1
|
Tamturk E, Yalcın S, Ercan F, Tuncbilek AS. In vivo, In vitro, and In silico Studies of Umbelliferone and Irinotecan on MDA-MB-231 Breast Cancer Cell Line and Drosophila melanogaster Larvae. Anticancer Agents Med Chem 2025; 25:499-516. [PMID: 39473207 DOI: 10.2174/0118715206340868241018075528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 05/07/2025]
Abstract
AIMS Deaths from cancer are still very common all over the world and continue to be the focus of scientific research. Chemotherapy is one of the primary treatments used to prevent deaths from cancer. Side effects of chemotherapeutic drugs and resistance of cells to drugs are essential problems that limit the treatment process. Drug combination therapy is regarded as a significant application that inhibits the growth of tumors and is anticipated to provide a solution for the issues encountered. The combination therapy aims at a synergistic effect that will limit drug resistance and cytotoxic effects with appropriate drug combinations. In this context, we aim to investigate the In vitro, In vivo, and In silico effects of single and combined doses of umbelliferone and irinotecan, known for their anticarcinogenic and curative effects, on MDA-MB-231 breast cancer cell lines and the model organism Drosophila melanogaster. Background: Irinotecan is currently used as an anticarcinogenic drug. Anticarcinogenic effects of umbelliferone have also been detected. The in vivo, in vitro, and in silico impacts of single and combined doses use of these two agents are not yet available in the literature. OBJECTIVE This study aims to determine the anticarcinogenic effects of single and combined use of umbelliferone and irinotecan at the molecular level. It also attempts to determine the binding energies of chemicals to cancerrelated proteins through docking and molecular dynamic studies. METHODS The cytotoxic effects of individual and combinational doses of umbelliferone and irinotecan on the MDAMB- 231 cell line and D. melanogaster were calculated by XTT and probit analyses. IC50 values for the cancer cells, LC50, and LC99 values for D. melanogaster were found. Gene expression analysis was performed to determine the effects of chemical agents on miR-7, miR-11, and miR-14, and their expression levels were found. The sequences of miRNAs not found in the literature were determined, and their molecular imaging was performed. In addition, the binding energies of irinotecan and umbelliferone to Bcl-2, Bad, and Akt1 proteins, which are known to have apoptotic effects, were found by the molecular docking method. Molecular dynamics studies of Bad proteins and chemicals were also performed. The drug potential of chemicals was determined by ADME/T analysis. RESULTS The cytotoxic effect on cells was calculated, and the IC50 value of umbelliferone was calculated as 158 μM, the IC50 value of irinotecan was calculated as 48,3 μM and the IC50 value was calculated as 20 μM. In the probit analysis performed to calculate the cytotoxic effects of drugs on D. melanogaster, the LC50 value of umbelliferone was 2,5 μM, and the LC99 value was 13,4 μM. The LC50 value of irinotecan was found to be 0,1 μM, and the LC99 value was 0,28 μM. It was concluded that single and combined doses of chemicals in the invasion experiment significantly affected the spread of cells. As a result of expression analysis, a significant increase in HsamiR- 7 (Homo sapiens miRNA-7), Hsa-miR-14 (Homo sapiens miRNA-14), and Hsa-miR-11(Homo sapiens miRNA-11) expression was observed in cells treated with umbelliferone irinotecan compared to the control groups. CONCLUSION In our study, it can be concluded that the cytotoxic effects of individual and combination doses of umbelliferone and irinotecan on MDA-MB-231 cells and D. melanogaster larvae are significant. In addition, the effects of umbelliferone and irinotecan on the expression level of miR-7, which is a common D. melanogaster and human miRNA, should be widely investigated. Expression analyses and docking studies of Hsa-miR-11 and Hsa-miR-14, which have been newly studied and are not in data repositories, are important for cancer research. In particular, the expression and binding energy of these miRNAs in new drug combinations and the expression level in different cancer cell lines are important for future studies. Another crucial point is that in vivo tests using different model species validate the usage of drugs at both single and mixed dosages. Other: As a result of this study, the In vivo, In vitro, and In silico effects of single and combined doses of umbelliferone and irinotecan were determined. In future studies, it would be useful to determine the binding energies of umbelliferone and irinotecan to other cancer-related proteins and to find their interactions with different miRNAs. Additionally, studies on different model organisms are also important.
Collapse
Affiliation(s)
- Erkut Tamturk
- Department of Biology, Faculty of Art and Sciences, Erciyes University, 38100, Kayseri, Türkiye
| | - Serap Yalcın
- Department of Medical Pharmacology, Faculty of Medicine, Kırşehir Ahi Evran University, 40100, Kırşehir, Türkiye
| | - Fahriye Ercan
- Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University, 40100, Kırşehir, Türkiye
| | - Aydın Suzu Tuncbilek
- Department of Biology, Faculty of Art and Sciences, Erciyes University, 38100, Kayseri, Türkiye
| |
Collapse
|
2
|
Al-Mahrami N, Nair SSK, Al Mawali A, Beema Shafreen RM, Ullah S, Halim SA, Al-Harrasi A, Sivakumar N. In-silico and in-vitro studies to identify potential inhibitors of SARS-CoV-2 spike protein from Omani medicinal plants. Heliyon 2024; 10:e39649. [PMID: 39553680 PMCID: PMC11564015 DOI: 10.1016/j.heliyon.2024.e39649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
In the quest for novel therapeutic agents against SARS-CoV-2, the proposed study explores the potential of traditional Omani medicinal plants, focusing on the efficacy of natural ligands against the virus's Spike protein. Among 437 identified medicinal plants across Oman, 47 species that are documented for their traditional use in treating respiratory infections, with 30 species' ligands available were chosen for analysis. Molecular docking was performed using Autodock Vina on these ligands, yielding 406 unique ligands post-duplication removal. The binding affinities of target-ligand complexes were precisely determined, ranking them by interaction strength. This process identified Corilagin, a phytochemical from the Acalypha indica plant (locally known as Aeyan Al Aqrada), as the most promising inhibitor. Subsequent analyses using GROMACS for molecular dynamics simulation confirmed its binding stability and interaction dynamics of the Corilagin-protein complex. The in-vitro studies further validated Corilagin's inhibitory effect on SARS-CoV-2, demonstrating a remarkable 92 % inhibition at 0.5 mM concentration. Dilution studies to ascertain the IC50 value revealed Corilagin's high potency at a micromolar level (IC50 = 2.15 ± 0.13 μM), underscoring its potential as a drug candidate for SARS-CoV-2 treatment. These findings highlight the significance of ethnomedicine and in-silico methodologies in drug discovery, offering promising directions for future antiviral research.
Collapse
Affiliation(s)
- Nabras Al-Mahrami
- National Genetic Center, Royal Hospital, Ministry of Health, Sultanate of Oman
| | | | - Adhra Al Mawali
- Quality Assurance and Planning, German University of Technology (GUtech), Sultanate of Oman
| | | | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Sultanate of Oman
| | | |
Collapse
|
3
|
Jabbar M, Baboo I, Majeed H, Farooq Z, Palangi V, Lackner M. Preparation and Characterization of Cumin Essential Oil Nanoemulsion (CEONE) as an Antibacterial Agent and Growth Promoter in Broilers: A Study on Efficacy, Safety, and Health Impact. Animals (Basel) 2024; 14:2860. [PMID: 39409810 PMCID: PMC11475229 DOI: 10.3390/ani14192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
This research characterized and explored the effect of cumin essential oil nanoemulsion (CEONE) on broiler growth performance, serum biochemistry, hematological parameters, and cecal microbial count. Day-old (n = 96) broilers (Ross 308) were randomly assigned to six treatments with five replicates of three broilers each. The dietary treatments consisted of negative control (only basal diet), positive control (basal diet + 200 µL of enrofloxacin), 25 µL (basal diet + 25 µL of CEONE), 50 µL (basal diet + 50 µL of CEONE), 75 µL (basal diet + 75 µL of CEONE), and 100 µL (basal diet + 100 µL of CEONE). The broiler's body weight gain (BWG) after 42 days of treatment exhibited increased weight in the CEONE group (976.47 ± 11.82-1116.22 ± 29.04). The gain in weight was further evidenced by the beneficial microbe load (107 log) compared to the pathogenic strain. All the biochemical parameters were observed in the normal range, except for a higher level of HDL and a lower LDL value. This safety has been validated by pKCSM toxicity analysis showing a safe and highly tolerable dose of cuminaldehyde. In conclusion, this research observed the potential of CEONE as a multifunctional agent. It is a valuable candidate for further application in combating bacterial infections and enhancing animal health and growth.
