1
|
Smith JA, Ramirez-Perez FI, Burr K, Gonzalez-Vallejo JD, Morales-Quinones M, McMillan NJ, Ferreira-Santos L, Sharma N, Foote CA, Martinez-Lemus LA, Padilla J, Manrique-Acevedo C. Impact of dietary supplementation of glycocalyx precursors on vascular function in type 2 diabetes. J Appl Physiol (1985) 2024; 137:1592-1603. [PMID: 39480270 PMCID: PMC11687847 DOI: 10.1152/japplphysiol.00651.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 12/10/2024] Open
Abstract
Degradation of the endothelial glycocalyx in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to endothelial dysfunction and the development of cardiovascular disease. Herein, we tested the hypothesis that restoration of the endothelial glycocalyx with dietary supplementation of glycocalyx precursors (DSGPs, containing glucosamine sulfate, fucoidan, superoxide dismutase, and high-molecular weight hyaluronan) improves endothelial function and other indices of vascular function in T2D. First, in db/db mice, we showed that treatment with DSGP (100 mg/kg/day) for 4 wk restored endothelial glycocalyx length, as assessed via atomic force microscopy in aortic explants. Restoration of the glycocalyx with DSGP was accompanied by improved flow-mediated dilation (FMD) and reduced arterial stiffness in isolated mesenteric arteries. Further corroborating these findings, the treatment of cultured endothelial cells with that same mixture of glycocalyx precursors promoted glycocalyx growth. Next, as an initial step to investigate the translatability of these findings, we conducted a pilot (n = 22) double-blinded randomized placebo-controlled clinical trial to assess the effects of DSGP (3,712.5 mg/day) for 8 wk on endothelial glycocalyx integrity and indices of vascular function, including FMD, in Veterans with T2D. Contrary to the hypothesis, DSGP neither enhanced endothelial glycocalyx integrity nor improved vascular function indices relative to placebo. Together, these findings conceptually support the notion that restoration of the endothelial glycocalyx can lead to improvements in vascular function in a mouse model of T2D; however, DSGP as a therapeutic strategy to enhance vascular function in individuals with T2D does not appear to be efficacious.NEW & NOTEWORTHY Endothelial glycocalyx degradation in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to vascular dysfunction. The findings of this study support the notion that restoration of the endothelial glycocalyx using a dietary supplementation of glycocalyx precursors can lead to improvements in vascular function in diabetic mice. However, the utilized dietary supplement as a therapeutic strategy to enhance vascular function in individuals with T2D is not efficacious.
Collapse
Affiliation(s)
- James A Smith
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Katherine Burr
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | | | - Neil J McMillan
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
| | | | - Neekun Sharma
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Christopher A Foote
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
2
|
Delgado Spicuzza JM, Gosalia J, Studinski M, Armando C, Alipour E, Kim-Shapiro DB, Flanagan M, Somani YB, Proctor DN. The acute effects of dietary nitrate supplementation on postmenopausal endothelial resistance to ischemia reperfusion injury: a randomized, placebo-controlled, double blind, crossover clinical trial. Can J Physiol Pharmacol 2024; 102:634-647. [PMID: 38901043 DOI: 10.1139/cjpp-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Postmenopausal cardiovascular health is a critical determinant of longevity. Consumption of beetroot juice (BR) and other nitrate-rich foods is a safe, effective non-pharmaceutical intervention to increase systemic bioavailability of the vasoprotective molecule, nitric oxide, through the exogenous nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway. We hypothesized that a single dose of nitrate-rich beetroot juice (BRnitrate 600 mg NO3 -/140 mL, BRplacebo ∼ 0 mg/140 mL) would improve resting endothelial function and resistance to ischemia-reperfusion (IR) injury to a greater extent in early-postmenopausal (1-6 years following their final menstrual period (FMP), n = 12) compared to late-postmenopausal (6+ years after FMP, n = 12) women. Analyses with general linear models revealed a significant (p < 0.05) time*treatment interaction effect for brachial artery adjusted flow-mediated dilation (FMD). Pairwise comparisons revealed that adjusted FMD was significantly lower following IR-injury in comparison to all other time points with BRplacebo (early FMD 2.51 ± 1.18%, late FMD 1.30 ± 1.10, p < 0.001) and was lower than post-IR with BRnitrate (early FMD 3.84 ± 1.21%, late FMD 3.21 ± 1.13%, p = 0.014). A single dose of BRnitrate significantly increased resting macrovascular function in the late postmenopausal group only (p = 0.005). Considering the postmenopausal stage-dependent variations in endothelial responsiveness to dietary nitrate, we predict differing mechanisms underpin macrovascular protection against IR injury.
