1
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
2
|
Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat 2023; 165:106704. [PMID: 36621562 DOI: 10.1016/j.prostaglandins.2023.106704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/14/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Endothelial cells (ECs) maintain the health of blood vessels and prevent the development of cardiovascular disease (CVD). Free saturated fatty acids (FAs) induce EC damage and increase the risk of CVD by promoting arteriosclerosis. Conversely, polyunsaturated FAs (PUFAs), such as docosahexaenoic acid, are thought to suppress EC damage induced during the early stages of CVD. This review describes the effects of multiple dietary FAs on EC disorders involved in the development of CVD. The roles of FAs in atherosclerosis and CVD were analyzed by evaluating articles published in PubMed, Science Direct, and Web of Science. Saturated FAs were found to induce EC damage by reducing the production and action of EC-derived nitric oxide. Oxidative stress, inflammation, and the renin-angiotensin system were found to be involved in EC disorder. Furthermore, n-3 PUFAs were found to reduce EC dysfunction and prevent the development of EC disorder. These results indicate that FAs may affect EC failure induced during the early stages of CVD and reduce the risk of developing the disease.
Collapse
|
3
|
Shokr H, Dias IHK, Gherghel D. Oxysterols and Retinal Microvascular Dysfunction as Early Risk Markers for Cardiovascular Disease in Normal, Ageing Individuals. Antioxidants (Basel) 2021; 10:1756. [PMID: 34829627 PMCID: PMC8615151 DOI: 10.3390/antiox10111756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the present paper is to assess the relationship between oxysterol levels and retinal microvascular function in individuals of various age groups, free of clinically evident diseases. Forty-two apparently healthy individuals were included in the present study (group 1: 19-30 years, group 2: 31-50 years, and group 3: 51-70 years). Retinal microvascular function was assessed using the dynamic retinal vessel analyzer (DVA, IMEDOS GmbH, Jena, Germany). Fasting plasma was obtained from all subjects and quantification of monohydroxy and dihydroxy oxysterols assessment was performed using LC-MS/MS following reverse phase chromatography. A Griess assay was used to evaluate the Nitric Oxide (NO) concentration in all individuals. The glutathione redox ratio was also analyzed by means of whole blood glutathione recycling assay. In all participants, the levels of 7-Ketocholesterol, 25-hydroxycholesterol and 7β-hydroxycholesterol correlated significantly and positively with the time to maximum arteriolar dilation. In addition, 25-hydroxycholesterol and 7β-hydroxycholesterol negatively correlated to the percentage of maximum arteriolar dilation. A negative correlation was observed for 27-hydroxycholesterol and 7β-hydroxycholesterol with microvascular arteriolar constriction. These results suggest that, with age, abnormal oxysterol levels correlate with early changes in microvascular bed function. This relationship could signal early risk for cardiovascular diseases (CVDs) in an ageing population.
Collapse
Affiliation(s)
- Hala Shokr
- Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK;
| | - Irundika HK Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
| | - Doina Gherghel
- Vascular Research Laboratory, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK;
| |
Collapse
|
4
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
5
|
Gotham JP, Li R, Tipple TE, Lancaster JR, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med 2020; 154:84-94. [PMID: 32376456 PMCID: PMC7368495 DOI: 10.1016/j.freeradbiomed.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.
Collapse
Affiliation(s)
- John P Gotham
- Science and Technology Honors College, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Giménez-Gómez P, Rodríguez-Rodríguez R, Ríos JM, Pérez-Montero M, González E, Gutiérrez-Capitán M, Plaza JA, Muñoz-Berbel X, Jiménez-Jorquera C. A self-calibrating and multiplexed electrochemical lab-on-a-chip for cell culture analysis and high-resolution imaging. LAB ON A CHIP 2020; 20:823-833. [PMID: 31971535 DOI: 10.1039/c9lc01051c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In vitro analysis requires cell proliferation in conditions close to physiological ones. Lab-on-a-chip (LoC) devices simplify, miniaturize and automate traditional protocols, with the advantages of being less expensive and faster due to their shorter diffusion distances. The main limitation of current LoCs is still the control of the culture conditions. Most LoCs employ off-chip equipment to determine cell culture activity, which confers limited monitoring capacity. The few systems integrating transducers on-chip present important functional problems mostly associated with the attachment of biomolecules to the transducer surface (i.e., biofouling) and the impossibility of re-calibrating the sensors during cell culturing. This limitation is addressed in the present LoC containing a network of micro-channels and micro-chambers, which allows (i) cell seeding and cultivation, avoiding biofouling risk, (ii) multiplexed analysis of cell culture, reactivation and recalibration of the (bio)sensors without compromising cell viability, (iii) cell imaging and (iv) reference electrode compartmentalization to guarantee stability. The activity of the culture is monitored with four independent electrochemical micro-electrodes for glucose, hydrogen peroxide, conductivity and oxidation reduction potential. Electrochemical analysis is complemented with high-resolution confocal microscopy analysis. This paper demonstrates the suitability of the current configuration for cell culture monitoring and future applications in drug screening or organ-on-a-chip development.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallés, Barcelona, Spain
| | - Juan Manuel Ríos
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Marta Pérez-Montero
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallés, Barcelona, Spain
| | - Estrella González
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Manuel Gutiérrez-Capitán
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Jose Antonio Plaza
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Xavier Muñoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Cecilia Jiménez-Jorquera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
7
|
CAMARA FERNANDAD, PEDROSO GIULIAS, ROMAN SILVANES, DALLAGO ROGÉRIOM, VALDUGA ALICET, FERNANDES BRUNAB, CUNHA EDUARDOB, SILVEIRA PAULOCESARL, NESI RENATAT, PINHO RICARDOA. Yerba mate (Ilex paraguariensis St. Hil.) extract inhibits hand-rolled cornhusk cigarette smoke-induced oxidative pulmonary damage. AN ACAD BRAS CIENC 2020; 92:e20191141. [PMID: 32813863 DOI: 10.1590/0001-3765202020191141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/29/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
| | | | - SILVANE S. ROMAN
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | - ALICE T. VALDUGA
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
9
|
Lee VS, Halabi CM, Broekelmann TJ, Trackman PC, Stitziel NO, Mecham RP. Intracellular retention of mutant lysyl oxidase leads to aortic dilation in response to increased hemodynamic stress. JCI Insight 2019; 5:127748. [PMID: 31211696 PMCID: PMC6693828 DOI: 10.1172/jci.insight.127748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
Heterozygous missense mutations in lysyl oxidase (LOX) are associated with thoracic aortic aneurysms and dissections. To assess how LOX mutations modify protein function and lead to aortic disease, we studied the factors that influence the onset and progression of vascular aneurysms in mice bearing a Lox mutation (p.M292R) linked to aortic dilation in humans. We show that mice heterozygous for the M292R mutation did not develop aneurysmal disease unless challenged with increased hemodynamic stress. Vessel dilation was confined to the ascending aorta although both the ascending and descending aortae showed changes in vessel wall structure, smooth muscle cell number and inflammatory cell recruitment that differed between wild-type and mutant animals. Studies with isolated cells found that M292R-mutant Lox is retained in the endoplasmic reticulum and ultimately cleared through an autophagy/proteasome pathway. Because the mutant protein does not transit to the Golgi where copper incorporation occurs, the protein is never catalytically active. These studies show that the M292R mutation results in LOX loss-of-function due to a secretion defect that predisposes the ascending aorta in mice (and by extension humans with similar mutations) to arterial dilation when exposed to risk factors that impart stress to the arterial wall.
