1
|
Xiao Q, Liu Y, Li T, Wang C, He S, Zhai L, Yang Z, Zhang X, Wu Y, Liu Y. Viral oncogenesis in cancer: from mechanisms to therapeutics. Signal Transduct Target Ther 2025; 10:151. [PMID: 40350456 PMCID: PMC12066790 DOI: 10.1038/s41392-025-02197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/22/2025] [Accepted: 03/03/2025] [Indexed: 05/14/2025] Open
Abstract
The year 2024 marks the 60th anniversary of the discovery of the Epstein-Barr virus (EBV), the first virus confirmed to cause human cancer. Viral infections significantly contribute to the global cancer burden, with seven known Group 1 oncogenic viruses, including hepatitis B virus (HBV), human papillomavirus (HPV), EBV, Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), and human immunodeficiency virus (HIV). These oncogenic viruses induce cellular transformation and cancer development by altering various biological processes within host cells, particularly under immunosuppression or co-carcinogenic exposures. These viruses are primarily associated with hepatocellular carcinoma, gastric cancer, cervical cancer, nasopharyngeal carcinoma, Kaposi sarcoma, lymphoma, and adult T-cell leukemia/lymphoma. Understanding the mechanisms of viral oncogenesis is crucial for identifying and characterizing the early biological processes of virus-related cancers, providing new targets and strategies for treatment or prevention. This review first outlines the global epidemiology of virus-related tumors, milestone events in research, and the process by which oncogenic viruses infect target cells. It then focuses on the molecular mechanisms by which these viruses induce tumors directly or indirectly, including the regulation of oncogenes or tumor suppressor genes, induction of genomic instability, disruption of regular life cycle of cells, immune suppression, chronic inflammation, and inducing angiogenesis. Finally, current therapeutic strategies for virus-related tumors and recent advances in preclinical and clinical research are discussed.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaomei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| | - Yao Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
2
|
Luebbert L, Sullivan DK, Carilli M, Eldjárn Hjörleifsson K, Viloria Winnett A, Chari T, Pachter L. Detection of viral sequences at single-cell resolution identifies novel viruses associated with host gene expression changes. Nat Biotechnol 2025:10.1038/s41587-025-02614-y. [PMID: 40263451 DOI: 10.1038/s41587-025-02614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/24/2025] [Indexed: 04/24/2025]
Abstract
The increasing use of high-throughput sequencing methods in research, agriculture and healthcare provides an opportunity for the cost-effective surveillance of viral diversity and investigation of virus-disease correlation. However, existing methods for identifying viruses in sequencing data rely on and are limited to reference genomes or cannot retain single-cell resolution through cell barcode tracking. We introduce a method that accurately and rapidly detects viral sequences in bulk and single-cell transcriptomics data based on the highly conserved RdRP protein, enabling the detection of over 100,000 RNA virus species. The analysis of viral presence and host gene expression in parallel at single-cell resolution allows for the characterization of host viromes and the identification of viral tropism and host responses. We apply our method to peripheral blood mononuclear cell data from rhesus macaques with Ebola virus disease and describe previously unknown putative viruses. Moreover, we are able to accurately predict viral presence in individual cells based on macaque gene expression.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Delaney K Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Maria Carilli
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Kristján Eldjárn Hjörleifsson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Alexander Viloria Winnett
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
3
|
Sareen G, Mohan M, Mannan A, Dua K, Singh TG. A new era of cancer immunotherapy: vaccines and miRNAs. Cancer Immunol Immunother 2025; 74:163. [PMID: 40167762 PMCID: PMC11961864 DOI: 10.1007/s00262-025-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Cancer immunotherapy has transformed the treatment landscape, introducing new strategies to fight various types of cancer. This review examines the important role of vaccines in cancer therapy, focusing on recent advancements such as dendritic cell vaccines, mRNA vaccines, and viral vector-based approaches. The relationship between cancer and the immune system highlights the importance of vaccines as therapeutic tools. The discussion covers tumor cell and dendritic cell vaccines, protein/peptide vaccines, and nucleic acid vaccines (including DNA, RNA, or viral vector-based), with a focus on their effectiveness and underlying mechanisms. Combination therapies that pair vaccines with immune checkpoint inhibitors, TIL therapy, and TCR/CAR-T cell therapy show promising potential, boosting antitumor responses. Additionally, the review explores the regulatory functions of microRNAs (miRNAs) in cancer development and suppression, featuring miR-21, miR-155, the let-7 family, and the miR-200 family, among others. These miRNAs influence various pathways, such as PI3K/AKT, NF-κB, and EMT regulation, providing insights into biomarker-driven therapeutic strategies. Overall, this work offers a thorough overview of vaccines in oncology and the integrative role of miRNAs, setting the stage for the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Gitika Sareen
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
4
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 PMCID: PMC11930993 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Viart NM, Renault AL, Eon-Marchais S, Jiao Y, Fuhrmann L, El Houdigui SM, Le Gal D, Cavaciuti E, Dondon MG, Beauvallet J, Raynal V, Stoppa-Lyonnet D, Vincent-Salomon A, Andrieu N, Southey MC, Lesueur F. Breast tumors from ATM pathogenic variant carriers display a specific genome-wide DNA methylation profile. Breast Cancer Res 2025; 27:36. [PMID: 40069712 PMCID: PMC11899765 DOI: 10.1186/s13058-025-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The ataxia-telangiectasia mutated (ATM) kinase phosphorylates and activates several downstream targets that are essential for DNA damage repair, cell cycle inhibition and apoptosis. Germline biallelic inactivation of the ATM gene causes ataxia-telangiectasia (A-T), and heterozygous pathogenic variant (PV) carriers are at increased risk of cancer, notably breast cancer. This study aimed to investigate whether DNA methylation profiling can be useful as a biomarker to identify tumors arising in ATM PV carriers, which may help for the management and optimal tailoring of therapies of these patients. METHODS Breast tumor enriched DNA was prepared from 2 A-T patients, 27 patients carrying an ATM PV, 6 patients carrying a variant of uncertain clinical significance and 484 noncarriers enrolled in epidemiological studies conducted in France and Australia to investigate genetic and nongenetic factors involved in breast cancer susceptibility. Genome-wide DNA methylation analysis was performed using the Illumina Infinium HumanMethylation EPIC and 450K BeadChips. Correlation between promoter methylation and gene expression was assessed for 10 tumors for which transcriptomic data were available. RESULTS We found that the ATM promoter was hypermethylated in 62% of tumors of heterozygous PV carriers compared to the mean methylation level of ATM promoter in tumors of noncarriers. Gene set enrichment analyses identified 47 biological pathways enriched in hypermethylated genes involved in neoplastic, neurodegenerative and metabolic-related pathways in tumor of PV carriers. Among the 327 differentially methylated promoters, promoters of ARHGAP40, SCGB3A1 (HIN-1), and CYBRD1 (DCYTB) were hypermethylated and associated with a lower gene expression in these tumors. Moreover, using three different deep learning algorithms (logistic regression, random forest and XGBoost), we identified a set of 27 additional biomarkers predictive of ATM status, which could be used in the future to provide evidence for or against pathogenicity in ATM variant classification strategies. CONCLUSIONS We showed that breast tumors that arise in women who carry an ATM PV display a specific genome-wide DNA methylation profile. Specifically, the methylation pattern of 27 key gene promoters was predictive of ATM PV status of the women. These genes may also represent new medical prevention and therapeutic targets for these women.
