1
|
Garland CJ, Hiley CR, Dora KA. EDHF: spreading the influence of the endothelium. Br J Pharmacol 2011; 164:839-52. [PMID: 21133895 PMCID: PMC3195909 DOI: 10.1111/j.1476-5381.2010.01148.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/24/2010] [Accepted: 11/05/2010] [Indexed: 02/02/2023] Open
Abstract
Our view of the endothelium was transformed around 30 years ago, from one of an inert barrier to that of a key endocrine organ central to cardiovascular function. This dramatic change followed the discoveries that endothelial cells (ECs) elaborate the vasodilators prostacyclin and nitric oxide. The key to these discoveries was the use of the quintessentially pharmacological technique of bioassay. Bioassay also revealed endothelium-derived hyperpolarizing factor (EDHF), particularly important in small arteries and influencing blood pressure and flow distribution. The basic idea of EDHF as a diffusible factor causing smooth muscle hyperpolarization (and thus vasodilatation) has evolved into one of a complex pathway activated by endothelial Ca(2+) opening two Ca(2+) -sensitive K(+) -channels, K(Ca)2.3 and K(Ca)3.1. Combined application of apamin and charybdotoxin blocked EDHF responses, revealing the critical role of these channels as iberiotoxin was unable to substitute for charybdotoxin. We showed these channels are arranged in endothelial microdomains, particularly within projections towards the adjacent smooth muscle, and close to interendothelial gap junctions. Activation of K(Ca) channels hyperpolarizes ECs, and K(+) efflux through them can act as a diffusible 'EDHF' stimulating Na(+) /K(+) -ATPase and inwardly rectifying K-channels. In parallel, hyperpolarizing current can spread from the endothelium to the smooth muscle through myoendothelial gap junctions upon endothelial projections. The resulting radial hyperpolarization mobilized by EDHF is complemented by spread of hyperpolarization along arteries and arterioles, effecting distant dilatation dependent on the endothelium. So the complexity of the endothelium still continues to amaze and, as knowledge evolves, provides considerable potential for novel approaches to modulate blood pressure.
Collapse
MESH Headings
- Animals
- Biological Factors/metabolism
- Blood Pressure/physiology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Endothelium, Vascular/physiopathology
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/physiopathology
- Potassium Channels, Calcium-Activated/metabolism
Collapse
|
2
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
|
4
|
Edwards G, Félétou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 2010; 459:863-79. [PMID: 20383718 DOI: 10.1007/s00424-010-0817-1] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/29/2022]
Abstract
The term endothelium-derived hyperpolarising factor (EDHF) was introduced in 1987 to describe the hypothetical factor responsible for myocyte hyperpolarisations not associated with nitric oxide (EDRF) or prostacyclin. Two broad categories of EDHF response exist. The classical EDHF pathway is blocked by apamin plus TRAM-34 but not by apamin plus iberiotoxin and is associated with endothelial cell hyperpolarisation. This follows an increase in intracellular [Ca(2+)] and the opening of endothelial SK(Ca) and IK(Ca) channels preferentially located in caveolae and in endothelial cell projections through the internal elastic lamina, respectively. In some vessels, endothelial hyperpolarisations are transmitted to myocytes through myoendothelial gap junctions without involving any EDHF. In others, the K(+) that effluxes through SK(Ca) activates myocytic and endothelial Ba(2+)-sensitive K(IR) channels leading to myocyte hyperpolarisation. K(+) effluxing through IK(Ca) activates ouabain-sensitive Na(+)/K(+)-ATPases generating further myocyte hyperpolarisation. For the classical pathway, the hyperpolarising "factor" involved is the K(+) that effluxes through endothelial K(Ca) channels. During vessel contraction, K(+) efflux through activated myocyte BK(Ca) channels generates intravascular K(+) clouds. These compromise activation of Na(+)/K(+)-ATPases and K(IR) channels by endothelium-derived K(+) and increase the importance of gap junctional electrical coupling in myocyte hyperpolarisations. The second category of EDHF pathway does not require endothelial hyperpolarisation. It involves the endothelial release of factors that include NO, HNO, H(2)O(2) and vasoactive peptides as well as prostacyclin and epoxyeicosatrienoic acids. These hyperpolarise myocytes by opening various populations of myocyte potassium channels, but predominantly BK(Ca) and/or K(ATP), which are sensitive to blockade by iberiotoxin or glibenclamide, respectively.
Collapse
Affiliation(s)
- Gillian Edwards
- Faculty of Life Sciences, University of Manchester, CTF Building, 46 Grafton St, Manchester, M13 9NT, UK
| | | | | |
Collapse
|
5
|
Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis 2009; 202:330-44. [DOI: 10.1016/j.atherosclerosis.2008.06.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/16/2008] [Accepted: 06/11/2008] [Indexed: 12/20/2022]
|
6
|
Lima RF, Criddle DN, Souza EP, Sampaio AH, Nascimento KS, Cavada BS, Assreuy AMS. Red marine alga Bryothamnion triquetrum lectin induces endothelium-dependent relaxation of the rat aorta via release of nitric oxide. J Pharm Pharmacol 2005; 56:1415-21. [PMID: 15525448 DOI: 10.1211/0022357044616] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have investigated the vascular relaxant effects of the lectin from a red marine alga Bryothamnion triquetrum (BTL), in particular, the endothelial-dependency and the participation of a specific glycoprotein-binding site. BTL (1-100 microg mL(-1)) was applied to rat isolated aortic rings, with or without endothelium, tonically precontracted with phenylephrine (0.1 microM). Endothelium-dependent relaxation was assessed in the presence of indometacin (10 microM), L-nitro arginine methyl ester (L-NAME, 100 microM) and tetraethylammonium (TEA, 500 microM). For the involvement of the glycoprotein-binding site, BTL was assayed in presence of mucin (300 microg mL(-1)) or N-acetyl D-glucosamine (GlcNAc; 300 microg mL(-1)), a specific and non-specific lectin-binding sugar, respectively. BTL fully and concentration dependently relaxed preparations that possessed an intact endothelium (IC50 (concn producing 50% contraction) = 12.1 +/- 1.6 microg mL(-1)), whereas no significant relaxation was observed in endothelial-denuded tissue. L-NAME, but not indometacin or TEA, completely inhibited the lectin relaxation, suggesting the involvement of nitric oxide (NO). The lectin in association with mucin, but not with GlcNAc, inhibited BTL-induced relaxation, implicating the involvement of the lectin binding site. Our data suggest that the relaxant effect of the red marine alga Bryothamnion triquetrumlectin on isolated aorta occurs via interaction with a specific lectin-binding site on the endothelium, resulting in a release of NO.
Collapse
Affiliation(s)
- Ricardo F Lima
- Laboratório de Farmacologia dos Canais Iônicos-LAFACI, Departamento de Ciências Fisiológicas, CCS, Universidade Estadual do Ceará, 60740-000 Fortaleza-CE, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Villar IC, Galisteo M, Vera R, O'Valle F, García-Saura MF, Zarzuelo A, Duarte J. Effects of the Dietary Flavonoid Chrysin in Isolated Rat Mesenteric Vascular Bed. J Vasc Res 2004; 41:509-16. [PMID: 15528933 DOI: 10.1159/000081807] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 09/02/2004] [Indexed: 11/19/2022] Open
Abstract
In the present study, the effects of the bioflavonoid chrysin (5,7-dihydroxyflavone) were analyzed on the perfusion pressure of isolated mesenteric vascular bed. The vasorelaxant effects of chrysin were more potent on intact endothelium than on denuded vessels. This endothelium-dependent response induced by chrysin was inhibited in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), KCl, tetraethylammonium (TEA), BaCl(2), TEA plus L-NAME, and ouabain plus BaCl(2), while incubations with indomethacin and glibenclamide did not modify the response induced by this bioflavonoid. Neither gap junction inhibition with carbenoxolone nor epoxyeicosatrieconic acid synthesis inhibition with sulfaphenazole (selective CYP 2C/3A inhibitor) or 7-ethoxyresorufin (selective CYP 1A inhibitor) inhibited the chrysin-induced relaxation. Moreover, chrysin increased L-NAME-sensitive cGMP accumulation in intact vascular mesenteric preparation. In conclusion, chrysin shows vasodilator effects on resistance vessels, which depend partially on the functional endothelium and appear to be related to the NO/cGMP pathway and, possibly to the release of endothelium-derived hyperpolarizing factor.