Collapse
Affiliation(s)
- Muhammad Jabbar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Zahid Farooq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
4
|
Garg M, Sharma D, Kaur G, Rawat J, Goyal B, Kumar S, Kumar R. Factor defining the effects of tetraalkylammonium chloride on stability, folding, and dynamics of horse cytochrome c. Int J Biol Macromol 2024; 276:133713. [PMID: 38986993 DOI: 10.1016/j.ijbiomac.2024.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This article describes the molecular mechanism by which tetraalkylammonium chloride ([R4N]Cl: R- = methyl (Me), ethyl (Et), propyl (Pr),butyl (Bu)) modulates the stability, folding, and dynamics of cytochrome c (Cyt c). Analysis of [R4N]Cl effects on thermal/chemical denaturations, millisecond refolding/unfolding kinetics, and slow CO-association kinetics of Cyt c without and with denaturant providing some significant results: (i) [R4N]Cl decreasing the unfolding free energy estimated by thermodynamic and kinetic analysis of thermal/chemical denaturation curves and kinetic chevrons (Log kobs-[GdmCl]) of Cyt c, respectively (ii) hydrophobicity of R-group of [R4N]Cl, preferential inclusion of [R4N]Cl at the protein surface, and destabilizing enthalpic attractive interactions of [Me4N]Cl and steric entropic interactions of [Et4N]Cl,[Pr4N]Cl and [Bu4N]Cl with protein contribute to [R4N]Cl-induced decrease thermodynamic stability of Cyt c (iii) [R4N]Cl exhibits an additive effect with denaturant to decrease thermodynamic stability and refolding rates of Cyt c (iv) low concentrations of [R4N]Cl (≤ 0.5 M) constrain the motional dynamics while the higher concentrations (>0.75 M [R4N]Cl) enhance the structural-fluctuations that denture protein (v) hydrophobicity of R-group of [R4N]Cl alters the [denaturant]-dependent conformational stability, refolding-unfolding kinetics, and CO-association kinetics of Cyt c. Furthermore, the MD simulations depicted that the addition of 1.0 M of [R4N]Cl increased the conformational fluctuations in Cyt c leading to decreased structural stability in the order [Me4N]Cl < [Et4N]Cl < [Pr4N]Cl < [Bu4N]Cl consistent with the experimental results.
Collapse
Affiliation(s)
- Mansi Garg
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Academy of Scientific & Innovative Research, Chandigarh, India
| | - Gurmeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Jayanti Rawat
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Sumit Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India
| | - Rajesh Kumar
- Department of Chemistry, Central University of Punjab, Bathinda 151001, India.
| |
Collapse
|
5
|
Chujan S, Vajeethaveesin N, Satayavivad J, Kitkumthorn N. Identification of Molecular Mechanisms of Ameloblastoma and Drug Repositioning by Integration of Bioinformatics Analysis and Molecular Docking Simulation. Bioinform Biol Insights 2024; 18:11779322241256459. [PMID: 38812739 PMCID: PMC11135093 DOI: 10.1177/11779322241256459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Background Ameloblastoma (AM) is a benign tumor locally originated from odontogenic epithelium that is commonly found in the jaw. This tumor makes aggressive invasions and has a high recurrence rate. This study aimed to investigate the differentially expressed genes (DEGs), biological function alterations, disease targets, and existing drugs for AM using bioinformatics analysis. Methods The data set of AM was retrieved from the GEO database (GSE132474) and identified the DEGs using bioinformatics analysis. The biological alteration analysis was applied to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein-protein interaction (PPI) network analysis and hub gene identification were screened through NetworkAnalyst. The transcription factor-protein network was constructed via OmicsNet. We also identified candidate compounds from L1000CDS2 database. The target of AM and candidate compounds were verified using docking simulation. Results Totally, 611 DEGs were identified. The biological function enrichment analysis revealed glycosaminoglycan and GABA (γ-aminobutyric acid) signaling were most significantly up-regulated and down-regulated in AM, respectively. Subsequently, hub genes and transcription factors were screened via the network and showed FOS protein was found in both networks. Furthermore, we evaluated FOS protein to be a therapeutic target in AMs. Candidate compounds were screened and verified using docking simulation. Tanespimycin showed the greatest affinity binding value to bind FOS protein. Conclusions This study presented the underlying molecular mechanisms of disease pathogenesis, biological alteration, and important pathways of AMs and provided a candidate compound, Tanespimycin, targeting FOS protein for the treatment of AMs.
Collapse
Affiliation(s)
- Suthipong Chujan
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | | | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Kavinda MD, Choi YH, Kang CH, Lee MH, Kim GY. 2,4'-Dihydroxybenzophenone: A Promising Anti-Inflammatory Agent Targeting Toll-like Receptor 4/Myeloid Differentiation Factor 2-Mediated Mitochondrial Reactive Oxygen Species Production during Lipopolysaccharide-Induced Systemic Inflammation. ACS Pharmacol Transl Sci 2024; 7:1320-1334. [PMID: 38751626 PMCID: PMC11092117 DOI: 10.1021/acsptsci.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
The biochemical properties of 2,4'-dihydroxybenzophenone (DHP) have not been extensively studied. Therefore, this study aimed to investigate whether DHP could alleviate inflammatory responses induced by lipopolysaccharide (LPS) and endotoxemia. The results indicated that DHP effectively reduced mortality and morphological abnormalities, restored heart rate, and mitigated macrophage and neutrophil recruitment to inflammatory sites in LPS-microinjected zebrafish larvae. Additionally, the expression of pro-inflammatory mediators, including inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), and interleukin-12 (IL-12), was significantly reduced in the presence of DHP. In RAW 264.7 macrophages, DHP inhibited the LPS-induced inflammatory response by downregulating pro-inflammatory mediators and decreasing the expression of myeloid differentiation primary response 88 (MyD88), phosphorylation of IL-1 receptor-associated protein kinase-4 (p-IRAK4), and nuclear factor-κB (NF-κB). Molecular docking analysis demonstrated that DHP occupies the hydrophobic pocket of myeloid differentiation factor 2 (MD2) and blocks the dimerization of Toll-like receptor 4 (TLR4). A molecular dynamics simulation confirmed that DHP stably bound to the hydrophobic pocket of MD2. Furthermore, the DHP treatment inhibited mitochondrial reactive oxygen species (mtROS) production during the LPS-induced inflammatory response in both RAW 264.7 macrophages and zebrafish larvae, which was accompanied by stabilizing mitochondrial membrane potential. In conclusion, our study highlights the therapeutic potential of DHP in alleviating LPS-induced inflammation and endotoxemia. The findings suggest that DHP exerts its anti-inflammatory effects by inhibiting the TLR4/MD2 signaling pathway and reducing the level of mtROS production. These results contribute to a better understanding of the biochemical properties of DHP and support its further exploration as a potential therapeutic agent for inflammatory conditions and endotoxemia.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department
of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic
of Korea
| | - Chang-Hee Kang
- Nakdonggang
National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Mi-Hwa Lee
- Nakdonggang
National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Gi-Young Kim
- Department
of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Grassmann G, Miotto M, Desantis F, Di Rienzo L, Tartaglia GG, Pastore A, Ruocco G, Monti M, Milanetti E. Computational Approaches to Predict Protein-Protein Interactions in Crowded Cellular Environments. Chem Rev 2024; 124:3932-3977. [PMID: 38535831 PMCID: PMC11009965 DOI: 10.1021/acs.chemrev.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 04/11/2024]
Abstract
Investigating protein-protein interactions is crucial for understanding cellular biological processes because proteins often function within molecular complexes rather than in isolation. While experimental and computational methods have provided valuable insights into these interactions, they often overlook a critical factor: the crowded cellular environment. This environment significantly impacts protein behavior, including structural stability, diffusion, and ultimately the nature of binding. In this review, we discuss theoretical and computational approaches that allow the modeling of biological systems to guide and complement experiments and can thus significantly advance the investigation, and possibly the predictions, of protein-protein interactions in the crowded environment of cell cytoplasm. We explore topics such as statistical mechanics for lattice simulations, hydrodynamic interactions, diffusion processes in high-viscosity environments, and several methods based on molecular dynamics simulations. By synergistically leveraging methods from biophysics and computational biology, we review the state of the art of computational methods to study the impact of molecular crowding on protein-protein interactions and discuss its potential revolutionizing effects on the characterization of the human interactome.
Collapse
Affiliation(s)
- Greta Grassmann
- Department
of Biochemical Sciences “Alessandro Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Mattia Miotto
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Fausta Desantis
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- The
Open University Affiliated Research Centre at Istituto Italiano di
Tecnologia, Genoa 16163, Italy
| | - Lorenzo Di Rienzo
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
| | - Gian Gaetano Tartaglia
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Center
for Human Technologies, Genoa 16152, Italy
| | - Annalisa Pastore
- Experiment
Division, European Synchrotron Radiation
Facility, Grenoble 38043, France
| | - Giancarlo Ruocco
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| | - Michele Monti
- RNA
System Biology Lab, Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Edoardo Milanetti
- Center
for Life Nano & Neuro Science, Istituto
Italiano di Tecnologia, Rome 00161, Italy
- Department
of Physics, Sapienza University, Rome 00185, Italy
| |
Collapse
|
8
|
Bitencourt-Ferreira G, Villarreal MA, Quiroga R, Biziukova N, Poroikov V, Tarasova O, de Azevedo Junior WF. Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Curr Med Chem 2024; 31:2361-2377. [PMID: 36944627 DOI: 10.2174/0929867330666230321103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 03/23/2023]
Abstract
BACKGROUND The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. OBJECTIVE Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. METHODS We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. RESULTS The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. CONCLUSION The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity.
