1
|
King T, Mejias A, Ramilo O, Peeples ME. The larger attachment glycoprotein of respiratory syncytial virus produced in primary human bronchial epithelial cultures reduces infectivity for cell lines. PLoS Pathog 2021; 17:e1009469. [PMID: 33831114 PMCID: PMC8057581 DOI: 10.1371/journal.ppat.1009469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/20/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects the upper and lower respiratory tracts and can cause lower respiratory tract infections in children and elders. RSV has traditionally been isolated, grown, studied and quantified in immortalized cell lines, most frequently HEp-2 cells. However, in vivo RSV infection is modeled more accurately in primary well differentiated human bronchial epithelial (HBE) cultures where RSV targets the ciliated cells and where the putative RSV receptor differs from the receptor on HEp-2 cells. The RSV attachment (G) glycoprotein in virions produced by HEp-2 cells is a highly glycosylated 95 kDa protein with a 32 kDa peptide core. However, virions produced in HBE cultures, RSV (HBE), contain an even larger, 170 kDa, G protein (LgG). Here we show that LgG is found in virions from both subgroups A and B lab-adapted and clinical isolates. Unexpectedly, RSV (HBE) virions were approximately 100-fold more infectious for HBE cultures than for HEp-2 cells. Surprisingly, the cause of this differential infectivity, was reduced infectivity of RSV (HBE) on HEp-2 cells rather than enhanced infectivity on HBE cultures. The lower infectivity of RSV(HBE) for HEp-2 cells is caused by the reduced ability of LgG to interact with heparan sulfate proteoglycans (HSPG), the RSV receptor on HEp-2 cells. The discovery of different infectivity corresponding with the larger form of the RSV attachment protein when produced by HBE cultures highlights the importance of studying a virus produced by its native host cell and the potential impact on quantifying virus infectivity on cell lines where the virus entry mechanisms differ from their natural target cell.
Collapse
Affiliation(s)
- Tiffany King
- The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Asuncion Mejias
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Octavio Ramilo
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
2
|
Leemans A, Boeren M, Van der Gucht W, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Characterization of the role of N-glycosylation sites in the respiratory syncytial virus fusion protein in virus replication, syncytium formation and antigenicity. Virus Res 2019; 266:58-68. [PMID: 31004621 DOI: 10.1016/j.virusres.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of infant hospitalization worldwide each year and there is presently no licensed vaccine to prevent severe RSV infections. Two major RSV glycoproteins, attachment (G) and fusion (F) protein, regulate viral replication and both proteins contain potential glycosylation sites which are highly variable for the G protein and conserved for the F protein among virus isolates. The RSV F sequence possesses five N-glycosylation sites located in the F2 subunit (N27 and N70), the p27 peptide (N116 and N126) and the F1 subunit (N500). The importance of RSV F N-glycosylation in virus replication and immunogenicity is not yet fully understood, and a better understanding may provide new insights for vaccine development. By using a BAC-based reverse genetics system, recombinant viruses expressing F proteins with loss of N-glycosylation sites were made. Mutant viruses with single N-glycosylation sites removed could be recovered, while this was not possible with the mutant with all N-glycosylation sites removed. Although the individual RSV F N-glycosylation sites were shown not to be essential for viral replication, they do contribute to the efficiency of in vitro and in vivo viral infection. To evaluate the role of N-glycosylation sites on RSV F antigenicity, serum antibody titers were determined after infection of BALB/c mice with RSV expressing the glycomutant F proteins. Infection with recombinant virus lacking the N-glycosylation site at position N116 (RSV F N116Q) resulted in significant higher neutralizing antibody titers compared to RSV F WT infection, which is surprising since this N-glycan is present in the p27 peptide which is assumed to be absent from the mature F protein in virions. Thus, single or combined RSV F glycomutations which affect virus replication and fusogenicity, and which may induce enhanced antibody responses upon immunization could have the potential to improve the efficacy of RSV LAV approaches.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line, Tumor
- Chlorocebus aethiops
- Female
- Giant Cells/virology
- Glycosylation
- Humans
- Immunization
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Mutation
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Virus Infections/pathology
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus, Human/growth & development
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Respiratory Syncytial Virus, Human/physiology
- Vero Cells
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, B-2610, Belgium.
| |
Collapse
|
3
|
Ortega V, Stone JA, Contreras EM, Iorio RM, Aguilar HC. Addicted to sugar: roles of glycans in the order Mononegavirales. Glycobiology 2019; 29:2-21. [PMID: 29878112 PMCID: PMC6291800 DOI: 10.1093/glycob/cwy053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/29/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Glycosylation is a biologically important protein modification process by which a carbohydrate chain is enzymatically added to a protein at a specific amino acid residue. This process plays roles in many cellular functions, including intracellular trafficking, cell-cell signaling, protein folding and receptor binding. While glycosylation is a common host cell process, it is utilized by many pathogens as well. Protein glycosylation is widely employed by viruses for both host invasion and evasion of host immune responses. Thus better understanding of viral glycosylation functions has potential applications for improved antiviral therapeutic and vaccine development. Here, we summarize our current knowledge on the broad biological functions of glycans for the Mononegavirales, an order of enveloped negative-sense single-stranded RNA viruses of high medical importance that includes Ebola, rabies, measles and Nipah viruses. We discuss glycobiological findings by genera in alphabetical order within each of eight Mononegavirales families, namely, the bornaviruses, filoviruses, mymonaviruses, nyamiviruses, paramyxoviruses, pneumoviruses, rhabdoviruses and sunviruses.