Collapse
Affiliation(s)
| | - Jigar Gosalia
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew Studinski
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
| | - Chenée Armando
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Elmira Alipour
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | | - Michael Flanagan
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Yasina B Somani
- Department of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - David N Proctor
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, PA, USA
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
3
|
Stray-Gundersen S, Wojan F, Tanaka H, Lalande S. Similar endothelium-dependent vascular responses to intermittent hypoxia in young and older adults. J Appl Physiol (1985) 2024; 137:254-261. [PMID: 38932685 DOI: 10.1152/japplphysiol.00823.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is associated with vascular endothelial dysfunction observed through a progressive loss of flow-mediated dilation caused partly by a decreased nitric oxide bioavailability. Intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, was reported to either maintain or improve vascular function in young adults. The aim of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Twelve young adults and 11 older adults visited the laboratory on two occasions. Plasma nitrate concentrations and brachial artery flow-mediated dilation were assessed before and after exposure to either intermittent hypoxia or a sham protocol. Intermittent hypoxia consisted of eight 4-min hypoxic cycles at a targeted oxygen saturation of 80% interspersed with breathing room air to resaturation, and the sham protocol consisted of eight 4-min normoxic cycles interspersed with breathing room air. Vascular responses were assessed during intermittent hypoxia and the sham protocol. Intermittent hypoxia elicited a brachial artery vasodilation but did not change brachial artery shear rate in both young and older adults. Plasma nitrate concentrations were not significantly affected by intermittent hypoxia compared with the sham protocol in both groups. Brachial artery flow-mediated dilation was not acutely affected by intermittent hypoxia or the sham protocol in either young or older adults. In conclusion, the brachial artery vasodilatory response to intermittent hypoxia was not influenced by age. Intermittent hypoxia increased brachial artery diameter but did not acutely affect endothelium-dependent vasodilation in young or older adults.NEW & NOTEWORTHY The objective of this study was to determine the impact of age on the vascular response to intermittent hypoxia. Eight 4-min bouts of hypoxia at a targeted oxygen saturation of 80% induced a brachial artery vasodilation in both young and older adults, indicating that age does not influence the vasodilatory response to intermittent hypoxia. Intermittent hypoxia did not acutely affect brachial artery flow-mediated dilation in young or older adults.
Collapse
Affiliation(s)
- Sten Stray-Gundersen
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Frank Wojan
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| | - Sophie Lalande
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, United States
| |
Collapse
|
4
|
Li J, LoBue A, Heuser SK, Cortese-Krott MM. Determination of Nitric Oxide and Its Metabolites in Biological Tissues Using Ozone-Based Chemiluminescence Detection: A State-of-the-Art Review. Antioxidants (Basel) 2024; 13:179. [PMID: 38397777 PMCID: PMC10886078 DOI: 10.3390/antiox13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Ozone-based chemiluminescence detection (CLD) has been widely applied for determining nitric oxide (•NO) and its derived species in many different fields, such as environmental monitoring and biomedical research. In humans and animals, CLD has been applied to determine exhaled •NO and •NO metabolites in plasma and tissues. The main advantages of CLD are high sensitivity and selectivity for quantitative analysis in a wide dynamic range. Combining CLD with analytical separation techniques like chromatography allows for the analytes to be quantified with less disturbance from matrix components or impurities. Sampling techniques like microdialysis and flow injection analysis may be coupled to CLD with the possibility of real-time monitoring of •NO. However, details and precautions in experimental practice need to be addressed and clarified to avoid wrong estimations. Therefore, using CLD as a detection tool requires a deep understanding of the sample preparation procedure and chemical reactions used for liberating •NO from its derived species. In this review, we discuss the advantages and pitfalls of CLD for determining •NO species, list the different applications and combinations with other analytical techniques, and provide general practical notes for sample preparation. These guidelines are designed to assist researchers in comprehending CLD data and in selecting the most appropriate method for measuring •NO species.
Collapse
Affiliation(s)
- Junjie Li
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Anthea LoBue
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
| | - Miriam M. Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.L.); (A.L.); (S.K.H.)
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
5
|
Remchak MME, Dosik JK, Pappas G, Gow AJ, Shah AM, Malin SK. Exercise blood pressure and heart rate responses to graded exercise testing in intermediate versus morning chronotypes with obesity. Am J Physiol Heart Circ Physiol 2023; 325:H635-H644. [PMID: 37505468 PMCID: PMC10642995 DOI: 10.1152/ajpheart.00149.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Exaggerated exercise blood pressure (BP) is linked to cardiovascular disease (CVD). Although evening chronotypes have greater CVD risk than morning (Morn) types, it is unknown if exercise BP differs in intermediate (Int) types. Adults with obesity were classified as either Morn [n = 23 (18 females), Morning-Eveningness Questionnaire (MEQ) = 63.96 ± 1.0, 54.74 ± 1.4 yr, 33.7 ± 0.6 kg/m2] or Int [n = 23 (19 females), MEQ = 51.36 ± 1.1, 55.96 ± 1.8 yr, 37.2 ± 1.2 kg/m2] chronotype per MEQ. A graded, incremental treadmill test to maximal aerobic capacity (V̇o2max) was conducted. Systolic (SBP) and diastolic (DBP) blood pressure and mean arterial pressure (MAP), rate pressure product (RPP), heart rate (HR), and rate of perceived intensity (RPE) were determined at baseline, 4 min, 6 min, and maximal stages. HR recovery (HRR; maximum postexercise) was determined at 1 and 2 min postexercise. Preexercise fasted aortic waveforms (applanation tonometry), plasma leptin, nitrate/nitrite (nitric oxide bioavailability), and body composition (dual X-ray, DXA) were also collected. Int had lower V̇o2max and plasma nitrate (both P ≤ 0.02) than Morn. No difference in preexercise BP, aortic waveforms, or body composition were noted between groups, although higher plasma leptin was seen in Int compared with Morn (P = 0.04). Although Int had higher brachial DBP and MAP across exercise stages (both P ≤ 0.05) and higher HR, RPE, and RPP at 6 min of exercise (all P ≤ 0.05), covarying for V̇o2max nullified the BP, but not HR or RPE, difference. HRR was greater in Morn independent of V̇o2max (P = 0.046). Fasted leptin correlated with HR at exercise stage 4 (r = 0.421, P = 0.041) and 6 min (r = 0.593, P = 0.002). This observational study suggests that Int has exaggerated BP and HR responses to exercise compared with Morn, although fitness abolished BP differences.NEW & NOTEWORTHY This study compares blood pressure and heart rate responses with graded, incremental exercise between morning and intermediate chronotype adults with obesity. Herein, blood pressure responses to exercise were elevated in intermediate compared with morning chronotype, although V̇o2max abolished this observation. However, heart rate responses to exercise were higher in intermediate vs. morning chronotypes independent of fitness. Collectively, this exercise hemodynamic response among intermediate chronotype may be related to reduced aerobic fitness, altered nitric oxide metabolism, and/or elevated aortic waveforms.