Collapse
Affiliation(s)
| | - Marcos A Villarreal
- CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Rodrigo Quiroga
- CONICET-Departamento de Matemática y Física, Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - Nadezhda Biziukova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10/8, Moscow, 119121, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10/8, Moscow, 119121, Russia
| | - Olga Tarasova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10/8, Moscow, 119121, Russia
| | - Walter F de Azevedo Junior
- Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre-RS, Brazil
- Specialization Program in Bioinformatics, The Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681 Porto Alegre / RS 90619-900, Brazil
| |
Collapse
|
9
|
Niazi SK, Mariam Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals (Basel) 2023; 17:22. [PMID: 38256856 PMCID: PMC10819513 DOI: 10.3390/ph17010022] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK
| |
Collapse
|
10
|
Kaur A, Mandal D. Computational identification and exploration of novel FGFR tyrosine kinase inhibitors for the treatment of cholangiocarcinoma. J Biomol Struct Dyn 2023; 42:13153-13164. [PMID: 37897189 DOI: 10.1080/07391102.2023.2274975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Tyrosine kinase inhibitors are a specific drug class revolutionizing cancer treatment. FGFR (Fibroblast Growth Factor Receptor) is a member of the receptor tyrosine kinase family that has been involved in various alterations which have been increasingly recognized as critical molecular drivers in cholangiocarcinoma, a malignant tumor originating from bile duct epithelial cells. The paper focuses on stepwise computational investigations for the discovery of novel inhibitors of FGFR using pharmacophore modeling, virtual screening, docking, ADMET analysis, molecular dynamics, and knowledge-based structure-activity relationship. To begin with, we have considered a library of 120314868 compounds from the ZINC 15 database through pharmacophore modeling, which was narrowed down to 110 having binding affinity >-8.0 kcal mol-1. The 110 compounds were analyzed using virtual screening and compared with the FDA-approved drug pemigatinib, which provided the 34 hits with binding affinities >-6.5 kcal mol-1. Finally, the top 4 hits were considered for docking, and ADMET property analysis for drug-likeness. MD and MM-GBSA analysis were performed to predict the binding free energy of these chemicals and determine their stability. To gain insight into the structure and binding interactions of these compounds, knowledge-based SAR analyses were performed using their electrostatic potential maps computed with DFT. Several techniques were employed to build improved inhibitors based on these SAR, and they were then analyzed utilizing ADMET, MD studies, and MM-GBSA analyses. Finally, the results suggested that the identified four compounds and developed inhibitors from this current work can be employed effectively as prospective FGFR inhibitors for treating Cholangiocarcinoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amanpreet Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| | - Debasish Mandal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
11
|
Zaib S, Akram F, Waris W, Liaqat ST, Zaib Z, Khan I, Dera AA, Pashameah RA, Alzahrani E, Farouk AE. Computational approaches for innovative anti-viral drug discovery using Orthosiphon aristatus blume miq against dengue virus. J Biomol Struct Dyn 2023; 41:8738-8750. [PMID: 36300501 DOI: 10.1080/07391102.2022.2137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/11/2022] [Indexed: 10/31/2022]
Abstract
Dengue virus has emerged as infectious mosquito borne disease involved in lowering platelets and white blood cells (WBC) count particularly. The genome structure is based on several structural and non-structural proteins essential for viral replication and progeny. One of the major proteins of replication is non-structural protein 3 (NS3) that transforms polyproteins into functional proteins with a cofactor non-structural protein (NS2B). Heat Shock Protein 70 (HSP70), is a human protein that assists in replication, viral entry and virion synthesis. Therefore, to inhibit the spread of dengue infection, there is a need of antivirals targeting replication proteins and other human proteins that help in dengue virus multiplication. By systemic approach based on molecular docking, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties and molecular dynamic simulation (MD), potent inhibitors can be predicted. Inhibition of NS2B/NS3 dengue and HSP70 proteins involved in multiple steps in dengue virus progression can be prevented by using different phytochemicals. Molecular docking was performed using AutoDock Vina, PatchDock, and SwissDock. Interactions of obtained complex were observed in PyMOL and PLIP. Validation was checked by PROCHEK, simulation was performed using iMODS followed by preclinical testing by admetSAR. Ladanein, a flavonoid of Orthosiphon aristatus, was obtained as the lead compound to inhibit major replication protein of dengue virus with inhibitory potential against HSP70 protein. In summary, various in silico approaches were used to obtain the best phytochemical having anti-dengue potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Fatima Akram
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Wania Waris
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Syed Talha Liaqat
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
12
|
Xing C, Chen P, Zhang L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100168. [PMID: 36923156 PMCID: PMC10009195 DOI: 10.1016/j.fochms.2023.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Anthocyanins, which belong to the flavonoid group, are commonly found in the organs of plants native to South and Central America. However, these pigments are unstable under conditions of varying pH, heat, etc., which limits their potential applications. One method for preserving the stability of anthocyanins is through encapsulation using proteins or peptides. Nevertheless, the complex and diverse structure of these molecules, as well as the limitation of experimental technologies, have hindered a comprehensive understanding of the encapsulation processes and the mechanisms by which stability is enhanced. To address these challenges, computational methods, such as molecular docking and molecular dynamics simulation have been used to study the binding affinity and dynamics of interactions between proteins/peptides and anthocyanins. This review summarizes the mechanisms of interaction between these systems, based on computational approaches, and highlights the role of proteins and peptides in the stability enhancement of anthocyanins. It also discusses the current limitations of these methods and suggests possible solutions.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- School of Science, Beijing Jiaotong University, 100044 Beijing, China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
13
|
Stamatiou R, Vasilaki A, Tzini D, Tsolaki V, Zacharouli K, Ioannou M, Fotakopoulos G, Sgantzos M, Makris D. Critical-Illness: Combined Effects of Colistin and Vasoactive Drugs: A Pilot Study. Antibiotics (Basel) 2023; 12:1057. [PMID: 37370376 DOI: 10.3390/antibiotics12061057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colistin is often used as a last resort for treating multidrug-resistant infections, particularly in critically ill patients in intensive care units. Nonetheless, its side effects, including myopathy, require careful monitoring. Vasoconstrictive drugs are also used in intensive care to increase blood pressure and improve blood flow to vital organs, which can be compromised in critically ill patients. The exact mechanism of colistin-induced muscle toxicity is of significant interest due to its potential intensive-care clinical implications. Colistin alone or in combination with vasoconstrictive agents was administrated in non-septic and LPS-induced septic animals for 10 days. Histopathological evaluation of the gastrocnemius muscle and dot-blot protein tissue analysis were performed. Increased intramuscular area, de-organization of the muscle fibers and signs of myopathy were observed in colistin-treated animals. This effect was ameliorated in the presence of vasoconstrictive drugs. Administration of colistin to septic animals resulted in a decrease of AMPK and cyclin-D1 levels, while it had no effect on caspase 3 levels. Vasoconstrictive drugs' administration reversed the effects of colistin on AMPK and cyclin D1 levels. Colistin's effects on muscle depend on septic state and vasoconstriction presence, highlighting the need to consider these factors when administering it in critically ill patients.
Collapse
Affiliation(s)
- Rodopi Stamatiou
- Physiology Laboratory, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna Vasilaki
- Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41221 Larissa, Greece
| | - Dimitra Tzini
- Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41221 Larissa, Greece
| | - Vasiliki Tsolaki
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Konstantina Zacharouli
- Pathology Department, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Maria Ioannou
- Pathology Department, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George Fotakopoulos
- Department of Neurosurgery, University Hospital of Larissa, 41500 Larisa, Greece
| | - Markos Sgantzos
- Anatomy Department, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Demosthenes Makris
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
14
|
Moldovan OL, Sandulea A, Lungu IA, Gâz ȘA, Rusu A. Identification of Some Glutamic Acid Derivatives with Biological Potential by Computational Methods. Molecules 2023; 28:molecules28104123. [PMID: 37241864 DOI: 10.3390/molecules28104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Glutamic acid is a non-essential amino acid involved in multiple metabolic pathways. Of high importance is its relationship with glutamine, an essential fuel for cancer cell development. Compounds that can modify glutamine or glutamic acid behaviour in cancer cells have resulted in attractive anticancer therapeutic alternatives. Based on this idea, we theoretically formulated 123 glutamic acid derivatives using Biovia Draw. Suitable candidates for our research were selected among them. For this, online platforms and programs were used to describe specific properties and their behaviour in the human organism. Nine compounds proved to have suitable or easy to optimise properties. The selected compounds showed cytotoxicity against breast adenocarcinoma, lung cancer cell lines, colon carcinoma, and T cells from acute leukaemia. Compound 2Ba5 exhibited the lowest toxicity, and derivative 4Db6 exhibited the most intense bioactivity. Molecular docking studies were also performed. The binding site of the 4Db6 compound in the glutamine synthetase structure was determined, with the D subunit and cluster 1 being the most promising. In conclusion, glutamic acid is an amino acid that can be manipulated very easily. Therefore, molecules derived from its structure have great potential to become innovative drugs, and further research on these will be conducted.
