1
|
Hoeh AE, Chang JH, Mueller RS, Basche M, Fantin A, Sepetis A, De Rossi G, Dritsoula A, Ali RR, Turowski P, Moss SE, Greenwood J. LRG1 Alters Pericyte Phenotype and Compromises Vascular Maturation. Cells 2025; 14:593. [PMID: 40277918 PMCID: PMC12026257 DOI: 10.3390/cells14080593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
Upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) contributes to aberrant neovascularization in many different diseases. In contrast, LRG1 is not involved in developmental angiogenesis. Here, we investigated the vasculopathic properties of LRG1 by examining its effect on developing retinal blood vessels. By injecting recombinant protein or an expression vector into the mouse retina during vascular development, we showed that exogenous LRG1 reduces pericyte coverage and NG2 expression. It leads to diminished collagen IV sheathing, fewer adhesion and gap junctions, and reduced vessel calibre and vascular density. Moreover, in mouse retinae containing exogenous LRG1, the developing blood-retinal barrier remains more permeable with significantly higher numbers of transcytotic vesicles present in microvascular endothelial cells. These results reveal that exogeneous LRG1 is sufficient to interfere with the maturation of developing retinal vessels and drive vessel development towards a dysfunctional phenotype. These observations deliver further evidence that LRG1 is an angiopathic factor and highlight the therapeutic potential of blocking LRG1 in diseases characterized by pathogenic angiogenesis or vascular remodelling.
Collapse
Affiliation(s)
- Alexandra E. Hoeh
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Jui-Hsien Chang
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ronja S. Mueller
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Mark Basche
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, London SE1 9RT, UK
| | | | - Anastasios Sepetis
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Athina Dritsoula
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Robin R. Ali
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Ocular Cell and Gene Therapy Group, Centre for Gene Therapy and Regenerative Medicine, King’s College London, London SE1 9RT, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Stephen E. Moss
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - John Greenwood
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| |
Collapse
|
2
|
Sun J, Liu Y, Chen Z. Melatonin and retinal cell damage: molecular and biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3199-3212. [PMID: 39520554 DOI: 10.1007/s00210-024-03575-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The indoleamine hormone, melatonin, is produced in the pineal gland and has an essential role in many physiological functions. The pineal gland is considered to be the most important organ for producing melatonin. Nevertheless, it is important to point out that the eye is also capable of producing melatonin, and has its own circadian rhythm in producing this hormone. Melatonin is mainly produced by a subpopulation of photoreceptors in a diurnal rhythm. Numerous in vitro and in vivo studies have shown the beneficial effects of melatonin in eye-related disorders. These diseases primarily affect retinal cells, highlighting the therapeutic potential of melatonin, especially in the retina. Melatonin's ability to regulate oxidative stress response pathways and modulate the expression of antioxidant genes makes it a promising candidate for mitigating retinal cell damage. Moreover, melatonin can modulate inflammatory pathways such as NF-кB and further reduce retinal damage, as well as affecting programmed cell death such as apoptosis and autophagy in retinal cells. Therefore, the goal of this review is to explore the ways in which melatonin protects retinal cells from damage and ischemia. We discuss the mechanisms involved in order to gain valuable understanding of the possible therapeutic applications of melatonin in protection of retinal cells and treatment of retinal disorders.
Collapse
Affiliation(s)
- Jingwen Sun
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Yan Liu
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China
| | - Zhangming Chen
- Harbin 242 Hospital, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
3
|
El‐Darzi N, Mast N, Li Y, Pikuleva IA. Dietary effects on the retina of hamsters. FASEB J 2025; 39:e70451. [PMID: 40099968 PMCID: PMC11917192 DOI: 10.1096/fj.202403390r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
The retina is a sensory tissue in the back of the eye, which captures visual information and relays it to the brain. The retinal pigment epithelium separates the neural retina from the choroidal (systemic) circulation and is thereby exposed to circulating lipoprotein particles. Herein, we used hamsters and conducted various retinal evaluations of animals fed either a normal diet or a Western-type diet (WTD). Prior to evaluations, hamsters were injected with indocyanine green (ICG), a fluorescent dye that binds to various proteins and lipids in the systemic circulation. The WTD increased plasma levels of total and HDL cholesterol 1.8- and 2.1-fold, respectively, and led to additional HDL2 and HDL3 subpopulations. The diet also increased the ICG fluorescence in the retinal pigment epithelium and the underlying choroidal circulation on histological tracking and altered retinal protein abundance as assessed by proteomics. Functional enrichments were found in the retinal gene expression, energy production, intracellular transport, cytoskeleton- and synapse-related processes, and protein ubiquitination. The biochemical basis linking the WTD, retinal energy production, and retinal neurotransmission was suggested as well. The data obtained were then compared with those from our previous investigations of hamsters and different mouse genotypes. We identified common retinal processes that can be affected by circulating lipoprotein particles regardless of the mechanism by which their levels and subpopulations were altered (through diet or genetic modification). Thus, we obtained novel mechanistic insights into how lipids in the systemic circulation can affect the retina.
Collapse
Affiliation(s)
- Nicole El‐Darzi
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Natalia Mast
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Yong Li
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
4
|
ÇEVİK MÖ, Mert Altuntaş Z, Çevik SG. Indications of the SERPINE 1 variant rs1799768's role in anti-VEGF therapy resistance in neovascular age-related macular degeneration. PLoS One 2025; 20:e0317511. [PMID: 40048436 PMCID: PMC11884677 DOI: 10.1371/journal.pone.0317511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/30/2024] [Indexed: 03/09/2025] Open
Abstract
Age-related macular degeneration (AMD) is a retinal disease prevalent in the elderly population, with two main subtypes: dry (non-exudative) and neovascular (wet or exudative). Neovascular AMD (nAMD) has a more debilitating prognosis than dry AMD, making it the third leading cause of blindness. Intravitreal injections of anti-vascular endothelial growth factor (IV anti-VEGF) are the most effective and widely accepted treatment for nAMD. However, a significant number of nAMD patients exhibit suboptimal responses to IV anti-VEGF therapy, with the underlying mechanisms not yet fully understood. We hypothesized that genetic polymorphisms associated with blood hypercoagulation may also contribute to suboptimal responses to IV anti-VEGF therapy. This study recruited 20 nAMD patients, who were divided into two groups based on their treatment responses after four years: 10 patients with suboptimal responses to IV anti-VEGF therapy and 10 patients with optimal responses. After obtaining institutional ethics board approval, we retrospectively evaluated relevant clinical records of twenty patients diagnosed with nAMD. Patient clinical data were accessed between 20th March 2021 -1st April 2021 for research purposes only. We genotyped peripheral blood DNA from each patient for hypercoagulation-related polymorphisms, including Factor V Leiden (rs6025), prothrombin c.20210G>A (rs1799963), MTHFR A1298C (rs1801131), MTHFR C677T (rs1801133), and SERPINE 1 (PAI-1-675 4G/5G) (rs1799768), and statistically compared the frequencies. Heterozygous and homozygous mutations in the SERPINE1 gene specifically PAI-1 promoter region PAI-1-675 4G/5G (rs1799768) were identified as risk factors for resistance to IV anti-VEGF therapy in nAMD patients (χ² test, p = 0.006). No other polymorphisms of the above-mentioned genes were statistically significant (p > 0.05). The failure of IV anti-VEGF therapy in nAMD patients may be influenced by various factors, one of which may be the inherited PAI-1-675 4G/5G (rs1799768) polymorphisms which normally known to contribute hypercoagulation. Further research involving a larger cohort is necessary to uncover the interplay between hereditary factors and other elements contributing to the inefficacy of IV anti-VEGF therapy in nAMD.
Collapse
Affiliation(s)
- Muhammer Özgür ÇEVİK
- Department of Medical Genetics, Faculty of Medicine, Adiyaman University, Adiyaman, Türkiye
| | - Zühal Mert Altuntaş
- Department of Medical Genetics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Sadık Görkem Çevik
- Department of Ophthalmology, Beyoglu Eye Research Hospital Intravitreal Surgery Unit, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
5
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 PMCID: PMC11864113 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
6
|
Alhumaid A, Liu F, Shan S, Jafari E, Nourin N, Somanath PR, Narayanan SP. Spermine oxidase inhibitor, MDL 72527, reduced neovascularization, vascular permeability, and acrolein-conjugated proteins in a mouse model of ischemic retinopathy. Tissue Barriers 2025; 13:2347070. [PMID: 38682891 PMCID: PMC11970769 DOI: 10.1080/21688370.2024.2347070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Disruptions in polyamine metabolism have been identified as contributing factors to various central nervous system disorders. Our laboratory has previously highlighted the crucial role of polyamine oxidation in retinal disease models, specifically noting elevated levels of spermine oxidase (SMOX) in inner retinal neurons. Our prior research demonstrated that inhibiting SMOX with MDL 72527 protected against vascular injury and microglial activation induced by hyperoxia in the retina. However, the effects of SMOX inhibition on retinal neovascularization and vascular permeability, along with the underlying molecular mechanisms of vascular protection, remain incompletely understood. In this study, we utilized the oxygen-induced retinopathy (OIR) model to explore the impact of SMOX inhibition on retinal neovascularization, vascular permeability, and the molecular mechanisms underlying MDL 72527-mediated vasoprotection in the OIR retina. Our findings indicate that inhibiting SMOX with MDL 72527 mitigated vaso-obliteration and neovascularization in the OIR retina. Additionally, it reduced OIR-induced vascular permeability and Claudin-5 expression, suppressed acrolein-conjugated protein levels, and downregulated P38/ERK1/2/STAT3 signaling. Furthermore, our results revealed that treatment with BSA-Acrolein conjugates significantly decreased the viability of human retinal endothelial cells (HRECs) and activated P38 signaling. These observations contribute valuable insights into the potential therapeutic benefits of SMOX inhibition by MDL 72527 in ischemic retinopathy.