Collapse
|
8
|
Thorlacius K, Bodelsson M. Sevoflurane promotes endothelium-dependent smooth muscle relaxation in isolated human omental arteries and veins. Anesth Analg 2004; 99:423-8, table of contents. [PMID: 15271717 DOI: 10.1213/01.ane.0000121771.78755.f4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Anesthesia with sevoflurane is accompanied by vasodilatation. This could be due to the effects of sevoflurane on endothelium-dependent relaxation. We measured muscle tension of isolated human omental arteries and veins in response to substance P or glyceryl trinitrate in the presence of sevoflurane (0%, 1%, 2%, or 4%). Vascular levels of guanosine 3', 5'-cyclic monophosphate were measured with enzyme-linked immunosorbent assay. Substance P induced an endothelium- and concentration-dependent relaxation in omental vessels that was not affected by sevoflurane. In the presence of L-N(G)-nitroarginine methyl ester (nitric oxide synthase inhibitor), KCl (prevention of hyperpolarization), or both, sevoflurane at 4% enhanced the relaxation in the arteries (P < 0.05). In the vein segments, the relaxation was enhanced by sevoflurane at 4% in the presence of KCl and 2% and 4% in the presence of both L-N(G)-nitroarginine methyl ester and KCl (P < 0.05). The glyceryl trinitrate-induced endothelium-independent relaxation was enhanced by sevoflurane at 4% in both artery and vein segments (P < 0.05). Substance P increased the levels of guanosine 3', 5'-cyclic monophosphate similarly in the presence and absence of sevoflurane. These results show that sevoflurane, in contrast to its effect in animal models, promotes endothelium-dependent relaxation in human omental arteries and veins via an enhancement of the smooth muscle response to relaxing second messengers.
Collapse
Affiliation(s)
- Karin Thorlacius
- Department of Anesthesia and Intensive Care, Lund University Hospital, SE-221 85 Lund, Sweden
| | | |
Collapse
|
9
|
Gibbons SJ, Farrugia G. The role of carbon monoxide in the gastrointestinal tract. J Physiol 2004; 556:325-36. [PMID: 14766943 PMCID: PMC1664954 DOI: 10.1113/jphysiol.2003.056556] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 02/06/2004] [Indexed: 12/16/2022] Open
Abstract
Carbon monoxide (CO) is a biologically active product of haem metabolism that contributes to the normal physiology of the gastrointestinal tract. In this article, we review recent data showing that CO is an integral regulator of gastrointestinal motility and an important factor in the response to gastrointestinal injury. CO is generated by haem oxygenase-2 (HO-2), which is constitutively expressed in many inhibitory neurones of the vertebrate enteric nervous system. The membrane potential gradients along and across the muscle layers of the gastrointestinal tract require the generation of CO by haem oxygenase-2. The presence of CO is also necessary for normal inhibitory neurotransmission in circular smooth muscle and appears to permit nitric oxide-mediated inhibitory neurotransmission. Genetic deletion of the haem oxygenase-2 gene in mice slows gut transit. The other major CO synthetic enzyme, haem oxygenase-1 (HO-1) is induced under conditions of stress or injury. Recent studies have demonstrated that up-regulation of haem oxygenase-1 protects the gut from several types of gastrointestinal injury, suggesting that CO or induction of HO-1 may find therapeutic use in gastrointestinal diseases and injuries. Furthermore, it is anticipated that the understanding of CO-mediated signalling in the gastrointestinal tract will inform studies in other tissues that express haem oxygenases.
Collapse
Affiliation(s)
- Simon J Gibbons
- Enteric Neuroscience Program, Mayo Clinic Rochester, 200 First Street SW, Rochester MN 55905, USA
| | | |
Collapse
|
10
|
Marrelli SP, Eckmann MS, Hunte MS. Role of endothelial intermediate conductance KCa channels in cerebral EDHF-mediated dilations. Am J Physiol Heart Circ Physiol 2003; 285:H1590-9. [PMID: 12805022 DOI: 10.1152/ajpheart.00376.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.
Collapse
Affiliation(s)
- Sean P Marrelli
- Baylor College of Medicine, Department of Anesthesiology, One Baylor Plaza, Suite 434-D, Houston, TX 77030, USA.
| | | | | |
Collapse
|
11
|
Farquharson CAJ, Struthers AD. Increasing plasma potassium with amiloride shortens the QT interval and reduces ventricular extrasystoles but does not change endothelial function or heart rate variability in chronic heart failure. Heart 2002; 88:475-80. [PMID: 12381637 PMCID: PMC1767423 DOI: 10.1136/heart.88.5.475] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES To test whether simply increasing plasma potassium with amiloride would exert any of the same beneficial effects on "surrogate outcome measures" that are seen with spironolactone. The latter has been shown to improve mortality in chronic heart failure, possibly as a result of improvements in endothelial dysfunction, vascular angiotensin converting enzyme (ACE), autonomic function, myocardial fibrosis, ventricular arrhythmias, and QT interval indices. DESIGN Randomised, placebo controlled trial. SETTING Teaching hospital. PATIENTS AND INTERVENTIONS Double blind crossover study involving 10 patients with New York Heart Association functional class II-III chronic heart failure comparing 5 mg/day amiloride (one month) with placebo. MAIN OUTCOME MEASURES Endothelial function, vascular ACE, collagen markers, 24 hour ECG, and QT interval results. RESULTS The amiloride induced increase in serum potassium (0.4 mmol/l) did not significantly change endothelial dysfunction, vascular ACE, collagen markers, or heart rate variability. However, amiloride significantly improved QT interval indices, reducing both QT dispersion (from 65.7 ms to 50.9 ms, p = 0.001) and mean maximal corrected QT (from 445 ms to 435 ms, p = 0.008). Amiloride also reduced ventricular extrasystoles (p < 0.05). CONCLUSIONS Amiloride shortens QT interval length and reduces ventricular extrasystoles in chronic heart failure, implying that this effect is caused by potassium retention per se. However, unlike spironolactone, amiloride did not improve endothelial dysfunction, vascular ACE, heart rate variability, or myocardial fibrosis, implying that spironolactone improves these latter effects by aldosterone blockade rather than by simply increasing serum potassium. Therefore, amiloride has fewer beneficial mechanistic effects than spironolactone, but it does share with spironolactone the ability to shorten the QT interval and reduce ventricular extrasystoles.
Collapse
Affiliation(s)
- C A J Farquharson
- University Department of Clinical Pharmacology and Therapeutics, Ninewells Hospital and Medical School, Dundee, UK
| | | |
Collapse
|
12
|
Borges AC, Feres T, Vianna LM, Paiva TB. Cholecalciferol treatment restores the relaxant responses of spontaneously hypertensive rat arteries to bradykinin. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2002; 8:263-268. [PMID: 12100972 DOI: 10.1016/s0928-4680(02)00036-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The vasodilation and hyperpolarization induced by bradykinin (BK) in the mesenteric vascular bed and mesenteric arteries from spontaneously hypertensive rats (SHR) and from normotensive Wistar rats (NWR), as well as Wistar Kyoto rats (WKY), was investigated before and after prolonged oral treatment with cholecalciferol (125 mg kg(-1) body weight per day) for 3 weeks. The cholecalciferol treatment caused a decrease in the SHR blood pressure, as well as a normalization in the resting potential of the smooth muscle cell membrane of mesenteric arteries and restored their hyperpolarizing response to BK. The concentration-response curves for the vasodilator effect of BK on the mesenteric vascular bed were significantly decreased in SHR and in WKY when compared with NWR. Cholecalciferol treatment improved the maximum responses of the SHR preparation, bringing them to levels similar to those of the NWR preparations, which themselves were unaffected by the treatment. In the presence of apamin, a Ca(2+)-dependent K(+) channel inhibitor, the maximum responses to BK in preparations from NWR or cholecalciferol-treated SHR decreased to values similar to those observed in untreated SHR. Our results indicate that the low responsivity of the SHR resistance vessels to the relaxant effect of BK is due to impaired Ca(2+)-dependent K(+) channels and that reversion of this impairment contributes to the blood pressure reduction caused by the cholecalciferol treatment. However, the mechanism of the low responsivity in WKY remains to be investigated.