Collapse
Affiliation(s)
- Octavia-Laura Moldovan
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Alexandra Sandulea
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
15
|
Lv Y, Zhang J, Li C, Wang L, Lei L, Huang X. Network pharmacological analysis to reveal the mechanism governing the effect of Qin Xi Tong on osteoarthritis and rheumatoid arthritis. Clin Rheumatol 2023:10.1007/s10067-023-06625-5. [PMID: 37162694 DOI: 10.1007/s10067-023-06625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Qin Xi Tong (QXT), produced by water extracts of Caulis Sinomenii, is clinically effective in the therapy of rheumatoid arthritis (RA). It is also a complementary agent for osteoarthritis (OA). This study aimed to screen the candidate targets and identify the potential mechanisms of QXT against RA and OA. METHOD The active ingredients contained in QXT were queried from the TCMSP database. Their predicted targets were obtained through web-based databases, including TCMSP, BATMAN-TCM, CTD, and PharmMapper. The OA and RA targets were collected from the Genecards database and the GSE55235 dataset. Based on the DAVID database, GO and KEGG enrichment analyses of disease-drug common targets predicted potential signaling pathways for QXT. In addition, core targets were identified by mapping component-target-disease interaction networks with Cytoscape 3.9.1 and STRING. The Swissdock and Pymol tools further validate the predicted results. RESULTS A total of 161 genes were put forward as potential targets for treating RA and OA. These genes might be involved in joint inflammation, including the IL-17 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. They also regulated the progression of joint injuries, such as apoptosis, Th17 cell differentiation, and osteoclast differentiation. In addition, we identified 12 core targets of QXT. Molecular docking results showed that QXT has a high affinity with these core targets. CONCLUSIONS This study reveals the mechanism governing the effect of QXT on RA and OA, predicts the direct target, and provides new ideas for clinical treatment. Key Points • Our study reveals the underlying mechanism of QXT in the treatment of RA and OA. • Further research into the effects of compounds in QXT alone would be of interest.
Collapse
Affiliation(s)
- Yanyan Lv
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Jie Zhang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Chao Li
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Li Wang
- Department of Rheumatology and Immunology, Xi'an No. 5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China
| | - Lei Lei
- School of Life Sciences and Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, China
| | - Xiaoqiang Huang
- Department of Orthopedics, Xi'an No.5 Hospital, No. 112 Xi Guan Zheng Jie, Xi'an, China.
| |
Collapse
|
16
|
Ali Eltayb W, Abdalla M, Ahmed EL-Arabey A, Boufissiou A, Azam M, Al-Resayes SI, Alam M. Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102634. [DOI: https:/doi.org/10.1016/j.jksus.2023.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Ali Eltayb W, Abdalla M, Ahmed EL-Arabey A, Boufissiou A, Azam M, Al-Resayes SI, Alam M. Exploring particulate methane monooxygenase (pMMO) proteins using experimentation and computational molecular docking. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2023; 35:102634. [DOI: 10.1016/j.jksus.2023.102634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
|
18
|
Athapaththu AMGK, Sanjaya SS, Lee KT, Karunarathne WAHM, Choi YH, Hur SP, Kim GY. Pinostrobin Suppresses the α-Melanocyte-Stimulating Hormone-Induced Melanogenic Signaling Pathway. Int J Mol Sci 2023; 24:ijms24010821. [PMID: 36614262 PMCID: PMC9821324 DOI: 10.3390/ijms24010821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Pinostrobin is a dietary flavonoid found in several plants that possesses pharmacological properties, such as anti-cancer, anti-virus, antioxidant, anti-ulcer, and anti-aromatase effects. However, it is unclear if pinostrobin exerts anti-melanogenic properties and, if so, what the underlying molecular mechanisms comprise. Therefore, we, in this study, investigated whether pinostrobin inhibits melanin biosynthesis in vitro and in vivo, as well as the potential associated mechanism. Pinostrobin reduced mushroom tyrosinase activity in vitro in a concentration-dependent manner, with an IC50 of 700 μM. Molecular docking simulations further revealed that pinostrobin forms a hydrogen bond, as well as other non-covalent interactions, between the C-type lectin-like fold and polyphenol oxidase chain, rather than the previously known copper-containing catalytic center. Additionally, pinostrobin significantly decreased α-melanocyte-stimulating hormone (α-MSH)-induced extracellular and intracellular melanin production, as well as tyrosinase activity, in B16F10 melanoma cells. More specifically, pinostrobin inhibited the α-MSH-induced melanin biosynthesis signaling pathway by suppressing the cAMP-CREB-MITF axis. In fact, pinostrobin also attenuated pigmentation in α-MSH-stimulated zebrafish larvae without causing cardiotoxicity. The findings suggest that pinostrobin effectively inhibits melanogenesis in vitro and in vivo via regulation of the cAMP-CREB-MITF axis.
Collapse
Affiliation(s)
| | | | - Kyoung Tae Lee
- Forest Bioresources Department, Forest Microbiology Division, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | | | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sung-Pyo Hur
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence:
| |
Collapse
|
19
|
Qin JY, Jia W, Ru S, Xiong JQ, Wang J, Wang W, Hao L, Zhang X. Bisphenols induce cardiotoxicity in zebrafish embryos: Role of the thyroid hormone receptor pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106354. [PMID: 36423468 DOI: 10.1016/j.aquatox.2022.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish. BPF promoted heart pumping and stroke volume, shortened the SV-BAdistance, and increased body weight. Furthermore, we found that BPA increased the expression of the dio3b, thrβ, and myh7 genes but decreased the transcription of dio2. In contrast, BPF downregulated the expression of myh7 but upregulated that of thrβ. Molecular docking results showed that both BPA and BPF are predicted to bind tightly to the active pockets of zebrafish THRβ with affinities of -4.7 and -4.77 kcal/mol, respectively. However, BPS did not significantly affect dio3b, thrβ, and myh7 transcription and had a higher affinity for zebrafish THRβ (-2.13 kcal/mol). These findings suggest that although BPA, BPS, and BPF have similar structures, they may induce cardiotoxicity through different molecular mechanisms involving thyroid hormone systems. This investigation provides novel insights into the potential mechanism of cardiotoxicity from the perspective of thyroid disruption and offer a cautionary role for the use of BPA substitution.
Collapse
Affiliation(s)
- Jing-Yu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wenyi Jia
- College of urban and environmental sciences, Peking University, Beijing 100871, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiu-Qiang Xiong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Ling J, Huang Y, Sun Z, Guo X, Chang A, Pan J, Zhuo X. Exploration of the effect of Celastrol on protein targets in nasopharyngeal carcinoma: Network pharmacology, molecular docking and experimental evaluations. Front Pharmacol 2022; 13:996728. [PMID: 36506508 PMCID: PMC9726908 DOI: 10.3389/fphar.2022.996728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Celastrol, an important extract of Tripterygium wilfordii, shows strong antitumor activity in a variety of tumors including nasopharyngeal carcinoma (NPC). However, little is known about its targets in NPC. We aimed to screen the key gene targets of Celastrol in the treatment of NPC by means of in silico analyses (including network pharmacology and molecular docking) and experimental evaluations. Methods: The main target genes of Celastrol and the genes related to NPC were obtained by retrieving the relevant biological databases, and the common targets were screened. Protein-protein interaction analysis was used to screen the hub genes. Then, a "compound-target-disease" network model was created and molecular docking was used to predict the binding of Celastrol to the candidate hub proteins. Afterward, the expression changes of the candidate genes under the administration of Celastrol were verified in vitro and in vivo. Results: Sixty genes common to Celastrol and NPC were screened out, which may be related to numerous biological processes such as cell proliferation, apoptosis, and tube development, and enriched in various pathways such as PI3K- Akt, EGFR tyrosine kinase inhibitor resistance, and Apoptosis. The tight binding ability of the candidate hub proteins (TNF, VEGFA, and IL6) to Celastrol was predicted by molecular docking [Docking energy: TNF, -6.08; VEGFA,-6.76; IL6,-6.91(kcal/mol)]. In vitro experiments showed that the expression of TNF and VEGFA decreased while the expression of IL6 increased in NPC cells (CNE2 and HONE1) treated with Celastrol. In vivo experiments suggested that Celastrol significantly reduced the weight and volume of the transplanted tumors in tumor-bearing mice in vivo. The expression of TNF, VEGFA, and IL6 in the transplanted tumor cells could be regulated by using Celastrol, and the expression trends were consistent with the in vitro model. Conclusion: Several gene targets have been filtered out as the core targets of Celastrol in the treatment of NPC, which might be involved in a variety of signaling pathways. Hence, Celastrol may exert its anti-NPC activity through multiple targets and multiple pathways, which will provide new clues for further research. Future experiments are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaopeng Guo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| |
Collapse
|
21
|
Li CC, Yi H, Wang YM, Tang XY, Zhu YB, Song YJ, Zhao NL, Huang Q, Mou XY, Luo GH, Liu TG, Yang GL, Zeng YJ, Wang LJ, Tang H, Fan G, Bao R. Nucleotide binding as an allosteric regulatory mechanism for Akkermansia muciniphila β- N-acetylhexosaminidase Am2136. Gut Microbes 2022; 14:2143221. [PMID: 36394293 PMCID: PMC9673926 DOI: 10.1080/19490976.2022.2143221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β-N-acetylhexosaminidases (EC3.2.1.52), which belong to the glycosyl hydrolase family GH20, are important enzymes for oligosaccharides modification. Numerous microbial β-N-acetylhexosaminidases have been investigated for applications in biology, biomedicine and biotechnology. Akkermansia muciniphila is an anaerobic intestinal commensal bacterium which possesses specific β-N-acetylhexosaminidases for gut mucosal layer colonization and mucin degradation. In this study, we assessed the in vitro mucin glycan cleavage activity of the A. muciniphila β-N-acetylhexosaminidase Am2136 and demonstrated its ability that hydrolyzing the β-linkages joining N-acetylglucosamine to a wide variety of aglycone residues, which indicated that Am2136 may be a generalist β-N-acetylhexosaminidase. Structural and enzyme activity assay experiments allowed us to probe the essential function of the inter-domain interactions in β23-β33. Importantly, we revealed that the hydrolysis activity of Am2136 was enhanced by nucleotides. We further speculated that this activation mechanism might be associated with the conformational motions between domain III and IV. To our knowledge, this is the first report of nucleotide effector regulated β-N-acetylhexosaminidase, to reveal its novel biological functions. These findings contribute to understanding the distinct properties within the GH20 family and lay a certain foundation to develop controllable glycan hydrolyzing catalysts.Abbreviations: OD600 - optical cell densities at 600 nm; LB - Luria-Bertani; IPTG - isopropyl β-D-1-thiogalactopyranoside; PMSF - phenylmethanesulfonyl fluoride; rmsd - root mean square deviation; GlcNAc - N-acetyl-β-D-glucosamine; GalNAc - N-acetyl-β-D-galactosamine; Gal - galactose.