Collapse
Affiliation(s)
- Mary-Margaret E Remchak
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Jaclyn K Dosik
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
| | - Gregory Pappas
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
- Ernest Mario School of Pharmacy, Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey, United States
| | - Andrew J Gow
- Ernest Mario School of Pharmacy, Pharmacology and Toxicology, Rutgers University, New Brunswick, New Jersey, United States
| | - Ankit M Shah
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey, United States
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey, United States
- Division of Endocrinology, Metabolism & Nutrition, Rutgers University, New Brunswick, New Jersey, United States
- New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, United States
- Institute of Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey, United States
| |
Collapse
|
6
|
Wang P, Wei M, Zhu X, Liu Y, Yoshimura K, Zheng M, Liu G, Kume S, Morishima M, Kurokawa T, Ono K. Nitric oxide down-regulates voltage-gated Na + channel in cardiomyocytes possibly through S-nitrosylation-mediated signaling. Sci Rep 2021; 11:11273. [PMID: 34050231 PMCID: PMC8163867 DOI: 10.1038/s41598-021-90840-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO) is produced from endothelial cells and cardiomyocytes composing the myocardium and benefits cardiac function through both vascular-dependent and—independent effects. This study was purposed to investigate the possible adverse effect of NO focusing on the voltage-gated Na+ channel in cardiomyocytes. We carried out patch-clamp experiments on rat neonatal cardiomyocytes demonstrating that NOC-18, an NO donor, significantly reduced Na+ channel current in a dose-dependent manner by a long-term application for 24 h, accompanied by a reduction of Nav1.5-mRNA and the protein, and an increase of a transcription factor forkhead box protein O1 (FOXO1) in the nucleus. The effect of NOC-18 on the Na+ channel was blocked by an inhibitor of thiol oxidation N-ethylmaleimide, a disulfide reducing agent disulfide 1,4-Dithioerythritol, or a FOXO1 activator paclitaxel, suggesting that NO is a negative regulator of the voltage-gated Na+ channel through thiols in regulatory protein(s) for the channel transcription.
Collapse
Affiliation(s)
- Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mengyan Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Xiufang Zhu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China.,Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, 89 Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masaki Morishima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
7
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
8
|
Vidanapathirana AK, Psaltis PJ, Bursill CA, Abell AD, Nicholls SJ. Cardiovascular bioimaging of nitric oxide: Achievements, challenges, and the future. Med Res Rev 2020; 41:435-463. [PMID: 33075148 DOI: 10.1002/med.21736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/03/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a ubiquitous, volatile, cellular signaling molecule that operates across a wide physiological concentration range (pM-µM) in different tissues. It is a highly diffusible messenger and intermediate in various metabolic pathways. NO plays a pivotal role in maintaining optimum cardiovascular function, particularly by regulating vascular tone and blood flow. This review highlights the need for accurate, real-time bioimaging of NO in clinical diagnostic, therapeutic, monitoring, and theranostic applications within the cardiovascular system. We summarize electrochemical, optical, and nanoscale sensors that allow measurement and imaging of NO, both directly and indirectly via surrogate measurements. The physical properties of NO render it difficult to accurately measure in tissues using direct methods. There are also significant limitations associated with the NO metabolites used as surrogates to indirectly estimate NO levels. All these factors added to significant variability in the measurement of NO using available methodology have led to a lack of sensors and imaging techniques of clinical applicability in relevant vascular pathologies such as atherosclerosis and ischemic heart disease. Challenges in applying current methods to biomedical and clinical translational research, including the wide physiological range of NO and limitations due to the characteristics and toxicity of the sensors are discussed, as are potential targets and modifications for future studies. The development of biocompatible nanoscale sensors for use in combination with existing clinical imaging modalities provides a feasible opportunity for bioimaging NO within the cardiovascular system.
Collapse
Affiliation(s)
- Achini K Vidanapathirana
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Peter J Psaltis
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.,Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew D Abell
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, South Australia, Australia.,Department of Chemistry, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephen J Nicholls
- Australian Research Council (ARC), Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, Australia.,Monash Cardiovascular Research Centre, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
do Prado AF, Bannwart CM, Shinkai VMT, de Souza Lima IM, Meschiari CA. Phyto-derived Products as Matrix Metalloproteinases Inhibitors in Cardiovascular Diseases. Curr Hypertens Rev 2020; 17:47-58. [PMID: 32386496 DOI: 10.2174/1573402116666200510011356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.