Collapse
Affiliation(s)
- Abdullah Alhumaid
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Shengshuai Shan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Eissa Jafari
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Department of Pharmacy Practice, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Nadia Nourin
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
- Vascular Biology Center, Augusta University, Augusta, GA, USA
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Medina-Arellano AE, Albert-Garay JS, Medina-Sánchez T, Fonseca KH, Ruiz-Cruz M, Ochoa-de la Paz L. Müller cells and retinal angiogenesis: critical regulators in health and disease. Front Cell Neurosci 2024; 18:1513686. [PMID: 39720707 PMCID: PMC11666533 DOI: 10.3389/fncel.2024.1513686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Müller cells are the most abundant glial cells in the mammalian retina. Their morphology and metabolism enable them to be in close contact and interact biochemically and physically with almost all retinal cell types, including neurons, pericytes, endothelial cells, and other glial cells, influencing their physiology by releasing bioactive molecules. Studies indicate that Müller glial cells are the primary source of angiogenic growth factor secretion in the neuroretina. Because of this, over the past decade, it has been postulated that Müller glial cells play a significant role in maintaining retinal vascular homeostasis, with potential implications in vasoproliferative retinopathies. This review aims to summarize the current understanding of the mechanisms by which Müller glial cells influence retinal angiogenesis in health and disease, with a particular emphasis on three of the retinopathies with the most significant impact on visual health worldwide: diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration.
Collapse
Affiliation(s)
- Alan E. Medina-Arellano
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, UNAM, Mexico City, Mexico
| | - Jesús Silvestre Albert-Garay
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Tania Medina-Sánchez
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Karla Hernández Fonseca
- Laboratorio de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Matilde Ruiz-Cruz
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| | - Lenin Ochoa-de la Paz
- Laboratorio de Neurobiología Molecular y Celular de la Glía, Facultad de Medicina, Departamento de Bioquímica, UNAM, Mexico City, Mexico
- Unidad de Investigación APEC-UNAM, Asociación para Evitar la Ceguera en México I.A.P., Mexico City, Mexico
| |
Collapse
|
8
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
9
|
Wang Y, Sun X, Xie Y, Du A, Chen M, Lai S, Wei X, Ji L, Wang C. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117135. [PMID: 37689326 DOI: 10.1016/j.jep.2023.117135] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a neurovascular disease that causes blindness in adults and is the most serious and common complication of diabetes mellitus. Retinal inflammation is an early stage of DR, and it is believed to play a crucial role in the development of DR. Panax notoginseng saponins (PNS) are the major active constituent in the main root of P. notoginseng, and they exhibit various biological activities, including anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory functions. However, the protective effects and underlying mechanisms of PNS against DR remain unclear. AIM OF THE STUDY This study aimed to investigate the alleviation effects of PNS on DR and the mechanisms involved. Furthermore, it intended to explore the major components that exert efficacy in vivo. MATERIALS AND METHODS Streptozotocin (STZ) was administered intraperitoneally to Sprague Dawley rats, and PNS was administered orally for 1 month after 2 months of STZ injection. The morphological structure of the retina and retinal acellular capillaries were assessed via hematoxylin and eosin (H&E) staining assay. The disruption of the blood-retinal barrier (BRB) was detected through Evans blue dye leakage assay, and retinal leukocyte adhesion was achieved via fluorescein isothiocyanate-coupled concanavalin A lectin labeling assay. Immunofluorescence staining and Western blot assays were conducted to detect the expression of tight junction proteins, adhesion molecules, and the ionized calcium-binding adapter molecule-1 (Iba-1) in the retina. Enzyme-linked immunosorbent assay was performed to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in serum. In addition, the protein expression levels of nuclear factor (NF)-κB p65, phosphorylated IκB kinase (p-IKK), phosphorylated NF-κB inhibitor (p-IκB), and phosphorylated NF-κB p65 (p-p65) were measured using Western blot assay. The ocular tissue distribution of PNS in normal and diabetic rats was determined through ultra-performance liquid chromatography-tandem mass spectrometry. The in vitro anti-inflammatory effects of PNS, notoginsenoside (NGR1), ginsenoside Rg1, Re, Rb1, and Rd (GRg1, GRe, GRb1, and GRd) were evaluated on human Müller (MIO-M1) cells. RESULTS PNS increased the reduction in retinal inner nuclear layer thickness, reduced the increase in retinal acellular capillaries, and attenuated elevated BRB disruption by upregulating the decrease in protein expression of claudin-1 and occludin. Furthermore, PNS significantly abrogated microglial cell activation and reversed the increase in leukocyte adhesion by downregulating the increase in the protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Moreover, PNS reduced the elevated levels of TNF-α, IL-6, and IL-1β in serum and inhibited the increased protein expression of p-IKK, p-IκB, and p-p65, and the nuclear translocation of p65. The tissue distribution results revealed that NGR1, GRg1, GRe, GRb1, and GRd were detected in the ocular tissue, while GRg1 and GRb1 were found at the highest levels compared with the other components. The cellular results showed that PNS, NGR1, GRg1, GRe, GRb1, and GRd suppressed the development of cellular inflammatory responses by inhibiting the activation of the NF-κB signaling pathway in MIO-M1 cells and that their anti-inflammatory effects were comparable. CONCLUSION PNS suppressed retinal inflammation by inhibiting the activation of the NF-κB signaling pathway, alleviating DR. GRg1 and GRb1 may be the primary components that exert anti-inflammatory effects in vivo.
Collapse
Affiliation(s)
- Yaru Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Sun
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yumin Xie
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ao Du
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ming Chen
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Shusheng Lai
- Guangxi Key Laboratory of Comprehensive Utilization Technology of Pseudo-ginseng, Wu Zhou, 543000, China.
| | - Xiaohui Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Rupenthal ID, Agarwal P. Progress in Ocular Drug Delivery: Challenges and Constraints. Handb Exp Pharmacol 2024; 284:267-288. [PMID: 37620616 DOI: 10.1007/164_2023_693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The eye has several dynamic and static barriers in place to limit the entry of foreign substances including therapeutics. As such, efficient drug delivery, especially to posterior segment tissues, has been challenging. This chapter describes the anatomical and physiological challenges associated with ocular drug delivery before discussing constraints with regard to formulation parameters. Finally, it gives an overview of advanced drug delivery technologies with a specific focus on recently marketed and late-stage clinical trial products.
Collapse
Affiliation(s)
- Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Chang YH, Hsing CH, Chiu CJ, Wu YR, Hsu SM, Hsu YH. Protective role of IL-17-producing γδ T cells in a laser-induced choroidal neovascularization mouse model. J Neuroinflammation 2023; 20:279. [PMID: 38007487 PMCID: PMC10676594 DOI: 10.1186/s12974-023-02952-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Vision loss in patients with wet/exudative age-related macular degeneration (AMD) is associated with choroidal neovascularization (CNV), and AMD is the leading cause of irreversible vision impairment in older adults. Interleukin-17A (IL-17A) is a component of the microenvironment associated with some autoimmune diseases. Previous studies have indicated that wet AMD patients have elevated serum IL-17A levels. However, the effect of IL-17A on AMD progression needs to be better understood. We aimed to investigate the role of IL-17A in a laser-induced CNV mouse model. METHODS We established a laser-induced CNV mouse model in wild-type (WT) and IL-17A-deficient mice and then evaluated the disease severity of these mice by using fluorescence angiography. We performed enzyme-linked immunosorbent assay (ELISA) and fluorescence-activated cell sorting (FACS) to analyze the levels of IL-17A and to investigate the immune cell populations in the eyes of WT and IL-17A-deficient mice. We used ARPE-19 cells to clarify the effect of IL-17A under oxidative stress. RESULTS In the laser-induced CNV model, the CNV lesions were larger in IL-17A-deficient mice than in WT mice. The numbers of γδ T cells, CD3+CD4+RORγt+ T cells, Treg cells, and neutrophils were decreased and the number of macrophages was increased in the eyes of IL-17A-deficient mice compared with WT mice. In WT mice, IL-17A-producing γδ T-cell numbers increased in a time-dependent manner from day 7 to 28 after laser injury. IL-6 levels increased and IL-10, IL-24, IL-17F, and GM-CSF levels decreased in the eyes of IL-17A-deficient mice after laser injury. In vitro, IL-17A inhibited apoptosis and induced the expression of the antioxidant protein HO-1 in ARPE-19 cells under oxidative stress conditions. IL-17A facilitated the repair of oxidative stress-induced barrier dysfunction in ARPE-19 cells. CONCLUSIONS Our findings provide new insight into the protective effect of IL-17A in a laser-induced CNV model and reveal a novel regulatory role of IL-17A-producing γδ T cells in the ocular microenvironment in wet AMD.