Collapse
Affiliation(s)
- Nicolas M Viart
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Anne-Laure Renault
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
| | | | - Yue Jiao
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | | | - Dorothée Le Gal
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Eve Cavaciuti
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | - Juana Beauvallet
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Virginie Raynal
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL University, Paris, France
| | | | | | - Nadine Andrieu
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Melissa C Southey
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Fabienne Lesueur
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France.
| |
Collapse
|
6
|
Özozan ÖV, Pehlevan-Özel H, Vural V, Dinç T. Relationship Between Human Papilloma Virus and Upper Gastrointestinal Cancers. Viruses 2025; 17:367. [PMID: 40143295 PMCID: PMC11946559 DOI: 10.3390/v17030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
The human papillomavirus (HPV) is an oncogenic DNA virus that is the most commonly transmitted sexually transmitted virus. There is substantial evidence that HPV is associated with different types of cancer. While the majority of studies have concentrated on urogenital system cancers and head and neck cancers, the relationship between HPV and gastrointestinal system cancers, particularly esophageal cancers, has also been the subject of investigation. Given that HPV is a disease that can be prevented through vaccination and treated with antiviral agents, identifying the types of cancers associated with the pathogen may inform the treatment of these cancers. This comprehensive review examines the relationship between HPV and cancers of the upper gastrointestinal tract, highlighting the oncogenic mechanisms of the virus and its reported prevalence. A deeper understanding of HPV's association with cancer is relevant to the further development of cancer therapies.
Collapse
Affiliation(s)
| | - Hikmet Pehlevan-Özel
- Department of General Surgery, Ankara Bilkent City Hospital, 06800 Ankara, Türkiye; (H.P.-Ö.); (T.D.)
| | - Veli Vural
- Department of General Surgery, Akdeniz University, 07070 Antalya, Türkiye;
| | - Tolga Dinç
- Department of General Surgery, Ankara Bilkent City Hospital, 06800 Ankara, Türkiye; (H.P.-Ö.); (T.D.)
| |
Collapse
|
7
|
Mjelle R, Castro Í, Aass KR. The viral landscape in metastatic solid cancers. Heliyon 2025; 11:e42548. [PMID: 40028540 PMCID: PMC11870251 DOI: 10.1016/j.heliyon.2025.e42548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Here, we analyze the viral landscape in blood and tissue from 4918 metastatic cancer patients across 38 solid cancer types from the Hartwig Medical Foundation (HMF) cohort, the largest pan-cancer study on metastatic cancer. Using a coverage-based filtering approach, we detected 25 unique viral genera across 32 different cancer types, with a total of 747 unique virus-positive tissue samples. We detected 336 virus-positive blood samples across 29 cancer types, dominated by Torque teno virus and Alphatorquevirus. The tissue samples were dominated by Alphapapillomavirus and Roseolovirus. Alphapapillomavirus was significantly enriched in genital, anal, and colorectal cancers and was associated with host mutational signatures and transcriptional programs related to immunity and DNA repair. Host genes with Alphapapillomavirus integration tended to be more highly expressed and samples with HPV integration had higher somatic mutation rates and higher number of extrachromosomal DNA elements. Alphapapillomavirus was also detected in a significant proportion of blood samples from cervix and anal cancers, suggesting a potential blood-based biomarker.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pathology, St.Olavs Hospital, Trondheim, Norway
| | | | - Kristin Roseth Aass
- Department of Cancer and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Topiwala IS, Ramachandran A, A MS, Sengupta R, Dhar R, Devi A. Exosomes and tumor virus interlink: A complex side of cancer. Pathol Res Pract 2025; 266:155747. [PMID: 39647256 DOI: 10.1016/j.prp.2024.155747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Extracellular Vesicles (EVs) based cancer research reveals several complicated sides of cancer. EVs are classified as several subpopulations such as microvesicles, apoptotic bodies, and exosomes. In cancer, exosomes play a significant role as a cellular messenger in tumor development and progression. Tumor-derived exosomes (TEXs) are also a theranostic tool for cancer. Tumor virus-infected cell-derived EVs promote cancer development. Exosomes (a subpopulation of EVs) play a significant role in converting noninfecting cells to infected cells. It transports several biological active cargo (DNA, RNA, protein, and virions) towards the noninfected cells. This cellular transport enhances infection rates via reprogramming of noninfected cells. In this review, we explore tumor viruses, exosomes and tumor viruses interlink, the theranostic landscape of exosomes in tumor virus-associated cancer and the future orientation of exosomes-based virus oncology.
Collapse
Affiliation(s)
- Ibrahim S Topiwala
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Aparna Ramachandran
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Meghana Shakthi A
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Ranjini Sengupta
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India.
| |
Collapse
|
9
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
10
|
Prajapati M, Deshmukh R, Harwansh RK. Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment. Curr Drug Deliv 2025; 22:63-79. [PMID: 38037911 DOI: 10.2174/0115672018280381231119150732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.
Collapse
Affiliation(s)
- Mahendra Prajapati
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| |
Collapse
|
11
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
12
|
Leijonhufvud G, Soratto TAT, Matos GM, Bajalan A, Eichler-Jonsson C, Gustafsson B, Bogdanovic G, Allander T, Ljungman G, Andersson B. Metagenomic characterization of viruses in the serum of children with newly diagnosed cancer. J Clin Virol 2024; 175:105736. [PMID: 39405634 DOI: 10.1016/j.jcv.2024.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 12/02/2024]
Abstract
BACKGROUND AND OBJECTIVES A large cohort of pediatric patients with various forms of childhood cancer was investigated for the presence of viruses using metagenomics. A total of 476 patient samples, collected between 1989 and 2018, were analyzed, representing various pediatric oncological diagnoses and a control group of non-malignant diagnoses. STUDY DESIGN The study was carried out using metagenomic sequencing of serum samples. Viruses were identified and analyzed using bioinformatics methods, followed by Polymerase chain reaction (PCR) confirmation RESULTS: The results indicate that a wide range of viruses can be detected in the bloodstream of children with newly diagnosed cancer. Nine viral genomes were identified: Human Pegivirus (HPgV), Hepatitis C virus, Parechovirus 1, Rhinovirus C, Human papillomavirus 116, Human polyomavirus 10, Parvovirus B19, and different variants of Torque Teno Virus (TTV). In this study, a previously unknown virus was found belonging to the Iflavirdae family in the order Picornavirales. HPGV was significantly more common in patients with leukemia compared to other conditions. CONCLUSIONS These results highlight the abundance of systemic virus infections in children, and the value of metagenomic sequencing for hypothesis forming regarding the associations between virus infections and cancer.
Collapse
Affiliation(s)
- Gustaf Leijonhufvud
- Department of Women's and Children's Health, Uppsala University, SE-75237 Uppsala, Sweden; Department of Pediatric Hematology/Oncology, Children's University Hospital, Se-75185 Uppsala Sweden
| | - Tatiany Aparecida Teixeira Soratto
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Gabriel Machado Matos
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Amanj Bajalan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Claudia Eichler-Jonsson
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Britt Gustafsson
- Department of Pediatric Hematology/Oncology, Children's University Hospital, Se-75185 Uppsala Sweden; Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, S-141 86 Stockholm, Sweden
| | - Gordana Bogdanovic
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Tobias Allander
- Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, SE-75237 Uppsala, Sweden; Department of Pediatric Hematology/Oncology, Children's University Hospital, Se-75185 Uppsala Sweden
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Wu M, Sun C, Shi Q, Luo Y, Wang Z, Wang J, Qin Y, Cui W, Yan C, Dai H, Wang Z, Zeng J, Zhou Y, Zhu M, Liu X. Dry eye disease caused by viral infection: Past, present and future. Virulence 2024; 15:2289779. [PMID: 38047740 PMCID: PMC10761022 DOI: 10.1080/21505594.2023.2289779] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Following viral infection, the innate immune system senses viral products, such as viral nucleic acids, to activate innate defence pathways, leading to inflammation and apoptosis, control of cell proliferation, and consequently, threat to the whole body. The ocular surface is exposed to the external environment and extremely vulnerable to viral infection. Several studies have revealed that viral infection can induce inflammation of the ocular surface and reduce tear secretion of the lacrimal gland (LG), consequently triggering ocular morphological and functional changes and resulting in dry eye disease (DED). Understanding the mechanisms of DED caused by viral infection and its potential therapeutic strategies are crucial for clinical interventional advances in DED. This review summarizes the roles of viral infection in the pathogenesis of DED, applicable diagnostic and therapeutic strategies, and potential regions of future studies.
