1
|
Luan Y, Li X, Luan Y, Luo J, Dong Q, Ye S, Li Y, Li Y, Jia L, Yang J, Yang DH. Therapeutic challenges in peripheral T-cell lymphoma. Mol Cancer 2024; 23:2. [PMID: 38178117 PMCID: PMC10765866 DOI: 10.1186/s12943-023-01904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Compared to our knowledge of B-cell tumors, our understanding of T-cell leukemia and lymphoma remains less advanced, and a significant number of patients are diagnosed with advanced stages of the disease. Unfortunately, the development of drug resistance in tumors leads to relapsed or refractory peripheral T-Cell Lymphomas (r/r PTCL), resulting in highly unsatisfactory treatment outcomes for these patients. This review provides an overview of potential mechanisms contributing to PTCL treatment resistance, encompassing aspects such as tumor heterogeneity, tumor microenvironment, and abnormal signaling pathways in PTCL development. The existing drugs aimed at overcoming PTCL resistance and their potential resistance mechanisms are also discussed. Furthermore, a summary of ongoing clinical trials related to PTCL is presented, with the aim of aiding clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Yunqi Luan
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drugs, Beijing Key Laboratory of Analysis and Evaluation On Chinese Medicine, Beijing Institute for Drug Control, Beijing, 102206, China
| | - Junyu Luo
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Qinzuo Dong
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Shili Ye
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yuejin Li
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yanmei Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Jun Yang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, 200 Old Country Rd, Suite 500, Mineola, NY, 11501, USA.
| |
Collapse
|
2
|
Mahajan S, Aalhate M, Guru SK, Singh PK. Nanomedicine as a magic bullet for combating lymphoma. J Control Release 2022; 347:211-236. [PMID: 35533946 DOI: 10.1016/j.jconrel.2022.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Hematological malignancy like lymphoma originates in lymph tissues and has a propensity to spread across other organs. Managing such tumors is challenging as conventional strategies like surgery and local treatment are not plausible options and there are high chances of relapse. The advent of novel targeted therapies and antibody-mediated treatments has proven revolutionary in the management of these tumors. Although these therapies have an added advantage of specificity in comparison to the traditional chemotherapy approach, such treatment alternatives suffer from the occurrence of drug resistance and dose-related toxicities. In past decades, nanomedicine has emerged as an excellent surrogate to increase the bioavailability of therapeutic moieties along with a reduction in toxicities of highly cytotoxic drugs. Nanotherapeutics achieve targeted delivery of the therapeutic agents into the malignant cells and also have the ability to carry genes and therapeutic proteins to the desired sites. Furthermore, nanomedicine has an edge in rendering personalized medicine as one type of lymphoma is pathologically different from others. In this review, we have highlighted various applications of nanotechnology-based delivery systems based on lipidic, polymeric and inorganic nanomaterials that address different targets for effectively tackling lymphomas. Moreover, we have discussed recent advances and therapies available exclusively for managing this malignancy.
Collapse
Affiliation(s)
- Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
3
|
Ishikawa C, Mori N. FX1, a BCL6 inhibitor, reactivates BCL6 target genes and suppresses HTLV-1-infected T cells. Invest New Drugs 2022; 40:245-254. [PMID: 34698964 DOI: 10.1007/s10637-021-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is responsible for adult T cell leukemia (ATL); however, molecular and cellular mechanisms underlying HTLV-1-induced leukemogenesis are unclear. BCL6 oncogene is involved in cancer progression and a preferred target of anti-cancer treatments. Here, we aimed to evaluate BCL6 expression and the effects of BCL6 inhibitor (FX1) on HTLV-1-infected T cell lines. BCL6 expression was higher in HTLV-1-infected T cell lines than that in uninfected T cell lines. BCL6 was localized mostly in the nucleus. The virus oncoprotein Tax induced BCL6 mRNA expression in T cells, whereas BCL6 knockdown reduced HTLV-1-infected T cell proliferation; thus, confirmed the association of BCL6 with cancer progression. Further, FX1 efficiently inhibited the cell growth and survival of HTLV-1-infected T cell lines in a dose- and time-dependent manner. The decreased levels of cell cycle regulatory proteins (phosphorylated retinoblastoma protein, cyclin-dependent kinase 4, cyclin D2 and c-Myc) and the increased levels of BCL6 target proteins (p21, p27 and p53) showed that FX1 arrested cell cycle at the G1 phase. Apoptosis was induced concomitantly with Bak upregulation and downregulation of survivin, Bcl-xL and Mcl-1, as well as with the activation of caspase-3, -8, -9 and poly(ADP-ribose) polymerase. FX1 also inhibited NF-κB and Akt signaling pathways. These events were because of the induction of the activity of cell cycle checkpoint proteins and relief of direct repression of the targets of cell cycle checkpoint proteins. Thus, BCL6 might be considered a novel target for ATL treatment.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| |
