1
|
Muthuswamy SK, Brugge JS. Organoid Cultures for the Study of Mammary Biology and Breast Cancer: The Promise and Challenges. Cold Spring Harb Perspect Med 2024; 14:a041661. [PMID: 38110241 PMCID: PMC11216180 DOI: 10.1101/cshperspect.a041661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
During the last decade, biomedical research has experienced a resurgence in the use of three-dimensional culture models for studies of normal and cancer biology. This resurgence has been driven by the development of models in which primary cells are grown in tissue-mimicking media and extracellular matrices to create organoid or organotypic cultures that more faithfully replicate the complex architecture and physiology of normal tissues and tumors. In addition, patient-derived tumor organoids preserve the three-dimensional organization and characteristics of the patient tumors ex vivo, becoming excellent preclinical models to supplement studies of tumor xenografts transplanted into immunocompromised mice. In this perspective, we provide an overview of how organoids are being used to investigate normal mammary biology and as preclinical models of breast cancer and discuss improvements that would enhance their utility and relevance to the field.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland 20894, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Ludwig Center at Harvard, Harvard Medical School Boston, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Sumbal J, Sumbalova Koledova Z. Fibroblast-Epithelium Co-culture Methods Using Epithelial Organoids and Cell Line-Derived Spheroids. Methods Mol Biol 2024; 2764:107-129. [PMID: 38393591 DOI: 10.1007/978-1-0716-3674-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Fibroblasts are an integral cell type of mammary gland stroma, which plays crucial roles in development, homeostasis, and tumorigenesis of mammary epithelium. Fibroblasts produce and remodel extracellular matrix proteins and secrete a plethora of paracrine signals, which instruct both epithelial and other stromal cells of the mammary gland through mechanisms, which have not been fully understood. To enable deciphering of the intricate fibroblast-epithelial interactions, we developed several 3D co-culture methods. In this chapter, we describe methods for establishment of various types of embedded 3D co-cultures of mammary fibroblasts with mammary epithelial organoids, mammary tumor organoids, or breast cancer spheroids to investigate the role of fibroblasts in mammary epithelial development, morphogenesis, and tumorigenesis. The co-culture types include dispersed, aggregated, and transwell cultures.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Laboratory of Tissue Morphogenesis and Cancer, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Caruso M, Saberiseyedabad K, Mourao L, Scheele CLGJ. A Decision Tree to Guide Human and Mouse Mammary Organoid Model Selection. Methods Mol Biol 2024; 2764:77-105. [PMID: 38393590 DOI: 10.1007/978-1-0716-3674-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Over the past 50 years, researchers from the mammary gland field have launched a collection of distinctive 3D cell culture systems to study multiple aspects of mammary gland physiology and disease. As our knowledge about the mammary gland evolves, more sophisticated 3D cell culture systems are required to answer more and more complex questions. Nowadays, morphologically complex mammary organoids can be generated in distinct 3D settings, along with reproduction of multiple aspects of the gland microenvironment. Yet, each 3D culture protocol comes with its advantages and limitations, where some culture systems are best suited to study stemness potential, whereas others are tailored towards the study of mammary gland morphogenesis. Therefore, prior to starting a 3D mammary culture experiment, it is important to consider and select the ideal culture model to address the biological question of interest. The number and technical requirements of novel 3D cell culture methods vastly increased over the past decades, making it currently challenging and time consuming to identify the best experimental testing. In this chapter, we provide a summary of the most promising murine and human 3D organoid models that are currently used in mammary gland biology research. For each model, we will provide a brief description of the protocol and an overview of the expected morphological outcome, the advantages of the model, and the potential pitfalls, to guide the reader to the best model of choice for specific applications.