Collapse
Affiliation(s)
- Min Wu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Cuilian Sun
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Qin Shi
- Department of General Medicine, Gongli Hospital, Shanghai, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Ziyu Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jianxiang Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yun Qin
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Weihang Cui
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Chufeng Yan
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Huangyi Dai
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Zhiyang Wang
- Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Yamei Zhou
- Department of Microbiology Laboratory, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
14
|
Zhang W, Wei W, Ma L, Du H, Jin A, Luo J, Li X. Mapping the landscape: a bibliometric study of global chimeric antigen receptor T cell immunotherapy research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9227-9241. [PMID: 38953967 DOI: 10.1007/s00210-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The rise of immunotherapy provided new approaches to cancer treatment. We aimed to describe the contribution of chimeric antigen receptor T cell immunotherapy to future prospects. We analyzed 8035 articles from the Web of Science Core Collection with CiteSpace that covered with various aspects with countries, institutions, authors, co-cited authors, journals, keywords, and references. The USA was the most prolific country, with the University of Pennsylvania being the most published institution. Among individual authors, June Carl H published the most articles, while Maude SL was the most frequently co-cited author. "Blood" emerged as the most cited journal. Keyword clustering revealed six core themes: "Expression," "Chimeric Antigen Receptor," "Tumor Microenvironment," "Blinatumomab," "Multiple Myeloma," and "Cytokine Release Syndrome." In the process of researching the timeline chart of keywords and references, "Large B-cell lymphoma" was located on the right side of the timeline. In the keyword prominence analysis, we found that the keywords "biomarkers," "pd-1," "antibody drug conjugate," "BCMA," and "chimeric antigen" had high explosive intensity in the recent past. We found that in terms of related diseases, "large B-cell lymphoma" and "cytokine release syndrome" are still difficult problems in the future. In the study of therapeutic methods, "BCMA," "PD-1," "chimeric antigen," and "antibody drug conjugate" deserve more attention from researchers in the future.
Collapse
Affiliation(s)
- Wenhao Zhang
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenzhuo Wei
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - He Du
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Anran Jin
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Jinyi Luo
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Xiaoming Li
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J Virol 2024; 98:e0119424. [PMID: 39470208 PMCID: PMC11575322 DOI: 10.1128/jvi.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
Affiliation(s)
- James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
16
|
Alkhalil SS, Almanaa TN, Altamimi RA, Abdalla M, El-Arabey AA. Interactions between microbiota and uterine corpus endometrial cancer: A bioinformatic investigation of potential immunotherapy. PLoS One 2024; 19:e0312590. [PMID: 39475915 PMCID: PMC11524446 DOI: 10.1371/journal.pone.0312590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Microorganisms in the gut and other niches may contribute to carcinogenesis while also altering cancer immune surveillance and therapeutic response. However, determining the impact of genetic variations and interplay with intestinal microbes' environment is difficult and unanswered. Here, we examined the frequency of thirteen mutant genes that caused aberrant gut in thirty different types of cancer using The Cancer Genomic Atlas (TCGA) database. Substantially, our findings show that all these mutated genes are quite frequent in uterine corpus endometrial cancer (UCEC). Further, these mutant genes are implicated in the infiltration of different subset of immune cells within the Tumor Microenvironment (TME) of UCEC patients. The top-ranking mutant genes that promote immune cell invasion into the TME of UCEC patients were PGLYRP2, OLFM4, and TLR5. In this regard, we used the same deconvolution of the TCGA database to analyze the microbiome that have a strong association with immune cells invasion with TME of UCEC patients. Several bacteria and viruses have been linked to the invasion of immune cells, such as B cell memory and T cell regulatory (Tregs), into the TME of UCEC patients. As a result, our findings pave the way for future research into generating novel immunizations against bacteria or viruses as immunotherapy for UCEC patients.
Collapse
Affiliation(s)
- Samia S. Alkhalil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah, Riyadh, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raghad A. Altamimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children’s Hospital Affiliated to Shandong University, Jinan, China
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
17
|
Shi D, Yang Z, Cai Y, Li H, Lin L, Wu D, Zhang S, Guo Q. Research advances in the molecular classification of gastric cancer. Cell Oncol (Dordr) 2024; 47:1523-1536. [PMID: 38717722 PMCID: PMC11466988 DOI: 10.1007/s13402-024-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 06/27/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor with one of the lowest five-year survival rates. Traditional first-line treatment regimens, such as platinum drugs, have limited therapeutic efficacy in treating advanced GC and significant side effects, greatly reducing patient quality of life. In contrast, trastuzumab and other immune checkpoint inhibitors, such as nivolumab and pembrolizumab, have demonstrated consistent and reliable efficacy in treating GC. Here, we discuss the intrinsic characteristics of GC from a molecular perspective and provide a comprehensive review of classification and treatment advances in the disease. Finally, we suggest several strategies based on the intrinsic molecular characteristics of GC to aid in overcoming clinical challenges in the development of precision medicine and improve patient prognosis.
Collapse
Affiliation(s)
- Dike Shi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Zihan Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanna Cai
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongbo Li
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lele Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Dan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Qingqu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
18
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
19
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
20
|
Rai CI, Kuo TH, Chen YC. Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review. Vaccines (Basel) 2024; 12:1002. [PMID: 39340032 PMCID: PMC11436249 DOI: 10.3390/vaccines12091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Traditional vaccines can be classified into inactivated vaccines, live attenuated vaccines, and subunit vaccines given orally or via intramuscular (IM) injection or subcutaneous (SC) injection for the prevention of infectious diseases. Recently, recombinant protein vaccines, DNA vaccines, mRNA vaccines, and multiple/alternative administering route vaccines (e.g., microneedle or inhalation) have been developed to make vaccines more secure, effective, tolerable, and universal for the public. In addition to preventing infectious diseases, novel vaccines have currently been developed or are being developed to prevent or cure noninfectious diseases, including cancer. These vaccine platforms have been developed using various biotechnologies such as viral vectors, nanoparticles, mRNA, recombination DNA, subunit, novel adjuvants, and other vaccine delivery systems. In this review, we will explore the development of novel vaccines applying biotechnologies, such as vaccines based on novel administration routes, vaccines based on novel vectors, including viruses and nanoparticles, vaccines applied for cancer prevention, and therapeutic vaccines.
Collapse
Affiliation(s)
- Chung-I Rai
- Department of Cosmetic Science, Vanung University, 1, Van Nung Road, Chung-Li City 320676, Taiwan;
| | - Tsu-Hsiang Kuo
- Department of Rehabilitation Science, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan;
- Department of Biotechnology and Pharmaceutical Management, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
| | - Yuan-Chuan Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Department of Medical Technology, Jenteh Junior College of Medicine, Nursing and Management, Miaoli County 356006, Taiwan
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Sahasrabuddhe VV. Cervical Cancer: Precursors and Prevention. Hematol Oncol Clin North Am 2024; 38:771-781. [PMID: 38760198 DOI: 10.1016/j.hoc.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Cervical cancer, caused due to oncogenic types of human papillomavirus (HPV), is a leading preventable cause of cancer morbidity and mortality globally. Chronic, persistent HPV infection-induced cervical precursor lesions, if left undetected and untreated, can progress to invasive cancer. Cervical cancer screening approaches have evolved from cytology (Papanicolaou test) to highly sensitive HPV-based molecular methods and personalized, risk-stratified, management guidelines. Innovations like self-collection of samples to increase screening access, innovative triage methods to optimize management of screen positives, and scalable and efficacious precancer treatment approaches will be key to further enhance the utility of prevention interventions.