Collapse
|
4
|
Jo T, Noguchi K, Sakai T, Kubota-Koketsu R, Irie S, Matsuo M, Taguchi J, Abe K, Shigematsu K. HTLV-1 Tax-specific memory cytotoxic T lymphocytes in long-term survivors of aggressive-type adult T-cell leukemia/lymphoma. Cancer Med 2022; 11:3238-3250. [PMID: 35315593 PMCID: PMC9468428 DOI: 10.1002/cam4.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/24/2022] [Accepted: 02/24/2022] [Indexed: 01/08/2023] Open
Abstract
Purpose Adult T‐cell leukemia/lymphoma (ATLL) is a relatively refractory peripheral T‐cell lymphoma caused by human T‐cell lymphotropic virus type 1 (HTLV‐1). The objective of this study was to investigate the characteristics of long‐term survivors with ATLL. Methods We conducted an observational study of 75 aggressive‐type ATLL patients. Flow cytometry was conducted to analyze HTLV‐1 Tax‐specific cytotoxic T‐lymphocytes (CTLs) and T‐cell receptor Vβ gene repertoire. Results We first evaluated six long‐term survivors among 37 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy without mogamulizumab, a monoclonal antibody for C‐C chemokine receptor four antigen. Reversal of the CD4‐to‐CD8 ratio (CD4/CD8) in peripheral mononuclear cells was observed in all six patients. Three of these six patients showed reversed CD4/CD8 immediately after herpes virus infection. Four of these six patients who could be examined demonstrated long‐term maintenance of HTLV‐1 Tax‐specific CTLs. We subsequently identified four long‐term survivors among 38 patients who were newly diagnosed with ATLL and then treated with intensive chemotherapy plus mogamulizumab. All four patients showed reversed CD4/CD8, and three of the four patients contracted herpes virus infection during immunochemotherapy. Six of the total 10 patients were subjected to CTL analyses. Tax‐specific CTLs were observed, and the CTLs that were almost entirely composed of memory CTLs in all patients were recorded. HTLV‐1 provirus was also detected in all six patients. Conclusions These data suggest that Tax‐specific memory CTLs probably, together with anticancer agents, eradicate ATLL cells and exhibit long‐term preventive effects from relapse ATLL. Thus, the strong activation of cellular immunity, such as herpes virus infection, seems to be necessary to induce such a potent number of Tax‐specific CTLs.
Collapse
Affiliation(s)
- Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuhiro Noguchi
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Takahiro Sakai
- Department of Laboratory, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sadaharu Irie
- Department of Pharmacy, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Masatoshi Matsuo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Kazuto Shigematsu
- Department of Pathology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| |
Collapse
|
5
|
Ishikawa C, Mori N. The antipsychotic drug pimozide is effective against human T-cell leukemia virus type 1-infected T cells. Eur J Pharmacol 2021; 908:174373. [PMID: 34303663 DOI: 10.1016/j.ejphar.2021.174373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/28/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
Patients with adult T-cell leukemia (ATL), caused by the human T-cell leukemia virus type 1 (HTLV-1), exhibit poor prognosis owing to drug resistance. Pimozide is a dopamine D2 receptor antagonist and antipsychotic shown to exhibit anticancer activity. Herein, we investigated whether pimozide exerts anti-ATL effects and explored the mechanisms underlying these effects. Pimozide inhibited cell growth and survival in HTLV-1-infected T cells but not in the uninfected T cells. The dopamine D2 receptor subfamily mRNA expression levels in HTLV-1-infected T cells were high. Pimozide induced G1 cell cycle arrest concomitant with the upregulation of p21/p27/p53, and suppression of cyclin D2/E, cyclin-dependent kinase 2/4/6 and c-Myc expression, and pRb phosphorylation. Pimozide also induced apoptosis by activating caspases, upregulating pro-apoptotic proteins and downregulating anti-apoptotic proteins. Additionally, it promoted reactive