Collapse
Affiliation(s)
- Chang-Cheng Li
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Yi
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Mei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Xin-Yue Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Bo Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Jie Song
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Lin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Huang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Yu Mou
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gui-Hua Luo
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Tong-Gen Liu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Gang-Long Yang
- School of Biotechnology, Jiangnan University, Chengdu, China
| | - Yu-Jiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Tang
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,Hong Tang Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University. Chengdu. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Gang Fan State Key Laboratory of Southwestern Chinese Medicine Resources, College of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine. Chengdu. China
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China,CONTACT Rui Bao
| |
Collapse
|
22
|
Maduranga Karunarathne WAH, Choi YH, Park SR, Lee CM, Kim GY. Bisphenol A inhibits osteogenic activity and causes bone resorption via the activation of retinoic acid-related orphan receptor α. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129458. [PMID: 35780740 DOI: 10.1016/j.jhazmat.2022.129458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) has deleterious effects on bone metabolism; however, its underlying mechanism has not yet been comprehensively understood. Here, we investigated whether RORα plays an important role in BPA-induced bone resorption both in vitro and in vivo. We found that BPA (0.1-1 μM) inhibited osteogenic activity (including ALP activity and mineralization), decreased the expression levels of osteoblast markers (such as RUNX2, OSX, and ALP) in human MG-63 osteoblast-like osteosarcoma cells, and inhibited spontaneous vertebral formation in zebrafish larvae. Additionally, BPA diminished β-glycerophosphate-induced osteoblast differentiation and vertebral formation, while simultaneously downregulating the expression levels of RUNX2a, OSX, and ALP. Furthermore, molecular docking data showed that a hydroxyl group of BPA dominantly binds to the H3 (ALA70) and/or H5 (ARG107) of RORα-ligand binding domain with hydrogen bonding (ALA330 and/or ARG367 in the full length of RORα, respectively), which another hydroxyl group of BPA fits into H3, H6, and H7 elements with non-covalent interactions, resulting in the activation of RORα. However, an RORα inverse agonist potently inhibited BPA-induced anti-osteogenic activity and vertebral formation in zebrafish larvae, concomitant with inhibition of osteogenic gene expression. Overall, our findings reveal that BPA inhibits osteoblast differentiation and bone formation by activating RORα. These results suggest that BPA exposure (0.1-1 μM) can cause various bone-resorptive diseases, such as osteoporosis.
Collapse
Affiliation(s)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
23
|
Farag AK, Ahn BS, Yoo JS, Karam R, Roh EJ. Design, synthesis, and biological evaluation of pseudo-bicyclic pyrimidine-based compounds as potential EGFR inhibitors. Bioorg Chem 2022; 126:105918. [PMID: 35696765 DOI: 10.1016/j.bioorg.2022.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Cancer is one of the most dangerous diseases harvesting millions of lives every year globally, which mandates the development of new therapies. In this report, we designed and synthesized a novel series of compounds based on the structure of lapatinib and AF8c, a compound we developed and reported previously, to target EGFR kinase. The series was assayed against a panel of 60 cancer cell lines at the National Cancer Institute (NCI). Compounds 4a, 4f, 4 g, and 4 l showed high efficacy against melanoma, colon, and blood cancers, with 4a being the most effective. The evaluation of the potency of 4a against the 60 cell lines in a five-dose assay revealed a significant potency compared to lapatinib against melanoma, colon, and blood cancers. In vitro enzyme assay over 30 kinases showed significant potency against EGFR and high selectivity to EGFR among the tested kinases. A molecular modeling study of 4a and lapatinib inside the pockets of EGFR revealed that both compounds bind strongly inside the ATP-binding pocket of the EGFR kinase domain. Therefore, we present 4a as a novel EGFR kinase inhibitor with potent in vitro cellular activity against diverse types of cancer cells.
Collapse
Affiliation(s)
- Ahmed Karam Farag
- Manufacturing department, Curachem Inc, Chungcheongbuk-do 28161, Republic of Korea.
| | - Byung Sun Ahn
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Je Sik Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Reham Karam
- Virology department, Faculty of veterinary medicine, Mansoura University, Dakahlia, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
24
|
Mechanism of Zhinao Capsule in Treating Alzheimer’s Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5708769. [PMID: 36032542 PMCID: PMC9410932 DOI: 10.1155/2022/5708769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
Objective This study aimed to determine the active components of Zhinao capsule (ZNC) and the targets in treating Alzheimer's disease (AD) so as to investigate and explore the mechanism of ZNC for AD. Methods The active components and targets of ZNC were determined from the traditional Chinese medicine systems pharmacology database (TCMSP). The target genes of AD were searched for in GeneCards. Cytoscape was used to construct an herb-component-target-disease network. A protein-protein interaction (PPI) network was constructed by STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the OmicShare. UCSF Chimera and SwissDock were used for molecular docking verification. Finally, four key target genes were validated by Western blotting. Results In total, 55 active components, 287 targets of active components, 1197 disease genes, and 134 common genes were screened, which were significantly enriched in 3975 terms of biological processes (BP), 284 terms of cellular components (CC), 433 terms of molecular functions (MF), and 245 signaling pathways. Caspase-3 (CASP3) and beta-sitosterol, tumor necrosis factor-alpha (TNF-α) and quercetin, vascular endothelial growth factor A (VEGFA) and baicalein, and mitogen-activated protein kinase 1 (MAPK1) and quercetin showed good-to-better docking. Moreover, ZNC not only downregulated CASP3 and TNF-α protein expression but also upregulated the protein expression of VEGFA and MAPK1. Conclusions The active components of ZNC, such as beta-sitosterol, quercetin, and baicalein may act on multiple targets like CASP3, VEGFA, MAPK1, and TNF-α to affect T cell receptor (TCR), TNF, and MAPK signaling pathway, thereby achieving the treatment of AD. This study provides a scientific basis for further exploring the potential mechanism of ZNC in the treatment of AD and a reference for its clinical application.
Collapse
|
25
|
Hasan MR, Alsaiari AA, Fakhurji BZ, Molla MHR, Asseri AH, Sumon MAA, Park MN, Ahammad F, Kim B. Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process. Molecules 2022; 27:4169. [PMID: 35807415 PMCID: PMC9268380 DOI: 10.3390/molecules27134169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 01/18/2023] Open
Abstract
The conventional drug discovery approach is an expensive and time-consuming process, but its limitations have been overcome with the help of mathematical modeling and computational drug design approaches. Previously, finding a small molecular candidate as a drug against a disease was very costly and required a long time to screen a compound against a specific target. The development of novel targets and small molecular candidates against different diseases including emerging and reemerging diseases remains a major concern and necessitates the development of novel therapeutic targets as well as drug candidates as early as possible. In this regard, computational and mathematical modeling approaches for drug development are advantageous due to their fastest predictive ability and cost-effectiveness features. Computer-aided drug design (CADD) techniques utilize different computer programs as well as mathematics formulas to comprehend the interaction of a target and drugs. Traditional methods to determine small-molecule candidates as a drug have several limitations, but CADD utilizes novel methods that require little time and accurately predict a compound against a specific disease with minimal cost. Therefore, this review aims to provide a brief insight into the mathematical modeling and computational approaches for identifying a novel target and small molecular candidates for curing a specific disease. The comprehensive review mainly focuses on biological target prediction, structure-based and ligand-based drug design methods, molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR) models, molecular dynamics simulation, and MM-GBSA/MM-PBSA approaches along with valuable database resources and tools for identifying novel targets and therapeutics against a disease. This review will help researchers in a way that may open the road for the development of effective drugs and preventative measures against a disease in the future as early as possible.