Collapse
Affiliation(s)
- Antonio C.R. Borges
- Department of Biophysics, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062, SP, São Paulo, Brazil
| | | | | | | |
Collapse
|
13
|
Weston AH, Richards GR, Burnham MP, Félétou M, Vanhoutte PM, Edwards G. K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases. Br J Pharmacol 2002; 136:918-26. [PMID: 12110616 PMCID: PMC1573416 DOI: 10.1038/sj.bjp.0704787] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
1. Mechanisms underlying K(+)-induced hyperpolarizations in the presence and absence of phenylephrine were investigated in endothelium-denuded rat mesenteric arteries (for all mean values, n=4). 2. Myocyte resting membrane potential (m.p.) was -58.8+/-0.8 mV. Application of 5 mM KCl produced similar hyperpolarizations in the absence (17.6+/-0.7 mV) or presence (15.8+/-1.0 mV) of 500 nM ouabain. In the presence of ouabain +30 microM barium, hyperpolarization to 5 mM KCl was essentially abolished. 3. In the presence of 10 microM phenylephrine (m.p. -33.7+/-3 mV), repolarization to 5 mM KCl did not occur in the presence or absence of 4-aminopyridine but was restored (-26.9+/-1.8 mV) on addition of iberiotoxin (100 nM). Under these conditions the K+-induced repolarization was insensitive to barium (30 microM) but abolished by 500 nM ouabain alone. 4. In the presence of phenylephrine + iberiotoxin the hyperpolarization to 5 mM K(+) was inhibited in the additional presence of 300 nM levcromakalim, an action which was reversed by 10 microM glibenclamide. 5. RT-PCR, Western blotting and immunohistochemical techniques collectively showed the presence of alpha(1)-, alpha(2)- and alpha(3)-subunits of Na(+)/K(+)-ATPase in the myocytes. 6. In K(+)-free solution, re-introduction of K(+) (to 4.6 mM) hyperpolarized myocytes by 20.9+/-0.5 mV, an effect unchanged by 500 nM ouabain but abolished by 500 microM ouabain. 7. We conclude that under basal conditions, Na(+)/K(+)-ATPases containing alpha(2)- and/or alpha(3)-subunits are partially responsible for the observed K(+)-induced effects. The opening of myocyte K(+) channels (by levcromakalim or phenylephrine) creates a 'K(+) cloud' around the cells which fully activates Na(+)/K(+)-ATPase and thereby abolishes further responses to [K(+)](o) elevation.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Endothelium, Vascular/physiology
- Fluorescent Antibody Technique
- In Vitro Techniques
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/physiology
- Microelectrodes
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Phenylephrine/pharmacology
- Potassium/pharmacology
- Protein Isoforms
- Protein Subunits
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Sodium-Potassium-Exchanging ATPase/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- A H Weston
- School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - G R Richards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - M P Burnham
- School of Biological Sciences, University of Manchester, Manchester M13 9PT
| | - M Félétou
- Department de Diabetologie, Institut de Recherche Servier, 92150 Suresnes, France
| | - P M Vanhoutte
- Institut de Recherches Internationales Servier, 92410 Courbevoie, France
| | - G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT
- Author for correspondence:
| |
Collapse
|
14
|
Goto K, Fujii K, Kansui Y, Abe I, Iida M. Critical role of gap junctions in endothelium-dependent hyperpolarization in rat mesenteric arteries. Clin Exp Pharmacol Physiol 2002; 29:595-602. [PMID: 12060103 DOI: 10.1046/j.1440-1681.2002.03689.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Acetylcholine (ACh) evokes endothelium-dependent hyperpolarization in arterial cells, presumably through endothelium-derived hyperpolarizing factor (EDHF). The identity of EDHF is still elusive; however, several recent studies suggest the possible involvement of myoendothelial gap junctions in the EDHF response. 2. To elucidate the role of gap junctions in endothelium-dependent hyperpolarization, we examined the effects of the gap junction inhibitors 18 alpha-glycyrrhetinic acid (18 alpha-GA; 10(-4) mol/L) and carbenoxolone (3 x 10(-4) mol/L), a water-soluble form of 18 beta-GA, on hyperpolarization and relaxation to ACh in rat proximal and distal mesenteric arteries. Experiments were performed in the presence of indomethacin (10(-5) mol/L) and N(G)-nitro-L-arginine (10(-4) mol/L). 3. In both proximal and distal mesenteric arteries, ACh-induced hyperpolarization and relaxation were partially inhibited by 18 alpha-GA and abolished by carbenoxolone. 4. Endothelium-independent hyperpolarization to levcromakalim, an ATP-sensitive K+ channel opener, were unaffected by 18 alpha-GA or carbenoxolone in both arteries. 5. Relaxations to levcromakalim were unaffected by 18 alpha-GA, but were inhibited somewhat by carbenoxolone in proximal mesenteric arteries. 6. These findings suggest that myoendothelial gap junctions play a critical role in EDHF-mediated responses in both proximal and distal mesenteric arteries of the rat.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
15
|
Olanrewaju HA, Gafurov BS, Lieberman EM. Involvement of K+ channels in adenosine A2A and A2B receptor-mediated hyperpolarization of porcine coronary artery endothelial cells. J Cardiovasc Pharmacol 2002; 40:43-9. [PMID: 12072576 DOI: 10.1097/00005344-200207000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study investigated the effects of the following adenosine agonists: 5;-ethylcarboxamidoadenosine (NECA), N6-cyclopentyadenosine (CPA) 2-[p-(2-carboxyethyl)]phenylamino-5;N-ethylcarboxamidoadenosine (CGS-21680), and 2-chloroadenosine (CAD) and its antagonist, 4-(2-[7-amino-2-[2-furyl]]1,2,4-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385), a selective A2A adenosine receptor antagonist, and the involvement of the K+ATP and KCa channels on the resting membrane potential (RMP) of confluent monolayers of cultured porcine coronary artery endothelial cells (PCAECs). Adenosine agonists and K+ATP channel openers (pinacidil, cromakalim) hyperpolarized cultured PCAECs. The average RMP was -32.31 +/- 1.2 mV. Adenosine agonists at 10-5 M caused a significant increase in RMP to -65.0 +/- 1.5 mV for CAD (a nonselective adenosine receptor agonist) to -75.9 +/- 1.6 mV for CGS-21680 (a selective A2A receptor agonist) and to -87.0 +/- 3.5 mV for NECA (a nonselective A1/A2A/A2B receptor agonist). Pinacidil and cromakalim at 10 microM increased the membrane potential to -76.2 +/- 1.2 mV and -75.22 +/- 0.12 mV, respectively. The hyperpolarization induced by adenosine receptor agonists and KATP openers was inhibited by an application of the K+ATP channel blocker glibenclamide (10 microM), indicating the involvement of the K+ATP channel in the adenosine-mediated hyperpolarization of PCAECs. Moreover, 1-EB10, a selective opener of the maxi-KCa channel, hyperpolarized PCAECs, and the effect of 1-EB10 was completely blocked by a selective, irreversible blocker of the high conductance KCa (maxi-K) channels (penitrem A), but it only partially blocked the effect of NECA. ZM-241385 has no effect on hyperpolarization elicited by K+ATP and KCa channel openers. However, ZM-241385 significantly blocked the hyperpolarization effect of CAD and CGS-21680. ZM-241385 partially blocked the hyperpolarizing effect of NECA, and a combination of ZM-241385 and penitrem A further blocked the hyperpolarizing effect of NECA. These results further support the involvement of K+ channels in adenosine A2A and A2B receptor-mediated hyperpolarization of PCAECs.
Collapse
Affiliation(s)
- Hammed A Olanrewaju
- Department of Pharmacology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA.
| | | | | |
Collapse
|
16
|
Liu MY, Fukao M, Hattori Y. Effects of different tetra-n-alkylammonium ions on acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery. J Cardiovasc Pharmacol 2002; 39:660-7. [PMID: 11973409 DOI: 10.1097/00005344-200205000-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of a series of symmetric tetra-n-alkylammonium (TAA) compounds with alkyl side chains of one to six carbons in length on acetylcholine-induced endothelium-dependent hyperpolarization were examined in rat mesenteric artery. All TAA compounds caused a concentration-dependent inhibition of the hyperpolarizing response to acetylcholine. The potency of TAAs showed a general trend to increase with the lengths of the alkyl side chains. The inhibitory effects of TAAs, excepting the smallest compound, on the acetylcholine response were reversible. However, TAAs with long alkyl side chains may act as antagonists at muscarinic receptors, because the suppressive effect on A23187-induced endothelium-dependent hyperpolarization was more marked with TAAs having smaller alkyl side chains. Conversely, the hyperpolarizing response to pinacidil, an ATP-sensitive K+ channel opener, was significantly prevented only by TAA compounds with long alkyl side chains. TAA compounds with one-to three-carbon alkyl side chains caused a modest and reversible depolarization of the membrane, whereas the depolarizing effects of the compounds with four-to six-carbon alkyl side chains were marked and irreversible. These results suggest that TAAs could gain access to the target K+ channels for endothelium-derived hyperpolarizing factor, the ATP-sensitive K+ channels, and the K+ channels responsible for the regulation of the resting membrane potential in different ways.