Collapse
Affiliation(s)
- Marika Caruso
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | | - Larissa Mourao
- VIB-KU Leuven Center for Cancer Biology, Department of Oncology, Leuven, Belgium
| | | |
Collapse
|
4
|
Brezak M, Kubec L, Sumbalova Koledova Z. Differentiation of Fibroblasts to Adipocytes in 3D for a Co-culture with Mammary Organoids and Immunohistological Analysis. Methods Mol Biol 2024; 2764:131-144. [PMID: 38393592 DOI: 10.1007/978-1-0716-3674-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Mammary epithelial ducts, the main functional compartment of the mammary gland, are embedded in an adipocyte-rich stroma, which is essential for proper mammary gland development, function, and tissue homeostasis. Moreover, the adipocyte compartment has an important role in cancer progression. To better understand cell-to-cell interactions and the role of the adipocytes in the mammary gland, development of proper in vitro models which realistically mimic in vivo conditions has been essential. In this chapter, we describe a simple and effective method for generating mammary gland adipocytes from mammary fibroblasts and their subsequent co-culture with mammary epithelial organoids to further investigate the role of adipocytes in epithelial development and morphogenesis.
Collapse
Affiliation(s)
- Matea Brezak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Kubec
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Sumbalova Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Laboratory of Tissue Morphogenesis and Cancer, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
5
|
Sumbal J, Fre S, Sumbalova Koledova Z. Fibroblast-induced mammary epithelial branching depends on fibroblast contractility. PLoS Biol 2024; 22:e3002093. [PMID: 38198514 PMCID: PMC10805323 DOI: 10.1371/journal.pbio.3002093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/23/2024] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Epithelial branching morphogenesis is an essential process in living organisms, through which organ-specific epithelial shapes are created. Interactions between epithelial cells and their stromal microenvironment instruct branching morphogenesis but remain incompletely understood. Here, we employed fibroblast-organoid or fibroblast-spheroid co-culture systems and time-lapse imaging to reveal that physical contact between fibroblasts and epithelial cells and fibroblast contractility are required to induce mammary epithelial branching. Pharmacological inhibition of ROCK or non-muscle myosin II, or fibroblast-specific knock-out of Myh9 abrogate fibroblast-induced epithelial branching. The process of fibroblast-induced branching requires epithelial proliferation and is associated with distinctive epithelial patterning of yes associated protein (YAP) activity along organoid branches, which is dependent on fibroblast contractility. Moreover, we provide evidence for the in vivo existence of contractile fibroblasts specifically surrounding terminal end buds (TEBs) of pubertal murine mammary glands, advocating for an important role of fibroblast contractility in branching in vivo. Together, we identify fibroblast contractility as a novel stromal factor driving mammary epithelial morphogenesis. Our study contributes to comprehensive understanding of overlapping but divergent employment of mechanically active fibroblasts in developmental versus tumorigenic programs.
Collapse
Affiliation(s)
- Jakub Sumbal
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS UMR3215, PSL Université Paris, Paris, France
| | - Zuzana Sumbalova Koledova
- Masaryk University, Faculty of Medicine, Department of Histology and Embryology, Brno, Czech Republic
| |
Collapse
|
6
|
Tzeng YDT, Hsiao JH, Tseng LM, Hou MF, Li CJ. Breast cancer organoids derived from patients: A platform for tailored drug screening. Biochem Pharmacol 2023; 217:115803. [PMID: 37709150 DOI: 10.1016/j.bcp.2023.115803] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer stands as the most prevalent and heterogeneous malignancy affecting women globally, posing a substantial health concern. Enhanced comprehension of tumor pathology and the development of novel therapeutics are pivotal for advancing breast cancer treatment. Contemporary breast cancer investigation heavily leans on in vivo models and conventional cell culture techniques. Nonetheless, these approaches often encounter high failure rates in clinical trials due to species disparities and tissue structure variations. To address this, three-dimensional cultivation of organoids, resembling organ-like structures, has emerged as a promising alternative. Organoids represent innovative in vitro models that mirror in vivo tissue microenvironments. They retain the original tumor's diversity and facilitate the expansion of tumor samples from diverse origins, facilitating the representation of varying tumor stages. Optimized breast cancer organoid models, under precise culture conditions, offer benefits including convenient sample acquisition, abbreviated cultivation durations, and genetic stability. These attributes ensure a faithful replication of in vivo traits of breast cancer cells. As intricate cellular entities boasting spatial arrangements, breast cancer organoid models harbor substantial potential in precision medicine, organ transplantation, modeling intricate diseases, gene therapy, and drug innovation. This review delivers an overview of organoid culture techniques and outlines future prospects for organoid modeling.