Collapse
Affiliation(s)
- Yu-Hsien Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chiao-Juno Chiu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rou Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Antibody New Drug Research Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Bora K, Kushwah N, Maurya M, Pavlovich MC, Wang Z, Chen J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023; 12:2443. [PMID: 37887287 PMCID: PMC10605292 DOI: 10.3390/cells12202443] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Proper functioning of the neural retina relies on the unique retinal environment regulated by the blood-retinal barrier (BRB), which restricts the passage of solutes, fluids, and toxic substances. BRB impairment occurs in many retinal vascular diseases and the breakdown of BRB significantly contributes to disease pathology. Understanding the different molecular constituents and signaling pathways involved in BRB development and maintenance is therefore crucial in developing treatment modalities. This review summarizes the major molecular signaling pathways involved in inner BRB (iBRB) formation and maintenance, and representative animal models of eye diseases with retinal vascular leakage. Studies on Wnt/β-catenin signaling are highlighted, which is critical for retinal and brain vascular angiogenesis and barriergenesis. Moreover, multiple in vivo and in vitro methods for the detection and analysis of vascular leakage are described, along with their advantages and limitations. These pre-clinical animal models and methods for assessing iBRB provide valuable experimental tools in delineating the molecular mechanisms of retinal vascular diseases and evaluating therapeutic drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
13
|
Boddu SH, Acharya D, Hala V, Jani H, Pande S, Patel C, Shahwan M, Jwala R, Ranch KM. An Update on Strategies to Deliver Protein and Peptide Drugs to the Eye. ACS OMEGA 2023; 8:35470-35498. [PMID: 37810716 PMCID: PMC10552503 DOI: 10.1021/acsomega.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.
Collapse
Affiliation(s)
- Sai H.
S. Boddu
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Devarshi Acharya
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Vivek Hala
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Harshil Jani
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
| | - Sonal Pande
- Gujarat
Technological University, Ahmedabad, Gujarat 382424, India
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Chirag Patel
- Department
of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| | - Moyad Shahwan
- College
of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center
of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Renukuntla Jwala
- School
of
Pharmacy, The University of Texas at El
Paso, 1101 N Campbell
St., El Paso, Texas 79902, United States
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, North Carolina, 27240, United States
| | - Ketan M. Ranch
- Department
of Pharmaceutics, L. M. College of Pharmacy, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
14
|
Nijim W, Moustafa M, Humble J, Al-Shabrawey M. Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1230581. [PMID: 38983088 PMCID: PMC11182279 DOI: 10.3389/fopht.2023.1230581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/11/2023] [Indexed: 07/11/2024]
Abstract
Diabetic retinopathy (DR) is a result of neurovacular insults from hyperglycemia in diabetes mellitus (DM), and it is one of the top causes of vision loss throughout the modern world. This review article explores the role endothelial to mesenchymal transition (EndMT) has on the pathogenesis of DR. EndMT contributes to the disruption of the blood-retinal barrier, vascular leakage, neovascularization, and fibrosis observed in DR. Risk factors and biomarkers associated with DR severity are discussed, highlighting the importance of early detection and targeted therapies. Current treatments primarily focus on anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation. However, emerging therapeutic strategies aimed at inhibiting EndMT and its downstream effects show promise in preventing the development and progression of DR. Understanding the molecular and cellular mechanisms underlying EndMT in DR provides valuable insights into the disease process and offers potential options for the development of potential treatments.
Collapse
Affiliation(s)
- Wasef Nijim
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohamed Moustafa
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Julia Humble
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
| | - Mohamed Al-Shabrawey
- Eye Research Center, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
- Eye Research Institute, Oakland University, Rochester, MI, United States
- Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
15
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
16
|
Bourdin A, Ortoli M, Karadayi R, Przegralek L, Sennlaub F, Bodaghi B, Guillonneau X, Carpentier A, Touhami S. Efficacy and Safety of Low-Intensity Pulsed Ultrasound-Induced Blood-Retinal Barrier Opening in Mice. Pharmaceutics 2023; 15:1896. [PMID: 37514082 PMCID: PMC10384184 DOI: 10.3390/pharmaceutics15071896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic drugs can treat various retinal pathologies such as retinal cancers; however, their ocular diffusion may be limited by the blood-retina barrier (BRB). Sonication corresponds to the use of ultrasound (US) to increase the permeability of cell barriers including in the BRB. The objective was to study the efficacy and safety of sonication using microbubble-assisted low-intensity pulsed US in inducing a transient opening of the BRB. The eyes of C57/BL6J mice were sonicated at different acoustic pressures (0.10 to 0.50 MPa). Efficacy analyses consisted of fluorescein angiography (FA) performed at different timepoints and the size of the leaked molecules was assessed using FITC-marked dextrans. Tolerance was assessed by fundus photographs, optical coherence tomography, immunohistochemistry, RT-qPCR, and electroretinograms. Sonication at 0.15 MPa was the most suitable pressure for transient BRB permeabilization without altering the morphology or function of the retina. It did not increase the expression of inflammation or apoptosis markers in the retina, retinal pigment epithelium, or choroid. The dextran assay suggested that drugs up to 150 kDa in size can cross the BRB. Microbubble-assisted sonication at an optimized acoustic pressure of 0.15 MPa provides a non-invasive method to transiently open the BRB, increasing the retinal diffusion of systemic drugs without inducing any noticeable side-effect.
Collapse
Affiliation(s)
- Alexandre Bourdin
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Manon Ortoli
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Remi Karadayi
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Lauriane Przegralek
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Florian Sennlaub
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Bahram Bodaghi
- Ophthalmology Department, Pitié Salpêtrière University Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
| | - Xavier Guillonneau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
| | - Alexandre Carpentier
- Department of Neurosurgery, Pitié Salpêtrière University Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
- NeurOn Brain Machine Interface Clinical Research Group, Pitié Salpêtrière University Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
- ASTRL Advanced Surgical Technologies Research Laboratory, Sorbonne Université, 75013 Paris, France
| | - Sara Touhami
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, 75012 Paris, France
- Ophthalmology Department, Pitié Salpêtrière University Hospital, AP-HP, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
17
|
Mota-Silva I, Castanho MARB, Silva-Herdade AS. Towards Non-Invasive Intravital Microscopy: Advantages of Using the Ear Lobe Instead of the Cremaster Muscle. Life (Basel) 2023; 13:life13040887. [PMID: 37109417 PMCID: PMC10145854 DOI: 10.3390/life13040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Inflammation is essential in the protection of the organism and wound repair, but in cases of chronic inflammation can also cause microvasculature deterioration. Thus, inflammation monitorization studies are important to test potential therapeutics. The intravital microscopy (IVM) technique monitors leukocyte trafficking in vivo, being a commonly used procedure to report systemic conditions. Although the cremaster muscle, an established protocol for IVM, may affect the hemodynamics because of its surgical preparation, only male animals are used, and longitudinal studies over time are not feasible. Thinking how this impacts future studies, our aim is to understand if the IVM technique can be successfully performed using the ear lobe instead of the cremaster muscle. Elevated IL-1β plasmatic concentrations confirmed the systemic inflammation developed in a diabetic animal model, while the elevated number of adherent and rolling leukocytes in the ear lobe allowed for the same conclusion. Thus, this study demonstrates that albeit its thickness, the ear lobe protocol for IVM is efficient, non-invasive, more reliable, cost-effective and timesaving.
Collapse
|
18
|
Wang L, Zhang H. Ocular barriers as a double-edged sword: preventing and facilitating drug delivery to the retina. Drug Deliv Transl Res 2023; 13:547-567. [PMID: 36129668 DOI: 10.1007/s13346-022-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/30/2022]
Abstract
In recent decades, the growing of the aging population in the world brings increasingly heavy burden of vision-threatening retinal diseases. One of the biggest challenges in the treatment of retinal diseases is the effective drug delivery to the diseased area. Due to the existence of multiple anatomical and physiological barriers of the eye, commonly used oral drugs or topical eye drops cannot effectively reach the retinal lesions. Innovations in new drug formulations and delivery routes have been continuously applied to improve current drug delivery to the back of the eye. Unique ocular anatomical structures or physiological activities on these ocular barriers, in turn, can facilitate drug delivery to the retina if compatible formulations or delivery routes are properly designed or selected. This paper focuses on key barrier structures of the eye and summarizes advances of corresponding drug delivery means to the retina, including various local drug delivery routes by invasive approaches, as well as systemic eye drug delivery by non-invasive approaches.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Zhang
- Triapex Laboratories Co., Ltd No. 9 Xinglong Road, Jiangbei New Area, Jiangsu, Nanjing, China.