Collapse
MESH Headings
- Aortic Dissection/genetics
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Animals
- Aorta/cytology
- Aorta/pathology
- Aorta/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Embryo, Mammalian
- Endoplasmic Reticulum/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Fibroblasts/ultrastructure
- Gene Knock-In Techniques
- Genetic Predisposition to Disease
- Golgi Apparatus/metabolism
- Heterozygote
- Humans
- Hypertension/complications
- Hypertension/physiopathology
- Loss of Function Mutation
- Mice
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiopathology
- Muscle, Smooth, Vascular/ultrastructure
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Primary Cell Culture
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- Risk Factors
- Stress, Physiological
- Vasodilation/physiology
Collapse
Affiliation(s)
| | - Carmen M. Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Philip C. Trackman
- Department of Molecular and Cellular Biology, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts, USA
| | - Nathan O. Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
10
|
Binó L, Veselá I, Papežíková I, Procházková J, Vašíček O, Štefková K, Kučera J, Hanáčková M, Kubala L, Pacherník J. The depletion of p38alpha kinase upregulates NADPH oxidase 2/NOX2/gp91 expression and the production of superoxide in mouse embryonic stem cells. Arch Biochem Biophys 2019; 671:18-26. [PMID: 31176685 DOI: 10.1016/j.abb.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
P38alpha kinase plays an important role in the regulation of both cell stress response and cell fate. In this study, we report that p38alpha kinase-deficient embryonic stem cells exhibit a higher production of reactive oxygen species (ROS) in contrast to their wild-type counterpart. Analysis of the expressions of NADPH oxidases (NOXs) and dual oxidases, crucial enzymes involved in intracellular ROS formation, shows NOX2/gp91phox is over-expressed in p38alpha deficient cells. The particular increase in superoxide formation was confirmed by the specific detection of hydroethidine derivate 2-hydroxyethidium. ROS formation decreased when the level of NOX2 was silenced by siRNA in p38alpha deficient cells. These data suggest the importance of p38alpha kinase in the regulation of ROS metabolism in embryonic stem cells and the significance of the observed phenomena of cancer cell-like phenotypes, which is discussed.
Collapse
Affiliation(s)
- Lucia Binó
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Iva Veselá
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Iva Papežíková
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Ondřej Vašíček
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Kateřina Štefková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Jan Kučera
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Markéta Hanáčková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Lukáš Kubala
- Department of Free Radical Pathophysiology, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | - Jiří Pacherník
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
11
|
Smeda M, Kieronska A, Adamski MG, Proniewski B, Sternak M, Mohaissen T, Przyborowski K, Derszniak K, Kaczor D, Stojak M, Buczek E, Jasztal A, Wietrzyk J, Chlopicki S. Nitric oxide deficiency and endothelial-mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice. Breast Cancer Res 2018; 20:86. [PMID: 30075800 PMCID: PMC6091065 DOI: 10.1186/s13058-018-1013-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial–mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice. Methods NO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1–5 weeks after 4T1 cancer cell inoculation in Balb/c mice. Results Phosphorylation of eNOS and NO production in the lungs of 4T1 breast cancer-bearing mice was compromised prior to the development of pulmonary metastasis, and was associated with overexpression of Snail transcription factor in the pulmonary endothelium. These changes developed prior to the mesenchymal phenotypic switch in the lungs evidenced by a decrease in vascular endothelial-cadherin (VE-CAD) and CD31 expression, and the increase in pulmonary endothelial permeability, phenomena which coincided with early pulmonary metastasis. Increased activation of platelets was also detected prior to the early phase of metastasis and persisted to the late phase of metastasis, as evidenced by the higher percentage of unstimulated platelets binding fibrinogen without changes in von Willebrand factor and fibrinogen binding in response to ADP stimulation. Conclusions Decreased eNOS activity and phosphorylation resulting in a low NO production state featuring pulmonary endothelial dysfunction was an early event in breast cancer pulmonary metastasis, preceding the onset of its phenotypic switch toward a mesenchymal phenotype (EndMT) evidenced by a decrease in VE-CAD and CD31 expression. The latter coincided with development of the first metastatic nodules in the lungs. These findings suggest that early endothelial dysfunction featured by NO deficiency rather than EndMT, might represent a primary regulatory target to prevent early pulmonary metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-1013-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland.,Department of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Mateusz G Adamski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Dawid Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 4 St., 53-114, Wroclaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland. .,Department of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
12
|
Kaczara P, Proniewski B, Lovejoy C, Kus K, Motterlini R, Abramov AY, Chlopicki S. CORM-401 induces calcium signalling, NO increase and activation of pentose phosphate pathway in endothelial cells. FEBS J 2018; 285:1346-1358. [PMID: 29464848 DOI: 10.1111/febs.14411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 12/16/2022]
Abstract
Carbon monoxide-releasing molecules (CO-RMs) induce nitric oxide (NO) release (which requires NADPH), and Ca2+ -dependent signalling; however, their contribution in mediating endothelial responses to CO-RMs is not clear. Here, we studied the effects of CO liberated from CORM-401 on NO production, calcium signalling and pentose phosphate pathway (PPP) activity in human endothelial cell line (EA.hy926). CORM-401 induced NO production and two types of calcium signalling: a peak-like calcium signal and a gradual increase in cytosolic calcium. CORM-401-induced peak-like calcium signal, originating from endoplasmic reticulum, was reduced by thapsigargin, a SERCA inhibitor, and by dantrolene, a ryanodine receptors (RyR) inhibitor. In contrast, the phospholipase C inhibitor U73122 did not significantly affect peak-like calcium signalling, but a slow and progressive CORM-401-induced increase in cytosolic calcium was dependent on store-operated calcium entrance. CORM-401 augmented coupling of endoplasmic reticulum and plasmalemmal store-operated calcium channels. Interestingly, in the presence of NO synthase inhibitor (l-NAME) CORM-401-induced increases in NO and cytosolic calcium were both abrogated. CORM-401-induced calcium signalling was also inhibited by superoxide dismutase (poly(ethylene glycol)-SOD). Furthermore, CORM-401 accelerated PPP, increased NADPH concentration and decreased the ratio of reduced to oxidized glutathione (GSH/GSSG). Importantly, CORM-401-induced NO increase was inhibited by the PPP inhibitor 6-aminonicotinamide (6-AN), but neither by dantrolene nor by an inhibitor of large-conductance calcium-regulated potassium ion channel (paxilline). The results identify the primary role of CO-induced NO increase in the regulation of endothelial calcium signalling, that may have important consequences in controlling endothelial function.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Christopher Lovejoy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Roberto Motterlini
- INSERM Unit 955, Equipe 12, Faculty of Medicine, University Paris-Est, Créteil, France
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
13
|
The cathepsin B inhibitor z-FA-CMK induces cell death in leukemic T cells via oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:71-82. [PMID: 29085973 DOI: 10.1007/s00210-017-1436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The cathepsin B inhibitor benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was recently found to induce apoptosis at low concentrations in Jurkat T cells, while at higher concentrations, the cells die of necrosis. In the present study, we showed that z-FA-CMK readily depletes intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) generation. The toxicity of z-FA-CMK in Jurkat T cells was completely abrogated by N-acetylcysteine (NAC), suggesting that the toxicity mediated by z-FA-CMK is due to oxidative stress. We found that L-buthionine sulfoximine (BSO) which depletes intracellular GSH through the inhibition of GSH biosynthesis in Jurkat T cells did not promote ROS increase or induce cell death. However, NAC was still able to block z-FA-CMK toxicity in Jurkat T cells in the presence of BSO, indicating that the protective effect of NAC does not involve GSH biosynthesis. This is further corroborated by the protective effect of the non-metabolically active D-cysteine on z-FA-CMK toxicity. Furthermore, in BSO-treated cells, z-FA-CMK-induced ROS increased which remains unchanged, suggesting that the depletion of GSH and increase in ROS generation mediated by z-FA-CMK may be two separate events. Collectively, our results demonstrated that z-FA-CMK toxicity is mediated by oxidative stress through the increase in ROS generation.
Collapse
|
14
|
Cardiotoxic (Arrhythmogenic) Effects of 1,1-Difluoroethane Due to Electrolyte Imbalance and Cardiomyocyte Damage. Am J Forensic Med Pathol 2017; 38:115-125. [PMID: 28263233 DOI: 10.1097/paf.0000000000000262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inhalant abuse is the intentional inhalation of chemical vapors to attain euphoric effects. Many common household products are abused by inhalation and one is 1,1-difluoroethane (DFE), which is a halogenated hydrocarbon used in refrigeration, dust-off spray, and airbrush painting. Although many human DFE abuse cases have been studied, the etiology and mechanism of sudden death is still unknown. In this study, an animal model was used to simulate the human conditions of DFE inhalation abuse that results in sudden death.Current research targets mechanistic studies involving electrolyte changes and cardiomyocyte damage after DFE administration in vivo. To investigate these changes, Sprague Dawley rats (N = 6) were exposed to 30 seconds of 20 L/min of DFE in multiple doses. Isoflurane acted as a control. Two additional groups, epinephrine and epinephrine + DFE, were included to simulate the clinical condition of DFE abuse. Plasma sodium, potassium, calcium, and magnesium levels were measured, followed by lactate dehydrogenase, creatine kinase, and cardiac troponin I levels. In addition, oxidative stress markers were also evaluated in all animal groups. Electrolyte levels showed a significant rise in plasma potassium and magnesium levels for the treated groups. In addition, lactate dehydrogenase, creatine kinase, and cardiac troponin I levels in DFE and epinephrine + DFE administered rats were significantly elevated as compared with control. Some oxidative stress makers were also elevated significantly in treatment groups. Furthermore, histopathological analysis showed hyperemia/congestion in treated rats.These results support cardiotoxic effects indicating that DFE results in fatal arrhythmias, and the study can be important during clinical cases involving inhalant abuse.