Collapse
Affiliation(s)
- Ming-Yue Liu
- Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
17
|
Dawes M, Chowienczyk PJ, Ritter JM. Quantitative aspects of the inhibition by N(G)-monomethyl-L-arginine of responses to endothelium-dependent vasodilators in human forearm vasculature. Br J Pharmacol 2001; 134:939-44. [PMID: 11682440 PMCID: PMC1573031 DOI: 10.1038/sj.bjp.0704338] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. N(G)-monomethyl-L-arginine (L-NMMA) constricts human forearm resistance vasculature and selectively attenuates vasodilator responses to endothelium-dependent vasodilators. Incomplete inhibition of such responses could be due to an inadequate dose of L-NMMA or to NO-independent vasodilator mechanisms. 2. This study sought to determine doses of L-NMMA that are maximally effective in reducing basal and stimulated forearm blood flow. Drugs were infused via the brachial artery in 32 healthy men. Acetylcholine (11 - 330 nmol min(-1)) was compared with albuterol (0.33 - 10 nmol min(-1)), and nitroprusside (1.7 - 20 nmol min(-1)). 3. The effect of L-NMMA on basal flow approached maximum (53+/-2% reduction) at a dose of 16 micromol min(-1). L-NMMA (16 micromol min(-1)) did not significantly influence responses to nitroprusside, but antagonized acetylcholine and albuterol (each P<0.001, by repeated measures analysis of variance). 4. Inhibition of acetylcholine by L-NMMA (16 micromol min(-1)) was strongly influenced by acetylcholine dose (73+/-7% inhibition at 11 nmol min(-1), P<0.01; 4+/-11% inhibition at 330 nmol min(-1), P=NS, Student's paired t-test). Significant inhibition of albuterol was observed at all doses. 5. A higher dose of L-NMMA (64 micromol min(-1)) did not significantly inhibit the response to acetylcholine (330 nmol min(-1)). Responses to this dose of acetylcholine were unaffected by a cyclo-oxygenase (COX) inhibitor (indometacin) alone but combined COX and NO inhibition attenuated acetylcholine responses by 42+/-19%, implying that there is a compensatory increase in the contribution of prostaglandins or NO to acetylcholine-induced dilatation when one or other pathway is inhibited.
Collapse
Affiliation(s)
- M Dawes
- Department of Clinical Pharmacology, St Thomas' Hospital and Centre for Cardiovascular Biology and Medicine, King's College, London SE1 7EH
| | - P J Chowienczyk
- Department of Clinical Pharmacology, St Thomas' Hospital and Centre for Cardiovascular Biology and Medicine, King's College, London SE1 7EH
| | - J M Ritter
- Department of Clinical Pharmacology, St Thomas' Hospital and Centre for Cardiovascular Biology and Medicine, King's College, London SE1 7EH
- Author for correspondence:
| |
Collapse
|
18
|
Ohnishi Y, Hirano K, Nishimura J, Furue M, Kanaide H. Inhibitory effects of brefeldin A, a membrane transport blocker, on the bradykinin-induced hyperpolarization-mediated relaxation in the porcine coronary artery. Br J Pharmacol 2001; 134:168-78. [PMID: 11522609 PMCID: PMC1572935 DOI: 10.1038/sj.bjp.0704246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. To elucidate the mechanism of the relaxation mediated by endothelium-derived hyperpolarizing factors (EDHFs), the effect of brefeldin A, a membrane transport blocker, on cytosolic Ca(2+) concentration ([Ca(2+)]i) and tension was determined in the porcine coronary arterial strips. We also examined the effect of brefeldin A on [Ca(2+)]i in the endothelial cells of the porcine aortic valve. 2. In the presence of 10 microM indomethacin and 30 microM N(G)-nitro-L-arginine (L-NOARG), both bradykinin and substance P induced a transient decrease in [Ca(2+)]i and tension in arterial strips contracted with 100 nM U46619 (thromboxane A2 analogue). A 6 h pre-treatment with 20 microg ml(-1) brefeldin A abolished the bradykinin-induced relaxation, while it had no effect on the substance P-induced relaxation. 3. In the absence of indomethacin and L-NOARG, brefeldin A had no effect on the bradykinin-induced relaxation during the contraction induced by U46619 or 118 mM K(+). 4. The indomethacin/L-NOARG-resistant relaxation induced by bradykinin was completely inhibited by 3 mM tetrabutylammonium (non-specific Ca(2+)-activated K(+) channel blocker), while that induced by substance P was not inhibited by 3 mM tetrabutylammonium or 1 mM 4-aminopyridine (voltage-dependent K(+) channels blocker) alone, but completely inhibited by their combination. 5. Brefeldin A had no effect on the [Ca(2+)]i elevation in endothelial cells induced by bradykinin or substance P. 6. In conclusion, bradykinin produce EDHF in a brefeldin A-sensitive mechanism in the porcine coronary artery. However, this mechanism is not active in a substance P-induced production of EDHF, which thus suggests EDHF to be more than a single entity.
Collapse
Affiliation(s)
- Yoshinori Ohnishi
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Junji Nishimura
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Hideo Kanaide
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
- Author for correspondence:
| |
Collapse
|
19
|
Richards GR, Weston AH, Burnham MP, Félétou M, Vanhoutte PM, Edwards G. Suppression of K(+)-induced hyperpolarization by phenylephrine in rat mesenteric artery: relevance to studies of endothelium-derived hyperpolarizing factor. Br J Pharmacol 2001; 134:1-5. [PMID: 11522590 PMCID: PMC1572938 DOI: 10.1038/sj.bjp.0704256] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In intact mesenteric arteries, increasing [K(+)]o by 5 mM hyperpolarized both endothelial and smooth muscle cells. Subsequent exposure to 10 microM phenylephrine depolarized both cell types which were then repolarized by a 5 mM increase in [K(+)]o. In endothelium-denuded vessels, increasing [K(+)]o by 5 mM hyperpolarized the smooth muscle but K(+) had no effect after depolarization by 10 microM phenylephrine. On subsequent exposure to iberiotoxin plus 4-aminopyridine, the repolarizing action of 5 mM K(+) was restored. In endothelium-intact vessels exposed to phenylephrine, pretreatment with a gap junction inhibitor (gap 27) reduced K(+)-mediated smooth muscle repolarization without affecting the endothelial cell response. It is concluded that phenylephrine-induced efflux of K(+) via smooth muscle K(+) channels produces a local increase in [K(+)]o which impairs repolarization to added K(+). Thus, studies involving vessels precontracted with agonists which increase [K(+)]o maximize the role of gap junctions and minimize any contribution to the EDHF pathway from endothelium-derived K(+).