oxygen species (ROS) generation and increased the expression of the endoplasmic reticulum stress marker activating transcription factor 4 and the DNA damage-inducible protein GADD45α and the phosphorylation of the DNA damage marker H2AX. Furthermore, pimozide-induced cytotoxicity was partially inhibited by a ROS scavenger, and pan-caspase and necroptosis inhibitors, indicating the involvement of caspase-dependent and -independent lethal pathways. The activities of the nuclear factor-κB, Akt, STAT3/5 and AP-1 signaling pathways were inhibited via the dephosphorylation of IκBα, IκB kinase α/β, Akt and STAT3/5, in addition to reduced JunB and JunD expression in HTLV-1-infected T cells. Pimozide also exhibited potent anti-ATL activity in the xenograft mouse model. These findings demonstrated the efficacy of pimozide as a potential therapeutic agent for ATL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan; Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
6
|
Barillari G. The Anti-Angiogenic Effects of Anti-Human Immunodeficiency Virus Drugs. Front Oncol 2020; 10:806. [PMID: 32528888 PMCID: PMC7253758 DOI: 10.3389/fonc.2020.00806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
The growth and metastasis of malignant tumors benefit from the formation of blood vessels within the tumor area. There, new vessels originate from angiogenesis (the sprouting of pre-existing neighboring vessels) and/or vasculogenesis (the mobilization of bone marrow-derived endothelial cell precursors which incorporate in tumor vasculature and then differentiate into mature endothelial cells). These events are induced by soluble molecules (the angiogenic factors) and modulated by endothelial cell interactions with the perivascular matrix. Given angiogenesis/vasculogenesis relevance to tumor progression, anti-angiogenic drugs are often employed to buttress surgery, chemotherapy or radiation therapy in the treatment of a wide variety of cancers. Most of the anti-angiogenic drugs have been developed to functionally impair the angiogenic vascular endothelial growth factor: however, this leaves other angiogenic factors unaffected, hence leading to drug resistance and escape. Other anti-angiogenic strategies have exploited classical inhibitors of enzymes remodeling the perivascular matrix. Disappointingly, these inhibitors have been found toxic and/or ineffective in clinical trials, even though they block angiogenesis in pre-clinical models. These findings are stimulating the identification of other anti-angiogenic compounds. In this regard, it is noteworthy that drugs utilized for a long time to counteract human immune deficiency virus (HIV) can directly and effectively hamper molecular pathways leading to blood vessel formation. In this review the mechanisms leading to angiogenesis and vasculogenesis, and their susceptibility to anti-HIV drugs will be discussed.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
7
|
Nagate Y, Ezoe S, Fujita J, Okuzaki D, Motooka D, Ishibashi T, Ichii M, Tanimura A, Kurashige M, Morii E, Fukushima T, Suehiro Y, Yokota T, Shibayama H, Oritani K, Kanakura Y. Ectonucleotidase CD39 is highly expressed on ATLL cells and is responsible for their immunosuppressive function. Leukemia 2020; 35:107-118. [PMID: 32203145 PMCID: PMC7787980 DOI: 10.1038/s41375-020-0788-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/09/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) patients have an extremely poor prognosis, partly due to their immunosuppressive state. The majority of ATLL patients have leukemic cells with phenotype similar to Tregs, prompting suggestions that ATLL cells themselves have immunosuppressive functions. In this study, we detected CD39 expression on ATLL cells, particularly frequent on aggressive subtypes. CD39 and CD73 convert extracellular adenosine triphosphate (ATP) into adenosine, a key player in Tregs’ immunosuppression. In vitro culture, both CD39+ ATLL cells and normal Tregs converted rapidly extracellular ATP to AMP, which was disturbed by CD39 inhibitors, and was negated in the CD39 knockout MJ cell line. The proliferation of cocultured CD4+/CD8+ normal T cells was suppressed by CD39+ MJ cells, but not by CD39 knockout MJ cells. Supplemented ATP was exhausted by an EG7-OVA T-cell line with stable CD39 induction, but not by mock. When these cell lines were subcutaneously transplanted into murine flanks, Poly(I:C) peritoneal administration reduced tumor size to 1/3 in mock-transplanted tumors, but not in CD39 induced tumors. Overall, we found that ATLL cells express CD39 at a high rate, and our results suggest that this helps ATLL cells escape antitumor immunity through the extracellular ATPDase-Adenosine cascade. These findings will guide future clinical strategies for ATLL treatment.