Collapse
Affiliation(s)
- Yen-Dun Tony Tzeng
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jui-Hu Hsiao
- Department of Surgery, Kaohsiung Municipal Minsheng Hospital, Kaohsiung, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Comprehensive Breast Health Center, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Ming-Feng Hou
- Division of Breast Surgery, Department of Surgery, Center for Cancer Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
7
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, Haghjooy Javanmard S. Three-Dimensional in Vitro Models: A Promising Tool To Scale-Up Breast Cancer Research. ACS Biomater Sci Eng 2022; 8:4648-4672. [PMID: 36260561 DOI: 10.1021/acsbiomaterials.2c00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common models used in breast cancer studies, including two-dimensional (2D) cultures and animal models, do not precisely model all aspects of breast tumors. These models do not well simulate the cell-cell and cell-stromal interactions required for normal tumor growth in the body and lake tumor like microenvironment. Three-dimensional (3D) cell culture models are novel approaches to studying breast cancer. They do not have the restrictions of these conventional models and are able to recapitulate the structural architecture, complexity, and specific function of breast tumors and provide similar in vivo responses to therapeutic regimens. These models can be a link between former traditional 2D culture and in vivo models and are necessary for further studies in cancer. This review attempts to summarize the most common 3D in vitro models used in breast cancer studies, including scaffold-free (spheroid and organoid), scaffold-based, and chip-based models, particularly focused on the basic and translational application of these 3D models in drug screening and the tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada.,Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
9
|
Sumbal J, Gudjonsson T, Traustadottir GA, Koledova Z. An Organotypic Assay to Study Epithelial-Fibroblast Interactions in Human Breast. Methods Mol Biol 2022; 2471:283-299. [PMID: 35175604 DOI: 10.1007/978-1-0716-2193-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epithelial-stromal interactions play an essential role in regulation of mammary gland development, homeostasis, and tumorigenesis. Fibroblasts constitute a substantial proportion of mammary gland stromal cells in human breast and have been recognized for their paracrine signaling and extracellular matrix production and remodeling roles during normal breast development as well as in breast cancer. However, our current knowledge on human breast fibroblast functions is incomplete. Here we provide a detailed protocol for an organotypic human breast assay to facilitate research in the roles of human breast fibroblasts in mammary epithelial morphogenesis and early tumorigenesis.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali - University Hospital, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Sumbal J, Koledova Z. Single Organoids Droplet-Based Staining Method for High-End 3D Imaging of Mammary Organoids. Methods Mol Biol 2022; 2471:259-269. [PMID: 35175602 DOI: 10.1007/978-1-0716-2193-6_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last decade, organoids became a tremendously popular technique in developmental and cancer biology for their high pathophysiological relevance to in vivo models with the advantage of easier manipulation, real-time observation, potential for high-throughput studies, and reduced ethical issues. Among other fundamental biological questions, mammary organoids have helped to reveal mechanisms of mammary epithelial morphogenesis, mammary stem cell potential, regulation of lineage specification, mechanisms of breast cancer invasion or resistance to therapy, and their regulation by stromal microenvironment. To exploit the potential of organoid technology to the fullest, together with optimal organoid culture protocols, visualization of organoid architecture and composition in high resolution in three dimensions (3D) is required. Whole-mount imaging of immunolabeled organoids enables preservation of the 3D cellular context, but conventional confocal microscopy of organoid cultures struggles with the large organoid sample size and relatively long distance from the objective to the organoid due to the 3D extracellular matrix (ECM) that surrounds the organoid. We have overcome these issues by physical separation of single organoids with their immediate stroma from the bulk ECM. Here we provide a detail protocol for the procedure, which entails single organoid collection and droplet-based staining and clearing to allow visualization of organoids in the greatest detail.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Finot L, Chanat E, Dessauge F. Mammary gland 3D cell culture systems in farm animals. Vet Res 2021; 52:78. [PMID: 34078471 PMCID: PMC8173821 DOI: 10.1186/s13567-021-00947-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
In vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.