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Animals
- Connexins/pharmacology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Peptides/pharmacology
- Phenylephrine/pharmacology
- Potassium/pharmacology
- Rats
- Rats, Sprague-Dawley
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- G R Richards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
20
|
Edwards G, Félétou M, Gardener MJ, Glen CD, Richards GR, Vanhoutte PM, Weston AH. Further investigations into the endothelium-dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery. Br J Pharmacol 2001; 133:1145-53. [PMID: 11487526 PMCID: PMC1572863 DOI: 10.1038/sj.bjp.0704157] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2001] [Revised: 05/03/2001] [Accepted: 05/10/2001] [Indexed: 11/08/2022] Open
Abstract
In porcine coronary arteries, smooth muscle hyperpolarizations produced by the nitric oxide donor, NOR-1, and the prostacyclin analogue, iloprost, were compared with those induced by substance P and bradykinin and attributed to the endothelium-derived hyperpolarizing factor (EDHF). In the presence of 300 microM L-nitroarginine and 10 microM indomethacin, iloprost-induced hyperpolarizations were partially inhibited by 10 microM glibenclamide whereas those to NOR-1, substance P and bradykinin were unaffected. Hyperpolarizations produced by maximally-effective concentrations of NOR-1 and NS1619 were identical (to -65 mV). They were significantly less than those generated by either substance P or bradykinin (to approximately -80 mV) and were abolished by iberiotoxin 100 nM, a concentration which had essentially no effect on responses to substance P or bradykinin. Incubation of segments of intact arteries for 16 - 22 h in bicarbonate-buffered Krebs solution had little effect on EDHF responses to substance P or bradykinin. In contrast, after incubation for this period of time in HEPES-buffered Tyrode solution or Krebs containing 10 mM HEPES the EDHF response to substance P was abolished and that to bradykinin was markedly reduced. The residual bradykinin-induced hyperpolarization following incubation in Tyrode solution was inhibited by iberiotoxin and by 10 microM 17-octadecynoic acid. We conclude that substance P activates only the EDHF pathway in the presence of nitric oxide synthase and cyclo-oxygenase inhibitors. Incubation in HEPES-buffered Tyrode solution abolishes the EDHF responses to substance P and bradykinin to reveal an additional hyperpolarizing mechanism, associated with the opening of K(+) channels, activated only by bradykinin.
Collapse
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
22
|
Coleman HA, Tare M, Parkington HC. K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. J Physiol 2001; 531:359-73. [PMID: 11230509 PMCID: PMC2278481 DOI: 10.1111/j.1469-7793.2001.0359i.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membrane currents attributed to endothelium-derived hyperpolarizing factor (EDHF) were recorded in short segments of submucosal arterioles of guinea-pigs using single microelectrode voltage clamp. The functional responses of arterioles and human subcutaneous, rat hepatic and guinea-pig coronary arteries were also assessed as changes in membrane potential recorded simultaneously with contractile activity. The current-voltage (I-V) relationship for the conductance due to EDHF displayed outward rectification with little voltage dependence. Components of the current were blocked by charybdotoxin (30-60 nM) and apamin (0.25-0.50 microM), which also blocked hyperpolarization and prevented EDHF-induced relaxation. The EDHF-induced current was insensitive to Ba2+ (20-100 microM) and/or ouabain (1 microM to 1 mM). In human subcutaneous arteries and guinea-pig coronary arteries and submucosal arterioles, the EDHF-induced responses were insensitive to Ba2+ and/or ouabain. Increasing [K+]o to 11-21 mM evoked depolarization under conditions in which EDHF evoked hyperpolarization. Responses to ACh, sympathetic nerve stimulation and action potentials were indistinguishable between dye-labelled smooth muscle and endothelial cells in arterioles. Action potentials in identified endothelial cells were always associated with constriction of the arterioles. 18beta-Glycyrrhetinic acid (30 microM) and carbenoxolone (100 microM) depolarized endothelial cells by 31 +/- 6 mV (n = 7 animals) and 33 +/- 4 mV (n = 5), respectively, inhibited action potentials in smooth muscle and endothelial cells and reduced the ACh-induced hyperpolarization of endothelial cells by 56 and 58 %, respectively. Thus, activation of outwardly rectifying K+ channels underlies the hyperpolarization and relaxation due to EDHF. These channels have properties similar to those of intermediate conductance (IKCa) and small conductance (SKCa) Ca2+-activated K+ channels. Strong electrical coupling between endothelial and smooth muscle cells implies that these two layers function as a single electrical syncytium. The non-specific effects of glycyrrhetinic acid precludes its use as an indicator of the involvement of gap junctions in EDHF-attributed responses. These conclusions are likely to apply to a variety of blood vessels including those of humans.
Collapse
Affiliation(s)
- H A Coleman
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | |
Collapse
|
23
|
Abstract
Portal hypertension (PHT) is a common clinical syndrome associated with chronic liver diseases; it is characterized by a pathological increase in portal pressure. Pharmacotherapy for PHT is aimed at reducing both intrahepatic vascular tone and elevated splanchnic blood flow. Due to the altered hemodynamic profile in PHT, dramatic changes in mechanical forces, both pressure and flow, may play a pivotal role in controlling endothelial and vascular smooth muscle cell signaling, structure, and function in cirrhotics. Nitric oxide, prostacyclin, endothelial-derived contracting factors, and endothelial-derived hyperpolarizing factor are powerful vasoactive substances released from the endothelium in response to both humoral and mechanical stimuli that can profoundly affect both the function and structure of the underlying vascular smooth muscle. This review will examine the contributory role of hormonal- and mechanical force-induced changes in endothelial function and signaling and the consequence of these changes on the structural and functional response of the underlying vascular smooth muscle. It will focus on the pivotal role of hormonal and mechanical force-induced endothelial release of vasoactive substances in dictating the reactivity of the underlying vascular smooth muscle, i.e., whether hyporeactive or hyperreactive, and will examine the extent to which these substances may exert a protective and/or detrimental influence on the structure of the underlying vascular smooth muscle in both a normal hemodynamic environment and following hemodynamic perturbations typical of PHT and cirrhosis. Finally, it will discuss the intracellular processes that regulate the release/expression of these vasoactive substances and that control the transformation of this normally protective cell to one that may promote the development of vasculopathy in PHT.
Collapse
Affiliation(s)
- P A Cahill
- School of Biotechnology, Dublin City University, Glasnevin Dublin 9, Ireland.
| | | | | |
Collapse
|
24
|
Abstract
The control and maintenance of vascular tone is due to a balance between vasoconstrictor and vasodilator pathways. Vasomotor responses to neural, metabolic and physical factors vary between vessels in different vascular beds, as well as along the same bed, particularly as vessels become smaller. These differences result from variation in the composition of neurotransmitters released by perivascular nerves, variation in the array and activation of receptor subtypes expressed in different vascular beds and variation in the signal transduction pathways activated in either the vascular smooth muscle or endothelial cells. As the study of vasomotor responses often requires pre-existing tone, some of the reported heterogeneity in the relative contributions of different vasodilator mechanisms may be compounded by different experimental conditions. Biochemical variations, such as the expression of ion channels, connexin subtypes and other important components of second messenger cascades, have been documented in the smooth muscle and endothelial cells in different parts of the body. Anatomical variations, in the presence and prevalence of gap junctions between smooth muscle cells, between endothelial cells and at myoendothelial gap junctions, between the two cell layers, have also been described. These factors will contribute further to the heterogeneity in local and conducted responses.
Collapse
Affiliation(s)
- C E Hill
- Autonomic Synapse Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra 0200 ACT, Australia.
| | | | | |
Collapse
|
25
|
Travis MD, Hoque A, Bates JN, Lewis SJ. Blockade of voltage-sensitive Ca(2+)-channels markedly diminishes nitric oxide- but not L-S-nitrosocysteine- or endothelium-dependent vasodilation in vivo. Eur J Pharmacol 2000; 408:289-98. [PMID: 11090646 DOI: 10.1016/s0014-2999(00)00792-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of this study was to determine the hemodynamic responses elicited by systemic injections of (i) the nitric oxide (NO)-donors, sodium nitroprusside (10 nmol/kg, i.v.) and (Z)-1-(N-methyl-N-(6(N-methylammoniohexyl)amino))diazen-1-ium-1, 2-diolate (MAHMA NONOate, 25 nmol/kg, i.v.), (ii) the endothelium-derived S-nitrosothiol, L-S-nitrosocysteine (100 nmol/kg, i.v.), and (iii) the endothelium-dependent agonist, acetylcholine (1.0 microg/kg, i.v.), in anesthetized rats, before and after injection of the voltage-sensitive Ca(2+)-channel (Ca(VS)(2+)-channel) blocker, nifedipine (500 nmol/kg, i.v.). Before injection of nifedipine, the agents produced similar falls in mean arterial blood pressure, and in hindquarter and mesenteric vascular resistances. The depressor and vasodilator responses elicited by sodium nitroprusside and MAHMA NONOate were markedly attenuated by nifedipine. The falls in mean arterial blood pressure and mesenteric resistance elicited by L-S-nitrosocysteine and acetylcholine were not attenuated but the falls in hindquarter resistance were slightly attenuated by nifedipine. The cyclooxygenase inhibitor, indomethacin (10 mg/kg, i.v.), did not affect the actions of sodium nitroprusside, MAHMA NONOate, L-S-nitrosocysteine or acetylcholine or the effects of nifedipine on the hemodynamic actions of these compounds. The decomposition of sodium nitroprusside (0.2 nmol/ml), MAHMA NONOate (0.5 nmol/ml) and L-S-nitrosocysteine (2 nmol/ml) to NO upon addition to rat blood was not affected by nifedipine (10 microM). These findings suggest that (i) exogenously applied NO relaxes resistance arteries in vivo by inhibition of Ca(VS)(2+)-channels whereas L-S-nitrosocysteine and the non-prostanoid endothelium-derived relaxing factor (EDRF) released by acetylcholine acts by additional mechanisms, and (ii) this EDRF may be an S-nitrosothiol which acts independently of its decomposition to NO.