Collapse
|
15
|
He X, Zeng H, Chen ST, Roman RJ, Aschner JL, Didion S, Chen JX. Endothelial specific SIRT3 deletion impairs glycolysis and angiogenesis and causes diastolic dysfunction. J Mol Cell Cardiol 2017; 112:104-113. [PMID: 28935506 DOI: 10.1016/j.yjmcc.2017.09.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023]
Abstract
Endothelial glycolysis plays a critical role in the regulation of angiogenesis. We investigated the role of Sirtuin 3 (SIRT3) on endothelial cell (EC) glycolytic metabolism, angiogenesis, and diastolic function. Our aim was to test the hypothesis that loss of SIRT3 in ECs impairs endothelial glycolytic metabolism and angiogenesis and contributes to myocardial capillary rarefaction and the development of diastolic dysfunction. Using SIRT3 deficient ECs, SIRT3 was found to regulate a metabolic switch between mitochondrial respiration and glycolysis. SIRT3 knockout (KO)-ECs exhibited higher mitochondrial respiration and reactive oxygen species (ROS) formation. SIRT3 knockout (KO)-ECs exhibited a reduction in the expression of glycolytic enzyme, PFKFB3, and a fall in glycolysis and angiogenesis. Blockade of PFKFB3 reduced glycolysis and downregulated expression of VEGF and Angiopoietin-1 (Ang-1) in ECs. Deletion of SIRT3 in ECs also impaired hypoxia-induced expression of HIF-2α, VEGF, and Ang-1, as well as reduced angiogenesis. In vivo, endothelial-specific SIRT3 KO (ECKO) mice exhibited a myocardial capillary rarefaction together with a reduced coronary flow reserve (CFR) and diastolic dysfunction. Histologic study further demonstrated that knockout of SIRT3 in ECs significantly increased perivascular fibrosis in the coronary artery. These results implicate a role of SIRT3 in modulating endothelial function and cardiac function. Ablation of SIRT3 leads to impairment of EC glycolytic metabolism and angiogenic signaling, which may contribute to coronary microvascular rarefaction and diastolic dysfunction in SIRT3 ECKO mice.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sean T Chen
- Duke University School of Medicine, Durham, NC, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, USA
| | - Sean Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
16
|
Sadaghianloo N, Yamamoto K, Bai H, Tsuneki M, Protack CD, Hall MR, Declemy S, Hassen-Khodja R, Madri J, Dardik A. Increased Oxidative Stress and Hypoxia Inducible Factor-1 Expression during Arteriovenous Fistula Maturation. Ann Vasc Surg 2017; 41:225-234. [PMID: 28163173 PMCID: PMC5411319 DOI: 10.1016/j.avsg.2016.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND The poor clinical results that are frequently reported for arteriovenous fistulae (AVF) for hemodialysis are typically due to failure of AVF maturation. We hypothesized that early AVF maturation is associated with generation of reactive oxygen species and activation of the hypoxia-inducible factor-1 (HIF-1) pathway, potentially promoting neointimal hyperplasia. We tested this hypothesis using a previously reported mouse AVF model that recapitulates human AVF maturation. METHODS Aortocaval fistulae were created in C57Bl/6 mice and compared with sham-operated mice. AVFs or inferior vena cavas were analyzed using a microarray, Amplex Red for extracellular H2O2, quantitative polymerase chain reaction, immunohistochemistry, and immunoblotting for HIF-1α and immunofluorescence for NOX-2, nitrotyrosine, heme oxygenase-1 (HO-1), and vascular endothelial growth factor (VEGF)-A. RESULTS Oxidative stress was higher in AVF than that in control veins, with more H2O2 (P = 0.007) and enhanced nitrotyrosine immunostaining (P = 0.005). Immunohistochemistry and immunoblot showed increased HIF-1α immunoreactivity in the AVF endothelium; HIF-1 targets NOX-2, HO-1 and VEGF-A were overexpressed in the AVF (P < 0.01). AVF expressed increased numbers of HIF-1α (P < 0.0001) and HO-1 (P < 0.0001) messenger RNA transcripts. CONCLUSIONS Oxidative stress increases in mouse AVF during early maturation, with increased expression of HIF-1α and its target genes NOX-2, HO-1, and VEGF-A. These results suggest that clinical strategies to improve AVF maturation could target the HIF-1 pathway.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France.
| | - Kota Yamamoto
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hualong Bai
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Vascular Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Masayuki Tsuneki
- National Cancer Center Research Institute, Tokyo, Japan; Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Clinton D Protack
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Michael R Hall
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT
| | - Serge Declemy
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Réda Hassen-Khodja
- Department of Vascular Surgery, University Hospital of Nice-Sophia Antipolis, Nice, France
| | - Joseph Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT; Department of Surgery, Yale University School of Medicine, New Haven, CT; Veterans Affairs Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
17
|
Coordinate activities of BRD4 and CDK9 in the transcriptional elongation complex are required for TGFβ-induced Nox4 expression and myofibroblast transdifferentiation. Cell Death Dis 2017; 8:e2606. [PMID: 28182006 PMCID: PMC5386453 DOI: 10.1038/cddis.2016.434] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Transdifferentiation of quiescent dermal fibroblasts to secretory myofibroblasts has a central role in wound healing and pathological scar formation. This myofibroblast transdifferentiation process involves TGFβ-induced de novo synthesis of alpha smooth muscle cell actin (αSMA)+ fibers that enhance contractility as well as increased expression of extracellular matrix (ECM) proteins, including collagen and fibronectin. These processes are mediated upstream by the reactive oxygen species (ROS)-producing enzyme Nox4, whose induction by TGFβ is incompletely understood. In this study, we demonstrate that Nox4 is involved in αSMA+ fiber formation and collagen production in primary human dermal fibroblasts (hDFs) using a small-molecule inhibitor and siRNA-mediated silencing. Furthermore, TGFβ-induced signaling via Smad3 is required for myofibroblast transformation and Nox4 upregulation. Immunoprecipitation-selected reaction monitoring (IP-SRM) assays of the activated Smad3 complex suggest that it couples with the epigenetic reader and transcription co-activator bromodomain and extraterminal (BET) domain containing protein 4 (BRD4) to promote Nox4 transcription. In addition, cyclin-dependent kinase 9 (CDK9), a component of positive transcription elongation factor, binds to BRD4 after TGFβ stimulation and is also required for RNA polymerase II phosphorylation and Nox4 transcription regulation. Surprisingly, BRD4 depletion decreases myofibroblast differentiation but does not affect collagen or fibronectin expression in primary skin fibroblasts, whereas knockdown of CDK9 decreases all myofibroblast genes. We observe enhanced numbers and persistence of myofibroblast formation and TGFβ signaling in hypertrophic scars. BRD4 inhibition reverses hypertrophic skin fibroblast transdifferentiation to myofibroblasts. Our data indicate that BRD4 and CDK9 have independent, coordinated roles in promoting the myofibroblast transition and suggest that inhibition of the Smad3-BRD4 pathway may be a useful strategy to limit hypertrophic scar formation after burn injury.
Collapse
|
18
|
Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules 2017; 22:molecules22010181. [PMID: 28117726 PMCID: PMC6155876 DOI: 10.3390/molecules22010181] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
During the last decade there has been growing interest in physical-chemical oxidation processes and the behavior of free radicals in living systems. Radicals are known as intermediate species in a variety of biochemical reactions. Numerous techniques, assays and biomarkers have been used to measure reactive oxygen and nitrogen species (ROS and RNS), and to examine oxidative stress. However, many of these assays are not entirely satisfactory or are used inappropriately. The purpose of this chapter is to review current EPR (Electron Paramagnetic Resonance) spectroscopy methods for measuring ROS, RNS, and their secondary products, and to discuss the strengths and limitations of specific methodological approaches.
