1
|
Chi J, Fan B, Li Y, Jiao Q, Li GY. Mitochondrial transplantation: a promising strategy for the treatment of retinal degenerative diseases. Neural Regen Res 2025; 20:3370-3387. [PMID: 39851134 PMCID: PMC11974652 DOI: 10.4103/nrr.nrr-d-24-00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 10/24/2024] [Indexed: 01/26/2025] Open
Abstract
The retina, a crucial neural tissue, is responsible for transforming light signals into visual information, a process that necessitates a significant amount of energy. Mitochondria, the primary powerhouses of the cell, play an integral role in retinal physiology by fulfilling the high-energy requirements of photoreceptors and secondary neurons through oxidative phosphorylation. In a healthy state, mitochondria ensure proper visual function by facilitating efficient conversion and transduction of visual signals. However, in retinal degenerative diseases, mitochondrial dysfunction significantly contributes to disease progression, involving a decline in membrane potential, the occurrence of DNA mutations, increased oxidative stress, and imbalances in quality-control mechanisms. These abnormalities lead to an inadequate energy supply, the exacerbation of oxidative damage, and the activation of cell death pathways, ultimately resulting in neuronal injury and dysfunction in the retina. Mitochondrial transplantation has emerged as a promising strategy for addressing these challenges. This procedure aims to restore metabolic activity and function in compromised cells through the introduction of healthy mitochondria, thereby enhancing the cellular energy production capacity and offering new strategies for the treatment of retinal degenerative diseases. Although mitochondrial transplantation presents operational and safety challenges that require further investigation, it has demonstrated potential for reviving the vitality of retinal neurons. This review offers a comprehensive examination of the principles and techniques underlying mitochondrial transplantation and its prospects for application in retinal degenerative diseases, while also delving into the associated technical and safety challenges, thereby providing references and insights for future research and treatment.
Collapse
Affiliation(s)
- Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yulin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
2
|
Zhang J, Shi S, Zhang L. Study on the risk identification of abnormal gas outbursts based on the mechanism of biological immunity. Sci Rep 2025; 15:12648. [PMID: 40221554 PMCID: PMC11993573 DOI: 10.1038/s41598-025-96499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
With the depletion of shallow coal resources, mining is gradually extending to deeper levels, with increasing gas content and gas pressure. Aabnormal gas outbursts phenomena occurs from time to time, posing a serious threat to coal mine safety production. Therefore, the risk identification of abnormal gas outbursts is of urgent practical significance. However, the process of identifying abnormal gas outbursts risk imposes higher requirements on the ability of adaptability, self-learning, and self-organization. The artificial immune technology based on the biological immune mechanism provides a powerful information processing and problem-solving paradigm, showing certain advantages in dynamic risk identification, which can meet the needs of dynamic risk identification of abnormal gas outbursts. In order to achieve dynamic risk identification of abnormal gas outbursts under complex underground conditions, provide decision-making basis for rapid warning and early prevention of abnormal gas outbursts, the principles of immune recognition of biological immune systems were adopted. Research was conducted on the identification of spatial risk zones for abnormal gas outbursts, the adaptive recognition algorithm based on T-B cell principles, and the type recognition of abnormal gas outbursts based on the Dynamic Time Warping algorithm. A risk identification model for abnormal gas outbursts based on the biological immune mechanism was constructed and tested in the 9111 mining face of a mine in Huaibei. The results show: (1) The adaptive recognition algorithm based on T-B cell principles can adaptively recognize the characteristic vectors of abnormal gas outbursts by adaptive adjustment of detectors and cloning and mutation of learning vectors, achieving the recognition and memorization of known or unknown feature vectors under dynamically changing environmental conditions. (2) The adaptive recognition algorithm for abnormal gas outbursts based on T-B cell principles and the type recognition algorithm for abnormal gas outbursts based on the Dynamic Time Warping algorithm, combined with the characteristics of biological immune systems, construct a risk identification model for abnormal gas outbursts based on the biological immune mechanism, which has the characteristics of adaptability, learning, and memorization. (3) Taking a abnormal gas outburst event in a certain 9111 working face of a mine in Huaibei as an example, the model was verified by inputting the characteristic vectors of abnormal gas outbursts and the output of the risk identification of abnormal gas outbursts based on the biological immune mechanism. The research results show that the dynamic risk identification model for abnormal gas outbursts based on the biological immune mechanism can meet the requirements of problem-solving in constantly changing complex environments, achieve dynamic risk identification of abnormal gas outbursts, and provide a basis for risk warning and intelligent decision-making for abnormal gas outbursts in mines.
Collapse
Affiliation(s)
- Jufeng Zhang
- College of New Energy, Longdong University, Qingyang, 745000, Gansu, China.