Collapse
Affiliation(s)
- Victoria Ortega
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jacquelyn A Stone
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Erik M Contreras
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Ronald M Iorio
- Department of Microbiology and Physiological Systems and Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Brown CJ, Quates CJ, Mirabzadeh CA, Miller CR, Wichman HA, Miura TA, Ytreberg FM. New Perspectives on Ebola Virus Evolution. PLoS One 2016; 11:e0160410. [PMID: 27479005 PMCID: PMC4968807 DOI: 10.1371/journal.pone.0160410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/19/2016] [Indexed: 12/01/2022] Open
Abstract
Since the recent devastating outbreak of Ebola virus disease in western Africa, there has been significant effort to understand the evolution of the deadly virus that caused the outbreak. There has been a considerable investment in sequencing Ebola virus (EBOV) isolates, and the results paint an important picture of how the virus has spread in western Africa. EBOV evolution cannot be understood outside the context of previous outbreaks, however. We have focused this study on the evolution of the EBOV glycoprotein gene (GP) because one of its products, the spike glycoprotein (GP1,2), is central to the host immune response and because it contains a large amount of the phylogenetic signal for this virus. We inferred the maximum likelihood phylogeny of 96 nonredundant GP gene sequences representing each of the outbreaks since 1976 up to the end of 2014. We tested for positive selection and considered the placement of adaptive amino acid substitutions along the phylogeny and within the protein structure of GP1,2. We conclude that: 1) the common practice of rooting the phylogeny of EBOV between the first known outbreak in 1976 and the next outbreak in 1995 provides a misleading view of EBOV evolution that ignores the fact that there is a non-human EBOV host between outbreaks; 2) the N-terminus of GP1 may be constrained from evolving in response to the host immune system by the highly expressed, secreted glycoprotein, which is encoded by the same region of the GP gene; 3) although the mucin-like domain of GP1 is essential for EBOV in vivo, it evolves rapidly without losing its twin functions: providing O-linked glycosylation sites and a flexible surface.
Collapse
Affiliation(s)
- Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Caleb J Quates
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Christopher A Mirabzadeh
- Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Craig R Miller
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America
| | - F Marty Ytreberg
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, United States of America.,Center for Modeling Complex Interactions, University of Idaho, Moscow, Idaho, United States of America.,Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
5
|
Kauvar LM, Harcourt JL, Haynes LM, Tripp RA. Therapeutic targeting of respiratory syncytial virus G-protein. Immunotherapy 2011; 2:655-61. [PMID: 20874649 DOI: 10.2217/imt.10.53] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in infants and young children and an important pathogen of the elderly and immune suppressed. The only intervention currently available is a monoclonal antibody against the RSV fusion protein, which has shown utility as a prophylactic for high-risk premature infants, but which has not shown postinfection therapeutic efficacy in the specific RSV-infected populations studied. Thus, for the major susceptible populations, there remains a great need for effective treatment. Recent results support monoclonal antibody targeting of the RSV G-protein for therapeutic use. This objective encompasses a dual mechanism: reduction in the ability of RSV G-protein to distort the host innate immune response, and direct complement-mediated antiviral activity.
Collapse
Affiliation(s)
- Lawrence M Kauvar
- Trellis Bioscience, 2-B Corporate Drive, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
6
|
Abstract
Summary: The interface between successful pathogens and their hosts is often a tenuous balance. In acute viral infections, this balance involves induction and inhibition of innate responses. Foot‐and‐mouth disease virus (FMDV) is considered one of the most contagious viruses known and is characterized by rapid induction of clinical disease in cloven hoofed animals exposed to infection. Viral shedding is extensive before the equally rapid resolution of acute disease. This positive strand RNA virus is an extremely successful pathogen, due in part to the ability to interrupt the innate immune response. Previous reviews have described the inhibition of cellular innate responses in the infected cell both in vitro and in vivo. Here, we present a review of virus inhibition of cells that are a source of antiviral function in swine. Particularly in the case of dendritic cells and natural killer cells, the virus has evolved mechanisms to interrupt the normal function of these important mediators of innate function, even though these cells are not infected by the virus. Understanding how this virus subverts the innate response will provide valuable information for the development of rapidly acting biotherapeutics to use in response to an outbreak of FMDV.
Collapse
Affiliation(s)
- William T Golde
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944-0848, USA.
| | | | | |
Collapse
|
7
|
Murakami D, Shimada Y, Kamiya S, Yamazaki K, Makimura Y, Ito K, Minamiura N, Yamamoto K. Convenient preparation and characterization of a monoclonal antibody for the N-linked sugar chain of a glycoprotein using a microbial endoglycosidase. Arch Biochem Biophys 2008; 477:299-304. [PMID: 18573232 DOI: 10.1016/j.abb.2008.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/27/2008] [Accepted: 05/28/2008] [Indexed: 10/22/2022]
Abstract
We attempted to obtain the monoclonal antibody specific for the N-linked complex-type sialo-oligosaccharide in glycoproteins. We first synthesized a chimeric immunoantigen having an N-linked complex-type of oligosaccharide of glycopeptide, which was bound to a p-formylphenyl compound and conjugated with phosphatidylethanolamine dimyristoyl using the transglycosylation activity of a microbial endoglycosidase (Endo-M) and a reductive amination reaction. This preparative method was convenient and provided a good yield. By immunizing mice with this chimeric neoglycolipid, the monoclonal antibody for the complex-type of sialo-oligosaccharide was obtained in the culture fluid of the cell line even though it was relatively unstable. The monoclonal antibody reacted with various glycoproteins having complex-type sialo-oligosaccharides, but not with those having complex-type asialo-oligosaccharides and high mannose types of oligosaccharides, or with any glycosphingolipids. One of epitopes of this monoclonal antibody seemed to be an alpha-2,6-linked sialic acid at the non-reducing end of the sialo-oligosaccharide of the glycoprotein.
Collapse
Affiliation(s)
- Daisuke Murakami
- Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|