Collapse
Affiliation(s)
- Laurence Finot
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| | - Eric Chanat
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | | |
Collapse
|
12
|
Wang J, Song W, Yang R, Li C, Wu T, Dong XB, Zhou B, Guo X, Chen J, Liu Z, Yu QC, Li W, Fu J, Zeng YA. Endothelial Wnts control mammary epithelial patterning via fibroblast signaling. Cell Rep 2021; 34:108897. [PMID: 33789106 DOI: 10.1016/j.celrep.2021.108897] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial and fibroblast niches are crucial for epithelial organs. How these heterotypic cells interact is of great interest. In this study, we reveal an axis of signaling in which fibroblasts relay Wnt signals from the endothelial niche to organize epithelial patterning. We generate an Axin2-membrane GFP (mGFP) reporter mouse and observe robust Wnt/β-catenin signaling activities in fibroblasts surrounding the mammary epithelium. To enable cell-type-specific gene manipulation in vitro, we establish an organoid system via coculture of endothelial cells (ECs), fibroblasts, and mammary epithelial cells. Deletion of β-catenin in fibroblasts impedes epithelium branching, and ECs are responsible for the activation of Wnt/β-catenin signaling in fibroblasts. In vivo, EC deletion of Wntless inhibits Wnt/β-catenin signaling activity in fibroblasts, rendering a reduction in epithelial branches. These findings highlight the significance of the endothelial niche in tissue patterning, shedding light on the interactive mechanisms in which distinct niche components orchestrate epithelial organogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Jingqiang Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Wenqian Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruikai Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Bing Dong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qing Cissy Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Wen Li
- Center of reproductive medicine, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China.
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
13
|
Sahni G, Chang S, Meng JTC, Tan JZY, Fatien JJC, Bonnard C, Utami KH, Chan PW, Tan TT, Altunoglu U, Kayserili H, Pouladi M, Reversade B, Toh Y. A Micropatterned Human-Specific Neuroepithelial Tissue for Modeling Gene and Drug-Induced Neurodevelopmental Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001100. [PMID: 33717833 PMCID: PMC7927627 DOI: 10.1002/advs.202001100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
The generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGFβ signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.
Collapse
Affiliation(s)
- Geetika Sahni
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Shu‐Yung Chang
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
| | - Jeremy Teo Choon Meng
- Divison of EngineeringNew York UniversityAbu Dhabi129188United Arab Emirates
- Department of Mechanical EngineeringNew York UniversityNew YorkNY11201USA
| | - Jerome Zu Yao Tan
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Jean Jacques Clement Fatien
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Carine Bonnard
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
| | - Puck Wee Chan
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Thong Teck Tan
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Umut Altunoglu
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Hülya Kayserili
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
| | - Mahmoud Pouladi
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
- Department of MedicineNational University of SingaporeSingapore119228Singapore
| | - Bruno Reversade
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
- Institute of Molecular and Cellular BiologyA*STARSingapore138673Singapore
- Amsterdam Reproduction and DevelopmentAcademic Medical Centre and VU University Medical CenterAmsterdam1105the Netherlands
- National University of SingaporeDepartment of PediatricsSingapore119228Singapore
| | - Yi‐Chin Toh
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQueensland4000Australia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQueensland4059Australia
| |
Collapse
|
14
|