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Shiliang Shi
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Lizhi Zhang
- School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| |
Collapse
|
3
|
Fritz JH, Kufer TA. Editorial: Methods in molecular innate immunity: 2022. Front Immunol 2025; 16:1576957. [PMID: 40092982 PMCID: PMC11906471 DOI: 10.3389/fimmu.2025.1576957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Affiliation(s)
- Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
4
|
Tas EE. Determination of intraoperative complication rate and risk factors in patients undergoing surgery for tubo-ovarian abscess: A retrospective cohort study. Medicine (Baltimore) 2025; 104:e41508. [PMID: 39960972 PMCID: PMC11835069 DOI: 10.1097/md.0000000000041508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
This study aimed to assess intraoperative complication rates and risk factors in patients who underwent surgery for tubo-ovarian abscess. A retrospective review of the medical records of 170 patients who underwent tubo-ovarian abscess surgery between January 2014 and December 2023 was conducted. Four patients were excluded due to a histopathologic diagnosis of cancer, and 166 patients were included in the final analysis. Intraoperative complications were observed in 10 (6.0%) patients, including 8 (4.8%) and 2 (1.2%) patients with bowel and bladder injuries, respectively. The included patients were categorized into complication-positive (n = 10, 6.0%) and complication-negative (n = 156, 94.0%) groups, with between groups comparisons based on demographic, clinical, and surgical characteristics. The complication-positive group had significantly higher mean age and serum c-reactive protein (CRP) levels than the complication-negative group (46.6 ± 7.4 years vs 40.6 ± 8.5 years; P = .03, and 199.2 ± 89.4 mg/L vs 112.2 ± 84.2 mg/L; P ≤ .01, respectively). Extensive surgery, such as hysterectomy with bilateral adnexectomy, was more commonly performed in the complication-positive group than in the complication-negative group (8/10 [80.0%] vs 43/156 [27.5%], P < .01). Receiver operating characteristic curve analysis identified a serum CRP level of 186.5 mg/L as the optimal cutoff for predicting intraoperative complications. Binary logistic regression analysis showed that elevated serum CRP levels (≥186.5 mg/L) (odds ratio: 7.9; P < .01) and extensive surgery (odds ratio: 11.0, P = .01) were independently associated with intraoperative complications. Our findings indicate that elevated serum CRP levels and extensive surgery are associated with increased intraoperative complication risks, which may have important implications in clinical practice, potentially informing preoperative assessments, and surgical planning. This study was reported in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology statement.
Collapse
Affiliation(s)
- Emre Erdem Tas
- Department of Obstetrics and Gynecology, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
5
|
Wang J, Xiao C, Liang S, Noman M, Cai Y, Zhang Z, Zhu X, Chai R, Qiu H, Hao Z, Wang Y, Wang J, Bao G, Sun G, Lin F. Comparative functional analysis of a new CDR1-like ABC transporter gene in multidrug resistance and virulence between Magnaporthe oryzae and Trichophyton mentagrophytes. Cell Commun Signal 2025; 23:69. [PMID: 39920659 PMCID: PMC11806632 DOI: 10.1186/s12964-024-02022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Fungi are notorious for causing diseases in plants and domestic animals. ABC transporters play pivotal roles in multidrug resistance in fungi, with some ABC proteins indispensable for the pathogenicity of plant fungal pathogens. However, the roles of ABC proteins in animal pathogenic fungi, and the functional connections between ABC homologues in plant and animal pathogenic fungi are largely obscure. Here, we identified a new ABCG-1 gene, MoCDR1, in rice-blast fungus Magnaporthe oryzae. MoCDR1 disruption caused hypersensitivity to multidrugs, and impaired conidiation, appressorium formation, and pathogenicity. Subsequently, we systematically retrieved ABC proteins in animal pathogenic fungus Trichophyton mentagrophytes and identified TmCdr1, a homologue to MoCdr1. TmCDR1 effectively rescued the drug sensitivity and virulence of ΔMocdr1 and mediated the drug resistance and animal skin infection in T. mentagrophytes. Moreover, MoCDR1 also rescued the defects in drug sensitivity and virulence of ΔTmcdr1. MoCdr1 and TmCdr1 are conserved in structures and functions, and both involved in drug resistance and pathogenicity by analogously regulating gene expression levels related to transporter activity, MAPK signaling pathway, and metabolic processes. Altogether, our results represent the first comprehensive characterization of ABC genes in T. mentagrophytes, establishing a functional correlation between homologous ABC genes in plant and animal pathogenic fungi.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chenwen Xiao
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shuang Liang
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Muhammad Noman
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingying Cai
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueming Zhu
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Rongyao Chai
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Haiping Qiu
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhongna Hao
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiaoyu Wang
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guochang Sun