Collapse
Affiliation(s)
- Alejandro F do Prado
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Cahy M Bannwart
- Structural Biology Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | - Victoria M T Shinkai
- Molecular and Cellular Neurochemistry Laboratory, Biological Sciences Institute, Federal University of Para, Belem, PA, Brazil
| | | | - César A Meschiari
- Health and Sports Science Center, Federal University of Acre, Rio Branco, AC, Brazil
| |
Collapse
|
10
|
Associations of Plasma Nitrite, L-Arginine and Asymmetric Dimethylarginine With Morbidity and Mortality in Patients With Necrotizing Soft Tissue Infections. Shock 2019; 49:667-674. [PMID: 28863028 PMCID: PMC5929495 DOI: 10.1097/shk.0000000000000975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Background: The nitric oxide system could play an important role in the pathophysiology related to necrotizing soft tissue infection (NSTI). Accordingly, we investigated the association between plasma nitrite level at admission and the presence of septic shock in patients with NSTI. We also evaluated the association between nitrite, asymmetric dimethylarginine (ADMA), l-arginine, l-arginine/ADMA ratio, and outcome. Methods: We analyzed plasma from 141 NSTI patients taken upon hospital admission. The severity of NSTI was assessed by the presence of septic shock, Simplified Acute Physiology Score (SAPS) II, Sepsis-Related Organ Failure Assessment (SOFA) score, use of renal replacement therapy (RRT), amputation, and 28-day mortality. Results: No difference in nitrite levels was found between patients with and without septic shock (median 0.82 μmol/L [interquartile range (IQR) 0.41–1.21] vs. 0.87 μmol/L (0.62–1.24), P = 0.25). ADMA level was higher in patients in need of RRT (0.64 μmol/L (IQR 0.47–0.90) vs. (0.52 μmol/L (0.34–0.70), P = 0.028), and ADMA levels correlated positively with SAPS II (rho = 0.32, P = 0.0002) and SOFA scores (rho = 0.22, P = 0.01). In a logistic regression analysis, an l-arginine/ADMA ratio below 101.59 was independently associated with 28-day mortality, odds ratio 6.03 (95% confidence interval, 1.41–25.84), P = 0.016. None of the other analyses indicated differences in the NO system based on differences in disease severity. Conclusions: In patients with NSTI, we found no difference in baseline nitrite levels according to septic shock. High baseline ADMA level was associated with the use of RRT and patients with a low baseline l-arginine/ADMA ratio were at higher risk of dying within 28 days after hospital admission.
Collapse
|
11
|
Mattos JD, Campos MO, Rocha MP, Mansur DE, Rocha HNM, Garcia VP, Batista G, Alvares TS, Oliveira GV, Souza MV, Videira RLR, Rocha NG, Secher NH, Nóbrega ACL, Fernandes IA. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species. J Physiol 2018; 597:741-755. [PMID: 30506968 DOI: 10.1113/jp277122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)-induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood-brain barrier (BBB) or neural-parenchymal damage. Cerebral metabolic rate for oxygen (CMR O 2 ) and transcerebral exchanges of NO end-products, oxidants, antioxidants and neural-parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and CMR O 2 were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused. No indication of neural-parenchymal damage or disruption of the BBB was observed during IH. Antioxidant defences were increased during ascorbic acid infusion, while CBF, CMR O 2 , oxidant and NO bioavailability markers remained unchanged. ROS play a role in the regulation of CBF and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage. ABSTRACT To test the hypothesis that isocapnic hyperoxia (IH) affects cerebral blood flow (CBF) and metabolism through exaggerated reactive oxygen species (ROS) production, reduced nitric oxide (NO) bioavailability, disturbances in the blood-brain barrier (BBB) and neural-parenchymal homeostasis, 10 men (24 ± 1 years) were exposed to a 10 min IH trial (100% O2 ) while receiving intravenous saline and ascorbic acid (AA, 3 g) infusion. Internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF) and total CBF (tCBF, Doppler ultrasound) were determined. Arterial and right internal jugular venous blood was sampled to quantify the cerebral metabolic rate of oxygen (CMR O 2 ), transcerebral exchanges (TCE) of NO end-products (plasma nitrite), antioxidants (AA and AA plus dehydroascorbic acid (AA+DA)) and oxidant biomarkers (thiobarbituric acid-reactive substances (TBARS) and 8-isoprostane), and an index of BBB disruption and neuronal-parenchymal damage (neuron-specific enolase; NSE). IH reduced ICABF, tCBF and CMR O 2 , while VABF remained unchanged. Arterial 8-isoprostane and nitrite TCE increased, indicating that CBF decline was related to ROS production and reduced NO bioavailability. AA, AA+DA and NSE TCE did not change during IH. AA infusion did not change the resting haemodynamic and metabolic parameters but raised antioxidant defences, as indicated by increased AA/AA+DA concentrations. Negative AA+DA TCE, unchanged nitrite, reductions in arterial and venous 8-isoprostane, and TBARS TCE indicated that AA infusion effectively inhibited ROS production and preserved NO bioavailability. Similarly, AA infusion prevented IH-induced decline in regional and total CBF and re-established CMR O 2 . These findings indicate that ROS play a role in CBF regulation and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage.