| |
Collapse
|
19
|
Ørskov M, Vorum H, Larsen TB, Skjøth F. Evaluation of Risk Scores as Predictive Tools for Stroke in Patients with Retinal Artery Occlusion: A Danish Nationwide Cohort Study. TH OPEN : COMPANION JOURNAL TO THROMBOSIS AND HAEMOSTASIS 2022; 6:e429-e436. [PMID: 36632285 PMCID: PMC9713298 DOI: 10.1055/s-0042-1758713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022]
Abstract
Purpose We investigated the 1-year risk of stroke in patients with retinal artery occlusion and evaluated the predictive and discriminating abilities of contemporary risk stratification models for embolic stroke. Methods This register-based cohort study included 7,906 patients with retinal artery occlusion from Danish nationwide patient registries between 1995 and 2018. The study population was stratified according to the number of points obtained in the stroke risk scores: the CHA 2 DS 2 -VASc score and the ESSEN Stroke Risk score. The 1-year risk of stroke within strata was evaluated and compared using the cox proportional hazards model. Furthermore, the discrimination of the risk scores as predictive tools for stroke risk assessment was investigated using C-statistics, Brier score, and the index of prediction accuracy. Results The stroke event rate in patients with retinal artery occlusion increased as the score increased for both risk scores, ranging from 3.62 (95% confidence interval [CI]: 2.46-5.31) per 100 person-years to 13.25 (95% CI: 11.78--14.89) per 100-person-years for increasing levels of the CHA 2 DS 2 -VASc score and from 3.97 (95% CI: 2.97-5.32) per 100 person-years to 16.43 (95% CI: 14.01-19.27) per 100 person-years for increasing levels of the ESSEN Stroke Risk score. Using a risk score of 0 as a reference, the difference was statistically significant for retinal artery occlusion patients with a CHA 2 DS 2 -VASc score of 2 or above and for all levels of the ESSEN Stroke Risk score. The C-statistics for the risk scores was 61% (95% CI: 58%-63%) and 62% (95% CI: 59-64%) for the CHA 2 DS 2 -VASc score and ESSEN Stroke Risk score, respectively. Conclusion The results suggested that the use of the CHA 2 DS 2 -VASc score and the ESSEN Stroke Risk score was applicable for risk stratification of stroke in patients with retinal artery occlusion, but discrimination was poor due to low specificity.
Collapse
Affiliation(s)
- Marie Ørskov
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Faculty of Health, Aalborg University, Aalborg, Denmark,Address for correspondence Marie Ørskov, MSc Aalborg Thrombosis Research Unit and Department of Cardiology, Aalborg University HospitalAalborg, Denmark; Hobrovej 18-22, DK-9000 AalborgDenmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Torben Bjerregaard Larsen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark,Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Flemming Skjøth
- Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Faculty of Health, Aalborg University, Aalborg, Denmark,Unit for Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
20
|
Simitian G, Virumbrales-Muñoz M, Sánchez-de-Diego C, Beebe DJ, Kosoff D. Microfluidics in vascular biology research: a critical review for engineers, biologists, and clinicians. LAB ON A CHIP 2022; 22:3618-3636. [PMID: 36047330 PMCID: PMC9530010 DOI: 10.1039/d2lc00352j] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neovascularization, the formation of new blood vessels, has received much research attention due to its implications for physiological processes and diseases. Most studies using traditional in vitro and in vivo platforms find challenges in recapitulating key cellular and mechanical cues of the neovascularization processes. Microfluidic in vitro models have been presented as an alternative to these limitations due to their capacity to leverage microscale physics to control cell organization and integrate biochemical and mechanical cues, such as shear stress, cell-cell interactions, or nutrient gradients, making them an ideal option for recapitulating organ physiology. Much has been written about the use of microfluidics in vascular biology models from an engineering perspective. However, a review introducing the different models, components and progress for new potential adopters of these technologies was absent in the literature. Therefore, this paper aims to approach the use of microfluidic technologies in vascular biology from a perspective of biological hallmarks to be studied and written for a wide audience ranging from clinicians to engineers. Here we review applications of microfluidics in vascular biology research, starting with design considerations and fabrication techniques. After that, we review the state of the art in recapitulating angiogenesis and vasculogenesis, according to the hallmarks recapitulated and complexity of the models. Finally, we discuss emerging research areas in neovascularization, such as drug discovery, and potential future directions.
Collapse
Affiliation(s)
- Grigor Simitian
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - María Virumbrales-Muñoz
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cristina Sánchez-de-Diego
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
21
|
Ocular Drug Delivery: Advancements and Innovations. Pharmaceutics 2022; 14:pharmaceutics14091931. [PMID: 36145679 PMCID: PMC9506479 DOI: 10.3390/pharmaceutics14091931] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ocular drug delivery has been significantly advanced for not only pharmaceutical compounds, such as steroids, nonsteroidal anti-inflammatory drugs, immune modulators, antibiotics, and so forth, but also for the rapidly progressed gene therapy products. For conventional non-gene therapy drugs, appropriate surgical approaches and releasing systems are the main deliberation to achieve adequate treatment outcomes, whereas the scope of “drug delivery” for gene therapy drugs further expands to transgene construct optimization, vector selection, and vector engineering. The eye is the particularly well-suited organ as the gene therapy target, owing to multiple advantages. In this review, we will delve into three main aspects of ocular drug delivery for both conventional drugs and adeno-associated virus (AAV)-based gene therapy products: (1) the development of AAV vector systems for ocular gene therapy, (2) the innovative carriers of medication, and (3) administration routes progression.
Collapse
|
22
|
Uppada S, Zou D, Scott EM, Ko G, Pflugfelder S, Kumar MNVR, Ganugula R. Paclitaxel and Urolithin A Prevent Histamine-Induced Neurovascular Breakdown Alike, in an Ex Vivo Rat Eye Model. ACS Chem Neurosci 2022; 13:2092-2098. [PMID: 35574761 PMCID: PMC9928511 DOI: 10.1021/acschemneuro.1c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurovascular eye problems are better prevented than managed or treated. Despite growing concern of occurrence in aging populations and development secondary to diseases such as diabetes and hypertension, we currently have very few options to tackle this global problem. Creating effective and high-throughput screening strategies is as important as the intervention itself. Here, we present for the first time a robust ex vivo rat eye model of histamine-induced vascular damage for investigating the therapeutic potential of paclitaxel (PTX) and urolithin A (UA) as alternatives to dexamethasone for preventing vascular damage in the retina. Extensive loss of vascularization and apoptosis were observed in the histamine-challenged group and successfully prevented in the intervention groups, more significantly in the PTX and UA. These important early results indicate that PTX and UA could be developed as potential preventive strategies for a wide variety of retinal diseases.
Collapse
Affiliation(s)
- Srijayaprakash Uppada
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Dianxiong Zou
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Erin M. Scott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Gladys Ko
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, United States
| | - Stephen Pflugfelder
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - M. N. V. Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences and Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States; Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, Alabama 35401, United States; College of Community Health Sciences and Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama 35401, United States; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States; Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35401, United States
| |
Collapse
|
23
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Napoli D, Strettoi E. Structural abnormalities of retinal pigment epithelial cells in a light‐inducible, rhodopsin mutant mouse. J Anat 2022. [DOI: 10.1111/joa.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Debora Napoli
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
- Regional Doctorate School of Neuroscience University of Florence Florence Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
| |
Collapse
|
25
|
Li R, Liang Y, Lin B. Accumulation of systematic TPM1 mediates inflammation and neuronal remodeling by phosphorylating PKA and regulating the FABP5/NF-κB signaling pathway in the retina of aged mice. Aging Cell 2022; 21:e13566. [PMID: 35148456 PMCID: PMC8920455 DOI: 10.1111/acel.13566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022] Open
Abstract
The molecular mechanisms underlying functional decline during normal brain aging are poorly understood. Here, we identified the actin‐associated protein tropomyosin 1 (TPM1) as a new systemic pro‐aging factor associated with function deficits in normal aging retinas. Heterochronic parabiosis and blood plasma treatment confirmed that systemic factors regulated age‐related inflammatory responses and the ectopic dendritic sprouting of rod bipolar (RBC) and horizontal (HC) cells in the aging retina. Proteomic analysis revealed that TPM1 was a potential systemic molecule underlying structural and functional deficits in the aging retina. Recombinant TPM1 protein administration accelerated the activation of glial cells, the dendritic sprouting of RBCs and HCs and functional decline in the retina of young mice, whereas anti‐TPM1 neutralizing antibody treatment ameliorated age‐related structural and function changes in the retina of aged mice. Old mouse plasma (OMP) induced glial cell activation and the dendritic outgrowth of RBCs and HCs in young mice, and yet TMP1‐depleted OMP failed to reproduce the similar effect in young mice. These results confirmed that TPM1 was a systemic pro‐aging factor. Moreover, we demonstrated that systematic TPM1 was an immune‐related molecule, which elicited endogenous TPM1 expression and inflammation by phosphorylating PKA and regulating FABP5/NF‐κB signaling pathway in normal aging retinas. Interestingly, we observed TPM1 upregulation and the ectopic dendritic sprouting of RBCs and HCs in young mouse models of Alzheimer's disease, indicating a potential role of TPM1 in age‐related neurodegenerative diseases. Our data indicate that TPM1 could be targeted for combating the aging process.