Nielsen BS, Larsen J, Høffding J, Nhat SL, Madsen NH, Møller T, Holst B, Holmstrøm K. Detection of lncRNA by LNA-Based In Situ Hybridization in Paraffin-Embedded Cancer Cell Spheroids. Methods Mol Biol 2021; 2348:123-137. [PMID: 34160803 DOI: 10.1007/978-1-0716-1581-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cell spheroids are considered important preclinical tools to evaluate the efficacy of new drugs. In cancer cell spheroids, the cells assemble and grow in 3D structures with cell contact interactions that are partly impermeable, which leads to central hypoxia and necrosis. The cell spheroids thus possess several features identified in clinical tumors. Not only will the effect and behavior of therapeutic drugs in 3D cell spheroids be affected more similarly than in cells grown on culture plates, but molecular interactions and signaling pathways in cells are also more likely to mimic the in vivo situation. The monitoring of various biomarkers including lncRNAs in 3D cell spheroids is important to assess a potentially induced phenotype in the cells and the effects of drugs. Specifically, for lncRNAs, in situ localization can be done using locked nucleic acid (LNA) probe technology. Here we present a protocol for preparation of cell spheroids for use in LNA probe-based in situ hybridization to study lncRNA expression in paraffin embedded 3D cancer cell spheroids.
Collapse
Affiliation(s)
| | | | - Jakob Høffding
- Bioneer A/S, Hørsholm, Denmark.,Københavns Professionshøjskole, København, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Sumbal J, Budkova Z, Traustadóttir GÁ, Koledova Z. Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks. J Mammary Gland Biol Neoplasia 2020; 25:273-288. [PMID: 33210256 DOI: 10.1007/s10911-020-09468-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Budkova
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Gunnhildur Ásta Traustadóttir
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
16
|
Yu J, Huang W. The Progress and Clinical Application of Breast Cancer Organoids. Int J Stem Cells 2020; 13:295-304. [PMID: 32840232 PMCID: PMC7691857 DOI: 10.15283/ijsc20082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the malignant tumor with the highest incidence in women. Nowadays, the objects in vitro of models of this disease are mainly from breast cancer cell lines and patient-derived patient-derived xenograft (PDX). However, there is a significant gap between traditional cell lines and breast cancer solid tumors, meanwhiles, PDX is not highly consistent with patients due to different species. As a techonlogy, obtaining patient-derived tumor cells, combined with three-dimensional culture technology, adding cytokines that promotes the proliferation of breast cancer stem cells and inhibit their apoptosis, breast cancer organoids form a structure in vitro which is similar to tumor in the body. This model can not only study the occurrence and envolution of breast cancer, but is more prominent in clinical application. screening drugs by high-throughput, personalized treatment, textingtoxicity and immunotherapy. This article will review the breast cancer organoids, in evolution, source, culture system and clinical applications.
Collapse
Affiliation(s)
- Jin Yu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wei Huang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
17
|
Hacker BC, Rafat M. Organoids as Complex In Vitro Models for Studying Radiation-Induced Cell Recruitment. Cell Mol Bioeng 2020; 13:341-357. [PMID: 32952734 PMCID: PMC7479086 DOI: 10.1007/s12195-020-00625-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
Patients with triple negative breast cancer (TNBC) typically receive chemotherapy, surgery, and radiation therapy. Although this treatment improves prognosis for most patients, some patients continue to experience recurrence within 5 years. Preclinical studies have shown that immune cell infiltration at the irradiated site may play a significant role in tumor cell recruitment; however, little is known about the mechanisms that govern this process. This lack of knowledge highlights the need to evaluate radiation-induced cell infiltration with models that have controllable variables and maintain biological integrity. Mammary organoids are multicellular three-dimensional (3D) in vitro models, and they have been used to examine many aspects of mammary development and tumorigenesis. Organoids are also emerging as a powerful tool to investigate normal tissue radiation damage. In this review, we evaluate recent advances in mammary organoid technology, consider the advantages of using organoids to study radiation response, and discuss future directions for the applications of this technique.