Collapse
Affiliation(s)
- Yasuhiro Nagate
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Sachiko Ezoe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan. .,Department of Environmental Space Infection Control, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Tomohiko Ishibashi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Vascular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Tanimura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masako Kurashige
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmunology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer, Fukuoka, Japan
| | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenji Oritani
- Department of Hematology, Graduate School of Medical Sciences, International University of Health and Welfare Hospital, Narita, Japan
| | - Yuzuru Kanakura
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
8
|
Chen N, Feng L, Lu K, Li P, Lv X, Wang X. STAT6 phosphorylation upregulates microRNA-155 expression and subsequently enhances the pathogenesis of chronic lymphocytic leukemia. Oncol Lett 2019; 18:95-100. [PMID: 31289477 DOI: 10.3892/ol.2019.10294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL), a clonal expansion of CD5+ B cells, is the most common form of adult leukemia; however, the molecular mechanisms underlying its pathogenesis remain undetermined. It has been previously suggested that numerous biological factors, including cytokines, may be involved in the proliferation of malignant cells. For example, interleukin (IL)-4, IL-2, interferon-γ and tumor necrosis factor serve roles as inhibitors of cellular apoptosis; whereas IL-5 and IL-10 are inducers of cellular apoptosis. In the present study, the results demonstrated that the phosphorylation and activation of signal transducer and activator of transcription 6 (STAT6) was induced by IL-4 in a time-dependent manner. Notably, the expression level of microRNA (miR)-155 was increased in MEC-1 cells following treatment with IL-4; however, this effect was attenuated following STAT6 knockdown via RNA interference. In addition, STAT6 knockdown promoted cell apoptosis, which was partly attenuated by treatment with IL-4. Inhibition of miR-155 expression significantly increased cell apoptosis despite the presence of IL-4. The results of the present study suggested that treatment with IL-4 enhanced the expression of miR-155, which regulated CLL cell survival via the enhanced phosphorylation of STAT6.
Collapse
Affiliation(s)
- Na Chen
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Lili Feng
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kang Lu
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Peipei Li
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiao Lv
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xin Wang
- Department of Hematology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Institute of Diagnostics, School of Medicine, Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
9
|
Mui UN, Haley CT, Vangipuram R, Tyring SK. Human oncoviruses: Mucocutaneous manifestations, pathogenesis, therapeutics, and prevention: Hepatitis viruses, human T-cell leukemia viruses, herpesviruses, and Epstein-Barr virus. J Am Acad Dermatol 2018; 81:23-41. [PMID: 30502415 DOI: 10.1016/j.jaad.2018.10.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
Abstract
In 1964, the first human oncovirus, Epstein-Barr virus, was identified in Burkitt lymphoma cells. Since then, 6 other human oncoviruses have been identified: human papillomavirus, Merkel cell polyomavirus, hepatitis B and C viruses, human T-cell lymphotropic virus-1, and human herpesvirus-8. These viruses are causally linked to 12% of all cancers, many of which have mucocutaneous manifestations. In addition, oncoviruses are associated with multiple benign mucocutaneous diseases. Research regarding the pathogenic mechanisms of oncoviruses and virus-specific treatment and prevention is rapidly evolving. Preventative vaccines for human papillomavirus and hepatitis B virus are already available. This review discusses the mucocutaneous manifestations, pathogenesis, diagnosis, treatment, and prevention of oncovirus-related diseases. The first article in this continuing medical education series focuses on diseases associated with human papillomavirus and Merkel cell polyomavirus, while the second article in the series focuses on diseases associated with hepatitis B and C viruses, human T-cell lymphotropic virus-1, human herpesvirus-8, and Epstein-Barr virus.
Collapse
Affiliation(s)
| | | | - Ramya Vangipuram
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Webster, Texas; Department of Dermatology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
Bellon M, Moles R, Chaib-Mezrag H, Pancewicz J, Nicot C. JAG1 overexpression contributes to Notch1 signaling and the migration of HTLV-1-transformed ATL cells. J Hematol Oncol 2018; 11:119. [PMID: 30231940 PMCID: PMC6146899 DOI: 10.1186/s13045-018-0665-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Background HTLV-1 is a retrovirus that infects over 20 million people worldwide and is responsible for the hematopoietic malignancy adult T cell leukemia (ATL). We previously demonstrated that Notch is constitutively activated in ATL cells. Activating genetic mutations were found in Notch; however, Notch signaling was also activated in the absence of genetic mutations suggesting the existence of other mechanisms. Methods We analyzed the expression of Notch receptor ligands in HTLV-I-transformed cells, ATL patient-derived cell lines, and fresh uncultured ATL samples by RT-PCR, FACS, and immunohistochemistry. We then investigated viral and cellular molecular mechanisms regulating expression of JAG1. Finally, using shRNA knock-down and neutralizing antibodies, we investigated the function of JAG1 in ATL cells. Results Here, we report the overexpression of the Notch ligand, JAG1, in freshly uncultured ATL patient samples compared to normal PBMCs. We found that in ATL cells, JAG1 overexpression relies upon the viral protein Tax and cellular miR-124a, STAT3, and NFATc1. Interestingly, our data show that blockade of JAG1 signaling dampens Notch1 downstream signaling and limits cell migration of transformed ATL cells. Conclusions Our results suggest that targeting JAG1 can block Notch1 activation in HTLV-I-transformed cells and represents a new target for immunotherapy in ATL patients.