Collapse
Affiliation(s)
- Vikrant V Sahasrabuddhe
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Room 5E-338, Rockville, MD, USA.
| |
Collapse
|
22
|
Chen B, Yang Y, Wang X, Yang W, Lu Y, Wang D, Zhuo E, Tang Y, Su J, Tang G, Shao S, Gu K. mRNA vaccine development and applications: A special focus on tumors (Review). Int J Oncol 2024; 65:81. [PMID: 38994758 PMCID: PMC11251742 DOI: 10.3892/ijo.2024.5669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer is characterized by unlimited proliferation and metastasis, and traditional therapeutic strategies usually result in the acquisition of drug resistance, thus highlighting the need for more personalized treatment. mRNA vaccines transfer the gene sequences of exogenous target antigens into human cells through transcription and translation to stimulate the body to produce specific immune responses against the encoded proteins, so as to enable the body to obtain immune protection against said antigens; this approach may be adopted for personalized cancer therapy. Since the recent coronavirus pandemic, the development of mRNA vaccines has seen substantial progress and widespread adoption. In the present review, the development of mRNA vaccines, their mechanisms of action, factors influencing their function and the current clinical applications of the vaccine are discussed. A focus is placed on the application of mRNA vaccines in cancer, with the aim of highlighting unique advances and the remaining challenges of this novel and promising therapeutic approach.
Collapse
Affiliation(s)
- Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yipin Yang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xinyi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wenzhi Yang
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - You Lu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daoyue Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Enba Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yanchao Tang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junhong Su
- Department of Rehabilitation, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guozheng Tang
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Song Shao
- Department of Orthopedics, Lu'an Hospital of Anhui Medical University, Lu'an, Anhui 237008, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
23
|
Pongcharoen S, Kaewsringam N, Somaparn P, Roytrakul S, Maneerat Y, Pintha K, Topanurak S. Immunopeptidomics in the cancer immunotherapy era. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:801-817. [PMID: 39280250 PMCID: PMC11390293 DOI: 10.37349/etat.2024.00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Cancer is the primary cause of death worldwide, and conventional treatments are painful, complicated, and have negative effects on healthy cells. However, cancer immunotherapy has emerged as a promising alternative. Principle of cancer immunotherapy is the re-activation of T-cell to combat the tumor that presents the peptide antigen on major histocompatibility complex (MHC). Those peptide antigens are identified with the set of omics technology, proteomics, genomics, and bioinformatics, which referred to immunopeptidomics. Indeed, immunopeptidomics can identify the neoantigens that are very useful for cancer immunotherapies. This review explored the use of immunopeptidomics for various immunotherapies, i.e., peptide-based vaccines, immune checkpoint inhibitors, oncolytic viruses, and chimeric antigen receptor T-cell. We also discussed how the diversity of neoantigens allows for the discovery of novel antigenic peptides while post-translationally modified peptides diversify the overall peptides binding to MHC or so-called MHC ligandome. The development of immunopeptidomics is keeping up-to-date and very active, particularly for clinical application. Immunopeptidomics is expected to be fast, accurate and reliable for the application for cancer immunotherapies.
Collapse
Affiliation(s)
- Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Nongphanga Kaewsringam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poorichaya Somaparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
24
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602672. [PMID: 39026862 PMCID: PMC11257568 DOI: 10.1101/2024.07.09.602672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
|
25
|
Tanaka T, Oshima K, Kawano K, Tashiro M, Kakiuchi S, Tanaka A, Fujita A, Ashizawa N, Tsukamoto M, Yasuoka A, Teruya K, Izumikawa K. Nationwide Longitudinal Annual Survey of HIV/AIDS Referral Hospitals in Japan From 1999 to 2021: Trend in Non-AIDS-defining Cancers Among Individuals Infected With HIV-1. J Acquir Immune Defic Syndr 2024; 96:1-10. [PMID: 38427920 PMCID: PMC11008444 DOI: 10.1097/qai.0000000000003389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/03/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Non-AIDS-defining cancers (NADCs) in patients infected with HIV have recently attracted attention because of the improved survival of this patient population. To obtain accurate data, a longitudinal study is warranted for the nationwide surveillance of the current status and national trend of NADCs in patients infected with HIV in Japan. SETTING An annual nationwide surveillance of NADCs in patients infected with HIV-1 in Japan from 1999 to 2021. METHODS An annual questionnaire was sent to 378 HIV/AIDS referral hospitals across Japan to collect data (clusters of differentiation 4-positive lymphocytes, time of onset, outcomes, and antiretroviral therapy status) of patients diagnosed with any of the NADCs between 1999 and 2021. RESULTS The response and case-capture rates for the questionnaires in 2021 were 37.8% and 81.2%, respectively. The number of reported NADC cases subsequently increased since the beginning of this study. Evaluation of the case counts of NADCs demonstrated a high incidence of lung, colorectal, gastric, and liver cancers as the top 4 cancers. Pancreatic cancer (0.63), lung cancer (0.49), and leukemia (0.49) had the highest mortality rates among the NADCs. Trends of NADCs regarding transmission routes were maintained over the years in male individuals who have sex with male individuals compared with heterosexual male individuals and female individuals. CONCLUSIONS We demonstrated an increasing trend in the incidence of NADCs over a period of 23 years in Japan. The current data highlighted the importance of raising awareness regarding cancer management for patients infected with HIV in Japan.
Collapse
Affiliation(s)
- Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Kazuhiro Oshima
- Department of Internal Medicine, Nagasaki Goto Chuoh Hospital, Goto-shi, Nagasaki, Japan
| | - Kei Kawano
- Department of Hospital Medicine, Urasoe General Hospital, Urasoe-shi, Okinawa, Japan
| | - Masato Tashiro
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Science, Nagasaki-shi, Nagasaki, Japan
| | - Satoshi Kakiuchi
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Akitaka Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Nobuyuki Ashizawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
| | - Misuzu Tsukamoto
- Department of Internal Medicine, Zenjinkai Hospital, Miyazaki-shi, Miyazaki, Japan
| | - Akira Yasuoka
- Division of Internal Medicine, Michinoo Hospital, Nagasaki-shi, Nagasaki, Japan; and
| | - Katsuji Teruya
- Department of AIDS Clinical Center, Center Hospital of the National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Koichi Izumikawa
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki-shi, Nagasaki, Japan
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Science, Nagasaki-shi, Nagasaki, Japan
| |
Collapse
|
26
|
Antonucci L, Karin M. The Past and Future of Inflammation as a Target to Cancer Prevention. Cancer Prev Res (Phila) 2024; 17:141-155. [PMID: 38271694 PMCID: PMC10987280 DOI: 10.1158/1940-6207.capr-23-0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Inflammation is an essential defense mechanism in which innate immune cells are coordinately activated on encounter of harmful stimuli, including pathogens, tissue injury, and toxic compounds and metabolites to neutralize and eliminate the instigator and initiate healing and regeneration. Properly terminated inflammation is vital to health, but uncontrolled runaway inflammation that becomes chronic begets a variety of inflammatory and metabolic diseases and increases cancer risk. Making damaged tissues behave as "wounds that do not heal" and sustaining the production of growth factors whose physiologic function is tissue healing, chronic inflammation accelerates cancer emergence from premalignant lesions. In 1863, Rudolf Virchow, a leading German pathologist, suggested a possible association between inflammation and tumor formation, but it took another 140 years to fully elucidate and appreciate the tumorigenic role of inflammation. Key findings outlined molecular events in the inflammatory cascade that promote cancer onset and progression and enabled a better appreciation of when and where inflammation should be inhibited. These efforts triggered ongoing research work to discover and develop inflammation-reducing chemopreventive strategies for decreasing cancer risk and incidence.