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fucheng Lin
- State Key Laboratory for Quality and Safety of Agro-Products Key Laboratory of Agricultural Microbiome of Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
6
|
Sciarra F, Franceschini E, Palmieri G, Venneri MA. Complex gene-dependent and-independent mechanisms control daily rhythms of hematopoietic cells. Biomed Pharmacother 2025; 183:117803. [PMID: 39753096 DOI: 10.1016/j.biopha.2024.117803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored. Studies on anucleate hematopoietic components, such as red blood cells and platelets, have shown that auto-sustained redox reaction cycles persist and operate in mammals. This opens to the possibility that transcriptional and non-transcriptional circadian mechanisms might coexist in nucleated immune cell populations, potentially complementing each other. It is becoming increasingly clear that disruption of the circadian rhythm at the central level (core clock) is strongly implicated in a plethora of diseases that are associated with maladaptive immune responses. On the other hand, several evidence imply that dysregulated immune activity (e.g. excessive inflammation) may alter/disrupt the proper functioning of peripheral clocks. This knowledge paves the way to the exploitation of chronobiological concepts in clinical practice. A better comprehension of various transcriptional/translational and biochemical mechanisms that maintain rhythmicity in immune system activities, as well as the many factors (host-derived, microbiota-derived, environment) that can alter or disrupt these processes, will facilitate the development of novel chrono-immunotherapeutic approaches.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|
7
|
Cui H, Elkord E. Turning Cancer Immunotherapy to the Emerging Immune Checkpoint TIGIT: Will This Break Through the Limitations of the Legacy Approach? Vaccines (Basel) 2024; 12:1306. [PMID: 39771968 PMCID: PMC11679306 DOI: 10.3390/vaccines12121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
The discovery of immune checkpoints (ICs) has pushed cancer treatment into the next era. As an emerging immune checkpoint, the TIGIT/CD155 axis inhibits the cytotoxicity of T and NK cells through multiple pathways. Immune checkpoint inhibitors (ICIs) targeting TIGIT are hopefully expected to address the issue of unresponsiveness to anti-PD-(L)1 monoclonal antibodies (mAbs) by combination therapy. This paper presents insights on the expression, structure and mechanism of action of TIGIT, as well as the principles and methods of designing mAbs targeting TIGIT and their clinical data. The advantages and disadvantages of targeting TIGIT using mAbs, bispecific and tri-specific antibodies (bsAbs and tsAbs), peptides, and compounds, in addition to potential combination therapies of anti-TIGIT with anti-PD-1 or cancer vaccines, are addressed. Finally, perspectives on current immunotherapies targeting TIGIT are discussed.
Collapse
Affiliation(s)
- Haozhe Cui
- Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
| | - Eyad Elkord
- Department of Biosciences and Bioinformatics, School of Science, Suzhou Municipal Key Lab in Biomedical Sciences and Translational Immunology, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China;
- College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| |
Collapse
|
8
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
9
|
Guo K, Lu Y, Wang X, Duan Y, Li H, Gao F, Wang J. Multi-level exploration of auricular acupuncture: from traditional Chinese medicine theory to modern medical application. Front Neurosci 2024; 18:1426618. [PMID: 39376538 PMCID: PMC11456840 DOI: 10.3389/fnins.2024.1426618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
As medical research advances and technology rapidly develops, auricular acupuncture has emerged as a point of growing interest. This paper delves into the intricate anatomy of auricular points, their significance and therapeutic principles in traditional Chinese medicine (TCM), and the underlying mechanisms of auricular acupuncture in contemporary medicine. The aim is to delve deeply into this ancient and mysterious medical tradition, unveiling its multi-layered mysteries in the field of neurostimulation. The anatomical structure of auricular points is complex and delicate, and their unique neurovascular network grants them a special status in neurostimulation therapy. Through exploration of these anatomical features, we not only comprehend the position of auricular points in TCM theory but also provide a profound foundation for their modern medical applications. Through systematic review, we synthesize insights from traditional Chinese medical theory for modern medical research. Building upon anatomical and classical theoretical foundations, we focus on the mechanisms of auricular acupuncture as a unique neurostimulation therapy. This field encompasses neuroregulation, pain management, psychological wellbeing, metabolic disorders, and immune modulation. The latest clinical research not only confirms the efficacy of auricular stimulation in alleviating pain symptoms and modulating metabolic diseases at the endocrine level but also underscores its potential role in regulating patients' psychological wellbeing. This article aims to promote a comprehensive understanding of auricular acupuncture by demonstrating its diverse applications and providing substantial evidence to support its broader adoption in clinical practice.