Collapse
|
19
|
Abstract
PURPOSE We evaluated the small molecule coelenterazine as a potential reporter of cancer-associated superoxide anion in cell culture and in mice. PROCEDURES The superoxide anion concentrations of various cancer cell lines were quantified by coelenterazine chemiluminescence in vitro. Coelenteramide fluorescence was detected via flow cytometry and fluorescent microscopy. Coelenterazine was used for the in vivo detection of cancer-associated superoxide anion using the 4T1 breast adenocarcinoma mouse model. RESULTS Various cell lines in culture demonstrated different superoxide anion concentrations, with a signal range of 3.15 ± 0.06 to 11.80 ± 0.24 times that of background. In addition to chemiluminescent detection of coelenterazine, we demonstrated fluorescent detection of coelenteramide within the cytoplasm of cells. 4T1 murine mammary adenocarcinoma tumors in mice demonstrated significantly higher 2.13 ± 0.19-fold coelenterazine-based chemiluminescence than that of surrounding normal tissues. CONCLUSIONS Collectively, our results indicate that coelenterazine can be used to assay superoxide anion concentrations in cultured cancer cells and in tumors growing in mice.
Collapse
|
20
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
21
|
Zhang Y, Shan P, Srivastava A, Jiang G, Zhang X, Lee PJ. An Endothelial Hsp70-TLR4 Axis Limits Nox3 Expression and Protects Against Oxidant Injury in Lungs. Antioxid Redox Signal 2016; 24:991-1012. [PMID: 26905942 PMCID: PMC4922010 DOI: 10.1089/ars.2015.6505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 02/05/2023]
Abstract
AIMS Oxidants play a critical role in the pathogenesis of acute lung injury (ALI). Nox3 is a novel member of the NADPH oxidase (Nox) family of oxidant-generating enzymes, which our laboratory had previously identified to be induced in the lungs of TLR4(-/-) mice. However, the physiologic role of Nox3 induction in lungs and its precise relationship to TLR4 are unknown. Furthermore, the cell compartment involved and the signaling mechanisms of Nox3 induction are unknown. RESULTS We identified that Nox3 is regulated by heat shock protein 70 (Hsp70) signaling via a TLR4-Trif-signal transducer and activator of transcription 3 (Stat3) pathway and that Nox3 induction leads to increased oxidant injury and death in mice and lung endothelial cells. We generated Nox3(-/-)/TLR4(-/-) double knockout mice, endothelial-targeting lentiviral silencing constructs, and endothelial-targeted Stat3(-/-) mice to specifically demonstrate that Nox3 induction is responsible for the pro-oxidant, proapoptotic phenotype of TLR4(-/-) mice. We also show that an endothelial Hsp70-TLR4-Trif-Stat3 axis is required to suppress deleterious Nox3 induction. INNOVATION To date, a physiologic role for Nox3 in oxidant-induced ALI has not been identified. In addition, we generated unique double knockout mice and endothelial-targeted lentiviral silencing constructs to specifically demonstrate the role of a TLR4 signaling pathway in regulating pro-oxidant generation. CONCLUSIONS We identified an endothelial TLR4-Trif antioxidant pathway that leads to the inhibition of a novel NADPH oxidase, Nox3, in lungs and lung endothelial cells. We also identified the role of a TLR4 ligand, Hsp70, in suppressing Nox3 in basal and pro-oxidant conditions. These studies identify potentially new therapeutic targets in oxidant-induced ALI. Antioxid. Redox Signal. 24, 991-1012.
Collapse
Affiliation(s)
- Yi Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peiying Shan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Anup Srivastava
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ge Jiang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine and VA Connecticut Healthcare System, New Haven, Connecticut
| | - Patty J. Lee
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Łukasiak A, Skup A, Chlopicki S, Łomnicka M, Kaczara P, Proniewski B, Szewczyk A, Wrzosek A. SERCA, complex I of the respiratory chain and ATP-synthase inhibition are involved in pleiotropic effects of NS1619 on endothelial cells. Eur J Pharmacol 2016; 786:137-147. [PMID: 27262382 DOI: 10.1016/j.ejphar.2016.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/17/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
A large conductance potassium (BKCa) channel opener, NS1619 (1,3-dihydro-1- [2-hydroxy-5-(trifluoromethyl) phenyl]-5-(trifluoromethyl)-2H-benzimidazole-2-one), is well known for its protective effects against ischemia-reperfusion injury; however, the exact mode of its action remains unclear. The aim of this study was to characterize the effect of NS1619 on endothelial cells. The endothelial cell line EA.hy926, guinea pig hearts and submitochondrial particles isolated from the heart were used. In the isolated guinea pig hearts, which were perfused using the Langendorff technique, NS1619 caused a dose-dependent increase in coronary flow that was inhibited by L-NAME. In EA.hy926 cells, NS1619 also caused a dose-dependent increase in the intracellular calcium ion concentration [Ca(2+)]i, as measured using the FURA-2 fluorescent probe. Moreover, NS1619 decreased the oxygen consumption rate in EA.hy926 cells, as assessed using a Clark-type oxygen electrode. However, when NS1619 was applied in the presence of oligomycin, the oxygen consumption increased. NS1619 also decreased the mitochondrial membrane potential, as measured using a JC-1 fluorescent probe in the presence and absence of oligomycin. Additionally, the application of NS1619 to submitochondrial particles inhibited ATP synthase. In summary, NS1619 has pleiotropic actions on EA.hy926 cells and acts not only as an opener of the BKCa channel in EA.hy926 cells but also as an inhibitor of the respiratory chain component, sarcoplasmic reticulum ATPase, which leads to the release of Ca(2+) from the endoplasmic reticulum. Furthermore, NS1619 has the oligomycin-like property of inhibiting mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Agnieszka Łukasiak
- Department of Biophysics, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.
| | - Agata Skup
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Magdalena Łomnicka
- Chair of Pharmacology, Jagiellonian University, Medical College, 16 Grzegorzecka, 31-531 Krakow, Poland
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| | - Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, 3 Pasteura St., 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Huang J, Milton A, Arnold RD, Huang H, Smith F, Panizzi JR, Panizzi P. Methods for measuring myeloperoxidase activity toward assessing inhibitor efficacy in living systems. J Leukoc Biol 2016; 99:541-8. [PMID: 26884610 DOI: 10.1189/jlb.3ru0615-256r] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/11/2016] [Indexed: 12/23/2022] Open
Abstract
Myeloperoxidase aids in clearance of microbes by generation of peroxidase-mediated oxidants that kill leukocyte-engulfed pathogens. In this review, we will examine 1) strategies for in vitro evaluation of myeloperoxidase function and its inhibition, 2) ways to monitor generation of certain oxidant species during inflammation, and 3) how these methods can be used to approximate the total polymorphonuclear neutrophil chemotaxis following insult. Several optical imaging probes are designed to target reactive oxygen and nitrogen species during polymorphonuclear neutrophil inflammatory burst following injury. Here, we review the following 1) the broad effect of myeloperoxidase on normal physiology, 2) the difference between myeloperoxidase and other peroxidases, 3) the current optical probes available for use as surrogates for direct measures of myeloperoxidase-derived oxidants, and 4) the range of preclinical options for imaging myeloperoxidase accumulation at sites of inflammation in mice. We also stress the advantages and drawbacks of each of these methods, the pharmacokinetic considerations that may limit probe use to strictly cell cultures for some reactive oxygen and nitrogen species, rather than in vivo utility as indicators of myeloperoxidase function. Taken together, our review should shed light on the fundamental rational behind these techniques for measuring myeloperoxidase activity and polymorphonuclear neutrophil response after injury toward developing safe myeloperoxidase inhibitors as potential therapy for chronic obstructive pulmonary disease and rheumatoid arthritis.
Collapse
Affiliation(s)
- Jiansheng Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Amber Milton
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Robert D Arnold
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Hui Huang
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Forrest Smith
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jennifer R Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Peter Panizzi
- *Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
24
|
Sun Q, Zhong W, Zhang W, Zhou Z. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. Am J Physiol Gastrointest Liver Physiol 2016; 310:G205-14. [PMID: 26585415 PMCID: PMC4971814 DOI: 10.1152/ajpgi.00270.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/14/2015] [Indexed: 02/06/2023]
Abstract
Morphological and functional alterations of hepatic mitochondria have been documented in patients with alcoholic liver disease (ALD). Our recent study demonstrated that zinc level was decreased in whole liver and mitochondria by chronic alcohol feeding. The present study was undertaken to determine whether zinc deficiency mediates alcohol-induced mitochondrial electron transport chain (ETC) defect and whether defective ETC function may lead to generation of reactive oxygen species (ROS). Male Wistar rats were pair fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure increased hepatic triglyceride, free fatty acid, and 4-hydroxynonenal (4HNE) levels; meanwhile hepatic mitochondrial 4HNE level was also increased. Moreover, hepatic mitochondrial respiratory complexes I, III, IV, and V and hepatic ATP production were decreased by chronic alcohol exposure. Chronic alcohol feeding decreased peroxisome proliferator-activated receptor gamma coactivator-1-alpha (PGC1α), nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (TFAM), and mitochondrial DNA. HepG2 cells were treated with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) for 6 h. Zinc deficiency significantly decreased mitochondrial respiratory complexes I, III, and IV. In addition, PGC1α, NRF1, and TFAM levels as well as mitochondrial DNA were significantly decreased by TPEN treatment. Knockdown of mitochondrial respiratory complexes I, III, or IV by shRNA caused a decrease in mitochondrial membrane potential and an increase in ROS production. These results suggest that alcohol-induced hepatic zinc deficiency could inactivate mitochondrial biogenesis pathway and decrease mitochondrial DNA replication, which, in turn, decreases mitochondrial complex protein expression. The defect of mitochondrial respiratory complexes may worsen alcohol-induced ROS production.