Collapse
Affiliation(s)
- Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine; La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Ataikiru UO, Iacob ER, Heredea ER, Stănciulescu MC, Galinescu MC, Popoiu CM, Boia ES. A 10-year retrospective study of the risks and peculiarities in pediatric patients with (para)gonadal tumors and cysts. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:225-241. [PMID: 39020537 PMCID: PMC11384043 DOI: 10.47162/rjme.65.2.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Gonadal pediatric tumors are rare, ranking fourth (6%) among pediatric tumors, by Surveillance, Epidemiology, and End Results Program (https:∕∕seer.cancer.gov∕). They have vague symptoms, leading to late discovery, but early detection and identifying its risk factors result in favorable prognosis and reduction of its incidence respectively. PATIENTS, MATERIAL AND METHODS A 10-year retrospective study identified peculiarities and risk factors in 210 children till age 17 with (para)gonadal tumors. RESULTS Stress, pollution (agricultural chemicals, insecticides and metal mine), obesity, breastfeeding ≤5 months, malformations [mainly non-genetic related 67∕87 (77%), especially eye malformation - 64%], hormone, smoking, positive heredo-genetic history, rural residence area, abnormal birth weight, and menstruation disorders showed an increased gonadal malignancy risk; relative risk ratio (RR): 1.33, 1.30, 1.34, 1.11, 1.65, 1.16, 1.36, 1.10, 1.00, 1.08 and 1.15 folds, respectively. RR for histopathological subtypes: immature teratoma (IT) (pollution - 1.75, Rhesus positive - 3.41), dysgerminoma (menstruation disorders - 2.80), granulosa cell tumor (stress - 2.10, menstruation disorders - 2.80), mucinous cystadenomas (obesity - 2.84, no postnatal vaccine - 3.71), mature teratomas (stress - 2.35, malformations - 2.18) and serous cystadenomas (breastfeeding ≤5 months - 2.53), dependent variables being mixed germ cell tumors (GCTs) and cysts. Children presenting with bleeding (73%), abdominal distention (62%), elevated tumor markers (91%), (multilocular) solid tumor (88% and 100%), tumor size >10 cm (65%), GCTs (74%), death (100%), metastases (100%), viruses (77%), loss of appetite (68%), and weight (85%), had gonadal malignant tumors, especially mixed GCTs and IT. CONCLUSIONS Avoiding these risk factors will prevent and reduce gonadal pediatric tumors. Investigating children presenting with the listed peculiarities, especially if exposed to the mentioned risk factors, will enable early gonadal tumor identification, successful patient management, and favorable prognosis.
Collapse
Affiliation(s)
- Usiwoma Okeroghene Ataikiru
- Department of Pediatric Surgery and Orthopedics, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania; ,
| | | | | | | | | | | | | |
Collapse
|
28
|
Quek ZBR, Ng SH. Hybrid-Capture Target Enrichment in Human Pathogens: Identification, Evolution, Biosurveillance, and Genomic Epidemiology. Pathogens 2024; 13:275. [PMID: 38668230 PMCID: PMC11054155 DOI: 10.3390/pathogens13040275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024] Open
Abstract
High-throughput sequencing (HTS) has revolutionised the field of pathogen genomics, enabling the direct recovery of pathogen genomes from clinical and environmental samples. However, pathogen nucleic acids are often overwhelmed by those of the host, requiring deep metagenomic sequencing to recover sufficient sequences for downstream analyses (e.g., identification and genome characterisation). To circumvent this, hybrid-capture target enrichment (HC) is able to enrich pathogen nucleic acids across multiple scales of divergences and taxa, depending on the panel used. In this review, we outline the applications of HC in human pathogens-bacteria, fungi, parasites and viruses-including identification, genomic epidemiology, antimicrobial resistance genotyping, and evolution. Importantly, we explored the applicability of HC to clinical metagenomics, which ultimately requires more work before it is a reliable and accurate tool for clinical diagnosis. Relatedly, the utility of HC was exemplified by COVID-19, which was used as a case study to illustrate the maturity of HC for recovering pathogen sequences. As we unravel the origins of COVID-19, zoonoses remain more relevant than ever. Therefore, the role of HC in biosurveillance studies is also highlighted in this review, which is critical in preparing us for the next pandemic. We also found that while HC is a popular tool to study viruses, it remains underutilised in parasites and fungi and, to a lesser extent, bacteria. Finally, weevaluated the future of HC with respect to bait design in the eukaryotic groups and the prospect of combining HC with long-read HTS.
Collapse
Affiliation(s)
- Z. B. Randolph Quek
- Defence Medical & Environmental Research Institute, DSO National Laboratories, Singapore 117510, Singapore
| | | |
Collapse
|
29
|
El Baba R, Herbein G. EZH2-Myc Hallmark in Oncovirus/Cytomegalovirus Infections and Cytomegalovirus' Resemblance to Oncoviruses. Cells 2024; 13:541. [PMID: 38534385 PMCID: PMC10970056 DOI: 10.3390/cells13060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Approximately 15-20% of global cancer cases are attributed to virus infections. Oncoviruses employ various molecular strategies to enhance replication and persistence. Human cytomegalovirus (HCMV), acting as an initiator or promoter, enables immune evasion, supporting tumor growth. HCMV activates pro-oncogenic pathways within infected cells and direct cellular transformation. Thus, HCMV demonstrates characteristics reminiscent of oncoviruses. Cumulative evidence emphasizes the crucial roles of EZH2 and Myc in oncogenesis and stemness. EZH2 and Myc, pivotal regulators of cellular processes, gain significance in the context of oncoviruses and HCMV infections. This axis becomes a central focus for comprehending the mechanisms driving virus-induced oncogenesis. Elevated EZH2 expression is evident in various cancers, making it a prospective target for cancer therapy. On the other hand, Myc, deregulated in over 50% of human cancers, serves as a potent transcription factor governing cellular processes and contributing to tumorigenesis; Myc activates EZH2 expression and induces global gene expression. The Myc/EZH2 axis plays a critical role in promoting tumor growth in oncoviruses. Considering that HCMV has been shown to manipulate the Myc/EZH2 axis, there is emerging evidence suggesting that HCMV could be regarded as a potential oncovirus due to its ability to exploit this critical pathway implicated in tumorigenesis.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besançon, France;
- Department of Virology, CHU Besançon, 25030 Besançon, France
| |
Collapse
|
30
|
Hsu YC, Tsai MH, Wu G, Liu CL, Chang YC, Lam HB, Su PY, Lung CF, Yang PS. Role of Epstein-Barr Virus in Breast Cancer: Correlation with Clinical Outcome and Survival Analysis. J Cancer 2024; 15:2403-2411. [PMID: 38495506 PMCID: PMC10937271 DOI: 10.7150/jca.93631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Breast cancer is the most prevalent cancer among women worldwide. The potential involvement of Epstein-Barr virus (EBV) in breast cancer pathogenesis has been a subject of debate, but its correlation with clinical outcomes remains uncertain. Methods: In this study, we collected 276 pathologically confirmed breast cancer tissue samples from the tissue bank of MacKay Memorial Hospital and the National Health Research Institutes in Taiwan. DNA was extracted from frozen tissue using The QIAamp DNA Mini Kit. The Taqman quantitative PCR method was employed to assess the EBV copy number per cell in these samples, using NAMALWA cells as a reference. We performed statistical analyses, including 2 × 2 contingency tables, Cox regression analysis, and Kaplan-Meier survival curves, to explore the association between clinicopathologic factors and survival outcomes in breast cancer patients. We analyzed both relapse survival, which reflects the period patients remain free from cancer recurrence post-treatment, and overall survival, which encompasses all-cause mortality. Results: Our results revealed a significant association between EBV status and relapse survival (hazard ratio: 2.75, 95% CI: 1.30, 5.86; p = 0.008) in breast cancer patients. However, no significant association was found in overall survival outcomes. Additionally, we observed significant associations between ER status and tumor histologic grade with both overall and relapse survival. Patients with EBV-positive tumors exhibited higher recurrence rates compared to those with EBV-negative tumors. Furthermore, we noted significant correlations between EBV status and HER-2 (p = 0.0005) and histological grade (p = 0.02) in our cohort of breast cancer patients. Conclusions: The presence of EBV in breast cancer tumors appears to exert an impact on patient outcomes, particularly concerning recurrence rates. Our findings highlight the significance of considering EBV status as a potential prognostic marker in breast cancer patients. Nonetheless, further research is essential to elucidate the underlying molecular mechanisms and develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan, Taiwan
| | - Ming-Han Tsai
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guani Wu
- Department of Statistics & Data Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Chien-Liang Liu
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Bun Lam
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Pei- Yu Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chun-Fan Lung
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Po-Sheng Yang
- Department of General Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
31
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
32
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
33
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
34
|
Joseph J, Sandel G, Kulkarni R, Alatrash R, Herrera BB, Jain P. Antibody and Cell-Based Therapies against Virus-Induced Cancers in the Context of HIV/AIDS. Pathogens 2023; 13:14. [PMID: 38251321 PMCID: PMC10821063 DOI: 10.3390/pathogens13010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Infectious agents, notably viruses, can cause or increase the risk of cancer occurrences. These agents often disrupt normal cellular functions, promote uncontrolled proliferation and growth, and trigger chronic inflammation, leading to cancer. Approximately 20% of all cancer cases in humans are associated with an infectious pathogen. The International Agency for Research on Cancer (IARC) recognizes seven viruses as direct oncogenic agents, including Epstein-Barr Virus (EBV), Kaposi's Sarcoma-associated herpesvirus (KSHV), human T-cell leukemia virus type-1 (HTLV-1), human papilloma virus (HPV), hepatitis C virus (HCV), hepatitis B virus (HBV), and human immunodeficiency virus type 1 (HIV-1). Most viruses linked to increased cancer risk are typically transmitted through contact with contaminated body fluids and high-risk behaviors. The risk of infection can be reduced through vaccinations and routine testing, as well as recognizing and addressing risky behaviors and staying informed about public health concerns. Numerous strategies are currently in pre-clinical phases or undergoing clinical trials for targeting cancers driven by viral infections. Herein, we provide an overview of risk factors associated with increased cancer incidence in people living with HIV (PLWH) as well as other chronic viral infections, and contributing factors such as aging, toxicity from ART, coinfections, and comorbidities. Furthermore, we highlight both antibody- and cell-based strategies directed against virus-induced cancers while also emphasizing approaches aimed at discovering cures or achieving complete remission for affected individuals.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Grace Sandel
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Ratuja Kulkarni
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| | - Reem Alatrash
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA; (R.A.); (B.B.H.)