Collapse
Affiliation(s)
- Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
18
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
19
|
Organoid models for mammary gland dynamics and breast cancer. Curr Opin Cell Biol 2020; 66:51-58. [PMID: 32535255 DOI: 10.1016/j.ceb.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
The mammary gland is a highly dynamic tissue that undergoes repeated cycles of growth and involution during pregnancy and menstruation. It is also the site from which breast cancers emerge. Organoids provide an in vitro model that preserves several of the cellular, structural, and microenvironmental features that dictate mammary gland function in vivo and have greatly advanced our understanding of glandular biology. Their tractability for genetic manipulation, live imaging, and high throughput screening have facilitated investigation into the mechanisms of glandular morphogenesis, structural maintenance, tumor progression, and invasion. Opportunities remain to enhance cellular and structural complexity of mammary organoid models, including incorporating additional cell types and hormone signaling.
Collapse
|
20
|
Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front Bioeng Biotechnol 2020; 8:494. [PMID: 32596217 PMCID: PMC7300215 DOI: 10.3389/fbioe.2020.00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.
Collapse
Affiliation(s)
- Patrícia Barros da Silva
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Mariana Coelho
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Carvalheira Neves
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Carvalho Barrias
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Front Cell Dev Biol 2020; 8:68. [PMID: 32266252 PMCID: PMC7098375 DOI: 10.3389/fcell.2020.00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium, as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Aurelie Chiche
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Elsa Charifou
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Han Li
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Koledova Z, Sumbal J, Rabata A, de La Bourdonnaye G, Chaloupkova R, Hrdlickova B, Damborsky J, Stepankova V. Fibroblast Growth Factor 2 Protein Stability Provides Decreased Dependence on Heparin for Induction of FGFR Signaling and Alters ERK Signaling Dynamics. Front Cell Dev Biol 2019; 7:331. [PMID: 31921844 PMCID: PMC6924264 DOI: 10.3389/fcell.2019.00331] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) plays important roles in tissue development and repair. Using heparan sulfates (HS)/heparin as a cofactor, FGF2 binds to FGF receptor (FGFR) and induces downstream signaling pathways, such as ERK pathway, that regulate cellular behavior. In most cell lines, FGF2 signaling displays biphasic dose-response profile, reaching maximal response to intermediate concentrations, but weak response to high levels of FGF2. Recent reports demonstrated that the biphasic cellular response results from competition between binding of FGF2 to HS and FGFR that impinge upon ERK signaling dynamics. However, the role of HS/heparin in FGF signaling has been controversial. Several studies suggested that heparin is not required for FGF-FGFR complex formation and that the main role of heparin is to protect FGF from degradation. In this study, we investigated the relationship between FGF2 stability, heparin dependence and ERK signaling dynamics using FGF2 variants with increased thermal stability (FGF2-STABs). FGF2-STABs showed higher efficiency in induction of FGFR-mediated proliferation, lower affinity to heparin and were less dependent on heparin than wild-type FGF2 (FGF2-wt) for induction of FGFR-mediated mitogenic response. Interestingly, in primary mammary fibroblasts, FGF2-wt displayed a sigmoidal dose-response profile, while FGF2-STABs showed a biphasic response. Moreover, at low concentrations, FGF2-STABs induced ERK signaling more potently and displayed a faster dynamics of full ERK activation and higher amplitudes of ERK signaling than FGF2-wt. Our results suggest that FGF2 stability and heparin dependence are important factors in FGF-FGFR signaling complex assembly and ERK signaling dynamics.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia
| | - Anas Rabata
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Gabin de La Bourdonnaye
- Enantis, Brno, Czechia.,Loschmidt Laboratories, RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Radka Chaloupkova
- Enantis, Brno, Czechia.,Loschmidt Laboratories, RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Jiri Damborsky
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czechia.,Enantis, Brno, Czechia.,Loschmidt Laboratories, RECETOX and Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | | |
Collapse
|
23
|
Koledova Z, Sumbal J. FGF signaling in mammary gland fibroblasts regulates multiple fibroblast functions and mammary epithelial morphogenesis. Development 2019; 146:dev.185306. [DOI: 10.1242/dev.185306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF) signaling is crucial for mammary gland development. While multiple roles for FGF signaling in the epithelium were described, the function of FGF signaling in mammary stroma has not been elucidated. In this study, we investigated FGF signaling in mammary fibroblasts. We found that mammary fibroblasts express FGF receptors FGFR1 and FGFR2 and respond to FGF ligands. In particular, FGF2 and FGF9 induce sustained ERK1/2 signaling and promote fibroblast proliferation and migration in 2D. Intriguingly, only FGF2 induces fibroblast migration in 3D extracellular matrix (ECM) through regulation of actomyosin cytoskeleton and promotes force-mediated collagen remodeling by mammary fibroblasts. Moreover, FGF2 regulates production of ECM proteins by mammary fibroblasts, including collagens, fibronectin, osteopontin, and matrix metalloproteinases. Finally, using organotypic 3D co-cultures we show that FGF2 and FGF9 signaling in mammary fibroblasts enhances fibroblast-induced branching of mammary epithelium by modulating paracrine signaling and that knockdown of Fgfr1 and Fgfr2 in mammary fibroblasts reduces branching of mammary epithelium. Our results demonstrate a pleiotropic role for FGF signaling in mammary fibroblasts with implications for regulation of mammary stromal functions and epithelial branching morphogenesis.
Collapse
Affiliation(s)
- Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| | - Jakub Sumbal
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 625 00, Czech Republic
| |
Collapse
|
24
|
Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Viveros-Valdez E, Morán-Martínez J. Breast Organotypic Cancer Models. Curr Top Microbiol Immunol 2018:199-223. [PMID: 29556825 DOI: 10.1007/82_2018_86] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer is the most common cancer type diagnosed in women, it represents a critical public health problem worldwide, with 1,671,149 estimated new cases and nearly 571,000 related deaths. Research on breast cancer has mainly been conducted using two-dimensional (2D) cell cultures and animal models. The usefulness of these models is reflected in the vast knowledge accumulated over the past decades. However, considering that animal models are three-dimensional (3D) in nature, the validity of the studies using 2D cell cultures has recently been questioned. Although animal models are important in cancer research, ethical questions arise about their use and usefulness as there is no clear predictivity of human disease outcome and they are very expensive and take too much time to obtain results. The poor performance or failure of most cancer drugs suggests that preclinical research on cancer has been based on an over-dependence on inadequate animal models. For these reasons, in the last few years development of alternative models has been prioritized to study human breast cancer behavior, while maintaining a 3D microenvironment, and to reduce the number of experiments conducted in animals. One way to achieve this is using organotypic cultures, which are being more frequently explored in cancer research because they mimic tissue architecture in vivo. These characteristics make organotypic cultures a valuable tool in cancer research as an alternative to replace animal models and for predicting risk assessment in humans. This chapter describes the cultures of multicellular spheroids, organoids, 3D bioreactors, and tumor slices, which are the most widely used organotypic models in breast cancer research.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- Departamento de Biología Celular y Molecular, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Noreste, Monterrey, Nuevo León, Mexico.
| | - Nancy Elena Guzmán-Delgado
- Unidad Médica de Alta Especialidad # 34, División de Investigación, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Departamento de Biología Celular y Molecular, Instituto Mexicano del Seguro Social. Centro de Investigación Biomédica del Noreste, Monterrey, Nuevo León, Mexico
| | - Ezequiel Viveros-Valdez
- Departamento de Química Analítica, Ciudad Universitaria, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, San Nicolás de los Garza, Nuevo León, Mexico
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Universidad Autónoma de Coahuila, Facultad de Medicina. Centro de Investigación Biomédica, Torreón, Coahuila, Mexico
| |
Collapse
|