Collapse
Affiliation(s)
- Rong Li
- School of Optometry The Hong Kong Polytechnic University Kowloon Hong Kong
| | - Yuxiang Liang
- The State Key Laboratory of Brain and Cognitive Sciences The University of Hong Kong Pok Fu Lam Hong Kong
| | - Bin Lin
- School of Optometry The Hong Kong Polytechnic University Kowloon Hong Kong
| |
Collapse
|
26
|
Wang L, Wei X. T Cell-Mediated Autoimmunity in Glaucoma Neurodegeneration. Front Immunol 2022; 12:803485. [PMID: 34975917 PMCID: PMC8716691 DOI: 10.3389/fimmu.2021.803485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023] Open
Abstract
Glaucoma as the leading neurodegenerative disease leads to blindness in 3.6 million people aged 50 years and older worldwide. For many decades, glaucoma therapy has primarily focused on controlling intraocular pressure (IOP) and sound evidence supports its role in delaying the progress of retinal ganglial cell (RGC) damage and protecting patients from vision loss. Meanwhile, accumulating data point to the immune-mediated attack of the neural retina as the underlying pathological process behind glaucoma that may come independent of raised IOP. Recently, some scholars have suggested autoimmune aspects in glaucoma, with autoreactive T cells mediating the chief pathogenic process. This autoimmune process, as well as the pathological features of glaucoma, largely overlaps with other neurodegenerative diseases in the central nervous system (CNS), including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In addition, immune modulation therapy, which is regarded as a potential solution for glaucoma, has been boosted in trials in some CNS neurodegenerative diseases. Thus, novel insights into the T cell-mediated immunity and treatment in CNS neurodegenerative diseases may serve as valuable inspirations for ophthalmologists. This review focuses on the role of T cell-mediated immunity in the pathogenesis of glaucoma and discusses potential applications of relevant findings of CNS neurodegenerative diseases in future glaucoma research.
Collapse
Affiliation(s)
- Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, Shangjin Nanfu Hospital, Chengdu, China
| |
Collapse
|
27
|
Ross EC, Olivera GC, Barragan A. Early passage of Toxoplasma gondii across the blood–brain barrier. Trends Parasitol 2022; 38:450-461. [DOI: 10.1016/j.pt.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/29/2022]
|
28
|
Zhou J, Xie Z. Endostatin Inhibits Blood-Retinal Barrier Breakdown in Diabetic Rats by Increasing the Expression of ICAM-1 and VCAM-1 and Decreasing the Expression of VEGF. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5105866. [PMID: 37795476 PMCID: PMC10547573 DOI: 10.1155/2022/5105866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 10/06/2023]
Abstract
Objective Endostatin has become the strongest endogenous angiogenesis inhibitor due to suppressing VEGF expression. The purpose of this study was to assess the impact of endostatin on the blood-retinal barrier (BRB) in diabetic rats. Methods SD rats were induced to develop diabetes by streptozotocin, and endostatin was administrated by intravitreal injection. The body weight, the level of blood glucose, the expressions of C-reactive protein (CRP), adhesion molecules intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), junction proteins (occludin, claudin-5, and zonula occluden-1), and VEGF were measured in rats' retinas of diabetes. The BRB breakdown was evaluated using Evans blue. Results The level of CRP and adhesion molecules (ICAM-1 and VCAM-1) was increased in retinas of diabetic rats, while endostatin significantly inhibited the upregulation of these. Diabetes increased the BRB permeability and retinal thickness. Diabetes also decreased the levels of occludin, claudin-5, and ZO-1 in retinals. These changes were inhibited by endostatin treatment. Upregulation of vascular endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and protein kinase C- (PKC-) β2 was also reversed by endostatin in retinas of diabetic rats. Conclusions Endostatin provides protection against diabetic retinopathy, which may involve its barrier-enhancing effects.
Collapse
Affiliation(s)
- Jinhua Zhou
- Department of Ophthalmology, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yangzhou 211400, China
| | - Zhenggao Xie
- Department of Ophthalmology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
29
|
Kim BK, Canonica J, Roudnicky F, Westenskow PD. Preventing VEGF-Mediated Vascular Permeability by Experimentally Potentiating BBB Characteristics in Endothelial Cells. Methods Mol Biol 2022; 2475:259-274. [PMID: 35451764 DOI: 10.1007/978-1-0716-2217-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Difficulties with poor reproducibility and translatability of animal model-based research, along with increased efforts to abide by the 3Rs tenet of animal welfare, are driving demand for more relevant human cellular systems. This is especially true for central nervous system (CNS) vasculatures with specialized properties and barriers, namely the blood-brain and blood-retinal barriers (BBB and BRB, respectively) which are difficult to model in vitro. The BBB and BRB protect neurovascular units by regulating nutrient homeostasis, maintaining local ion levels, protecting against exposure from circulating toxins and pathogens, and restricting passage of peripheral immune factors. In this manuscript, we will describe transgenic and pharmacological-based protocols to generate relevant BBB and BRB models both from human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and from primary human umbilical vein endothelial cells (HUVECs). When followed, researchers can expect to generate well-characterized, anatomical and functional BBB and BRB EC monolayers in 36-48 h that are stable up to 90 h. The ability to generate more relevant BBB and BRB EC cultures will improve drug discovery efforts and inform future therapies for neurovascular disorders.
Collapse
Affiliation(s)
- Bo Kyoung Kim
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jérémie Canonica
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Filip Roudnicky
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Peter D Westenskow
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| |
Collapse
|
30
|
DeDreu J, Pal-Ghosh S, Mattapallil MJ, Caspi RR, Stepp MA, Menko AS. Uveitis-mediated immune cell invasion through the extracellular matrix of the lens capsule. FASEB J 2021; 36:e21995. [PMID: 34874579 PMCID: PMC9300120 DOI: 10.1096/fj.202101098r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 12/05/2022]
Abstract
While the eye is considered an immune privileged site, its privilege is abrogated when immune cells are recruited from the surrounding vasculature in response to trauma, infection, aging, and autoimmune diseases like uveitis. Here, we investigate whether in uveitis immune cells become associated with the lens capsule and compromise its privilege in studies of C57BL/6J mice with experimental autoimmune uveitis. These studies show that at D14, the peak of uveitis in these mice, T cells, macrophages, and Ly6G/Ly6C+ immune cells associate with the lens basement membrane capsule, burrow into the capsule matrix, and remain integrated with the capsule as immune resolution is occurring at D26. 3D surface rendering image analytics of confocal z‐stacks and scanning electron microscopy imaging of the lens surface show the degradation of the lens capsule as these lens‐associated immune cells integrate with and invade the lens capsule, with a subset infiltrating both epithelial and fiber cell regions of lens tissue, abrogating its immune privilege. Those immune cells that remain on the surface often become entwined with a fibrillar net‐like structure. Immune cell invasion of the lens capsule in uveitis has not been described previously and may play a role in induction of lens and other eye pathologies associated with autoimmunity.
Collapse
Affiliation(s)
- JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
31
|
Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm 2021; 608:121105. [PMID: 34537269 DOI: 10.1016/j.ijpharm.2021.121105] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The human eye is a complex organ with unique anatomy and physiology that restricts the delivery of drugs to target ocular tissues/sites. Recent advances in the field of pharmacy, biotechnology and material science have led to development of novel ophthalmic dosage forms which can provide sustained drug delivery, reduce dosing frequency and improve the ocular bioavailability of drugs. This review highlights the different anatomical and physiological factors which affect ocular bioavailability of drugs and explores advancements from 2016 to 2020 in various ophthalmic preparations. Different routes of drug administration such as topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral and retrobulbar are discussed with their advances and limitations.
Collapse
|
32
|
Furtado JM, Simões M, Vasconcelos-Santos D, Oliver GF, Tyagi M, Nascimento H, Gordon DL, Smith JR. Ocular syphilis. Surv Ophthalmol 2021; 67:440-462. [PMID: 34147542 DOI: 10.1016/j.survophthal.2021.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
Multiple studies around the world suggest that syphilis is re-emerging. Ocular syphilis - with a wide range of presentations, most of which are subtypes of uveitis - has become an increasingly common cause of ocular inflammation over the past 20 years. Its rising incidence, diagnostic complexity, and manifestations that have only recently been characterized make ocular syphilis relevant from the public health, clinical, and scientific perspectives. We review the demographics, epidemiology, clinical features, ocular imaging findings, diagnosis, and medical management of this condition.