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (J.J.); (G.S.)
| |
Collapse
|
35
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
36
|
Zhang Y, Ji L, Wen H, Chu Y, Xing W, Tian G, Yao Y, Yang J. Pan-cancer analyses reveal the stratification of patient prognosis by viral composition in tumor tissues. Comput Biol Med 2023; 167:107586. [PMID: 37907029 DOI: 10.1016/j.compbiomed.2023.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
The associations between cancer and bacteria/fungi have been extensively studied, but the implications of cancer-associated viruses have not been thoroughly examined. In this study, we comprehensively characterized the cancer virome of tissue samples across 31 cancer types, as well as blood samples from 23 cancer types. Our findings demonstrated the presence of viral DNA at low abundances in both tissue and blood across major human cancers, with significant differences in viral community composition observed among various cancer types. Furthermore, Cox regression analyses conducted on four cancers, including Head and Neck squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Stomach adenocarcinoma (STAD), and Uterine Corpus Endometrial Carcinoma (UCEC), revealed strong correlation between viral composition/abundance in tissues and patient survival. Additionally, we identified virus-associated prognostic signatures (VAPS) for these four cancers, and discerned differences in the interplay between VAPS and dominant bacteria in tissues among patients with varying survival risks. Notably, clinically relevant analyses revealed prognostic capacities of the VAPS in these four cancers. Taken together, our study provides novel insights into the role of viruses in tissue in the prognosis of multiple cancers and offers guidance on the use of tissue viruses to stratify prognosis for patients with cancer.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Geneis Beijing Co., Ltd., Beijing, 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Huakai Wen
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China
| | - Yuwen Chu
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Weipeng Xing
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China; School of Electrical & Information Engineering, Anhui University of Technology, Anhui, 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, 571158, China; Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China; Key Laboratory of Data Science and Intelligence Education, Hainan Normal University, Ministry of Education, Haikou, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing, 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, 266000, China.
| |
Collapse
|
37
|
Ma H, Qi X. Red Meat Consumption and Cancer Risk: A Systematic Analysis of Global Data. Foods 2023; 12:4164. [PMID: 38002221 PMCID: PMC10670314 DOI: 10.3390/foods12224164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The association between red meat consumption and cancer risk remains a controversy. In this study, we systematically collected and analyzed global data (from Our World in Data and Global Cancer Observatory) to investigate this association for the first time. Our results confirmed significant positive associations between red meat consumption (RMC) and overall cancer incidence (0.798, p < 0.001), or colorectal cancer incidence (0.625, p < 0.001). Several previously unreported cancer types linked to RMC were also unveiled. Gross domestic product (GDP) per capita were found to have an impact on this association. However, even after controlling it, RMC remained significantly associated with cancer incidence (0.463, p < 0.001; 0.592, p < 0.001). Meanwhile, after controlling GDP per capita, the correlation coefficients between white meat consumption and overall cancer incidence were found to be much lower and insignificant, at 0.089 (p = 0.288) for poultry consumption and at -0.055 (p = 0.514) for seafood and fish consumption. Notably, an interesting comparison was performed between changes of colorectal cancer incidence and RMC in many countries and regions. A lag of 15-20 years was found, implying causality between RMC and cancer risk. Our findings will contribute to the development of more rational meat consumption concept.
Collapse
Affiliation(s)
- Hongyue Ma
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Haide College, Ocean University of China, Qingdao 266404, China
| | - Xiangming Qi
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China;
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| |
Collapse
|
38
|
Wang Y, Yan Q, Fan C, Mo Y, Wang Y, Li X, Liao Q, Guo C, Li G, Zeng Z, Xiong W, Huang H. Overview and countermeasures of cancer burden in China. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2515-2526. [PMID: 37071289 PMCID: PMC10111086 DOI: 10.1007/s11427-022-2240-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 04/19/2023]
Abstract
Cancer is one of the leading causes of human death worldwide. Treatment of cancer exhausts significant medical resources, and the morbidity and mortality caused by cancer is a huge social burden. Cancer has therefore become a serious economic and social problem shared globally. As an increasingly prevalent disease in China, cancer is a huge challenge for the country's healthcare system. Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016, we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China. And also, we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - He Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
39
|
Ferrazzo F, Leto S, Malara N. The 1926 novel, "One, no one, one hundred thousand", metaphorizes the potential danger when the immune system is exposed to a repetitive antigen stimulation. Front Immunol 2023; 14:1254853. [PMID: 37771583 PMCID: PMC10524273 DOI: 10.3389/fimmu.2023.1254853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
In the worldwide scenario of infection prevention and control, the vaccine strategies are destined to increase rapidly. The availability of numerous vaccination options allows you to plan individually on how to boost your immune system. The immune system is a highly plastic cognitive dynamic network and performs its function by recognition of the uniqueness of the organism defined as self. The identification and attack of non-self antigens contribute to improving the strategies of self/non-self discrimination. However, repetitive antigen stimulation of the immune system may lead to several outcomes reassumed in three principal risks: (i) loss of the unique self codification (one), (ii) loss of own identifying (no one), and (iii) the increase of idiotype/anti-idiotype entities (one hundred thousand). Controlled production of idiotype/anti-idiotype antibodies protects against autoimmune diseases and immunodeficiency. The title of the famous novel by Nobel Prize for Literature winner Luigi Pirandello, "One, no one, one hundred thousand", recaps the three risks and the protagonist's journey exploring the complexities of personal identity, and warns to preserve the uniqueness of the organism. Taking inspiration from this metaphor, the authors propose to monitor antibody idiotype response for personalizing vaccine plans with the aim of preserving the uniqueness of the immune system and assuring safe protection.