Collapse
Affiliation(s)
- João D Mattos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Monique O Campos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcos P Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Daniel E Mansur
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Vinicius P Garcia
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Batista
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | | | | | | | | | - Natalia G Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Antonio C L Nóbrega
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Igor A Fernandes
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil.,NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brazil
| |
Collapse
|
12
|
Mukosera GT, Liu T, Ishtiaq Ahmed AS, Li Q, Sheng MHC, Tipple TE, Baylink DJ, Power GG, Blood AB. Detection of dinitrosyl iron complexes by ozone-based chemiluminescence. Nitric Oxide 2018; 79:57-67. [PMID: 30059767 PMCID: PMC6277231 DOI: 10.1016/j.niox.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Dinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification. EPR is limited, however, by its ability to detect only paramagnetic mononuclear DNICs even though EPR-silent binuclear are likely to be prevalent. Furthermore, physiological concentrations of mononuclear DNICs are usually lower than the EPR detection limit (1 μM). We have thus developed a chemiluminescence-based method for the selective detection of both DNIC forms at physiological, pathophysiological, and pharmacologic conditions. We have also demonstrated the use of the new method in detecting DNIC formation in the presence of nitrite and nitrosothiols within biological fluids and tissue. This new method, which can be used alone or in tandem with EPR, has the potential to offer insight about the involvement of DNICs in many NO-dependent pathways.
Collapse
Affiliation(s)
- George T Mukosera
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Taiming Liu
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Abu Shufian Ishtiaq Ahmed
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, CA, 92350, USA
| | - Qian Li
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Matilda H-C Sheng
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Trent E Tipple
- Neonatal Redox Biology Laboratory, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David J Baylink
- Regenerative Medicine Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Gordon G Power
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
13
|
Cioncoloni G, Roger I, Wheatley PS, Wilson C, Morris RE, Sproules S, Symes MD. Proton-Coupled Electron Transfer Enhances the Electrocatalytic Reduction of Nitrite to NO in a Bioinspired Copper Complex. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Giacomo Cioncoloni
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Isolda Roger
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Paul S. Wheatley
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Russell E. Morris
- EaStCHEM School of Chemistry, University of St Andrews, Purdie Building, St Andrews KY16 9ST, United Kingdom
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Mark D. Symes
- WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
14
|
Almeida LEF, Kamimura S, Nettleton MY, de Souza Batista CM, Walek E, Khaibullina A, Wang L, Quezado ZMN. Blood collection vials and clinically used intravenous fluids contain significant amounts of nitrite. Free Radic Biol Med 2017; 108:533-541. [PMID: 28416347 DOI: 10.1016/j.freeradbiomed.2017.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022]
Abstract
The biology of the inorganic anion nitrite is linked to nitric oxide (NO) as nitrite can be reduced to NO and mediate its biological activities. Thus, studies of nitrite biology require sensitive and selective chemical assays. The acetic and ascorbic acids method is selective for nitrite and measures it in biological matrices. However, one of the pitfalls of nitrite measurements is its ubiquitous presence in sample collection tubes. Here, we showed high levels of nitrite in collection tubes containing EDTA, sodium citrate or sodium heparin and smaller amounts in tubes containing lithium heparin or serum clot activator. We also showed the presence of nitrite in colloid and crystalloid solutions frequently administered to patients and found variable levels of nitrite in 5% albumin, 0.9% sodium chloride, lactated ringer's, and dextrose-plus-sodium chloride solutions. These levels of nitrite varied across lots and manufacturers of the same type of fluid. Because these fluids are administered intravenously to patients (including those in shock), sometimes in large volumes (liters), it is possible that infusions of these nitrite-containing fluids may have clinical implications. A protocol for blood collection free of nitrite contamination was developed and used to examine nitrite levels in whole blood, red blood cells, plasma and urine from normal volunteers. Nitrite measurements were reproducible, had minimal variability, and did not indicate sex-differences. These findings validated a method and protocol for selective nitrite assay in biological fluids free of nitrite contamination which can be applied for study of diseases where dysfunctional NO signaling has been implicated.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Y Nettleton
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Elizabeth Walek
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's Research Institute, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA; Department of Perioperative Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Shannon OM, Duckworth L, Barlow MJ, Deighton K, Matu J, Williams EL, Woods D, Xie L, Stephan BCM, Siervo M, O'Hara JP. Effects of Dietary Nitrate Supplementation on Physiological Responses, Cognitive Function, and Exercise Performance at Moderate and Very-High Simulated Altitude. Front Physiol 2017. [PMID: 28649204 PMCID: PMC5465306 DOI: 10.3389/fphys.2017.00401] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose: Nitric oxide (NO) bioavailability is reduced during acute altitude exposure, contributing toward the decline in physiological and cognitive function in this environment. This study evaluated the effects of nitrate (NO3−) supplementation on NO bioavailability, physiological and cognitive function, and exercise performance at moderate and very-high simulated altitude. Methods:Ten males (mean (SD): V˙O2max: 60.9 (10.1) ml·kg−1·min−1) rested and performed exercise twice at moderate (~14.0% O2; ~3,000 m) and twice at very-high (~11.7% O2; ~4,300 m) simulated altitude. Participants ingested either 140 ml concentrated NO3−-rich (BRJ; ~12.5 mmol NO3−) or NO3−-deplete (PLA; 0.01 mmol NO3−) beetroot juice 2 h before each trial. Participants rested for 45 min in normobaric hypoxia prior to completing an exercise task. Exercise comprised a 45 min walk at 30% V˙O2max and a 3 km time-trial (TT), both conducted on a treadmill at a 10% gradient whilst carrying a 10 kg backpack to simulate altitude hiking. Plasma nitrite concentration ([NO2−]), peripheral oxygen saturation (SpO2), pulmonary oxygen uptake (V˙O2), muscle and cerebral oxygenation, and cognitive function were measured throughout. Results: Pre-exercise plasma [NO2−] was significantly elevated in BRJ compared with PLA (p = 0.001). Pulmonary V˙O2 was reduced (p = 0.020), and SpO2 was elevated (p = 0.005) during steady-state exercise in BRJ compared with PLA, with similar effects at both altitudes. BRJ supplementation enhanced 3 km TT performance relative to PLA by 3.8% [1,653.9 (261.3) vs. 1718.7 (213.0) s] and 4.2% [1,809.8 (262.0) vs. 1,889.1 (203.9) s] at 3,000 and 4,300 m, respectively (p = 0.019). Oxygenation of the gastrocnemius was elevated during the TT consequent to BRJ (p = 0.011). The number of false alarms during the Rapid Visual Information Processing Task tended to be lower with BRJ compared with PLA prior to altitude exposure (p = 0.056). Performance in all other cognitive tasks did not differ significantly between BRJ and PLA at any measurement point (p ≥ 0.141). Conclusion: This study suggests that BRJ improves physiological function and exercise performance, but not cognitive function, at simulated moderate and very-high altitude.