Collapse
Affiliation(s)
- Qian Sun
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina; and Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wei Zhong
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Wenliang Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| | - Zhanxiang Zhou
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina; and Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina
| |
Collapse
|
25
|
The GTPase ARF6 Controls ROS Production to Mediate Angiotensin II-Induced Vascular Smooth Muscle Cell Proliferation. PLoS One 2016; 11:e0148097. [PMID: 26824355 PMCID: PMC4732744 DOI: 10.1371/journal.pone.0148097] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/13/2016] [Indexed: 02/07/2023] Open
Abstract
High reactive oxygen species (ROS) levels and enhanced vascular smooth muscle cells (VSMC) proliferation are observed in numerous cardiovascular diseases. The mechanisms by which hormones such as angiotensin II (Ang II) acts to promote these cellular responses remain poorly understood. We have previously shown that the ADP-ribosylation factor 6 (ARF6), a molecular switch that coordinates intracellular signaling events can be activated by the Ang II receptor (AT1R). Whether this small GTP-binding protein controls the signaling events leading to ROS production and therefore Ang II-dependent VSMC proliferation, remains however unknown. Here, we demonstrate that in rat aortic VSMC, Ang II stimulation led to the subsequent activation of ARF6 and Rac1, a key regulator of NADPH oxidase activity. Using RNA interference, we showed that ARF6 is essential for ROS generation since in conditions where this GTPase was knocked down, Ang II could no longer promote superoxide anion production. In addition to regulating Rac1 activity, ARF6 also controlled expression of the NADPH oxidase 1 (Nox 1) as well as the ability of the EGFR to become transactivated. Finally, ARF6 also controlled MAPK (Erk1/2, p38 and Jnk) activation, a key pathway of VSMC proliferation. Altogether, our findings demonstrate that Ang II promotes activation of ARF6 to controls ROS production by regulating Rac1 activation and Nox1 expression. In turn, increased ROS acts to activate the MAPK pathway. These signaling events represent a new molecular mechanism by which Ang II can promote proliferation of VSMC.
Collapse
|
26
|
Bronsart LL, Stokes C, Contag CH. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass. PLoS One 2016; 11:e0146601. [PMID: 26752052 PMCID: PMC4709142 DOI: 10.1371/journal.pone.0146601] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes.
Collapse
Affiliation(s)
- Laura L. Bronsart
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, California 94305, United States of America
- Department of Pediatrics, Stanford University, 318 Campus Drive, Stanford, California 94305, United States of America
| | - Christian Stokes
- Department of Pediatrics, Stanford University, 318 Campus Drive, Stanford, California 94305, United States of America
| | - Christopher H. Contag
- Department of Pediatrics, Stanford University, 318 Campus Drive, Stanford, California 94305, United States of America
- Departments of Radiology, Microbiology & Immunology, Stanford University, 318 Campus Drive, Stanford, California 94305, United States of America
- * E-mail:
| |
Collapse
|
27
|
Apocynin and Diphenyleneiodonium Induce Oxidative Stress and Modulate PI3K/Akt and MAPK/Erk Activity in Mouse Embryonic Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7409196. [PMID: 26788250 PMCID: PMC4691611 DOI: 10.1155/2016/7409196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 01/06/2023]
Abstract
Reactive oxygen species (ROS) are important regulators of cellular functions. In embryonic stem cells, ROS are suggested to influence differentiation status. Regulated ROS formation is catalyzed primarily by NADPH-dependent oxidases (NOXs). Apocynin and diphenyleneiodonium are frequently used inhibitors of NOXs; however, both exhibit uncharacterized effects not related to NOXs inhibition. Interestingly, in our model of mouse embryonic stem cells we demonstrate low expression of NOXs. Therefore we aimed to clarify potential side effects of these drugs. Both apocynin and diphenyleneiodonium impaired proliferation of cells. Surprisingly, we observed prooxidant activity of these drugs determined by hydroethidine. Further, we revealed that apocynin inhibits PI3K/Akt pathway with its downstream transcriptional factor Nanog. Opposite to this, apocynin augmented activity of canonical Wnt signaling. On the contrary, diphenyleneiodonium activated both PI3K/Akt and Erk signaling pathways without affecting Wnt. Our data indicates limits and possible unexpected interactions of NOXs inhibitors with intracellular signaling pathways.
Collapse
|
28
|
Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, Wersto RP, Araki Y, Miyoshi I, Yang L, Trinchieri G, Biragyn A. Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely upon Education from Tumor-Associated B Cells. Cancer Res 2015; 75:3456-65. [PMID: 26183924 DOI: 10.1158/0008-5472.can-14-3077] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/13/2015] [Indexed: 12/30/2022]
Abstract
Myeloid-derived suppressive cells (MDSC) have been reported to promote metastasis, but the loss of cancer-induced B cells/B regulatory cells (tBreg) can block metastasis despite MDSC expansion in cancer. Here, using multiple murine tumor models and human MDSC, we show that MDSC populations that expand in cancer have only partially primed regulatory function and limited prometastatic activity unless they are fully educated by tBregs. Cancer-induced tBregs directly activate the regulatory function of both the monocyte and granulocyte subpopulations of MDSC, relying, in part, on TgfβR1/TgfβR2 signaling. MDSC fully educated in this manner exhibit an increased production of reactive oxygen species and NO and more efficiently suppress CD4(+) and CD8(+) T cells, thereby promoting tumor growth and metastasis. Thus, loss of tBregs or TgfβR deficiency in MDSC is sufficient to disable their suppressive function and to block metastasis. Overall, our data indicate that cancer-induced B cells/B regulatory cells are important regulators of the immunosuppressive and prometastatic functions of MDSC.
Collapse
Affiliation(s)
- Monica Bodogai
- Immune Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Kanako Moritoh
- Immune Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Catalina Lee-Chang
- Immune Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Christine M Hollander
- Tumor Microenvironment Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Cheryl A Sherman-Baust
- Immune Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Robert P Wersto
- Flow Cytometry Unit, National Institute on Aging, Baltimore, Maryland
| | - Yoshihiko Araki
- Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Ichiro Miyoshi
- Center for Experimental Animal Science, Nagoya City University Graduate School of Medicine, Nagoya, Japan
| | - Li Yang
- Tumor Microenvironment Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Experimental Immunology, National Cancer Institute, Frederick, Maryland
| | - Arya Biragyn
- Immune Regulation Section, Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland.
| |
Collapse
|
29
|
Ekstrand M, Gustafsson Trajkovska M, Perman-Sundelin J, Fogelstrand P, Adiels M, Johansson M, Mattsson-Hultén L, Borén J, Levin M. Imaging of Intracellular and Extracellular ROS Levels in Atherosclerotic Mouse Aortas Ex Vivo: Effects of Lipid Lowering by Diet or Atorvastatin. PLoS One 2015; 10:e0130898. [PMID: 26098110 PMCID: PMC4476734 DOI: 10.1371/journal.pone.0130898] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022] Open
Abstract
Objective The first objective was to investigate if intracellular and extracellular levels of reactive oxygen species (ROS) within the mouse aorta increase before or after diet-induced lesion formation. The second objective was to investigate if intracellular and extracellular ROS correlates to cell composition in atherosclerotic lesions. The third objective was to investigate if intracellular and extracellular ROS levels within established atherosclerotic lesions can be reduced by lipid lowering by diet or atorvastatin. Approach and Results To address our objectives, we established a new imaging technique to visualize and quantify intracellular and extracellular ROS levels within intact mouse aortas ex vivo. Using this technique, we found that intracellular, but not extracellular, ROS levels increased prior to lesion formation in mouse aortas. Both intracellular and extracellular ROS levels were increased in advanced lesions. Intracellular ROS correlated with lesion content of macrophages. Extracellular ROS correlated with lesion content of smooth muscle cells. The high levels of ROS in advanced lesions were reduced by 5 days high dose atorvastatin treatment but not by lipid lowering by diet. Atorvastatin treatment did not affect lesion inflammation (aortic arch mRNA levels of CXCL 1, ICAM-1, MCP-1, TNF-α, VCAM, IL-6, and IL-1β) or cellular composition (smooth muscle cell, macrophage, and T-cell content). Conclusions Aortic levels of intracellular ROS increase prior to lesion formation and may be important in initiation of atherosclerosis. Our results suggest that within lesions, macrophages produce mainly intracellular ROS whereas smooth muscle cells produce extracellular ROS. Short term atorvastatin treatment, but not lipid lowering by diet, decreases ROS levels within established advanced lesions; this may help explain the lesion stabilizing and anti-inflammatory effects of long term statin treatment.