Collapse
Affiliation(s)
| | | | - Natalia Malara
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
40
|
Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, Kanoujiya S, Gupta AK, Sinha S, Ruokolainen J, Kesari KK, Gupta PK. Recent Updates on Viral Oncogenesis: Available Preventive and Therapeutic Entities. Mol Pharm 2023; 20:3698-3740. [PMID: 37486263 PMCID: PMC10410670 DOI: 10.1021/acs.molpharmaceut.2c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
Collapse
Affiliation(s)
- Shivam Chowdhary
- Department
of Industrial Microbiology, Sam Higginbottom
University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh India
| | - Rahul Deka
- Department
of Bioengineering and Biotechnology, Birla
Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kingshuk Panda
- Department
of Applied Microbiology, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Rohit Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
| | - Abhishikt David Solomon
- Department
of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Jimli Das
- Centre
for
Biotechnology and Bioinformatics, Dibrugarh
University, Assam 786004, India
| | - Supriya Kanoujiya
- School
of
Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashish Kumar Gupta
- Department
of Biophysics, All India Institute of Medical
Sciences, New Delhi 110029, India
| | - Somya Sinha
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 02150 Espoo, Finland
- Division
of Research and Development, Lovely Professional
University, Phagwara 144411, Punjab, India
| | - Piyush Kumar Gupta
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- Department
of Biotechnology, Graphic Era Deemed to
Be University, Dehradun 248002, Uttarakhand, India
- Faculty
of Health and Life Sciences, INTI International
University, Nilai 71800, Malaysia
| |
Collapse
|
41
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
von Fritschen U, Kremer T, Prantl L, Fricke A. Breast Implant-Associated Tumors. Geburtshilfe Frauenheilkd 2023; 83:686-693. [PMID: 37614684 PMCID: PMC10444514 DOI: 10.1055/a-2073-9534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 08/25/2023] Open
Abstract
In addition to anaplastic large T-cell lymphomas (BIA-ALCL), other implant-related tumors have been described for some years. Squamous cell carcinoma (SSC) and B-cell lymphomas occurred in very rare cases. The unexplained pathogenesis as well as the unclear individual risk profile is an ongoing source of uncertainty for patients and physicians. The pathogenesis of the tumors is still largely not understood. While BIA-ALCL occurs more frequently with textured breast implants, other tumors were also observed with smooth implants and at other implant sites. Multiple potential mechanisms are discussed. It is suspected that the etiology of a chronic inflammatory response and subsequently immunostimulation is multifactorial and appears to play a key role in the malignant transformation. Since there are currently no sufficiently valid data for a specific risk assessment, this must be done with caution. This article presents the incidence, pathogenesis, as well as the level of evidence according to the current state of knowledge, and evaluates and discusses the current literature.
Collapse
Affiliation(s)
- Uwe von Fritschen
- Department of Plastic- and Aesthetic Surgery, Helios Klinik Emil von Behring, Berlin, Germany
| | - Thomas Kremer
- Klinik für Plastische und Handchirurgie mit Schwerbrandverletztenzentrum, Klinikum St. Georg, Dresden, Germany
| | - Lukas Prantl
- Abteilung für Plastische-, Hand- und Rekonstruktive Chirurgie, Universität Regensburg, Regensburg, Germany
| | - Alba Fricke
- Department of Plastic- and Aesthetic Surgery, Helios Klinik Emil von Behring, Berlin, Germany
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| |
Collapse
|
43
|
Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J 2023; 20:73. [PMID: 37076931 PMCID: PMC10114331 DOI: 10.1186/s12985-023-02037-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Over the past few decades, we have grown accustomed to the idea that human papillomavirus can cause tumors. The genetic and environmental factors that make the difference between elimination of viral infection and the development of cancer are therefore an area of active investigation at present. Microbiota has emerged as an important factor that may affect this balance by increasing or decreasing the ability of viral infection to promote. The female reproductive system has its specific microbiota that helps to maintain health and prevent infection with pathogens. In contrast to other mucosal sites, the vaginal microbiota typically has low diversity and contains few Lactobacillus spp. which by using high-throughput 16s rRNA gene sequencing, classified into five different community state types. According to emerging information, increased diversity of vaginal microbiota and reduced abundance of Lactobacillus spp. contribute to HPV acquisition, persistence, and development of cervical cancer. In this review, the role of normal female reproductive tract microbiota in health, mechanisms which dysbiosis can cause diseases through interaction with microbes and several therapeutic approaches were addressed.
Collapse
Affiliation(s)
- Kimia Sharifian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 14155, Iran.
| |
Collapse
|
44
|
Pereira NM, Martins EAC, Quintela MG, da Cunha AA, dos Santos MM, Waisberg J. Presence of HPV in prostate tissue from patients submitted to prostate biopsy. Acta Cir Bras 2023; 37:e371205. [PMID: 36651430 PMCID: PMC9839154 DOI: 10.1590/acb371205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Prostate cancer (PCa) is the second most frequent cancer among men in the Western population. Infections, such as the one caused by the human papillomavirus (HPV), have been shown to promote inflammation that can lead to the appearance of neoplasms. This study aimed to verify the presence of HPV in neoplastic and non-neoplastic prostate tissue in patients undergoing prostate biopsy and its possible relationship with PCa. METHODS Prostate tissue fragments were collected by prostate biopsy and subjected to polymerase chain reaction with primers for the HPV L1 gene to identify the presence of the virus. RESULTS Among 162 patients, 10 (6.2%) had HPV and in 152 (93.8%) HPV was not identified in prostate biopsies. HPV was detected in 7/95 (7.4%) of patients with PCa, in 2/55 (3.6%) of patients without PCa, and in no patient with an inconclusive diagnosis of PCa. There was no significant difference (p = 0.487) of HPV presence in the tissue of patients with PCa. CONCLUSIONS There were no significant levels of HPV L1 protein in prostate tissue. The findings suggest the absence of HPV oncogenic activity in the prostate tissue of patients with PCa.
Collapse
Affiliation(s)
- Nalisson Marques Pereira
- MSc, associate professor. Universidade Federal do Amapá – Department of Medicine – Macapá (AP), Brazil.,Corresponding author:
- (55 96) 988015303
| | | | - Mateus Goes Quintela
- MSc. Universidade Federal do Amapá – Department of Medicine – Macapá (AP), Brazil
| | - Arthur Arantes da Cunha
- Graduate student. Universidade Federal do Amapá – Department of Medicine – Macapá (AP), Brazil
| | | | - Jaques Waisberg
- PhD, full professor. Faculdade de Medicina do ABC – Department of Surgery – Santo André (SP), Brazil
| |
Collapse
|
45
|
Wu TH, Tsai YT, Chen KY, Yap WK, Luan CW. Utility of High-Sensitivity Modified Glasgow Prognostic Score in Cancer Prognosis: A Systemic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24021318. [PMID: 36674837 PMCID: PMC9866297 DOI: 10.3390/ijms24021318] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
The suitability of the high-sensitivity modified Glasgow Prognostic Score (HS-mGPS) in cancer patients remains unknown. We performed a systematic database search from 1 January 2010 to 30 September 2022, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Selected studies reported the HS-mGPS and survival outcomes in cancer patients. The association between the HS-mGPS and survival outcomes was evaluated using a random-effects model and expressed as pooled hazard ratios (HRs) with 95% CIs. This meta-analysis evaluated 17 studies with a total of 5828 cancer patients. A higher HS-mGPS was found to be associated with an adverse OS (HR = 2.17; 95% CI: 1.80-2.60), DSS (HR = 3.81; 95% CI: 2.03-7.17), and DFS (HR = 1.96; 95% CI: 1.48-2.58; all p ≤ 0.001). The prognostic value of the HS-mGPS for the OS trended in a consistent direction after subgrouping and sensitivity analysis. In conclusion, the HS-mGPS serves as a valid prognostic biomarker for cancer patients, with a high HS-mGPS associated with adverse survival outcomes.