Collapse
Affiliation(s)
- Oliver M Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Matthew J Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Kevin Deighton
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Jamie Matu
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - Emily L Williams
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom.,Defence Medical Services, Royal Centre for Defence MedicineBirmingham, United Kingdom
| | - Long Xie
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Blossom C M Stephan
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Mario Siervo
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - John P O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett UniversityLeeds, United Kingdom
| |
Collapse
|
16
|
Dietary nitrate supplementation enhances short but not longer duration running time-trial performance. Eur J Appl Physiol 2017; 117:775-785. [PMID: 28251402 DOI: 10.1007/s00421-017-3580-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/19/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE This study evaluated the effects of dietary nitrate (NO3-) supplementation on physiological functioning and exercise performance in trained runners/triathletes conducting short and longer-distance treadmill running time-trials (TT). METHOD Eight trained male runners or triathletes completed four exercise performance tests comprising a 10 min warm up followed by either a 1500 or 10,000 m treadmill TT. Exercise performance tests were preceded 3 h before the exercise by supplementation with either 140 ml concentrated nitrate-rich (~12.5 mmol nitrate) (BRJ) or nitrate-deplete (~0.01 mmol nitrate) (PLA) beetroot juice. RESULTS BRJ supplementation significantly elevated plasma [NO2-] (P < 0.05). Resting blood pressure and exercise [Formula: see text] were not significantly different between BRJ and PLA (P > 0.05). However, post-exercise blood [lactate] was significantly greater in BRJ following the 1500 m TT (6.6 ± 1.2 vs. 6.1 ± 1.5 mM; P < 0.05), but not significantly different between conditions in the 10,000 m TT (P > 0.05). Performance in the 1500 m TT was significantly faster in BRJ vs. PLA (319.6 ± 36.2 vs. 325.7 ± 38.8 s; P < 0.05). Conversely, there was no significant difference in 10,000 m TT performance between conditions (2643.1 ± 324. 1 vs. 2649.9 ± 319.8 s, P > 0.05). CONCLUSION Acute BRJ supplementation significantly enhanced 1500 m, but not 10,000 m TT performance. These findings suggest that BRJ might be ergogenic during shorter distance TTs which allow for a high work rate, but not during longer distance TTs, completed at a lower work rate.
Collapse
|
17
|
Griendling KK, Touyz RM, Zweier JL, Dikalov S, Chilian W, Chen YR, Harrison DG, Bhatnagar A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 2016; 119:e39-75. [PMID: 27418630 PMCID: PMC5446086 DOI: 10.1161/res.0000000000000110] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.
Collapse
|
18
|
Vijayaraj K, Jin SH, Park DS. A Sensitive and Selective Nitrite Detection in Water Using Graphene/Platinum Nanocomposite. ELECTROANAL 2016. [DOI: 10.1002/elan.201600133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kathiresan Vijayaraj
- Department of Chemistry Education, Graduate Department of Chemical Materials; Pusan National University; Busan 609-735 South Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials; Pusan National University; Busan 609-735 South Korea
| | - Deog-Su Park
- Institute of BioPhysio Sensor Technology (IBST); Pusan National University; Busan 609-735 South Korea
| |
Collapse
|
19
|
Betteridge S, Bescós R, Martorell M, Pons A, Garnham AP, Stathis CC, McConell GK. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males. J Appl Physiol (1985) 2016; 120:391-8. [DOI: 10.1152/japplphysiol.00658.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/26/2015] [Indexed: 01/08/2023] Open
Abstract
Beetroot juice, which is rich in nitrate (NO3−), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3−), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-2H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2−] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.
Collapse
Affiliation(s)
- Scott Betteridge
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Raúl Bescós
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Miquel Martorell
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma Mallorca, Spain
- Nutrition and Dietetics Department, School of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Antoni Pons
- Laboratory of Physical Activity Science, Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma Mallorca, Spain
| | - Andrew P. Garnham
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia; and
| | - Christos C. Stathis
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Glenn K. McConell
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
- Institute of Sport, Exercise and Active Living, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| |
Collapse
|
20
|
Abstract
Atherosclerotic coronary artery disease (CAD) is a major cause of morbidity and mortality in the developed world. Endothelial dysfunction plays an important role in the development of atherosclerosis and predicts cardiovascular (CV) outcomes independent of conventional CV risk factors. In recent years, there have been tremendous improvements in the pharmacological prevention and management of CAD. In this review, the pathophysiology of endothelial dysfunction in relation to CAD is discussed and various techniques of invasive and noninvasive assessments of peripheral and coronary endothelial function described. In addition, evidence for the association of endothelial dysfunction and CV outcomes has been examined and finally the role of therapeutic interventions in endothelial dysfunction has been discussed.