Collapse
Affiliation(s)
- Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Maria Gustafsson Trajkovska
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Jeanna Perman-Sundelin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Martin Johansson
- Department of Pathology, Malmö University Hospital, Lund University, SE-205 02, Malmoe, Sweden
| | - Lillemor Mattsson-Hultén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
- Department of Oncology, Sahlgrenska University Hospital, SE-413 45, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
30
|
Zhu P, Liu J, Shi J, Zhou Q, Liu J, Zhang X, Du Z, Liu Q, Guo Y. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction. J Cell Mol Med 2015; 19:2232-43. [PMID: 26081690 PMCID: PMC4568927 DOI: 10.1111/jcmm.12610] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre-treatment with melatonin, an endogenous hormone with newly found anti-oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre-treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD-1), as well as pro-angiogenic and mitogenic factors like insulin-like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre-treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti-apoptosis kinases like p-Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre-treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Shi
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Qian Zhou
- Department of Cardiology, The Center Hospital of Zhoukou, Henan Province, China
| | - Jie Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatrics, Civil Aviation General Hospital, Beijing, China
| | - Xianwei Zhang
- The Health Department of Guard Bureau in the General Staff, Beijing, China
| | - Zhiyan Du
- Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Qiaowei Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanyuan Guo
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
31
|
Rajah T, Chow SC. Suppression of Human T Cell Proliferation Mediated by the Cathepsin B Inhibitor, z-FA-FMK Is Due to Oxidative Stress. PLoS One 2015; 10:e0123711. [PMID: 25915766 PMCID: PMC4411069 DOI: 10.1371/journal.pone.0123711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 01/01/2023] Open
Abstract
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
Collapse
Affiliation(s)
- Tanuja Rajah
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | - Sek Chuen Chow
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
- * E-mail:
| |
Collapse
|
32
|
Seals DR, Kaplon RE, Gioscia-Ryan RA, LaRocca TJ. You're only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda) 2015; 29:250-64. [PMID: 24985329 DOI: 10.1152/physiol.00059.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health.
Collapse
Affiliation(s)
- Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Rachelle E Kaplon
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
33
|
Manasa K, Vani R. In Vitro Susceptibility of Wistar Rat Platelets to Hydrogen Peroxide and AAPH-Induced Oxidative Stress. Indian J Hematol Blood Transfus 2015; 31:90-7. [PMID: 25548452 PMCID: PMC4275511 DOI: 10.1007/s12288-014-0386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/01/2014] [Indexed: 11/24/2022] Open
Abstract
Hydroxyl and peroxyl radicals are biologically active species because of their likelihood to damage cellular constituents. An in vitro study on Wistar rats was conducted to investigate the influence of hydrogen peroxide (H2O2) and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) on platelets and compare the vulnerability of platelets to oxidative stress (OS) induced by these two free radical initiators. Isolated platelets were divided into controls (without free radical initiators; n = 5) and experimentals (with free radical initiators; n = 5). Different concentrations (0.5, 1.0 and 2.0) of free radical initiators H2O2 and AAPH were used to treat the platelets and incubated for 5, 15 and 30 min. Biomarkers such as platelet aggregation, superoxide generation, lipid peroxidation (thiobarbituric acid reactive substances, conjugate dienes), protein oxidation (protein carbonyls, sulfhydryls) and antioxidant enzymes were assessed. In H2O2 and AAPH treated platelets, though OS was observed at concentrations of 0.5 and 1.0 mM, platelets could tolerate the oxidative insult. Treatment of platelets with 2.0 mM H2O2 demonstrated the onset of irreversible changes in platelets as observed in the results of increased superoxide generation and lipid peroxidation products. In 2.0 mM AAPH platelets, the oxidative damage was evident as indicated through increased aggregation, superoxide generation and conjugate dienes and lower protein sulfhydryls. Platelets were more susceptible to AAPH than H2O2, as AAPH acted on both lipids and proteins whereas H2O2 acted only on lipids. This study gives insight on platelet survival under different OS situations.
Collapse
Affiliation(s)
- K. Manasa
- Department of Biotechnology, Center for Post Graduate Studies, Jain University, #18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, 560011 India
| | - R. Vani
- Department of Biotechnology, Center for Post Graduate Studies, Jain University, #18/3, 9th Main, 3rd Block, Jayanagar, Bangalore, 560011 India
| |
Collapse
|
34
|
Li J, Xie J, Gao L, Li CM. Au nanoparticles-3D graphene hydrogel nanocomposite to boost synergistically in situ detection sensitivity toward cell-released nitric oxide. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2726-2734. [PMID: 25580718 DOI: 10.1021/am5077777] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In situ detection of nitric oxide (NO) released from living cells has become very important in studies of some critical physiological and pathological processes, but it is still very challenging due to the low concentration and fast decay of NO. A nanocomposite of Au nanoparticles deposited on three-dimensional graphene hydrogel (Au NPs-3DGH) was prepared through a facile one-step approach by in situ reduction of Au(3+) on 3DGH to build a unique sensing film for a strong synergistic effect, in which the highly porous 3DGH offers a large surface area while Au NPs uniformly deposited on 3DGH efficiently catalyze the electrochemical oxidation of NO for sensitive detection of NO with excellent selectivity, fast response, and low detection limit. The sensor was further used to in situ detect NO released from living cells under drug stimulation, showing significant difference between normal and tumor cells under drug stimulation.
Collapse
Affiliation(s)
- Jialin Li
- Institute for Clean Energy & Advanced Materials and ‡Faculty of Materials and Energy, Southwest University , Chongqing 400715, China
| | | | | | | |
Collapse
|
35
|
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two major gaseous signaling molecules that regulate diverse physiological functions. Recent publications indicate the regulatory role of H2S on NO metabolism. In this chapter, we discuss the latest findings on H2S-NO interactions through formation of novel chemical derivatives and experimental approaches to study these adducts. This chapter also addresses potential H2S interference on various NO detection techniques, along with precautions for analyzing biological samples from various sources. This information will facilitate critical evaluation and clearer insight into H2S regulation of NO signaling and its influence on various physiological functions.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.
| | - Shuai Yuan
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.
| |
Collapse
|
36
|
Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:967462. [PMID: 24790636 PMCID: PMC3984789 DOI: 10.1155/2014/967462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/19/2022]
Abstract
Drosophila is one of the oldest and most powerful genetic models and has led to novel insights into a variety of biological processes. Recently, Drosophila has emerged as a model system to study human diseases, including several important neurodegenerative diseases. Because of the genomic similarity between Drosophila and humans, Drosophila neurodegenerative disease models exhibit a variety of human-disease-like phenotypes, facilitating fast and cost-effective in vivo genetic modifier screening and drug evaluation. Using these models, many disease-associated genetic factors have been identified, leading to the identification of compelling drug candidates. Recently, the safety and efficacy of traditional medicines for human diseases have been evaluated in various animal disease models. Despite the advantages of the Drosophila model, its usage in the evaluation of traditional medicines is only nascent. Here, we introduce the Drosophila model for neurodegenerative diseases and some examples demonstrating the successful application of Drosophila models in the evaluation of traditional medicines.