Collapse
Affiliation(s)
- Md Rifat Hasan
- Department of Mathematics, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Department of Applied Mathematics, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ahad Amer Alsaiari
- College of Applied Medical Science, Clinical Laboratories Science Department, Taif University, Taif 21944, Saudi Arabia;
| | - Burhan Zain Fakhurji
- iGene Medical Training and Molecular Research Center, Jeddah 21589, Saudi Arabia;
| | | | - Amer H. Asseri
- Biochemistry Department, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Centre for Artificial Intelligence in Precision Medicines, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia
| | - Md Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| | - Foysal Ahammad
- Department of Biological Sciences, Faculty of Science, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02453, Korea;
| |
Collapse
|
26
|
Exploration of Potential Targets and Mechanisms of Fisetin in the Treatment of Non-Small-Cell Lung Carcinoma via Network Pharmacology and In Vitro Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2383527. [PMID: 35733630 PMCID: PMC9208940 DOI: 10.1155/2022/2383527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/18/2022] [Indexed: 01/04/2023]
Abstract
Purpose The morbidity and fatality rates of non-small-cell lung cancer (NSCLC) were high, although a combination of multiple treatments was used. Fisetin, a small flavonoid compound, had shown anticancer activities. Thus, we aimed at exploring the mechanisms of Fisetin in the treatment of NSCLC. Methods TCMSP and Swiss target tools were used to screen the targets of Fisetin, and GeneCards was used to collect the genes related to NSCLC. The genes common to Fisetin and NSCLC were obtained by Venn analysis, whose possible functions were further annotated. A “Compound-Target-Disease” network was then constructed and hub genes were filtered. Also, molecular docking was performed to predict the binding abilities between Fisetin and the hub genes. Then, the effects of Fisetin on the expression of hub genes in lung adenocarcinoma cells were preliminarily evaluated in vitro. Results A total of 131 genes common to Fisetin and NSCLC were filtered out, which might be enriched in several biological processes including antioxidation, cell proliferation, and various signaling pathways, such as PI3K-Akt and IL-17 signaling pathways. Among them, PIK3R1, CTNNB1, JUN, EGFR, and APP might be the hub genes. Molecular docking indicated the close bond between Fisetin and them. Experiments implied a possible effect of Fisetin on the expression of hub genes in A549 cells. Conclusion The present study found a series of novel targets and pathways for Fisetin treating NSCLC. Multiple angles, targets, and pathways were involved in the biological processes, which need to be verified in further experiments.
Collapse
|
27
|
Evaluation of the Mechanism of Jiedu Huazhuo Quyu Formula in Treating Wilson's Disease-Associated Liver Fibrosis by Network Pharmacology Analysis and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9363131. [PMID: 35707473 PMCID: PMC9192323 DOI: 10.1155/2022/9363131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
The Jiedu Huazhuo Quyu formula (JHQ) shows significant beneficial effects against liver fibrosis caused by Wilson's disease (WD). Hence, this study aimed to clarify the mechanisms of the JHQ treatment in WD-associated liver fibrosis. First, we collected 103 active compounds and 527 related targets of JHQ and 1187 targets related to WD-associated liver fibrosis from multiple databases. Next, 113 overlapping genes (OGEs) were obtained. Then, we built a protein-protein interaction (PPI) network with Cytoscape 3.7.2 software and performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses with GENE DENOVO online sites. Furthermore, module analysis was performed, and the core target genes in the JHQ treatment of WD-associated liver fibrosis were obtained. Pathway and functional enrichment analyses, molecular docking studies, molecular dynamic (MD) simulation, and Western blot (WB) were then performed. The results indicated that 8 key active compounds including quercetin, luteolin, and obacunone in JHQ might affect the 6 core proteins including CXCL8, MAPK1, and AKT1 and 107 related signaling pathways including EGFR tyrosine kinase inhibitor resistance, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus infection signaling pathways to exhibit curative effects on WD-associated liver fibrosis. Mechanistically, JHQ might inhibit liver inflammatory processes and vascular hyperplasia, regulate the cell cycle, and suppress both the activation and proliferation of hepatic stellate cells (HSCs). This study provides novel insights for researchers to systematically explore the mechanism of JHQ in treating WD-associated liver fibrosis.
Collapse
|
28
|
Aponso M, Hearn MTW, Patti AF, Bennett LE. Relaxation Effects of Essential Oils Are Explained by Their Interactions with Human Brain Neurotransmitter Receptors and Electroencephalography Rhythms. ACS Chem Neurosci 2022; 13:166-176. [PMID: 34918507 DOI: 10.1021/acschemneuro.1c00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Inhaled essential oils (EOs) are bioavailable to the brain and are consistently reported to promote relaxation effects. Their mechanisms of action are however not well understood. The aim of this investigation was to assess the neuroactivity of EOs based on their (i) binding interactions to neurotransmitter receptors and (ii) bioelectrical activities in the brain as measured by electroencephalography (EEG). These EO properties were compared to those of reference pharmaceutical compounds with effects also measured by EEG. Relative receptor binding efficacies of 10 reference compounds, 180 EOs, and 9 EO extracts with 7 different neurotransmitter receptors were calculated using in silico molecular docking procedures. Changes in brain EEG rhythms, as standardized changes in absolute power, were determined for the reference compounds and selected EOs and compared to receptor binding efficacy results. The reference compounds had diverse receptor binding patterns, with EEG responses dominated by EEG-delta wave frequencies. In contrast, the receptor binding pattern of the EOs was remarkably consistent and replicated a subclinical affinity pattern corresponding to the inhibitory glycine-α-GLRA3 and dopamine-D2 receptors, producing responses dominated by EEG-alpha wave frequencies. The results support the hypothesis that EOs stimulate neuroactivity by modulating patterns of neurotransmission affecting alpha wave EEG responses.
Collapse
Affiliation(s)
- Minoli Aponso
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Milton T. W. Hearn
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Antonio F. Patti
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Louise E. Bennett
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Guo L, Zhen Q, Zhen X, Cui Z, Jiang C, Zhang Q, Gao K, Luan D, Zhou X. A network pharmacology approach to explore and validate the potential targets of ginsenoside on osteoporosis. Int J Immunopathol Pharmacol 2022; 36:3946320221107239. [PMID: 35791093 PMCID: PMC9272184 DOI: 10.1177/03946320221107239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Osteoporosis (OP) is determined as a chronic systemic bone disorder to increase the susceptibility to fracture. Ginsenosides have been found the anti-osteoporotic activity of in vivo and in vitro. However, its mechanism remains unknown.Methods: The potential mechanism of ginsenosides in anti-osteoporotic activity was identified by using network phamacology analysis. The active compounds of ginsenosides and their targets associated to OP were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Drug Bank, Pharmmapper, and Cytoscape. The Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis target genes were performed in String, Phenopedia, DisGeNET database, and Metascape software. The protein to protein interaction were created by String database and Cytoscape software. The molecular docking was used to investigate the interactions between active coumpounds and potential targets by utilizing SwissDock tool, UCSF Chimera, and Pymol software. Results: A total of eight important active ingredients and 17 potential targets related to OP treatment were subjected to analyze. GO analysis showed the anti-osteoporosis targets of ginsenoside mainly play a role in the response to steroid hormone. KEGG enrichment analysis indicated that ginsenoside treats OP by osteoblast differentiation signal pathway. Lastly, the molecular docking outcomes indicated that ginsenoside rh2 had a good binding ability with four target proteins IL1B, TNF, IFNG, and NFKBIA. Conclusion: IL1B, TNF, IFNG, and NFKBIA are the most important targets and osteoblast differentiation is the most valuable signaling pathways in ginsenoside for the treatment of OP, which might be beneficial to elucidate the mechanism concerned to the action of ginsenoside and might supply a better understanding of its anti-OP effects.
Collapse
Affiliation(s)
- Ling Guo
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qingliu Zhen
- Department of Anesthesiology, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyue Zhen
- Minimally Invasive Urology Center, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoyang Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Chao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Deheng Luan
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
30
|
Pongsapipatana N, Charoenwattanasatien R, Pramanpol N, Nguyen TH, Haltrich D, Nitisinprasert S, Keawsompong S. Crystallization, structural characterization and kinetic analysis of a GH26 β-mannanase from Klebsiella oxytoca KUB-CW2-3. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1425-1436. [PMID: 34726170 DOI: 10.1107/s2059798321009992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
β-Mannanase (EC 3.2.1.78) is an enzyme that cleaves within the backbone of mannan-based polysaccharides at β-1,4-linked D-mannose residues, resulting in the formation of mannooligosaccharides (MOS), which are potential prebiotics. The GH26 β-mannanase KMAN from Klebsiella oxytoca KUB-CW2-3 shares 49-72% amino-acid sequence similarity with β-mannanases from other sources. The crystal structure of KMAN at a resolution of 2.57 Å revealed an open cleft-shaped active site. The enzyme structure is based on a (β/α)8-barrel architecture, which is a typical characteristic of clan A glycoside hydrolase enzymes. The putative catalytic residues Glu183 and Glu282 are located on the loop connected to β-strand 4 and at the end of β-strand 7, respectively. KMAN digests linear MOS with a degree of polymerization (DP) of between 4 and 6, with high catalytic efficiency (kcat/Km) towards DP6 (2571.26 min-1 mM-1). The predominant end products from the hydrolysis of locust bean gum, konjac glucomannan and linear MOS are mannobiose and mannotriose. It was observed that KMAN requires at least four binding sites for the binding of substrate molecules and hydrolysis. Molecular docking of mannotriose and galactosyl-mannotetraose to KMAN confirmed its mode of action, which prefers linear substrates to branched substrates.