Collapse
|
21
|
Hess DC, Khan MB, Hoda N, Morgan JC. Remote ischemic conditioning: a treatment for vascular cognitive impairment. Brain Circ 2015; 1:133-139. [PMID: 30221201 DOI: 10.4103/2394-8108.172885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is a strong link between hypoperfusion and white matter (WM) damage in patients with leukoaraiosis and vascular cognitive impairment (VCI). Other than management of vascular risk factors, there is no treatment for WM damage and VCI that delays progression of the disease process to dementia. Observational studies suggest that exercise may prevent or slow down the progression of Alzheimer's disease (AD) and VCI. However, getting patients to exercise is challenging especially with advancing age and disability. Remote ischemic conditioning, an "exercise equivalent", allows exercise to be given with a "device" in the home for long periods of time. Since RIC increases CBF in pre-clinical studies and in humans, RIC may be an ideal therapy to treat VCI and WM disease and perhaps even sporadic AD. By using MRI imaging of WM progression, a sample size in the range of about 100 subjects per group could determine if RIC has activity in WM disease and VCI.
Collapse
Affiliation(s)
- David C Hess
- Department of Neurology Medical College of Georgia, Georgia Regent's University, Augusta, GA USA
| | - Mohammad B Khan
- Department of Neurology Medical College of Georgia, Georgia Regent's University, Augusta, GA USA
| | - Nasrul Hoda
- Department of Medical Laboratory, Imaging, and Radiologic Sciences, College of Allied Health Sciences, Georgia Regent's University, Augusta, GA USA
| | - John C Morgan
- Department of Neurology Medical College of Georgia, Georgia Regent's University, Augusta, GA USA
| |
Collapse
|
22
|
Liu W, Gu Y, Sun G, Na K, Li C, Tang L, Zhang Z, Yang M. Poly(diallydimethylammonium chloride) Functionalized Graphene/Double-walled Carbon Nanotube Composite for Amperometric Determination of Nitrite. ELECTROANAL 2015. [DOI: 10.1002/elan.201500358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Almeida LEF, Kamimura S, Kenyon N, Khaibullina A, Wang L, de Souza Batista CM, Quezado ZMN. Validation of a method to directly and specifically measure nitrite in biological matrices. Nitric Oxide 2014; 45:54-64. [PMID: 25445633 DOI: 10.1016/j.niox.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
The bioactivity of nitric oxide (NO) is influenced by chemical species generated through reactions with proteins, lipids, metals, and its conversion to nitrite and nitrate. A better understanding of the functions played by each of these species could be achieved by developing selective assays able of distinguishing nitrite from other NO species. Nagababu and Rifkind developed a method using acetic and ascorbic acids to measure nitrite-derived NO in plasma. Here, we adapted, optimized, and validated this method to assay nitrite in tissues. The method yielded linear measurements over 1-300 pmol of nitrite and was validated for tissue preserved in a nitrite stabilization solution composed of potassium ferricyanide, N-ethylmaleimide and NP-40. When samples were processed with chloroform, but not with methanol, ethanol, acetic acid or acetonitrile, reliable and reproducible nitrite measurements in up to 20 sample replicates were obtained. The method's accuracy in tissue was ≈ 90% and in plasma 99.9%. In mice, during basal conditions, brain, heart, lung, liver, spleen and kidney cortex had similar nitrite levels. In addition, nitrite tissue levels were similar regardless of when organs were processed: immediately upon collection, kept in stabilization solution for later analysis or frozen and later processed. After ip nitrite injections, rapidly changing nitrite concentrations in tissue and plasma could be measured and were shown to change in significantly distinct patterns. This validated method could be valuable for investigations of nitrite biology in conditions such as sickle cell disease, cardiovascular disease, and diabetes, where nitrite is thought to play a role.