Collapse
Affiliation(s)
- João M Furtado
- Divisão de Oftalmologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Milena Simões
- Divisão de Oftalmologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Daniel Vasconcelos-Santos
- Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Genevieve F Oliver
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| | - Mudit Tyagi
- Ocular Inflammation and Immunology Services, LV Prasad Eye Institute, Hyderabad, India
| | - Heloisa Nascimento
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto Paulista de Estudos e Pesquisas em Oftalmologia-IPEPO, São Paulo, Brazil
| | - David L Gordon
- Flinders University College of Medicine and Public Health, Adelaide, Australia; SA Pathology, Microbiology and Infectious Diseases, Flinders Medical Centre, Bedford Park, South Australia
| | - Justine R Smith
- Flinders University College of Medicine and Public Health, Adelaide, Australia
| |
Collapse
|
33
|
Yang J, Yang K, Meng X, Liu P, Fu Y, Wang Y. Silenced SNHG1 Inhibited Epithelial-Mesenchymal Transition and Inflammatory Response of ARPE-19 Cells Induced by High Glucose. J Inflamm Res 2021; 14:1563-1573. [PMID: 33907437 PMCID: PMC8068511 DOI: 10.2147/jir.s299010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE The lncRNA small nucleolar RNA host gene 1 (SNHG1) is a cerebral infarction-associated gene, its biological role and mechanism in diabetic retinopathy remain to be illuminated. The present study was designed to investigate the role of SNHG1 in high glucose induced human retinal pigment epithelial cells (ARPE-19). METHODS ARPE-19 cells were cultured and exposed to 60 mM high glucose for 48h, and 5.5mM glucose-exposed ARPE-19 cells were used as the control. The levels of the epithelial-mesenchymal transition (EMT) markers E-cadherin, ZO-1, vimentin and α-SMA were measured, and the Cell inflammatory response was evaluated by detecting IL-6 and IL-1β levels. Then, cell migration, proliferation and apoptosis were detected. The expression of the lncRNA SNHG1 in ARPE-19 cells was detected by quantitative real-time PCR. SNHG1 was knocked down by small interfering RNA (siRNA) transfection. The effects of SNHG1 inhibition on inflammation, EMT, migration, proliferation and apoptosis were observed. RESULTS The results showed that the expression of SNHG1 was significantly increased in ARPE-19 cells exposed to high glucose. Silencing SNHG1 reduced the expression of vimentin, α-SMA, and the expression of inflammatory chemokines IL-6 and IL-1β, inhibited migration and proliferation, elevated the expression of E-cadherin and ZO-1, and promoted apoptosis in ARPE-19 cells. CONCLUSION The lncRNA SNHG1 is involved in hyperglycemia-induced EMT and the inflammatory response of ARPE-19 cells and provides a new understanding of the pathogenesis of DR.
Collapse
Affiliation(s)
- Jing Yang
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| | - Kun Yang
- Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| | - Xuxia Meng
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| | - Penghui Liu
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| | - Yudong Fu
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| | - Yibo Wang
- Ophthalmology, Affiliated Hospital of Qingdao University, Qingdao, 266500, Shandong Province, People’s Republic of China
| |
Collapse
|
34
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
35
|
DIFFERENTIAL RESPONSE TO GLUCOCORTICOID IMMUNOSUPPRESSION OF TWO DISTINCT INFLAMMATORY SIGNS ASSOCIATED WITH PUNCTATE INNER CHOROIDOPATHY. Retina 2021; 41:812-821. [PMID: 32804829 DOI: 10.1097/iae.0000000000002950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe the differential response of two distinct inflammatory signs occurring in eyes with punctate inner choroidopathy. METHODS Retrospective, observational case series using multimodal imaging. RESULTS Four eyes of 4 myopic female patients (mean age of 35 years, range 31-42 years) presenting with retinal manifestations of punctate inner choroidopathy. All study eyes had 2 distinct signs of active disease: 1) acute focal hyperreflective lesions splitting the retinal pigment epithelium/Bruch membrane complex on optical coherence tomography which appeared hypoautofluorescent on fundus autofluorescence and 2) more diffuse areas of outer retinal disruption limited to the ellipsoid zone and interdigitation zone on optical coherence tomography and corresponding to hyperautofluorescence on fundus autofluorescence. All patients were treated with oral prednisone and demonstrated prompt regression of the retinal pigment epithelium/Bruch membrane complex lesions with a concurrent, paradoxical centrifugal expansion of outer retinal disruption. The outer retinal disruption eventually resolved in all eyes (mean time of 6 weeks, range 4-10 weeks). CONCLUSION In patients with punctate inner choroidopathy, two distinct inflammatory signs observed with multimodal imaging display a differential response to systemic corticosteroids. Although focal inflammatory lesions splitting the retinal pigment epithelium/Bruch membrane complex seem to respond rapidly, the more diffuse, transient outer retinal disruption shows little response. This difference in treatment response may reflect different immunological phenomena with independent natural history.
Collapse
|
36
|
Huang J, Xian B, Peng Y, Zeng B, Li W, Li Z, Xie Y, Zhao M, Zhang H, Zhou M, Yu H, Wu P, Liu X, Huang B. Migration of pre-induced human peripheral blood mononuclear cells from the transplanted to contralateral eye in mice. Stem Cell Res Ther 2021; 12:168. [PMID: 33691753 PMCID: PMC7945672 DOI: 10.1186/s13287-021-02180-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/20/2021] [Indexed: 11/26/2022] Open
Abstract
Background Retina diseases may lead to blindness as they often afflict both eyes. Stem cell transplantation into the affected eye(s) is a promising therapeutic strategy for certain retinal diseases. Human peripheral blood mononuclear cells (hPBMCs) are a good source of stem cells, but it is unclear whether pre-induced hPBMCs can migrate from the injected eye to the contralateral eye for bilateral treatment. We examine the possibility of bilateral cell transplantation from unilateral cell injection. Methods One hundred and sixty-one 3-month-old retinal degeneration 1 (rd1) mice were divided randomly into 3 groups: an untreated group (n = 45), a control group receiving serum-free Dulbecco’s modified Eagle’s medium (DMEM) injection into the right subretina (n = 45), and a treatment group receiving injection of pre-induced hPBMCs into the right subretina (n = 71). Both eyes were examined by full-field electroretinogram (ERG), immunofluorescence, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR) at 1 and 3 months post-injection. Results At both 1 and 3 months post-injection, labeled pre-induced hPBMCs were observed in the retinal inner nuclear layer of the contralateral (left untreated) eye as well as the treated eye as evidenced by immunofluorescence staining for a human antigen. Flow cytometry of fluorescently label cells and qRT-PCR of hPBMCs genes confirmed that transplanted hPBMCs migrated from the treated to the contralateral untreated eye and remained viable for up to 3 months. Further, full-field ERG showed clear light-evoked a and b waves in both treated and untreated eyes at 3 months post-transplantation. Labeled pre-induced hPBMCs were also observed in the contralateral optic nerve but not in the blood circulation, suggesting migration via the optic chiasm. Conclusion It may be possible to treat binocular eye diseases by unilateral stem cell injection. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02180-5.
Collapse
Affiliation(s)
- Jianfa Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,The Second People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yuting Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.,Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Baozhu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yaojue Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minglei Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Hening Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Minyi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Peixin Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| | - Bing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Terheyden L, Roider J, Klettner A. Basolateral activation with TLR agonists induces polarized cytokine release and reduces barrier function in RPE in vitro. Graefes Arch Clin Exp Ophthalmol 2021; 259:413-424. [PMID: 32949301 PMCID: PMC7843481 DOI: 10.1007/s00417-020-04930-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Systemic inflammation may be of importance in the development of AMD. RPE cells can recognize danger signals with toll-like receptors (TLR) and may react in a pro-inflammatory manner. In this study, we evaluated the basal and apical secretions of TNFα, IL-6, and IL-1β in primary RPE cells and RPE/choroid explant cells under basolateral stimulation of TLR2, 3, and 4; the effects on barrier function; and their influence on neuronal cell viability. METHODS RPE/choroid tissue explants were prepared from porcine eyes and cultivated in modified Ussing chambers; primary porcine RPE cells on transwell plates. Cells were basally stimulated with agonists Pam2CSK4 (Pam; TLR2), polyinosinic/polycytidylic acid (Poly I:C; TLR3), and lipopolysaccharide (LPS; TLR4) for 24 h. Supernatants were evaluated with ELISA for cytokines TNFα, IL-6, and IL-1β. Apical supernatants were applied to SHSY-5Y cells, and cell viability was evaluated in MTT assay. Barrier function was tested by measuring transepithelial electrical resistance (TER) and occludin immunostaining. RESULTS None of the tested TLR agonists was toxic on RPE cells after 24 h of exposure. Unstimulated RPE cells secreted hardly any cytokines. Pam induced IL-6, IL-1ß, and TNFα on the basal and apical sides at all concentrations tested. Poly I:C induced IL-6 and TNFα primarily at the basal side at lower but on both sides at higher concentrations. LPS induced IL-6, IL-1ß, and TNFα apically and basally at all concentrations tested. In the RPE/choroid, a strong difference between apical and basal secretions could be found. IL-6 was constitutively secreted basally, but not apically, but was induced by all agonists on both sides. IL-1ß and TNFα alpha were strongly induced on the basal side by all agonists. TER was reduced by all agonists, with Pam and LPS being effective in all concentrations tested. Occludin expression was unaltered, but the distribution was influenced by the agonists, with a less distinct localization at the cell borders after treatment. None of the agonists or supernatants of treated RPE and RPE/choroid organ cultures exerted any effect on viability of SHSY-5Y cells. CONCLUSIONS Danger signals activating TLRs can induce polarized cytokine expression and contribute to the loss of barrier function in the RPE.