Collapse
Affiliation(s)
- Nawapan Pongsapipatana
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Ratana Charoenwattanasatien
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Nuttawan Pramanpol
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathumthani 12120, Thailand
| | - Thu Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Sunee Nitisinprasert
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Unit: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
31
|
Zhao Y, Chang Z, Zhao G, Lu H, Xiong W, Liang W, Wang H, Villacorta L, Garcia-Barrio MT, Zhu T, Guo Y, Fan Y, Chang L, Schopfer FJ, Freeman BA, Zhang J, Chen YE. Suppression of Vascular Macrophage Activation by Nitro-Oleic Acid and its Implication for Abdominal Aortic Aneurysm Therapy. Cardiovasc Drugs Ther 2021; 35:939-951. [PMID: 32671602 PMCID: PMC7855321 DOI: 10.1007/s10557-020-07031-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model. METHODS We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies. RESULTS Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA. CONCLUSION Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Metabolism and Endocrinology, Central South University Second Xiangya Hospital, Changsha, Hunan, China
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Wenhao Xiong
- Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Wenying Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Luis Villacorta
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Yanbo Fan
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
32
|
Long H, Qiu X, Cao L, Han R. Discovery of the signal pathways and major bioactive compounds responsible for the anti-hypoxia effect of Chinese cordyceps. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114215. [PMID: 34033902 DOI: 10.1016/j.jep.2021.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypoxia will cause an increase in the rate of fatigue and aging. Chinese cordyceps, a parasitic Thitarodes insect-Ophiocordyceps sinensis fungus complex in the Qinghai-Tibet Plateau, has long been used to ameliorate human conditions associated with aging and senescence, it is principally applied to treat fatigue, night sweating and other symptoms related to aging, and it may play the anti-aging and anti-fatigue effect by improving the body's hypoxia tolerance. AIMS OF THE STUDY The present study investigated the anti-hypoxia activity of Chinese cordyceps and explore the main corresponding signal pathways and bioactive compounds. MATERIALS AND METHODS In this study, network pharmacology analysis, molecular docking, cell and whole pharmacodynamic experiments were hired to study the major signal pathways and the bioactive compounds of Chinese cordyceps for anti-hypoxia activity. RESULTS 17 pathways which Chinese cordyceps acted on seemed to be related to the anti-hypoxia effect, and "VEGF signal pathway" was one of the most important pathway. Chinese cordyceps improved the survival rate and regulated the targets related VEGF signal pathway of H9C2 cells under hypoxia, and also had significant anti-hypoxia effects to mice. Chorioallantoic membrane model experiment showed that Chinese cordyceps and the main constituents of (9Z,12Z)-octadeca-9,12-dienoic acid and cerevisterol had significant angiogenic activity in hypoxia condition. CONCLUSION Based on the results of network pharmacology and molecular docking analysis, cell and whole pharmacodynamic experiments, promoting angiogenesis by regulating VEGF signal pathway might be one of the mechanisms of anti-hypoxia effect of Chinese cordyceps, (9Z, 12Z)-octadeca-9,12-dienoic acid and cerevisterol were considered as the major anti-hypoxia bioactive compounds in Chinese cordyceps.
Collapse
Affiliation(s)
- Hailin Long
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Xuehong Qiu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
33
|
Tazikeh-Lemeski E, Moradi S, Raoufi R, Shahlaei M, Janlou MAM, Zolghadri S. Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study. J Biomol Struct Dyn 2021; 39:4633-4646. [PMID: 32573355 PMCID: PMC7332864 DOI: 10.1080/07391102.2020.1779133] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/17/2023]
Abstract
Non-Structural Protein 16 (nsp-16), a viral RNA methyltransferase (MTase), is one of the highly viable targets for drug discovery of coronaviruses including SARS-CoV-2. In this study, drug discovery of SARS-CoV-2 nsp-16 has been performed by a virtual drug repurposing approach. First, drug shape-based screening (among FDA approved drugs) with a known template of MTase inhibitor, sinefungin was done and best compounds with high similarity scores were selected. In addition to the selected compounds, 4 nucleoside analogs of anti-viral (Raltgravir, Maraviroc and Favipiravir) and anti-inflammatory (Prednisolone) drugs were selected for further investigations. Then, binding energies and interaction modes were found by molecular docking approaches and compouds with lower energy were selected for further investigation. After that, Molecular dynamics (MD) simulation was carried to test the potential selected compounds in a realistic environment. The results showed that Raltegravir and Maraviroc among other compounds can bind strongly to the active site of the protein compared to sinefungin, and can be potential candidates to inhibit NSP-16. Also, the MD simulation results suggested that the Maraviroc and Raltegravir are more effective drug candidates than Sinefungin for inhibiting the enzyme. It is concluded that Raltegravir and Maraviroc which may be used in the treatment of COVID-19 after Invitro and invivo studies and clinical trial for final confirmation of drug effectiveness. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rahim Raoufi
- School of Medicine, Jahrom University of Medical Science, Jahrom, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| |
Collapse
|
34
|
Shi H, Zhou P, Gao G, Liu PP, Wang SS, Song R, Zou YY, Yin G, Wang L. Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45:e13757. [PMID: 34032295 DOI: 10.1111/jfbc.13757] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Although astragaloside IV protects from acute myocardial infarction (AMI)-induced chronic heart failure (CHF), the underlying mechanism of action is unclear. We determined the potential therapeutic effect of astragaloside IV using molecular docking approaches and validated the findings by the ligation of the left anterior descending (LAD) coronary artery-induced AMI rat model. The interaction between astragaloside IV and myeloid differentiation factor 88 (MyD88) was evaluated by SwissDock. To explore the mechanisms underlying the beneficial effects of astragaloside IV in the LAD coronary artery ligation-induced AMI model, we administered the rats with astragaloside IV for 4 weeks. Hemodynamic indexes were used to evaluate the degree of myocardial injury in model rats. The histopathological changes in myocardium were detected by hematoxylin & eosin (H&E) staining and Masson's staining. Myocardium homogenate contents of collagen I and collagen III were evaluated by ELISA. The level of myocardial hydroxyproline (HYP) was determined by alkaline hydrolysis. Immunohistochemistry was used to examine collagen I. Western blotting was used to examine relevant proteins. As per the molecular docking study results, astragaloside IV may act on MyD88. Furthermore, astragaloside IV improved hemodynamic disorders, alleviated pathological changes, and reduced abnormal collagen deposition and myocardial HYP in vivo. Astragaloside IV significantly reduced the overexpression of TLR4, MyD88, NF-Κb, and TGF-β, which further validated the molecular docking findings. Hence, astragaloside IV ameliorates AMI by reducing inflammation and blocking TLR4/MyD88/NF-κB signaling. These results indicate that astragaloside IV may alleviate AMI. PRACTICAL APPLICATIONS: Astragaloside IV, a small active substance extracted from Astragalus membranaceus, has demonstrated potent protective effects against cardiovascular ischemia/reperfusion, diabetic nephropathy, and other diseases. Molecular docking experiments showed that astragaloside IV might act on the myeloid differentiation factor 88 (MyD88). Astragaloside IV can effectively reduce the overexpression of TLR4, MyD88, and NF-κB p65, indicating that astragaloside IV inhibits inflammation via TLR4/MyD88/NF-κB signaling pathway. These results indicate that astragaloside IV may alleviate acute myocardial infarction.
Collapse
Affiliation(s)
- Hui Shi
- Nursing School, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P.R. China
| | - Ge Gao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Pei-Pei Liu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Shu-Shu Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Rui Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Ying-Ying Zou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China
| | - Liang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P.R. China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, P.R. China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, P.R. China
| |
Collapse
|
35
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
36
|
Graf LG, Michels EAP, Yew Y, Liu W, Palm GJ, Weber G. Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis. Methods Enzymol 2021; 648:337-356. [PMID: 33579411 DOI: 10.1016/bs.mie.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The concept of biocatalytic PET degradation for industrial recycling processes had made a big step when the bacterium Ideonella sakaiensis was discovered to break PET down to its building blocks at ambient temperature. This process involves two enzymes: cleavage of ester bonds in PET by PETase and in MHET, the resulting intermediate, by MHETase. To understand and further improve this unique capability, structural analysis of the involved enzymes was aimed at from early on. We describe a repertoire of methods to this end, including protein expression and purification, crystallization of apo and substrate-bound enzymes, and modeling of PETase complexed with a ligand.
Collapse
Affiliation(s)
- Leonie G Graf
- Macromolecular Crystallography, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Emil A P Michels
- Macromolecular Crystallography, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Yelwin Yew
- Biotechnology, University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Weidong Liu
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany; Industrial Enzymes National Engineering Laboratory, Tianjin, Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Gottfried J Palm
- Macromolecular Crystallography, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| | - Gert Weber
- Macromolecular Crystallography, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
37
|
Rajpoot S, Alagumuthu M, Baig MS. Dual targeting of 3CL pro and PL pro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr Res Struct Biol 2020; 3:9-18. [PMID: 33319212 PMCID: PMC7726703 DOI: 10.1016/j.crstbi.2020.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/31/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid growth of the COVID-19 (coronavirus disease 2019) pandemic across the globe, therapeutic attention must be directed to fight the novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). However, developing new antiviral drugs and vaccines is time-consuming, so one of the best solutions to tackle this virus at present is to repurpose ready-to-use drugs. This paper proposes the repurposing of the Food and Drug Administration (FDA)-approved, purchasable, and naturally occurring drugs for preventive and therapeutic use. We propose to design a dual-inhibitor for the SARS-CoV-2 cysteine proteases-3 Chemotrypsin-like protease or main protease (3CLpro or Mpro) and Papain-like protease (PLpro) responsible for processing the translated polyprotein chain from the viral RNA yielding functional viral proteins. For virtual screening, an unbiased blind docking was performed from which the top nine dual-targeting inhibitors for 3CLpro and PLpro were selected. The nine repurposed drugs, block the catalytic dyad (His41 and Cys145) of 3CLpro as well as the catalytic triad (Cys111, His272, and Asp286) of PLpro. Repurposing known drugs will not only pave the way for rapid in-vitro and in-vivo studies to battle the SARS-CoV-2 but will also expedite the quest for a potent anti-coronaviral drug.