Collapse
Affiliation(s)
- Tsung-Hsien Wu
- Institute of Health Policy and Management, National Taiwan University, Taipei 100, Taiwan
- Legal Affair Department, New Taipei City Department, New Taipei City 220242, Taiwan
| | - Yao-Te Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Kuan-Yin Chen
- School of Dentistry, National Yang Ming University, Taipei 11221, Taiwan
| | - Wing-Keen Yap
- Department of Radiation Oncology, Proton and Radiation Therapy Center, Chang Gung Memorial Hospital-Linkou Medical Center, Taoyuan 333423, Taiwan
- Correspondence: (W.-K.Y.); (C.-W.L.); Tel.: +886-939252567 (C.-W.L.)
| | - Chih-Wei Luan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, LO-Sheng Hospital Ministry of Health and Welfare-Home, New Taipei City 242, Taiwan
- General Education Center, Lunghwa University of Science and Technology, Taoyuan 33306, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (W.-K.Y.); (C.-W.L.); Tel.: +886-939252567 (C.-W.L.)
| |
Collapse
|
46
|
Neto BV, Tavares V, Santos JMO, Cerqueira F, Pereira D, Medeiros R. Map of thrombogenesis in viral infections and viral-driven tumours. Discov Oncol 2023; 14:3. [PMID: 36617364 PMCID: PMC9826626 DOI: 10.1007/s12672-022-00610-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Viruses are pathogenic agents responsible for approximately 10% of all human cancers and significantly contribute to the global cancer burden. Until now, eight viruses have been associated with the development of a broad range of malignancies, including solid and haematological tumours. Besides triggering and promoting oncogenesis, viral infections often go hand-in-hand with haemostatic changes, representing a potential risk factor for venous thromboembolism (VTE). Conversely, VTE is a cardiovascular condition that is particularly common among oncological patients, with a detrimental impact on patient prognosis. Despite an association between viral infections and coagulopathies, it is unclear whether viral-driven tumours have a different incidence and prognosis pattern of thromboembolism compared to non-viral-induced tumours. Thus, this review aims to analyse the existing evidence concerning the association of viruses and viral tumours with the occurrence of VTE. Except for hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection, which are associated with a high risk of VTE, little evidence exists concerning the thrombogenic potential associated with oncoviruses. As for tumours that can be induced by oncoviruses, four levels of VTE risk are observed, with hepatocellular carcinoma (HCC) and gastric carcinoma (GC) associated with the highest risk and nasopharyngeal carcinoma (NPC) associated with the lowest risk. Unfortunately, the incidence of cancer-related VTE according to tumour aetiology is unknown. Given the negative impact of VTE in oncological patients, research is required to better understand the mechanisms underlying blood hypercoagulability in viral-driven tumours to improve VTE management and prognosis assessment in patients diagnosed with these tumours.
Collapse
Affiliation(s)
- Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
| | - Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana M O Santos
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal
| | - Fátima Cerqueira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal
- FP-I3ID, FP-ENAS, FP-BHS, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004, Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPOP), 4200-072, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072, Porto, Portugal.
- FMUP, Faculty of Medicine, University of Porto, 4200-072, Porto, Portugal.
- ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- FP-I3ID, FP-ENAS, FP-BHS, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004, Porto, Portugal.
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150, Porto, Portugal.
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172, Porto, Portugal.
| |
Collapse
|
47
|
Thaman J, Pal RS, Chaitanya MVNL, Yanadaiah P, Thangavelu P, Sharma S, Amoateng P, Arora S, Sivasankaran P, Pandey P, Mazumder A. Reconciling the Gap between Medications and their Potential Leads: The Role of Marine Metabolites in the Discovery of New Anticancer Drugs: A Comprehensive Review. Curr Pharm Des 2023; 29:3137-3153. [PMID: 38031774 DOI: 10.2174/0113816128272025231106071447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
One-third of people will be diagnosed with cancer at some point in their lives, making it the second leading cause of death globally each year after cardiovascular disease. The complex anticancer molecular mechanisms have been understood clearly with the advent of improved genomic, proteomic, and bioinformatics. Our understanding of the complex interplay between numerous genes and regulatory genetic components within cells explaining how this might lead to malignant phenotypes has greatly expanded. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. It was discovered that epigenetic resistance and a lack of multitargeting drugs were highlighted as major barriers to cancer treatment, spurring the search for innovative anticancer treatments. Many popular anticancer drugs, including irinotecan, vincristine, etoposide, and paclitaxel, have botanical origins. Actinomycin D and mitomycin C come from bacteria, while bleomycin and curacin come from marine creatures. However, there is a lack of research evaluating the potential of algae-based anticancer treatments, especially in terms of their molecular mechanisms. Despite increasing interest in the former, and the promise of the compounds to treat tumours that have been resistant to existing treatment, pharmaceutical development of these compounds has lagged. Thus, the current review focuses on the key algal sources that have been exploited as anticancer therapeutic leads, including their biological origins, phytochemistry, and the challenges involved in converting such leads into effective anticancer drugs.
Collapse
Affiliation(s)
- Janvee Thaman
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | | | - Palakurthi Yanadaiah
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144402, India
| | - Prabha Thangavelu
- Department of Pharmaceutical Chemistry, Nandha College of Pharmacy, Affiliated to The Tamil Nadu Dr. MGR Medical University, Erode 638052, Tamil Nadu, India
| | - Sarika Sharma
- Department of Sponsored Research, Division of Research & Development, Lovely Professional University, Phagwara 144402, India
| | - Patrick Amoateng
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Ghana, Legon, Accra, Ghana
| | - Smriti Arora
- Department of Biotechnology, School of Allied Health Sciences, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun 248007, India
| | - Ponnusankar Sivasankaran
- Department of Pharmacy Practice, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Rocklands, Ooty 643001, Tamil Nadu, India
| | - Pratibha Pandey
- Department of Life Sciences, Noida Institute of Engineering & Technology, Gautam Buddh Nagar, 19, Knowledge Park-II, 22, Institutional Area, Greater Noida 201306, India
| | - Avijit Mazumder
- School of Pharmacy, Niet Pharmacy Institute c Block, Noida Institute of Engineering & Technology (Pharmacy Institute), 24 Gautam Buddh Nagar, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| |
Collapse
|
48
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
49
|
Investigational Microbiological Therapy for Glioma. Cancers (Basel) 2022; 14:cancers14235977. [PMID: 36497459 PMCID: PMC9736089 DOI: 10.3390/cancers14235977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Glioma is the most common primary malignancy of the central nervous system (CNS), and 50% of patients present with glioblastoma (GBM), which is the most aggressive type. Currently, the most popular therapies are progressive chemotherapy and treatment with temozolomide (TMZ), but the median survival of glioma patients is still low as a result of the emergence of drug resistance, so we urgently need to find new therapies. A growing number of studies have shown that the diversity, bioactivity, and manipulability of microorganisms make microbial therapy a promising approach for cancer treatment. However, the many studies on the research progress of microorganisms and their derivatives in the development and treatment of glioma are scattered, and nobody has yet provided a comprehensive summary of them. Therefore, in this paper, we review the research progress of microorganisms and their derivatives in the development and treatment of glioma and conclude that it is possible to treat glioma by exogenous microbial therapies and targeting the gut-brain axis. In this article, we discuss the prospects and pressing issues relating to these therapies with the aim of providing new ideas for the treatment of glioma.
Collapse
|
50
|
An Update on the Metabolic Landscape of Oncogenic Viruses. Cancers (Basel) 2022; 14:cancers14235742. [PMID: 36497226 PMCID: PMC9738352 DOI: 10.3390/cancers14235742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Viruses play an important role in cancer development as about 12% of cancer types are linked to viral infections. Viruses that induce cellular transformation are known as oncoviruses. Although the mechanisms of viral oncogenesis differ between viruses, all oncogenic viruses share the ability to establish persistent chronic infections with no obvious symptoms for years. During these prolonged infections, oncogenic viruses manipulate cell signaling pathways that control cell cycle progression, apoptosis, inflammation, and metabolism. Importantly, it seems that most oncoviruses depend on these changes for their persistence and amplification. Metabolic changes induced by oncoviruses share many common features with cancer metabolism. Indeed, viruses, like proliferating cancer cells, require increased biosynthetic precursors for virion production, need to balance cellular redox homeostasis, and need to ensure host cell survival in a given tissue microenvironment. Thus, like for cancer cells, viral replication and persistence of infected cells frequently depend on metabolic changes. Here, we draw parallels between metabolic changes observed in cancers or induced by oncoviruses, with a focus on pathways involved in the regulation of glucose, lipid, and amino acids. We describe whether and how oncoviruses depend on metabolic changes, with the perspective of targeting them for antiviral and onco-therapeutic approaches in the context of viral infections.
Collapse
|