Collapse
Affiliation(s)
- Laura Terheyden
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| | - Johann Roider
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| | - Alexa Klettner
- grid.9764.c0000 0001 2153 9986University Medical Center, Department of Ophthalmology, University of Kiel, Arnold-Heller-Str. 3, Haus B2, 24105 Kiel, Germany
| |
Collapse
|
38
|
Gyawali A, Kim MH, Kang YS. A novel organic cation transporter involved in paeonol transport across the inner blood-retinal barrier and changes in uptake in high glucose conditions. Exp Eye Res 2020; 202:108387. [PMID: 33301773 DOI: 10.1016/j.exer.2020.108387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022]
Abstract
Paeonol exerts various pharmacological effects owing to its antiangiogenic, antioxidant, and antidiabetic activities. We aimed to investigate the transport mechanism of paeonol across the inner blood-retinal barrier both in vitro and in vivo. The carotid artery single injection method was used to investigate the retina uptake index of paeonol. The retina uptake index (RUI) value of [³H]paeonol was dependent on both concentration and pH. This value decreased significantly in the presence of imperatorin, tramadol, and pyrilamine when compared to the control. However, para-aminohippuric acid, choline, and taurine had no effect on the RUI value. Conditionally immortalized rat retina capillary endothelial cells (TR-iBRB cell lines) were used as an in vitro model of the inner blood-retinal barrier (iBRB). The uptake of [³H]paeonol by the TR-iBRB cell lines was found to be time-, concentration-, and pH-dependent. However, the uptake was unaffected by the absence of sodium or by membrane potential disruption. Moreover, in vitro structural analog studies revealed that [³H]paeonol uptake was inhibited in the presence of organic cationic compounds including imperatorin, clonidine and tramadol. This is consistent with the results obtained in vivo. In addition, transfections with OCTN1, 2 or plasma membrane monoamine transporter (PMAT) small interfering RNA did not affect paeonol uptake in TR-iBRB cell lines. Upon pre-incubation of these cell lines with high glucose (HG) media, [3H]paeonol uptake decreased and mRNA expression levels of angiogenetic factors, such as hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) increased. However, after the pretreatment of unlabeled paeonol in HG conditions, the mRNA levels of VEGF and HIF-1 were comparatively reduced, and the [3H]paeonol uptake rate was restored. After being exposed to inflammatory conditions induced by glutamate, TNF-α, and LPS, paeonol and propranolol pretreatment significantly increased the uptake of both [3H]paeonol and [3H]propranolol in TR-iBRB cell lines compared to their respective controls. Our results demonstrate that the transport of paeonol to the retina across the iBRB may involve the proton-coupled organic cation antiporter system, and the uptake of paeonol is changed by HG conditions.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Chungpa-dong 2-ga, Yongsan-gu, Seoul, 140-742, Republic of Korea
| | - Myung-Hee Kim
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Chungpa-dong 2-ga, Yongsan-gu, Seoul, 140-742, Republic of Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Chungpa-dong 2-ga, Yongsan-gu, Seoul, 140-742, Republic of Korea.
| |
Collapse
|
39
|
Dihydrotanshinone, a Natural Diterpenoid, Preserves Blood-Retinal Barrier Integrity via P2X7 Receptor. Int J Mol Sci 2020; 21:ijms21239305. [PMID: 33291318 PMCID: PMC7730037 DOI: 10.3390/ijms21239305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Activation of P2X7 signaling, due to high glucose levels, leads to blood retinal barrier (BRB) breakdown, which is a hallmark of diabetic retinopathy (DR). Furthermore, several studies report that high glucose (HG) conditions and the related activation of the P2X7 receptor (P2X7R) lead to the over-expression of pro-inflammatory markers. In order to identify novel P2X7R antagonists, we carried out virtual screening on a focused compound dataset, including indole derivatives and natural compounds such as caffeic acid phenethyl ester derivatives, flavonoids, and diterpenoids. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) rescoring and structural fingerprint clustering of docking poses from virtual screening highlighted that the diterpenoid dihydrotanshinone (DHTS) clustered with the well-known P2X7R antagonist JNJ47965567. A human-based in vitro BRB model made of retinal pericytes, astrocytes, and endothelial cells was used to assess the potential protective effect of DHTS against HG and 2′(3′)-O-(4-Benzoylbenzoyl)adenosine-5′-triphosphate (BzATP), a P2X7R agonist, insult. We found that HG/BzATP exposure generated BRB breakdown by enhancing barrier permeability (trans-endothelial electrical resistance (TEER)) and reducing the levels of ZO-1 and VE-cadherin junction proteins as well as of the Cx-43 mRNA expression levels. Furthermore, HG levels and P2X7R agonist treatment led to increased expression of pro-inflammatory mediators (TLR-4, IL-1β, IL-6, TNF-α, and IL-8) and other molecular markers (P2X7R, VEGF-A, and ICAM-1), along with enhanced production of reactive oxygen species. Treatment with DHTS preserved the BRB integrity from HG/BzATP damage. The protective effects of DHTS were also compared to the validated P2X7R antagonist, JNJ47965567. In conclusion, we provided new findings pointing out the therapeutic potential of DHTS, which is an inhibitor of P2X7R, in terms of preventing and/or counteracting the BRB dysfunctions elicited by HG conditions.
Collapse
|
40
|
Lipidomics of the brain, retina, and biofluids: from the biological landscape to potential clinical application in schizophrenia. Transl Psychiatry 2020; 10:391. [PMID: 33168817 PMCID: PMC7653030 DOI: 10.1038/s41398-020-01080-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a serious neuropsychiatric disorder, yet a clear pathophysiology has not been identified. To date, neither the objective biomarkers for diagnosis nor specific medications for the treatment of schizophrenia are clinically satisfactory. It is well accepted that lipids are essential to maintain the normal structure and function of neurons in the brain and that abnormalities in neuronal lipids are associated with abnormal neurodevelopment in schizophrenia. However, lipids and lipid-like molecules have been largely unexplored in contrast to proteins and their genes in schizophrenia. Compared with the gene- and protein-centric approaches, lipidomics is a recently emerged and rapidly evolving research field with particular importance for the study of neuropsychiatric disorders such as schizophrenia, in which even subtle aberrant alterations in the lipid composition and concentration of the neurons may disrupt brain functioning. In this review, we aimed to highlight the lipidomics of the brain, retina, and biofluids in both human and animal studies, discuss aberrant lipid alterations in correlation with schizophrenia, and propose future directions from the biological landscape towards potential clinical applications in schizophrenia. Recent studies are in support of the concept that aberrations in some lipid species [e.g. phospholipids, polyunsaturated fatty acids (PUFAs)] lead to structural alterations and, in turn, impairments in the biological function of membrane-bound proteins, the disruption of cell signaling molecule accessibility, and the dysfunction of neurotransmitter systems. In addition, abnormal lipidome alterations in biofluids are linked to schizophrenia, and thus they hold promise in the discovery of biomarkers for the diagnosis of schizophrenia.
Collapse
|
41
|
Rudraraju M, Narayanan SP, Somanath PR. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy. Pharmacol Res 2020; 161:105115. [PMID: 32750417 PMCID: PMC7755666 DOI: 10.1016/j.phrs.2020.105115] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Loss of the blood-retinal barrier (BRB) integrity and subsequent damage to the neurovascular unit in the retina are the underlying reasons for diabetic retinopathy (DR). Damage to BRB eventually leads to severe visual impairment in the absence of prompt intervention. Diabetic macular edema and proliferative DR are the advanced stages of the disease where BRB integrity is altered. Primary mechanisms contributing to BRB dysfunction include loss of cell-cell barrier junctions, vascular endothelial growth factor, advanced glycation end products-induced damage, and oxidative stress. Although much is known about the involvement of adherens and tight-junction proteins in the regulation of vascular permeability in various diseases, there is a significant gap in our knowledge on the junctional proteins expressed in the BRB and how BRB function is modulated in the diabetic retina. In this review article, we present our current understanding of the molecular composition of BRB, the changes in the BRB junctional protein turnover in DR, and how BRB functional modulation affects vascular permeability and macular edema in the diabetic retina.
Collapse
Affiliation(s)
- Madhuri Rudraraju
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA 30912, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
42
|
Kesavan K, Mohan P, Gautam N, Sheffield VC. Topical Ocular Delivery of Nanocarriers: A Feasible Choice for Glaucoma Management. Curr Pharm Des 2020; 26:5518-5532. [PMID: 32938345 DOI: 10.2174/1381612826666200916145609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Topical ocular delivery is an acceptable and familiar approach for the treatment of common ocular diseases. Novel strategies for the treatment of inherited eye diseases include new pharmacologic agents, gene therapy and genome editing, which lead to the expansion of new management options for eye disorders. The topical ocular delivery of nanocarriers is a technique, which has the potential to facilitate novel treatments. Nanocarrier- based strategies have proven effective for site-targeted delivery. This review summarizes recent development in the area of topical delivery of different nanocarriers (Polymer, Vesicular and dispersed systems) for the management of glaucoma, a group of ocular disorders characterized by progressive and accelerated degeneration of the axons of retinal ganglion cells, which make up the optic nerve. Unique cellular targets for glaucoma treatment, primarily the trabecular meshwork of the anterior segment of the eye, make glaucoma facilitated by the use of nanocarriers an ideal disorder for novel molecular therapies.