Collapse
Affiliation(s)
- M D Travis
- Department of Pharmacology, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
26
|
Brandes RP, Schmitz-Winnenthal FH, Félétou M, Gödecke A, Huang PL, Vanhoutte PM, Fleming I, Busse R. An endothelium-derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium-dependent vasodilator in resistance vessels of wild-type and endothelial NO synthase knockout mice. Proc Natl Acad Sci U S A 2000; 97:9747-52. [PMID: 10944233 PMCID: PMC16936 DOI: 10.1073/pnas.97.17.9747] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In addition to nitric oxide (NO) and prostacyclin (PGI(2)), the endothelium generates the endothelium-derived hyperpolarizing factor (EDHF). We set out to determine whether an EDHF-like response can be detected in wild-type (WT) and endothelial NO synthase knockout mice (eNOS -/-) mice. Vasodilator responses to endothelium-dependent agonists were determined in vivo and in vitro. In vivo, bradykinin induced a pronounced, dose-dependent decrease in mean arterial pressure (MAP) which did not differ between WT and eNOS -/- mice and was unaffected by treatment with N(omega)-nitro-l-arginine methyl ester and diclofenac. In the saline-perfused hindlimb of WT and eNOS -/- mice, marked N(omega)-nitro-l-arginine (l-NA, 300 micromol/liter)- and diclofenac-insensitive vasodilations in response to both bradykinin and acetylcholine (ACh) were observed, which were more pronounced than the agonist-induced vasodilation in the hindlimb of WT in the absence of l-NA. This endothelium-dependent, NO/PGI(2)-independent vasodilatation was sensitive to KCl (40 mM) and to the combination of apamin and charybdotoxin. Gap junction inhibitors (18alpha-glycyrrhetinic acid, octanol, heptanol) and CB-1 cannabinoid-receptor agonists (Delta(9)-tetrahydrocannabinol, HU210) impaired EDHF-mediated vasodilation, whereas inhibition of cytochrome P450 enzymes, soluble guanylyl cyclase, or adenosine receptors had no effect on EDHF-mediated responses. These results demonstrate that in murine resistance vessels the predominant agonist-induced endothelium-dependent vasodilation in vivo and in vitro is not mediated by NO, PGI(2), or a cytochrome P450 metabolite, but by an EDHF-like principle that requires functional gap junctions.
Collapse
Affiliation(s)
- R P Brandes
- Institut für Kardiovaskuläre Physiologie, Klinikum der J.W. Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang F, Li CG, Rand MJ. Mechanisms of nitric oxide-independent relaxations induced by carbachol and acetylcholine in rat isolated renal arteries. Br J Pharmacol 2000; 130:1191-200. [PMID: 10903955 PMCID: PMC1572178 DOI: 10.1038/sj.bjp.0703408] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
1. In rat isolated renal artery segments contracted with 0.1 microM phenylephrine and in the presence of the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME), carbachol and acetylcholine produced endothelium-dependent relaxations. The mechanisms underlying these relaxations were studied. 2. These relaxations were not affected by ODQ (1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one) or indomethacin. In arteries contracted with 20 - 30 mM K(+), L-NAME-resistant relaxations induced by carbachol and acetylcholine were virtually absent. 3. The Na(+)-K(+) ATPase inhibitor ouabain reduced these relaxations in a concentration-dependent manner. 4. In K(+)-free media, addition of K(+) (5 mM) produced 90. 5+/-3.9% (n=3) relaxation of phenylephrine-induced tone. This relaxation was endothelium-independent and ouabain-sensitive. 5. Tetraethylammonium (TEA), charybdotoxin (ChTX) and iberiotoxin (IbTX) reduced the sensitivity of carbachol-induced relaxations, but did not change the maximal response. These relaxations were not altered by 4-aminopyridine (4-AP), glibenclamide or apamin. Acetylcholine (1 microM)-induced relaxation was reduced by ChTX, but not by TEA or IbTX. 6. The cytochrome P450 inhibitor miconazole, but not 17-octadecynoic acid, reduced the sensitivity of carbachol-induced relaxations, without changing the maximal response. 7. In conclusion, in rat isolated renal arteries, acetylcholine and carbachol produced a non-NO/non-PGI(2) relaxation which is mediated by an endothelium-derived hyperpolarizing factor (EDHF). This factor does not appear to be a cytochrome P450 metabolite. The inhibition by ouabain of these relaxations suggests the possible involvement of Na(+)-K(+) ATPase activation in EDHF responses, although other mechanisms cannot be totally ruled out.
Collapse
Affiliation(s)
- Fan Jiang
- Pharmacology Research Group, Department of Medical Laboratory Science, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| | - Chun Guang Li
- Pharmacology Research Group, Department of Medical Laboratory Science, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
- Author for correspondence:
| | - Michael J Rand
- Pharmacology Research Group, Department of Medical Laboratory Science, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia
| |
Collapse
|
28
|
Tare M, Parkington HC, Coleman HA. EDHF, NO and a prostanoid: hyperpolarization-dependent and -independent relaxation in guinea-pig arteries. Br J Pharmacol 2000; 130:605-18. [PMID: 10821789 PMCID: PMC1572097 DOI: 10.1038/sj.bjp.0703332] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The contribution of endothelium-derived hyperpolarizing factor (EDHF), nitric oxide (NO) and a prostanoid (PG) to endothelium-dependent hyperpolarization and relaxation were assessed in coronary and mammary arteries of guinea-pigs by integration of the responses evoked during discrete applications of acetylcholine (ACh). The results of this integration approach were compared with those using traditional peak analysis methods. N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM) and indomethacin (1 microM), alone or in combination, were without effect on peak hyperpolarizations or relaxations while they markedly reduced the integrated responses in both arteries. Integrated responses attributed to NO and PG were larger than those attributed to EDHF in the coronary artery (at 2 microM ACh, hyperpolarization (mV s): NO, 4200+/-91; PG, 5046+/-157; EDHF, 1532+/-94; relaxation (mN s mm(-1)): NO, 2488+/-122; PG, 2234+/-96; EDHF, 802+/-54). Integrated responses attributed to NO, PG and EDHF were similar in the mammary artery (at 2 microM ACh, hyperpolarization: NO, 347+/-69; PG, 217+/-49; EDHF, 310+/-63; relaxation: NO, 462+/-94; PG, 456+/-144; EDHF, 458+/-40). Gilbenclamide (1 microM) all but abolished the hyperpolarization attributable to NO and PG but not EDHF in both arteries allowing assessment of the role of the hyperpolarization in relaxation. Gilbenclamide was without effect on the integrated relaxation due to NO but significantly reduced the relaxation associated with PG in the two arteries. In conclusion, integration of the responses enabled a more complete assessment of the contribution of EDHF, NO and PG to endothelium-dependent responses, which were strikingly different in the two arteries. There is commonality in the role of hyperpolarization in relaxation in both arteries: EDHF-dependent relaxation is strongly dependent on hyperpolarization; hyperpolarization plays an important role in PG relaxation, whereas it has a small facilitatory role in NO-dependent relaxation.