Collapse
Affiliation(s)
- Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| | - Manikandan Alagumuthu
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, 453552, Indore, MP, India
| |
Collapse
|
38
|
Beck TC, Beck KR, Holloway CB, Hemings RA, Dix TA, Norris RA. The C-C Chemokine Receptor Type 4 Is an Immunomodulatory Target of Hydroxychloroquine. Front Pharmacol 2020; 11:1253. [PMID: 32973504 PMCID: PMC7482581 DOI: 10.3389/fphar.2020.01253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; COVID-19) in China, reported to the World Health Organization on December 31, 2019, has led to a large global pandemic and is a major public health issue. As a result, there are more than 200 clinical trials of COVID-19 treatments or vaccines that are either ongoing or recruiting patients. One potential therapy that has garnered international attention is hydroxychloroquine; a potent immunomodulatory agent FDA-approved for the treatment of numerous inflammatory and autoimmune conditions, including malaria, lupus, and rheumatoid arthritis. Hydroxychloroquine has demonstrated promise in vitro and is currently under investigation in clinical trials for the treatment of COVID-19. Despite an abundance of empirical data, the mechanism(s) involved in the immunomodulatory activity of hydroxychloroquine have not been characterized. Using the unbiased chemical similarity ensemble approach (SEA), we identified C-C chemokine receptor type 4 (CCR4) as an immunomodulatory target of hydroxychloroquine. The crystal structure of CCR4 was selected for molecular docking studies using the SwissDock modeling software. In silico, hydroxychloroquine interacts with Thr-189 within the CCR4 active site, presumably blocking endogenous ligand binding. However, the CCR4 antagonists compound 18a and K777 outperformed hydroxychloroquine in silico, demonstrating energetically favorable binding characteristics. Hydroxychloroquine may subject COVID-19 patients to QT-prolongation, increasing the risk of sudden cardiac death. The FDA-approved CCR4 antagonist mogalizumab is not known to increase the risk of QT prolongation and may serve as a viable alternative to hydroxychloroquine. Results from this report introduce additional FDA-approved drugs that warrant investigation for therapeutic use in the treatment of COVID-19.
Collapse
Affiliation(s)
- Tyler C. Beck
- Dix Laboratory, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States,Norris Laboratory, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,College of Medicine, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Tyler C. Beck, ; Russell A. Norris,
| | - Kyle R. Beck
- College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Calvin B. Holloway
- Pritzker School of Medicine, The University of Chicago, Chicago, IL, United States
| | - Richard A. Hemings
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas A. Dix
- Dix Laboratory, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Russell A. Norris
- Norris Laboratory, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Tyler C. Beck, ; Russell A. Norris,
| |
Collapse
|
39
|
Jain R, Pal VK, Roy S. Triggering Supramolecular Hydrogelation Using a Protein–Peptide Coassembly Approach. Biomacromolecules 2020; 21:4180-4193. [DOI: 10.1021/acs.biomac.0c00984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Sangita Roy
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
40
|
Karunarathna KHT, Senathilake NHKS, Mewan KM, Weerasena OVDSJ, Perera SACN. In silico structural homology modelling of EST073 motif coding protein of tea Camellia sinensis (L). J Genet Eng Biotechnol 2020; 18:32. [PMID: 32685981 PMCID: PMC7370249 DOI: 10.1186/s43141-020-00038-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/04/2020] [Indexed: 11/17/2022]
Abstract
Background Tea (Camellia sinensis (L). O. Kuntze) is known as the oldest, mild stimulating caffeine containing non-alcoholic beverage. One of the major threats in south Asian tea industry is the blister blight leaf disease (BB), caused by the fungus Exobasidium vexans Masse. SSR DNA marker EST SSR 073 is used as a molecular marker to tag blister blight disease resistance trait of tea. The amino acid sequences were derived from cDNA sequences related to EST SSR 073 of BB susceptible (TRI 2023) and BB resistant (TRI 2043) cultivars. An attempt has been made to understand the structural characteristics and variations of EST SSR 073 locus that may reveal the factors influencing the BB resistance of tea with multiple bioinformatics tools such as ORF finder, ExPasy ProtParam tools, modeler V 9.17, Rampage server, UCSF-Chimera, and HADDOCK docking server. Results The primary, secondary, and tertiary structures of EST SSR 073 coding protein were analyzed using the amino acid sequences of both BB resistant TRI 2043 and BB susceptible TRI 2023 tea cultivars. The coding amino acid sequences of both the cultivars were homologous to photosystem I subunit protein (PsaD I) of Pisum sativum. The predicted 3D structures of proteins were validated and considered as an acceptable overall stereochemical quality. The BB resistant protein showed CT repeat extension and did not involve in topology of the PsaD I subunit. The C terminal truncation of BB resistance caused the formation of hydrogen bonds interacting with PsaD I and other subunits of photosystem I in the modeled three-dimensional protein structure. Conclusions Camellia sinensis EST 073 SSR motif coding protein was identified as the PsaD I subunit of photosystem I. The exact mechanism of PsaD I conferring the resistance for blister blight in tea needs to be further investigated.
Collapse
Affiliation(s)
- K H T Karunarathna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka. .,Current address: Department of biosystems Technology, Faculty of Technology, University of Ruhuna, Matara, Sri Lanka.
| | - N H K S Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - K M Mewan
- Department of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - O V D S J Weerasena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - S A C N Perera
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| |
Collapse
|
41
|
Wei Q, Bhasme P, Wang Z, Wang L, Wang S, Zeng Y, Wang Y, Ma LZ, Li Y. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112272. [PMID: 31586695 DOI: 10.1016/j.jep.2019.112272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese medicinal herbs have long been recognized as important resources that can be used for the struggle against diseases and a significant component of health care system for thousands of years. AIM OF THE STUDY In order to understand their roles in the treatment against bacterial infections, we examined the underlying mechanisms of one of the medicinal herb extracts (MHE) (Artemisiae argyi Folium, the root bark of Cortex dictamni and the root of Solanum melongena) on the human opportunistic pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS We combined phenotypic assays, transcriptional analysis and chemical investigations to identify the mechanisms underlying MHE inhibition. The standard sample was prepared and transcriptional reporters for quorum sensing systems were constructed. Electrophoretic mobility shift assays were used to clarify the mechanism. GC-MS and molecular docking were used to identify the chemicals in MHE and potential binding agents. RESULTS We found that co-culturing of MHE with bacterial cells did not change the growth rate but substantially attenuate the production of virulence factors such as phenazine pyocyanin, siderophore pyoverdine and biofilm formation. Transcriptional responses of three major quorum sensing (QS) systems of P. aeruginosa to MHE showed that Pseudomonas quinolone signaling (PQS) system was completely repressed, rhlR/rhlI QS system was moderately inhibited, while lasR/lasI QS system was only slightly affected, suggesting that MHE might selectively target the PQS system to inhibit bacterial virulence. Furthermore, electrophoretic mobility shift assays (EMSA) showed that MHE inhibited the binding of MvfR the corresponding pqsA promoter region, suggesting that MHE serves as a competitive agent to quench the QS functionality in P. aeruginosa. CONCLUSION We prove that MHE functions as an effective countermeasure against bacterial infections.
Collapse
Affiliation(s)
- Qing Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, China
| | - Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, Guizhou, 550014, China; Pneumology Department of Yanan University Affiliated Hospital, Yanan, Shannxi, 716000, China
| | - Li Wang
- Clinical Laboratory of Yanan University Affiliated Hospital, Yanan, Shannxi, 716000, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yunfei Zeng
- Yanan Institute of Traditional Chinese Medicine, Yanan, Shaanxi, 716000, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, Guizhou, 550014, China.
| |
Collapse
|
42
|
Macalino SJY, Billones JB, Organo VG, Carrillo MCO. In Silico Strategies in Tuberculosis Drug Discovery. Molecules 2020; 25:E665. [PMID: 32033144 PMCID: PMC7037728 DOI: 10.3390/molecules25030665] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to global public health, responsible for an estimated 1.5 million mortalities in 2018. While there are available therapeutics for this infection, slow-acting drugs, poor patient compliance, drug toxicity, and drug resistance require the discovery of novel TB drugs. Discovering new and more potent antibiotics that target novel TB protein targets is an attractive strategy towards controlling the global TB epidemic. In silico strategies can be applied at multiple stages of the drug discovery paradigm to expedite the identification of novel anti-TB therapeutics. In this paper, we discuss the current TB treatment, emergence of drug resistance, and the effective application of computational tools to the different stages of TB drug discovery when combined with traditional biochemical methods. We will also highlight the strengths and points of improvement in in silico TB drug discovery research, as well as possible future perspectives in this field.
Collapse
Affiliation(s)
- Stephani Joy Y. Macalino
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Manila 0992, Philippines;
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Junie B. Billones
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Voltaire G. Organo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| | - Maria Constancia O. Carrillo
- OVPAA-EIDR Program, “Computer-Aided Discovery of Compounds for the Treatment of Tuberculosis in the Philippines”, Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; (V.G.O.); (M.C.O.C.)
| |
Collapse
|