Collapse
Affiliation(s)
- Karthikeyan Kesavan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Parasuraman Mohan
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Nivedita Gautam
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. 495009, India
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics and Genomics, Carver College of Medicine, University of Iowa, IA, 52242, United States
| |
Collapse
|
43
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
44
|
Smith JR, Ashander LM, Arruda SL, Cordeiro CA, Lie S, Rochet E, Belfort R, Furtado JM. Pathogenesis of ocular toxoplasmosis. Prog Retin Eye Res 2020; 81:100882. [PMID: 32717377 DOI: 10.1016/j.preteyeres.2020.100882] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
Ocular toxoplasmosis is a retinitis -almost always accompanied by vitritis and choroiditis- caused by intraocular infection with Toxoplasma gondii. Depending on retinal location, this condition may cause substantial vision impairment. T. gondii is an obligate intracellular protozoan parasite, with both sexual and asexual life cycles, and infection is typically contracted orally by consuming encysted bradyzoites in undercooked meat, or oocysts on unwashed garden produce or in contaminated water. Presently available anti-parasitic drugs cannot eliminate T. gondii from the body. In vitro studies using T. gondii tachyzoites, and human retinal cells and tissue have provided important insights into the pathogenesis of ocular toxoplasmosis. T. gondii may cross the vascular endothelium to access human retina by at least three routes: in leukocyte taxis; as a transmigrating tachyzoite; and after infecting endothelial cells. The parasite is capable of navigating the human neuroretina, gaining access to a range of cell populations. Retinal Müller glial cells are preferred initial host cells. T. gondii infection of the retinal pigment epithelial cells alters the secretion of growth factors and induces proliferation of adjacent uninfected epithelial cells. This increases susceptibility of the cells to parasite infection, and may be the basis of the characteristic hyperpigmented toxoplasmic retinal lesion. Infected epithelial cells also generate a vigorous immunologic response, and influence the activity of leukocytes that infiltrate the retina. A range of T. gondii genotypes are associated with human ocular toxoplasmosis, and individual immunogenetics -including polymorphisms in genes encoding innate immune receptors, human leukocyte antigens and cytokines- impacts the clinical manifestations. Research into basic pathogenic mechanisms of ocular toxoplasmosis highlights the importance of prevention and suggests new biological drug targets for established disease.
Collapse
Affiliation(s)
- Justine R Smith
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA.
| | - Liam M Ashander
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| | - Sigrid L Arruda
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cynthia A Cordeiro
- Cordeiro et Costa Ophtalmologie, Campos dos Goytacazes, Brazil; Formerly of Department of Ophthalmology, Federal University of Minas Gerais School of Medicine, Belo Horizonte, Brazil
| | - Shervi Lie
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Elise Rochet
- Eye & Vision Health and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine & Public Health, Adelaide, Australia
| | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
| | - João M Furtado
- Department of Ophthalmology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Formerly of Casey Eye Institute, Oregon Health & Science University, USA
| |
Collapse
|
45
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
46
|
Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy. Exp Eye Res 2020; 195:108043. [PMID: 32376470 DOI: 10.1016/j.exer.2020.108043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/29/2022]
Abstract
Selective pericyte loss, the histological hallmark of early diabetic retinopathy (DR), enhances the breakdown of the blood-retinal barrier (BRB) in diabetes. However, the role of pericytes on BRB alteration in diabetes and the signaling pathways involved in their effects are currently unknown. To understand the role of diabetes-induced molecular alteration of pericytes, we performed transcriptomic analysis of sorted retinal pericytes from mice model of diabetes. Retinal tissue from non-diabetic and diabetic (duration 3 months) mouse eyes (n = 10 in each group) were used to isolate pericytes through fluorescent activated cell sorting (FACS) using pericyte specific fluorescent antibodies, PDGFRb-APC. For RNA sequencing and qPCR analysis, a cDNA library was generated using template switching oligo and the resulting libraries were sequenced using paired-end Illumina sequencing. Molecular functional pathways were analyzed using differentially expressed genes (DEGs). Differential expression analysis revealed 217 genes significantly upregulated and 495 genes downregulated, in pericytes isolated from diabetic animals. These analyses revealed a core set of differentially expressed genes that could potentially contribute to the pericyte dysfunction in diabetes and highlighted the pattern of functional connectivity between key candidate genes and blood retinal barrier alteration mechanisms. The top up-regulated gene list included: Ext2, B3gat3, Gpc6, Pip5k1c and Pten and down-regulated genes included: Notch3, Xbp1, Gpc4, Atp1a2 and AKT3. Out of these genes, we further validated one of the down regulated genes, Notch 3 and its role in BRB alteration in diabetic retinopathy. We confirmed the downregulation of Notch3 expression in human retinal pericytes exposed to Advanced Glycation End-products (AGEs) treatment mimicking the chronic hyperglycemia effect. Exploration of pericyte-conditioned media demonstrated that loss of NOTCH3 in pericyte led to increased permeability of endothelial cell monolayers. Collectively, we identify a role for NOTCH3 in pericyte dysfunction in diabetes. Further validation of other DEGs to identify cell specific molecular change through whole transcriptomic approach in diabetic retina will provide novel insight into the pathogenesis of DR and novel therapeutic targets.
Collapse
|
47
|
Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 2020; 147:dev182279. [PMID: 32358096 PMCID: PMC7197727 DOI: 10.1242/dev.182279] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular pathologies of the central nervous system (CNS), which are associated with barrier dysfunction, are leading causes of death and disability. The roles that neuronal and glial progenitors and mature cells play in CNS angiogenesis and neurovascular barrier maturation have been elucidated in recent years. Yet how neuronal activity influences these processes remains largely unexplored. Here, we discuss our current understanding of how neuronal and glial development affects CNS angiogenesis and barriergenesis, and outline future directions to elucidate how neuronal activity might influence these processes. An understanding of these mechanisms is crucial for developing new interventions to treat neurovascular pathologies.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Azzurra Cottarelli
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
48
|
Rajapakse D, Peterson K, Mishra S, Fan J, Lerner J, Campos M, Wistow G. Amelotin is expressed in retinal pigment epithelium and localizes to hydroxyapatite deposits in dry age-related macular degeneration. Transl Res 2020; 219:45-62. [PMID: 32160961 PMCID: PMC7197213 DOI: 10.1016/j.trsl.2020.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022]
Abstract
Deposition of hydroxyapatite (HAP) basal to the retinal pigment epithelium (RPE) is linked to the progression of age-related macular degeneration (AMD). Serum-deprivation of RPE cells in culture mimics some features of AMD. We now show that serum-deprivation also leads to the induction of amelotin (AMTN), a protein involved in hydroxyapatite mineralization in enamel. HAP is formed in our culture model and is blocked by siRNA inhibition of AMTN expression. In situ hybridization and immunofluorescence imaging of human eye tissue show that AMTN is expressed in RPE of donor eyes with geographic atrophy ("dry" AMD) in regions with soft drusen containing HAP spherules or nodules. AMTN is not found in hard drusen, normal RPE, or donor eyes diagnosed with wet AMD. These findings suggest that AMTN is involved in formation of HAP spherules or nodules in AMD, and as such provides a new therapeutic target for slowing disease progression.
Collapse
Affiliation(s)
- Dinusha Rajapakse
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine Peterson
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sanghamitra Mishra
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Lerner
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Campos
- Histopathology Core Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
49
|
Nayyar A, Gindina S, Barron A, Hu Y, Danias J. Do epigenetic changes caused by commensal microbiota contribute to development of ocular disease? A review of evidence. Hum Genomics 2020; 14:11. [PMID: 32169120 PMCID: PMC7071564 DOI: 10.1186/s40246-020-00257-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
There is evidence that genetic polymorphisms and environmentally induced epigenetic changes play an important role in modifying disease risk. The commensal microbiota has the ability to affect the cellular environment throughout the body without requiring direct contact; for example, through the generation of a pro-inflammatory state. In this review, we discuss evidence that dysbiosis in intestinal, pharyngeal, oral, and ocular microbiome can lead to epigenetic reprogramming and inflammation making the host more susceptible to ocular disease such as autoimmune uveitis, age-related macular degeneration, and open angle glaucoma. Several mechanisms of action have been proposed to explain how changes to commensal microbiota contribute to these diseases. This is an evolving field that has potentially significant implications in the management of these conditions especially from a public health perspective.
Collapse
Affiliation(s)
- Ashima Nayyar
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Sofya Gindina
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Arturo Barron
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - Yan Hu
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA
| | - John Danias
- Department of Cell Biology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York (SUNY) Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
50
|
Zhang P, Liu S, Wang Z, Zhou M, Jiang R, Xu G, Chang Q. Immune Cell Status and Cytokines Profiles in Patients with Acute Retinal Necrosis. Ocul Immunol Inflamm 2020; 29:1452-1458. [PMID: 32160075 DOI: 10.1080/09273948.2020.1734214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To assess the immune status of acute retinal necrosis (ARN) patients and to investigate the immune cell types involved in the immunopathogenesis.Methods: Peripheral blood and intraocular fluid were collected from 17 ARN patients and 9 control subjects. The Percentage of immune cells was measured using flow cytometry, levels of complement and antibodies were determined by rate nephelometry, and cytokine levels in the serum and aqueous humor (AH) were detected using cytokine quantitative chips. Data were analyzed using SPSS 23.0. p < .05 was considered statistically significant.Results: Proportion of T-helper 17 cells (p = .034) in serum and concentrations of multiple cytokines associated with Th17 cells (IL-6, IL-17, IL-17 F, IL-21, IL-22) in AH and serum were elevated of ARN patients.Conclusion: Th17 cells appeared to participate in the development of ARN. We found inflammatory cytokines and cells were elevated in the serum and AH of ARN patients.
Collapse
Affiliation(s)
- Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Shixue Liu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Zhujian Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Min Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Rui Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| | - Qing Chang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, Fudan University, Shanghai, China
| |
Collapse
|