichia coli uses Wzy-polymerase dependent (Groups 1 and 4) and ATP dependent (Groups 1 and 3) pathways for CPS production. Considering E. coli as a case in point, this review explains the structure and functional roles of proteins involved in Group 1 Wzy dependent CPS biosynthesis, surface expression and anchorage in relevance to drug and vaccine developments.
Collapse
Affiliation(s)
- Shivangi Sachdeva
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Raghuvamsi V Palur
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | - Karpagam U Sudhakar
- Department of Biotechnology, Indian Institute of Technology Hyderabad Kandi, India
| | | |
Collapse
|
37
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Tengattini S, Domínguez-Vega E, Temporini C, Terreni M, Somsen GW. Monitoring antigenic protein integrity during glycoconjugate vaccine synthesis using capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 2016; 408:6123-32. [PMID: 27372716 PMCID: PMC4981626 DOI: 10.1007/s00216-016-9723-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022]
Abstract
A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass spectrometry (MS).
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Elena Domínguez-Vega
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, via Taramelli 12, 27100, Pavia, Italy
| | - Govert W Somsen
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Cabezas Cruz A, Valdés JJ, de la Fuente J. Control of vector-borne infectious diseases by human immunity against α-Gal. Expert Rev Vaccines 2016; 15:953-5. [PMID: 27100121 DOI: 10.1080/14760584.2016.1181547] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alejandro Cabezas Cruz
- a Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204 , Université Lille Nord de France, Institut Pasteur de Lille , Lille , France
| | - James J Valdés
- b Institute of Parasitology , Biology Centre of the Academy of Sciences of the Czech Republic , České Budějovice , Czech Republic.,c Department of Virology , Veterinary Research Institute , Brno , Czech Republic
| | - José de la Fuente
- d SaBio , Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,e Department of Veterinary Pathobiology, Center for Veterinary Health Sciences , Oklahoma State University , Stillwater , OK , USA
| |
Collapse
|
40
|
Rosales-Mendoza S, Salazar-González JA, Decker EL, Reski R. Implications of plant glycans in the development of innovative vaccines. Expert Rev Vaccines 2016; 15:915-25. [DOI: 10.1586/14760584.2016.1155987] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Jorge A. Salazar-González
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP, Mexico
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, Freiburg, Germany
- BIOSS – Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS – Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|