Collapse
Affiliation(s)
- M Tare
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
29
|
Andersson DA, Zygmunt PM, Movahed P, Andersson TLG, Högestätt ED. Effects of inhibitors of small- and intermediate-conductance calcium-activated potassium channels, inwardly-rectifying potassium channels and Na(+)/K(+) ATPase on EDHF relaxations in the rat hepatic artery. Br J Pharmacol 2000; 129:1490-6. [PMID: 10742306 PMCID: PMC1571979 DOI: 10.1038/sj.bjp.0703226] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. In the rat hepatic artery, the SK(Ca) inhibitors UCL 1684 (300 nM) completely blocked, and scyllatoxin (1 microM) and d-tubocurarine (100 microM) partially inhibited EDHF relaxations when each of them was combined with charybdotoxin (300 nM). 2. The IK(Ca) inhibitors clotrimazole (3 microM) and 2-chlorophenyl-bisphenyl-methanol (3 microM) strongly depressed EDHF relaxations when each of them was combined with apamin (300 nM). The cytochrome P450 mono-oxygenase inhibitor ketoconazole (10 microM) had no effect in the presence of apamin. 3. Ciclazindol (10 microM), which abolishes EDHF relaxations in the presence of apamin, almost completely prevented the calcium ionophore (A23187) stimulated (86)Rb(+) influx via the Gardos channel (IK(Ca)) in human erythrocytes. 4. The Na(+)/K(+) ATPase inhibitor ouabain (500 microM) and the K(IR) blocker Ba(2+) (30 microM) neither alone nor in combination inhibited EDHF relaxations. Ba(2+) was also without effect in the presence of either apamin or charybdotoxin. 5. In contrast to EDHF, an increase in extracellular [K(+)] from 4.6 mM to 9.6, 14.6 and 19.6 mM inconsistently relaxed arteries. In K(+)-free physiological salt solution, re-admission of K(+) always caused complete and sustained relaxations which were abolished by ouabain but unaffected by Ba(2+). 6. The present study provides pharmacological evidence for the involvement of SK(Ca) and IK(Ca) in the action of EDHF in the rat hepatic artery. Our results are not consistent with the idea that EDHF is K(+) activating Na(+)/K(+) ATPase and K(IR) in this blood vessel.
Collapse
Affiliation(s)
- David A Andersson
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Peter M Zygmunt
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
- Author for correspondence:
| | - Pouya Movahed
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Tomas L G Andersson
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| | - Edward D Högestätt
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, Lund University, SE-221 85 Lund, Sweden
| |
Collapse
|
30
|
Edwards G, Thollon C, Gardener MJ, Félétou M, Vilaine J, Vanhoutte PM, Weston AH. Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery. Br J Pharmacol 2000; 129:1145-54. [PMID: 10725263 PMCID: PMC1571957 DOI: 10.1038/sj.bjp.0703188] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effects of endothelium-derived hyperpolarizing factor (EDHF: elicited using substance P or bradykinin) were compared with those of 11,12-EET in pig coronary artery. Smooth muscle cells were usually impaled with microelectrodes through the adventitial surface. 2. Substance P (100 nM) and 11,12-EET (11,12-epoxyeicosatrienoic acid; 3 microM) hyperpolarized endothelial cells in intact arteries. These actions were unaffected by 100 nM iberiotoxin but were abolished by charybdotoxin plus apamin (each 100 nM). 3. Substance P (100 nM) and bradykinin (30 nM) hyperpolarized intact artery smooth muscle; Substance P had no effect after endothelium removal. 11,12-EET hyperpolarized de-endothelialized vessels by 12.6+/-0.3 mV, an effect abolished by 100 nM iberiotoxin. 4. 11,12-EET hyperpolarized intact arteries by 18.6+/-0.8 mV, an action reduced by iberiotoxin, which was ineffective against substance P. Hyperpolarizations to 11, 12-EET and substance P were partially inhibited by 100 nM charybdotoxin and abolished by further addition of 100 nM apamin. 5. 30 microM barium plus 500 nM ouabain depolarized intact artery smooth muscle but responses to substance P and bradykinin were unchanged. 500 microM gap 27 markedly reduced hyperpolarizations to substance P and bradykinin which were abolished in the additional presence of barium plus ouabain. 6. Substance P-induced hyperpolarizations of smooth muscle cells immediately below the internal elastic lamina were unaffected by gap 27, even in the presence of barium plus ouabain. 7. In pig coronary artery, 11,12-EET is not EDHF. Smooth muscle hyperpolarizations attributed to 'EDHF' are initiated by endothelial cell hyperpolarization involving charybdotoxin- (but not iberiotoxin) and apamin-sensitive K(+) channels. This may spread electrotonically via myoendothelial gap junctions but the involvement of an unknown endothelial factor cannot be excluded.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Barium/pharmacology
- Biological Factors/pharmacology
- Charybdotoxin/pharmacology
- Coronary Vessels/drug effects
- Electrophysiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Gap Junctions/drug effects
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Microelectrodes
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/innervation
- Ouabain/pharmacology
- Peptides/pharmacology
- Substance P/pharmacology
- Swine
Collapse
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Dora KA, Hinton JM, Walker SD, Garland CJ. An indirect influence of phenylephrine on the release of endothelium-derived vasodilators in rat small mesenteric artery. Br J Pharmacol 2000; 129:381-7. [PMID: 10694246 PMCID: PMC1571836 DOI: 10.1038/sj.bjp.0703052] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The possibility that stimulation of smooth muscle alpha(1)-adrenoceptors modulates contraction via the endothelium was examined in rat small mesenteric arteries. 2. N(omega)-nitro-L-arginine methyl ester, (L-NAME, 100 microM to inhibit NO synthase) increased contraction to single concentrations of phenylephrine (1 - 3 microM) by approximately 2 fold (from a control level of 14.2+/-3.0 to 34. 1+/-4.2% of the maximum contraction of the artery, n=20). The action of L-NAME was abolished by disrupting the endothelium. 3. The subsequent addition of apamin (to inhibit small conductance Ca(2+)-activated K(+) channels, 50 nM) further augmented phenylephrine contractions, in an endothelium-dependent manner, to more than 3 fold above control (50.4+/-5.3% of the maximum contraction, n=11). 4.Charybdotoxin (non-selective inhibitor of large conductance Ca(2+)-activated K(+) channels, BK(Ca), 50 nM) plus L-NAME augmented the level of phenylephrine contraction to 4 - 5-fold above control (64.1+/-3.1%, n=5), but this effect was independent of the endothelium. The potentiation of contraction by charybdotoxin could be mimicked with the selective BK(Ca) inhibitor, iberiotoxin,. 5. Apamin together with L-NAME and charybdotoxin further significantly increased the phenylephrine contraction by 5 - 6-fold, to 79.9+/-3.5% of the maximum contraction of the artery (n=13). 6. Phenylephrine failed directly to increase the intracellular Ca(2+) concentration in endothelial cells freshly isolated from the small mesenteric artery. 7. Stimulation of smooth muscle alpha(1)-adrenoceptors in the mesenteric artery induces contraction that is markedly suppressed by the endothelium. The attenuation of contraction appears to reflect both the release of NO from the endothelium and the efflux of K(+) from both endothelial and smooth muscle cells. This suggests that the release of NO and endothelium-derived hyperpolarizing factor can be evoked indirectly by agents which act only on the smooth muscle cells.
Collapse
Affiliation(s)
- K A Dora
- Cardiovascular Research Laboratories and Department of Pharmacology, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | |
Collapse
|
32
|
Edwards G, Félétou M, Gardener MJ, Thollon C, Vanhoutte PM, Weston AH. Role of gap junctions in the responses to EDHF in rat and guinea-pig small arteries. Br J Pharmacol 1999; 128:1788-94. [PMID: 10588935 PMCID: PMC1571823 DOI: 10.1038/sj.bjp.0703009] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In guinea-pig internal carotid arteries with an intact endothelium, acetylcholine (10 microM) and levcromakalim (10 microM) each hyperpolarized the smooth muscle whereas a 5 mM elevation of extracellular K(+) was without effect. 2. Incubation of the carotid artery with the gap junction inhibitors carbenoxolone (100 microM) or gap 27 (500 microM) essentially abolished the hyperpolarization to acetylcholine but it was without effect on that to levcromakalim. Carbenoxolone had no effect on the acetylcholine-induced endothelial cell hyperpolarization but inhibited the smooth muscle hyperpolarization induced by the endothelial cell K(+) channel opener, 1-ethyl-2-benzimidazolinone (600 microM). 3. In rat hepatic and mesenteric arteries with endothelium, carbenoxolone (100 or 500 microM) depolarized the smooth muscle but did not modify hyperpolarizations induced by KCl or levcromakalim. In the mesenteric (but not the hepatic) artery, the acetylcholine-induced hyperpolarization was inhibited by carbenoxolone. 4. Phenylephrine (1 microM) depolarized the smooth muscle cells of intact hepatic and mesenteric arteries, an effect enhanced by carbenoxolone. Gap 27 did not have a depolarizing action. In the presence of phenylephrine, acetylcholine-induced hyperpolarization of both hepatic and mesenteric artery myocytes was partially inhibited by each of the gap junction inhibitors. 5. Collectively, the data suggest that gap junctions play some role in the EDHF (endothelium-derived hyperpolarizing factor) response in rat hepatic and mesenteric arteries. However, in the guinea-pig internal carotid artery, electrotonic propagation of endothelial cell hyperpolarizations via gap junctions may be the sole mechanism underlying the response previously attributed to EDHF.