Collapse
|
37
|
Yamaleyeva LM, Lindsey SH, Varagic J, Zhang LL, Gallagher PE, Chen AF, Chappell MC. Amelioration of renal injury and oxidative stress by the nNOS inhibitor L-VNIO in the salt-sensitive mRen2.Lewis congenic rat. J Cardiovasc Pharmacol 2012; 59:529-38. [PMID: 22370956 PMCID: PMC3369010 DOI: 10.1097/fjc.0b013e31824dd15b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Salt sensitivity is a key risk factor for cardiovascular disease and renal injury. Alterations in renal nitric oxide may contribute to salt-dependent increases in blood pressure and tissue damage. Therefore, we assessed the expression of nitric oxide synthase (NOS) isoforms in the kidney and the effects of nNOS inhibition on renal injury, inflammation, and oxidative stress in the female mRen2.Lewis rat (mRen), a model of salt-sensitive hypertension. We find that a high-salt diet (4% sodium) significantly reduced endothelial NOS mRNA (2.6-fold) and protein (1.5-fold) but increased nNOS mRNA (2.4-fold) and protein (1.9-fold) in the renal cortex of these animals. Immunostaining for nNOS also seemed higher in macula densa and cortical tubules of the rats fed a high-salt diet. Circulating nitrate and nitrite levels were reduced, including the tissue levels of the NOS cofactor tetrahydrobiopterin. Cortical markers of oxidative stress (4HNE, 8-OH-deoxyguanosine) and fibrosis were increased; however, mRNA levels of the NAD(P)H oxidase components NOX4, p22phox, and p47phox were reduced. Chronic treatment with the nNOS inhibitor N-(1-Imino-3-butenyl)-L-ornithine did not influence systolic blood pressure after 4 weeks but significantly attenuated albuminuria, renal fibrosis, inflammation, and indices of oxidative stress. We conclude that an increase in nNOS expression in conjunction with reduced levels of cortical tetrahydrobiopterin may stimulate oxidative stress and renal injury in the salt-sensitive female mRen2.Lewis rat.
Collapse
Affiliation(s)
- Liliya M Yamaleyeva
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1095, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
LaRocca TJ, Henson GD, Thorburn A, Sindler AL, Pierce GL, Seals DR. Translational evidence that impaired autophagy contributes to arterial ageing. J Physiol 2012; 590:3305-16. [PMID: 22570377 DOI: 10.1113/jphysiol.2012.229690] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ageing causes arterial endothelial dysfunction that increases the risk of cardiovascular diseases (CVD), but the underlying mechanisms are incompletely understood. The aim of the present study was to determine the role of autophagy, the cellular process of recycling damaged biomolecules, in endothelial dysfunction with ageing. In older humans, expression of autophagy markers in arterial endothelial cells was impaired by ∼50% (P <0.05) and was associated with an ∼30% (P <0.05) reduction in arterial endothelium-dependent dilatation (EDD). Similarly, in C57BL/6 control mice ageing was associated with an ∼40% decrease (P <0.05) in arterial markers of autophagy and an ∼25% reduction (P <0.05) in EDD. In both humans and mice, impaired EDD was mediated by reduced nitric oxide (NO) bioavailability and was associated with increased oxidative stress and inflammation (P <0.05). In old mice, treatment with the autophagy-enhancing agent trehalose restored expression of autophagy markers, rescued NO-mediated EDD by reducing oxidative stress, and normalized inflammatory cytokine expression. In cultured endothelial cells, inhibition of autophagy increased oxidative stress and reduced NO production, whereas trehalose enhanced NO production via an autophagy-dependent mechanism. These results provide the first evidence that autophagy is impaired with ageing in vascular tissues. Our findings also suggest that autophagy preserves arterial endothelial function by reducing oxidative stress and inflammation and increasing NO bioavailability. Autophagy-enhancing strategies may therefore have therapeutic efficacy for ameliorating age-associated arterial dysfunction and preventing CVD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado at Boulder, 354 UCB, Boulder, CO 80309, USA
| | | | | | | | | | | |
Collapse
|
39
|
Liu F, Gomez Garcia AM, Meyskens FL. NADPH oxidase 1 overexpression enhances invasion via matrix metalloproteinase-2 and epithelial-mesenchymal transition in melanoma cells. J Invest Dermatol 2012; 132:2033-41. [PMID: 22513785 DOI: 10.1038/jid.2012.119] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NADPH oxidase 1 (Nox1) is a member of the NADPH oxidase family that has not been well characterized in the melanocytic cell lineage. Here we demonstrated that Nox1 and Nox4 were detected in melanocytic lineage, with only Nox1 detected in normal human melanocytes and Nox4 in a subset of metastatic melanoma cell lines. The protein level and enzymatic activity of Nox1 was elevated in all melanoma cells as compared with normal melanocytes. Overexpression of GFP-Nox1 protein in Wm3211 primary melanoma cells increased invasion rate by 4- to 6-fold as measured by Matrigel invasion assay, whereas knocking down or inhibiting Nox1 decreased invasion by approximately 40-60% in Wm3211 and SK-Mel-28 cells. Matrix metalloproteinase-2 (MMP-2) was increased by Nox1 overexpression at the mRNA, protein, and activity levels, and decreased by Nox1 knockdown. MMP-2 promoter activity was also regulated by Nox1 knockdown. In addition, stable clones overexpressing Nox1 exhibited an epithelial-mesenchymal transition (EMT) as examined by cell morphology and EMT markers; knockdown or inhibiting Nox1 led to a reversal of EMT. Supplementing MMP-2 to culture media did not induce EMT, suggesting that EMT induction by Nox1 was not through MMP-2 upregulation. In summary, Nox1 was overexpressed in all melanoma cell lines examined, and enhanced cell invasion by MMP-2 upregulation and EMT induction.
Collapse
Affiliation(s)
- Feng Liu
- Department of Medicine, University of California, Irvine, Irvine, California 92697, USA.
| | | | | |
Collapse
|
40
|
Kozel BA, Knutsen RH, Ye L, Ciliberto CH, Broekelmann TJ, Mecham RP. Genetic modifiers of cardiovascular phenotype caused by elastin haploinsufficiency act by extrinsic noncomplementation. J Biol Chem 2011; 286:44926-36. [PMID: 22049077 PMCID: PMC3248007 DOI: 10.1074/jbc.m111.274779] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/15/2011] [Indexed: 12/21/2022] Open
Abstract
Elastin haploinsufficiency causes the cardiovascular complications associated with Williams-Beuren syndrome and isolated supravalvular aortic stenosis. Significant variability exists in the vascular pathology in these individuals. Using the Eln(+/-) mouse, we sought to identify the source of this variability. Following outcrossing of C57Bl/6J Eln(+/-), two backgrounds were identified whose cardiovascular parameters deviated significantly from the parental strain. F1 progeny of the C57Bl/6J; Eln(+/-)x129X1/SvJ were more hypertensive and their arteries less compliant. In contrast, Eln(+/-) animals crossed to DBA/2J were protected from the pathologic changes associated with elastin insufficiency. Among the crosses, aortic elastin and collagen content did not correlate with quantitative vasculopathy traits. Quantitative trait locus analysis performed on F2 C57; Eln(+/-)x129 intercrosses identified highly significant peaks on chromosome 1 (LOD 9.7) for systolic blood pressure and on chromosome 9 (LOD 8.7) for aortic diameter. Additional peaks were identified that affect only Eln(+/-), including a region upstream of Eln on chromosome 5 (LOD 4.5). Bioinformatic analysis of the quantitative trait locus peaks revealed several interesting candidates, including Ren1, Ncf1, and Nos1; genes whose functions are unrelated to elastic fiber assembly, but whose effects may synergize with elastin insufficiency to predispose to hypertension and stiffer blood vessels. Real time RT-PCR studies show background-specific increased expression of Ncf1 (a subunit of the NOX2 NAPDH oxidase) that parallel the presence of increased oxidative stress in Eln(+/-) aortas. This finding raises the possibility that polymorphisms in genes affecting the generation of reactive oxygen species alter cardiovascular function in individuals with elastin haploinsufficiency through extrinsic noncomplementation.
Collapse
Affiliation(s)
| | - Russell H. Knutsen
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Li Ye
- From the Departments of Pediatrics and
| | - Christopher H. Ciliberto
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Thomas J. Broekelmann
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert P. Mecham
- Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
41
|
Iwata NG, Pham M, Rizzo NO, Cheng AM, Maloney E, Kim F. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One 2011; 6:e29600. [PMID: 22216328 PMCID: PMC3247279 DOI: 10.1371/journal.pone.0029600] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/01/2011] [Indexed: 11/20/2022] Open
Abstract
Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.