Collapse
Affiliation(s)
- Luis E F Almeida
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Sayuri Kamimura
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Nicholas Kenyon
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Alfia Khaibullina
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | - Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA
| | | | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Medical Center, School of Medicine and Health Sciences George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
24
|
Almac E, Bezemer R, Hilarius-Stokman PM, Goedhart P, de Korte D, Verhoeven AJ, Ince C. Red blood cell storage increases hypoxia-induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo. Transfusion 2014; 54:3178-85. [DOI: 10.1111/trf.12738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 04/19/2014] [Accepted: 04/20/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Emre Almac
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
- Department of Anesthesiology and Intensive Care; St Antonius Hospital Nieuwegein; Nieuwegein the Netherlands
| | - Rick Bezemer
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | | | - Peter Goedhart
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | - Dirk de Korte
- Department of Blood Cell Research; Sanquin Research; Amsterdam the Netherlands
| | - Arthur J. Verhoeven
- Department of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| | - Can Ince
- Department of Translational Physiology; Academic Medical Center; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
25
|
Bice JS, Burley DS, Baxter GF. Novel approaches and opportunities for cardioprotective signaling through 3',5'-cyclic guanosine monophosphate manipulation. J Cardiovasc Pharmacol Ther 2014; 19:269-82. [PMID: 24572031 DOI: 10.1177/1074248413518971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Limiting the injurious effects of myocardial ischemia-reperfusion is a desirable therapeutic target, which has been investigated extensively over the last three decades. Here we provide an up to date review of the literature documenting the experimental and clinical research demonstrating the effects of manipulating cGMP for the therapeutic targeting of the injurious effects of ischemic heart disease. Augmentation of the cyclic nucleotide cGMP plays a crucial role in many cardioprotective signaling pathways. There is an extensive body of literature which supports pharmacological targeting of cGMP or upstream activators in models of ischemia-reperfusion to limit injury. NO donors have long been utilised to manipulate cGMP, and more recently non-NO synthase derived NOx species have been investigated, resulting in their evaluation in clinical trials for the treatment of ischemic heart disease. Encouraging results demonstrate that natriuretic peptides are worthy candidates in manipulating cGMP and its downstream effectors to afford cytoprotection. Synthetic ligands have been designed which co-activate natriuretic peptide receptors to improve targeting this pathway. Advances have been made in targeting the soluble guanylyl cyclase which catalyzes the production of cGMP independently of the endogenous ligand NO using NO-independent stimulators and activators of sGC. These novel compounds show promise as a new class of drugs that target this signaling cascade specifically under pathological conditions when endogenous NO production may be compromised. Regulating the degradation of cGMP via phosphodiesterase inhibition also shows therapeutic potential. It is clear that production and regulation of cGMP is complex, indeed its spatial production and cellular distribution are only just emerging.
Collapse
Affiliation(s)
- Justin S Bice
- 1School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
26
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
27
|
Marcilli RHM, de Oliveira MG. Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation. Colloids Surf B Biointerfaces 2013; 116:643-51. [PMID: 24315855 DOI: 10.1016/j.colsurfb.2013.10.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022]
Abstract
Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.
Collapse
Affiliation(s)
- Raphael H M Marcilli
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, 13083-970, SP, Brazil
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, 13083-970, SP, Brazil.
| |
Collapse
|
28
|
Madasamy T, Pandiaraj M, Balamurugan M, Bhargava K, Sethy NK, Karunakaran C. Copper, zinc superoxide dismutase and nitrate reductase coimmobilized bienzymatic biosensor for the simultaneous determination of nitrite and nitrate. Biosens Bioelectron 2013; 52:209-15. [PMID: 24055935 DOI: 10.1016/j.bios.2013.08.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 01/21/2023]
Abstract
This work presents a novel bienzymatic biosensor for the simultaneous determination of nitrite (NO2(-)) and nitrate (NO3(-)) ions using copper, zinc superoxide dismutase (SOD1) and nitrate reductase (NaR) coimmobilized on carbon nanotubes (CNT)-polypyrrole (PPy) nanocomposite modified platinum electrode. Morphological changes of the PPy and CNT modified electrodes were investigated using scanning electron microscopy. The electrochemical behavior of the bienzymatic electrode (NaR-SOD1-CNT-PPy-Pt) was characterized by cyclic voltammetry exhibiting quasi-reversible redox peak at +0.06 V and reversible redox peaks at -0.76 and -0.62V vs. Ag/AgCl, for the immobilized SOD1 and NaR respectively. The electrocatalytic activity of SOD1 towards NO2(-) oxidation observed at +0.8 V was linear from 100 nM to 1mM with a detection limit of 50 nM and sensitivity of 98.5 ± 1.7 nA µM(-1)cm(-2). Similarly, the coimmobilized NaR showed its electrocatalytic activity towards NO3(-) reduction at -0.76 V exhibiting linear response from 500 nM to 10mM NO3(-) with a detection limit of 200 nM and sensitivity of 84.5 ± 1.56 nA µM(-1)cm(-2). Further, the present bienzymatic biosensor coated with cellulose acetate membrane for the removal of non-specific proteins was used for the sensitive and selective determinations of NO2(-) and NO3(-) present in human plasma, whole blood and saliva samples.
Collapse
Affiliation(s)
- Thangamuthu Madasamy
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous), Virudhunagar 626001, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
29
|
Prudente A, Riccetto CLZ, Simões MMDSG, Pires BM, Oliveira MGD. Impregnation of implantable polypropylene mesh with S-nitrosoglutathione-loaded poly(vinyl alcohol). Colloids Surf B Biointerfaces 2013; 108:178-84. [DOI: 10.1016/j.colsurfb.2013.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 02/07/2023]
|
30
|
Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. ACTA ACUST UNITED AC 2012; 6:85-99. [PMID: 22321962 DOI: 10.1016/j.jash.2011.11.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
Endothelial dysfunction, the shift from a healthy endothelium to a damaged pro-coagulative, pro-inflammatory, and pro-vasoconstrictive phenotype, is an early event in many chronic diseases that frequently precedes cardiovascular complications. Functional assessment of the endothelium can identify endothelial damage and predict cardiovascular risk; however, this assessment provides little information as to the mechanisms underlying development of endothelial dysfunction. Changes in plasma asymmetric dimethyl arginine levels, markers of lipid peroxidation, circulating levels of inflammatory mediators, indices of coagulation and cellular surrogates such as microparticles, circulating endothelial cells, and endothelial progenitor cells may reflect alterations in endothelial status and as such have been defined as "biomarkers" of endothelial function. Biomarkers may be chemical or cellular. This review examines some markers of endothelial dysfunction, with a particular focus on cellular biomarkers of endothelial dysfunction and their diagnostic potential.
Collapse
|