Collapse
Affiliation(s)
- Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3046, Kansas City, KS, 66160, USA
| | - Ramona Moles
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3046, Kansas City, KS, 66160, USA
| | - Hassiba Chaib-Mezrag
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3046, Kansas City, KS, 66160, USA
| | - Joanna Pancewicz
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3046, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 3046, Kansas City, KS, 66160, USA.
| |
Collapse
|
11
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
12
|
Mozhgani SH, Zarei-Ghobadi M, Teymoori-Rad M, Mokhtari-Azad T, Mirzaie M, Sheikhi M, Jazayeri SM, Shahbahrami R, Ghourchian H, Jafari M, Rezaee SA, Norouzi M. Human T-lymphotropic virus 1 (HTLV-1) pathogenesis: A systems virology study. J Cell Biochem 2018; 119:3968-3979. [PMID: 29227540 DOI: 10.1002/jcb.26546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
The main mechanisms of interaction between Human T-lymphotropic virus type 1 (HTLV-1) and its hosts in the manifestation of the related disease including HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and Adult T-cell leukemia/lymphoma (ATLL) are yet to be determined. It is pivotal to find out the changes in the genes expression toward an asymptomatic or symptomatic states. To this end, the systems virology analysis was performed. Firstly, the differentially expressed genes (DEGs) were taken pairwise among the four sample sets of Normal, Asymptomatic Carriers (ACs), ATLL, and HAM/TSP. Afterwards, the protein-protein interaction networks were reconstructed utilizing the hub genes. In conclusion, the pathways of cells proliferation and transformation were identified in the ACs state. In addition to immune pathways in ATLL, the inflammation and cancer pathways were discened in both diseases of ATLL and HAM/TSP. The outcomes can specify the genes involved in the pathogenesis and help to design the drugs in the future.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Zarei-Ghobadi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Sheikhi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed-Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohieddin Jafari
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed-Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Baratella M, Forlani G, Accolla RS. HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases. Front Microbiol 2017; 8:2615. [PMID: 29312275 PMCID: PMC5744428 DOI: 10.3389/fmicb.2017.02615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that has infected 10-15 million people worldwide. After a long latency, 3-5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL) or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP). The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ) are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host's inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Richey JD, Chen BJ, Deng AC. Indolent, waxing and waning cutaneous presentation of HTLV-1-associated adult T-cell leukemia/lymphoma in an HIV-1-positive patient. J Cutan Pathol 2017; 45:171-175. [DOI: 10.1111/cup.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/12/2017] [Accepted: 10/29/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Justin D. Richey
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Benjamin J. Chen
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
| | - April C. Deng
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
| |
Collapse
|
15
|
Mui UN, Haley CT, Tyring SK. Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med 2017; 6:E111. [PMID: 29186062 PMCID: PMC5742800 DOI: 10.3390/jcm6120111] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Oncoviruses are implicated in approximately 12% of all human cancers. A large number of the world's population harbors at least one of these oncoviruses, but only a small proportion of these individuals go on to develop cancer. The interplay between host and viral factors is a complex process that works together to create a microenvironment conducive to oncogenesis. In this review, the molecular biology and oncogenic pathways of established human oncoviruses will be discussed. Currently, there are seven recognized human oncoviruses, which include Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Hepatitis B and C viruses (HBV and HCV), Human T-cell lymphotropic virus-1 (HTLV-1), Human Herpesvirus-8 (HHV-8), and Merkel Cell Polyomavirus (MCPyV). Available and emerging therapies for these oncoviruses will be mentioned.
Collapse
Affiliation(s)
- Uyen Ngoc Mui
- Center for Clinical Studies, Houston, TX 77004, USA.
| | | | - Stephen K Tyring
- Center for Clinical Studies, Houston, TX 77004, USA.
- Department of Dermatology, University of Texas Health Science Center at Houston, Houston, TX 77004, USA.
| |
Collapse
|
16
|
Rizkallah G, Journo C, Mahieux R, Dutartre H. How does susceptibility to HTLV-1 infection varies with the maturation state of dendritic cells? Future Virol 2017. [DOI: 10.2217/fvl-2017-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Gerges Rizkallah
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 – Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”
| |
Collapse
|
17
|
|
18
|
Chan CP, Kok KH, Jin DY. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:147-166. [PMID: 29052136 DOI: 10.1007/978-981-10-5765-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4+ T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, 145 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|