Collapse
Affiliation(s)
- Naomi G. Iwata
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
| | - Matilda Pham
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
| | - Norma O. Rizzo
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
| | - Andrew M. Cheng
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
| | - Ezekiel Maloney
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
| | - Francis Kim
- Department of Medicine, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
42
|
Hingtgen SD, Li Z, Kutschke W, Tian X, Sharma RV, Davisson RL. Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy. Physiol Genomics 2010; 41:127-36. [PMID: 20103697 DOI: 10.1152/physiolgenomics.00202.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies from our laboratory and others have shown that increases in cytoplasmic superoxide (O(2)(·-)) levels and Akt activation play a key role in agonist-stimulated NF-κB activation and cardiomyocyte hypertrophy in vitro. In this study, we tested the hypothesis that adenovirus (Ad)-mediated intramyocardial gene transfer of cytoplasmic superoxide dismutase (AdCu/ZnSOD) or a dominant-negative form of Akt (AdDNAkt) in mice would attenuate pressure overload-induced increases in activation of the redox-sensitive transcription factor NF-κB and cardiac hypertrophy. Adult C57BL/6 mice were subjected to thoracic aortic banding (TAB) or sham surgery, and intramyocardial injections of viral vectors (AdCu/ZnSOD, AdDNAkt, or control) were performed. There was robust transgene expression in the heart, which peaked 6-7 days after injection and then declined to undetectable levels by 12-14 days. In mice injected with AdBgL II, TAB caused a significant increase in O(2)(·-) generation and cardiac mass at 1 wk, and these responses were markedly attenuated by AdCu/ZnSOD. In addition, TAB induced time-dependent activation of NF-κB in the myocardium as measured longitudinally by in vivo bioluminescent imaging of NF-κB-dependent luciferase expression. This was also abolished by intracardiac AdCu/ZnSOD or AdDNAkt, but not the control vector. The inhibition of Akt and O(2)(·-)-mediated NF-κB activation in TAB hearts was associated with an attenuation of cardiac hypertrophy. Since a direct cause-and-effect relationship between NF-κB activation and cardiomyocyte hypertrophy has been established previously, our data support the hypothesis that increased O(2)(·-) generation and Akt activation are key signaling intermediates in pressure overload-induced activation of NF-κB and cardiac hypertrophy.
Collapse
Affiliation(s)
- Shawn D Hingtgen
- Department of Anatomy and Cell Biology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
43
|
Xu S, He Y, Vokurkova M, Touyz RM. Endothelial cells negatively modulate reactive oxygen species generation in vascular smooth muscle cells: role of thioredoxin. Hypertension 2009; 54:427-33. [PMID: 19564543 DOI: 10.1161/hypertensionaha.109.133983] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In intact vessels, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) act as an integrated system, possibly through reactive oxygen species (ROS). Using a coculture system we tested whether ECs modulate VSMC redox status by regulating activity of NAD(P)H oxidase and antioxidants. VSMC production of O(2)(*-), H(2)O(2), and NO was assessed using fluoroprobes and amplex-red. NAD(P)H oxidase subunit expression and oxidase activity were determined by Western blotting and chemiluminescence, respectively. Expression of thioredoxin, SOD, growth signaling pathways (PCNA, p21cip1, CDK4, ERK1/2, p38MAPK) was evaluated by immunoblotting. Thioredoxin activity was assessed by the insulin disulfide reduction assay. In cocultured conditions, VSMC ROS production was reduced by approximately 50% without changes in NAD(P)H oxidase expression/activity versus monoculture (P<0.05). This was associated with decreased cell growth (P<0.05). Expression of Cu/Zn SOD and thioredoxin was increased in coculture versus monoculture VSMCs (P<0.01). Pretreatment of ECs with L-NAME (NOS inhibitor), NS-398 (Cox2 inhibitor), and HET0016 (20-HETE inhibitor) did not influence VSMC ROS formation, whereas CDNB, thioredoxin reductase inhibitor, abolished ROS modulating effects of ECs. These findings indicate that in a coculture system recapitulating intact vessels, ECs negatively regulate ROS production in VSMCs through thioredoxin upregulation. Functionally this is associated with growth inhibition. The modulatory actions of ECs are independent of NOS/NO, Cox2, and HETE and do not involve NAD(P)H oxidase. Our data identify novel mechanisms whereby ECs protect against VSMC oxidative stress, a process that may be important in maintaining vascular integrity.
Collapse
Affiliation(s)
- Shaoping Xu
- Kidney Research Centre, University of Ottawa/Ottawa Hospital Research Institute, 451 Smyth Rd, Ottawa, ON, Canada KIH 8M5
| | | | | | | |
Collapse
|
44
|
Hu T, Luan R, Zhang H, Lau WB, Wang Q, Zhang Y, Wang HC, Tao L. Hydrogen peroxide enhances osteopontin expression and matrix metalloproteinase activity in aortic vascular smooth muscle cells. Clin Exp Pharmacol Physiol 2008; 36:626-30. [PMID: 19076167 DOI: 10.1111/j.1440-1681.2008.05124.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Restenosis after percutaneous coronary intervention (PCI) is a major clinical complication. However, the underlying mechanisms remain poorly understood. The present aim of the present study was to test the hypothesis that reactive oxygen species (ROS) enhance osteopontin (OPN) expression and increase matrix metalloproteinase (MMP)-2 activity (two major factors that contribute to restenosis) in aortic vascular smooth muscle cells (VSMC), thus facilitating restenosis. 2. Primary cultured rat aortic VSMC were exposed to different concentrations (10, 50 and 100 micromol/L) of H(2)O(2). The expression of OPN mRNA and protein was determined by reverse transcription-polymerase chain reaction and Western blotting, respectively. The activity of MMP-2 was determined by gelatin zymography. 3. The expression of OPN mRNA and protein in VSMC was enhanced by H(2)O(2) in a dose-dependent manner. In addition, H(2)O(2) at all concentrations tested (which are comparable to those seen in diabetic vascular tissues) significantly increased MMP-2 activity in VSMC. 4. Because vascular ROS production is significantly increased in patients with ischaemic disease and OPN and MMP-2 have been shown to play critical role in restenosis, the results of the present study strongly suggest that a ROS-initiated and OPN- and MMP-2-mediated signalling pathway may play an important role in accelerated restenosis after PCI in patients with ischaemic disease. Therefore, the H(2)O(2)-OPN/MMP-2 system may be a new therapeutic target in reducing restenosis in patients undergoing PCI.
Collapse
Affiliation(s)
- Tao Hu
- Deparrment of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kline ER, Kleinhenz DJ, Liang B, Dikalov S, Guidot DM, Hart CM, Jones DP, Sutliff RL. Vascular oxidative stress and nitric oxide depletion in HIV-1 transgenic rats are reversed by glutathione restoration. Am J Physiol Heart Circ Physiol 2008; 294:H2792-804. [PMID: 18456725 PMCID: PMC2586125 DOI: 10.1152/ajpheart.91447.2007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV)-infected patients have a higher incidence of oxidative stress, endothelial dysfunction, and cardiovascular disease than uninfected individuals. Recent reports have demonstrated that viral proteins upregulate reactive oxygen species, which may contribute to elevated cardiovascular risk in HIV-1 patients. In this study we employed an HIV-1 transgenic rat model to investigate the physiological effects of viral protein expression on the vasculature. Markers of oxidative stress in wild-type and HIV-1 transgenic rats were measured using electron spin resonance, fluorescence microscopy, and various molecular techniques. Relaxation studies were completed on isolated aortic rings, and mRNA and protein were collected to measure changes in expression of nitric oxide (NO) and superoxide sources. HIV-1 transgenic rats displayed significantly less NO-hemoglobin, serum nitrite, serum S-nitrosothiols, aortic tissue NO, and impaired endothelium-dependent vasorelaxation than wild-type rats. NO reduction was not attributed to differences in endothelial NO synthase (eNOS) protein expression, eNOS-Ser1177 phosphorylation, or tetrahydrobiopterin availability. Aortas from HIV-1 transgenic rats had higher levels of superoxide and 3-nitrotyrosine but did not differ in expression of superoxide-generating sources NADPH oxidase or xanthine oxidase. However, transgenic aortas displayed decreased superoxide dismutase and glutathione. Administering the glutathione precursor procysteine decreased superoxide, restored aortic NO levels and NO-hemoglobin, and improved endothelium-dependent relaxation in HIV-1 transgenic rats. These results show that HIV-1 protein expression decreases NO and causes endothelial dysfunction. Diminished antioxidant capacity increases vascular superoxide levels, which reduce NO bioavailability and promote peroxynitrite generation. Restoring glutathione levels reverses HIV-1 protein-mediated effects on superoxide, NO, and vasorelaxation.
Collapse
Affiliation(s)
- Erik R Kline
- Division of Pulmonary, Allergy and Critical Care Medicine, Free Radicals in Medicine Core, Emory University School of Medicine/Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|