Collapse
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
33
|
Edwards G, Gardener MJ, Feletou M, Brady G, Vanhoutte PM, Weston AH. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain. Br J Pharmacol 1999; 128:1064-70. [PMID: 10556944 PMCID: PMC1571735 DOI: 10.1038/sj.bjp.0702916] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The characteristics of endothelium-dependent hyperpolarization in rat hepatic artery have been further investigated in the presence of inhibitors of cyclo-oxygenase and nitric oxide synthase. 2. Using sharp micro-electrodes, the smooth muscle hyperpolarization induced by acetylcholine, KCl or 1-ethyl-2-benzimidazolinone (1-EBIO) in intact hepatic arteries was abolished by 30 micronM barium plus 500 nM ouabain. 3. In vessels without endothelium, the smooth muscle hyperpolarization induced by KCl was not reduced by 30 micronM barium alone. However, in the presence of barium the effects of KCl were partially inhibited by 100 nM ouabain and essentially abolished by 500 nM ouabain. 4. Using sharp micro-electrodes, the hyperpolarization of both the smooth muscle and the endothelium induced by 1-EBIO or by acetylcholine was unaffected by 100 nM iberiotoxin. However, in the presence of 100 nM charybdotoxin, the effects of 1-EBIO were abolished whereas those of acetylcholine were only partially reduced. The hyperpolarization induced by levcromakalim was unaffected by either charybdotoxin or iberiotoxin. 5 Under whole-cell patch-clamp recording conditions, 1-EBIO induced a voltage-insensitive, charybdotoxin-sensitive K+ current in cultured endothelial cells but was without effect on K+ currents in smooth muscle cells isolated from hepatic arteries. 6 It is concluded that the endothelium-dependent hyperpolarization of smooth muscle induced by either acetylcholine or by 1-EBIO in rat hepatic artery is initially associated with the opening of endothelial calcium-sensitive K+-channels insensitive to iberiotoxin. The resulting accumulation of K+ in the myoendothelial space activates an isoform of Na+/K+-ATPase which is sensitive to low concentrations of ouabain.
Collapse
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, U.K.
| | | | | | | | | | | |
Collapse
|
34
|
Niederhoffer N, Szabo B. Involvement of CB1 cannabinoid receptors in the EDHF-dependent vasorelaxation in rabbits. Br J Pharmacol 1999; 126:1383-6. [PMID: 10217532 PMCID: PMC1565921 DOI: 10.1038/sj.bjp.0702452] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. It was recently suggested that an endogenous cannabinoid could represent an endothelium-derived hyperpolarizing factor (EDHF). The aim of the present study was to clarify whether CB1 cannabinoid receptors are involved in the nitric oxide (NO)- and prostanoid-independent vasodilation produced by acetylcholine in rabbits. 2. Pithed rabbits received indomethacin. Noradrenaline was infused to raise blood pressure, and vasodilation was elicited by bolus injections of acetylcholine. The NO-synthase inhibitor Nomega-nitro-L-arginine methylester inhibited the acetylcholine-evoked vasodilation by about 40%. The remaining vasodilation was unaffected by the CB1 cannabinoid receptor antagonist SR141716A, but was inhibited by the potassium channel blocker tetraethylammonium. In addition, the mixed CB1/CB2 cannabinoid receptor agonist WIN55212-2 did not elicit vasodilation. 3. No CB1 cannabinoid receptors were involved in the prostanoid- and NO-independent vasodilation produced by acetylcholine. An exogenous cannabinoid also did not cause vasodilation. Therefore, it is unlikely that an endogenous cannabinoid serves as an EDHF acting at smooth muscle CB1 cannabinoid receptors in the rabbit.
Collapse
Affiliation(s)
- Nathalie Niederhoffer
- Pharmakologisches Institut der Albert-Ludwigs-Universität, Hermann-Herder-Strasse 5, D-79104 Freiburg i. Br., Germany
| | - Bela Szabo
- Pharmakologisches Institut der Albert-Ludwigs-Universität, Hermann-Herder-Strasse 5, D-79104 Freiburg i. Br., Germany
- Author for correspondence:
| |
Collapse
|
35
|
Doughty JM, Plane F, Langton PD. Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1107-12. [PMID: 10070099 DOI: 10.1152/ajpheart.1999.276.3.h1107] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rat mesenteric artery, endothelium-derived hyperpolarizing factor (EDHF) is blocked by a combination of apamin and charybdotoxin (ChTX). The site of action of these toxins has not been established. We compared the effects of ChTX and apamin applied selectively to the endothelium and to the smooth muscle. In isometrically mounted arteries, ACh (0.01-10 micrometers), in the presence of indomethacin (2.8 microM) and Nomega-nitro-L-arginine methyl ester (L-NAME) (100 microM), concentration dependently relaxed phenylephrine (PE)-stimulated tone (EC50 50 nM; n = 10). Apamin (50 nM) and ChTX (50 nM) abolished this relaxation (n = 5). In pressurized arteries, ACh (10 microM), applied intraluminally in the presence of indomethacin (2.8 microM) and L-NAME (100 microM), dilated both PE-stimulated (0.3-0.5 microM; n = 5) and myogenic tone (n = 3). Apamin (50 nM ) and ChTX (50 nM) applied intraluminally abolished ACh-induced dilatations. Bath superperfusion of apamin and ChTX did not affect ACh-induced dilatations of either PE-stimulated (n = 5) or myogenic tone (n = 3). This is the first demonstration that ChTX and apamin act selectively on the endothelium to block EDHF-mediated relaxation.
Collapse
Affiliation(s)
- J M Doughty
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
36
|
Mechoulam R, Fride E, Ben-Shabat S, Meiri U, Horowitz M. Carbachol, an acetylcholine receptor agonist, enhances production in rat aorta of 2-arachidonoyl glycerol, a hypotensive endocannabinoid. Eur J Pharmacol 1998; 362:R1-3. [PMID: 9865537 DOI: 10.1016/s0014-2999(98)00777-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The production of 2-arachidonoyl glycerol, an endogenous cannabinoid, is enhanced in normal, but not in endothelium-denuded rat aorta on stimulation with carbachol, an acetylcholine receptor agonist. 2-Arachidonoyl glycerol potently reduces blood pressure in rats and may represent an endothelium-derived hypotensive factor.
Collapse
Affiliation(s)
- R Mechoulam
- Hebrew University, School of Pharmacy, Medical Faculty, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
37
|
Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396:269-72. [PMID: 9834033 DOI: 10.1038/24388] [Citation(s) in RCA: 811] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In arteries, muscarinic agonists such as acetylcholine release an unidentified, endothelium-derived hyperpolarizing factor (EDHF) which is neither prostacyclin nor nitric oxide. Here we show that EDHF-induced hyperpolarization of smooth muscle and relaxation of small resistance arteries are inhibited by ouabain plus Ba2+; ouabain is a blocker of Na+/K+ ATPase and Ba2+ blocks inwardly rectifying K+ channels. Small increases in the amount of extracellular K+ mimic these effects of EDHF in a ouabain- and Ba2+-sensitive, but endothelium-independent, manner. Acetylcholine hyperpolarizes endothelial cells and increases the K+ concentration in the myoendothelial space; these effects are abolished by charbdotoxin plus apamin. Hyperpolarization of smooth muscle by EDHF is also abolished by this toxin combination, but these toxins do not affect the hyperpolarizaiton of smooth muscle by added K+. These data show that EDHF is K+ that effluxes through charybdotoxin- and apamin-sensitive K+ channels on endothelial cells. The resulting increase in myoendothelial K+ concentration hyperpolarizes and relaxes adjacent smooth-muscle cells by activating Ba2+-sensitive K+ channels and Na+/K+ ATPase. These results show that fluctuations in K+ levels originating within the blood vessel itself are important in regulating mammalian blood pressure and flow.
Collapse
Affiliation(s)
- G Edwards
- Division of Physiology, Pharmacology and Toxicology, School of Biological Sciences, University of Manchester, UK
| | | | | | | | | |
Collapse
|