Collapse
Affiliation(s)
- Kaixin Guo
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Lu
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuping Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunfeng Duan
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Gao
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Guo X, Dang H, Huang W, Hassan Z, Yun S, Lu Y, Liu Y, Wang J, Zou J. IL-20 is produced by CD3γδ T cells and induced in the mucosal tissues of grass carp during infection with Aeromonas hydrophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105210. [PMID: 38844187 DOI: 10.1016/j.dci.2024.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Interleukin (IL) 20 is a multifunctional cytokine and plays a vital role in regulating autoimmune diseases, inflammation, and immune responses. IL-20 homologs have been described in fish. However, due to the lack of antibodies, cellular sources and immunological functions of fish IL-20 in response to infections have not been fully characterized. In this study, a monoclonal antibody (mAb) was generated against the recombinant grass carp (Ctenopharyngodon idella) IL-20 protein and characterized by immunoblotting, immunofluorescent microscopy and flow cytometry. It was shown that the IL-20 mAb specifically recognized recombinant IL-20 proteins expressed in the E. coli cells and HEK293 cells. Using confocal microscopy, the IL-20+ cells were identified in the head kidney, gills and intestine of grass carp, and induced after infection with Aeromonas hydrophila. Moreover, the IL-20 protein was found to be secreted mainly by CD3γδ T cells which were located predominantly in the gill filaments and intestinal mucosa. Taken together, our results suggest that IL-20 producing T cells are required for the mucosal immunity against bacterial infection in fish.
Collapse
Affiliation(s)
- Xu Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zeinab Hassan
- Department of Fish Diseases, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Shengran Yun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yifan Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266200, China.
| |
Collapse
|
11
|
Lee HJ, Seo Y, Park Y, Yi EC, Han D, Min H. Comprehensive immune cell spectral library for large-scale human primary T, B, and NK cell proteomics. Sci Data 2024; 11:871. [PMID: 39127789 PMCID: PMC11316730 DOI: 10.1038/s41597-024-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Although proteomics is extensively used in immune research, there is currently no publicly accessible spectral assay library for the comprehensive proteome of immune cells. This study generated spectral assay libraries for five human immune cell lines and four primary immune cells: CD4 T, CD8 T, natural killer (NK) cells, and B cells. This was achieved by utilizing data-dependent acquisition (DDA) and employing fractionated samples from over 100 µg of proteins, which was applied to acquire the highest-quality MS/MS spectral data. In addition, Data-indedendent acquisition (DIA) was used to obtain sufficient data points for analyzing proteins from 10,000 primary CD4 T, CD8 T, NK, and B cells. The immune cell spectral assay library generated included 10,544 protein groups and 127,106 peptides. The proteomic profiles of 10,000 primary human immune cells obtained from 15 healthy volunteers analyzed using DIA revealed the highest heterogeneity of B cells among other immune cell types and the similarity between CD4 T and CD8 T cells. All data and spectral library are deposited in ProteomeXchange (PXD047742).
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea
| | - Yoondam Seo
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 03080, Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.
| |
Collapse
|
12
|
Guo J, Cao X, Li Z, Wang C, Zhong C, Wang S, Fan Z, Zhao J, Wang J, Fang Y, Liu H, Ding H, Ma X, Lu W. Protective effects of engineered Lactobacillus johnsonii expressing bovine granulocyte-macrophage colony-stimulating factor on bovine postpartum endometritis. Front Vet Sci 2024; 11:1418091. [PMID: 39176400 PMCID: PMC11338911 DOI: 10.3389/fvets.2024.1418091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Postpartum endometritis is a prevalent reproductive disorder in bovines, leading to a prolonged open period, infertility, and other complications. While Lactobacillus strains can mitigate these conditions by reducing uterine inflammation, their effectiveness is limited due to a lack of direct anti microbial action and extended treatment duration. This study aimed to construct a recombinant Lactobacillus johnsonii strain expressing bovine Granulocyte-macrophage colony-stimulating factor (GM-CSF) to evaluate its potential in reducing postpartum uterine inflammation. Methods The recombinant Lactobacillus johnsonii strain was engineered to express bovine GM-CSF and administered to pregnant mice via vaginal perfusion. Postpartum endometritis was induced using E. coli infection, and the protective effects of the engineered strain were assessed. Inflammatory markers (IL-6, IL-1β, TNF-α), myeloperoxidase (MPO) activity, and nitric oxide (NO) concentration were measured. Histological examination was performed to evaluate uterine morphology and pathological damage. Results The recombinant L. johnsonii strain expressing GM-CSF significantly reduced inflammation levels induced by E. coli infection in the uterus. This reduction was evidenced by decreased expression of IL-6, IL-1β, TNF-α, as well as reduced MPO activity and NO concentration. Histological examination revealed improved uterine morphology and reduced pathological damage in mice treated with the recombinant GM-CSF strain. Crucially, the recombinant strain also exerts beneficial effects on bovine endometritis by reducing levels of inflammatory cytokines, suggesting a beneficial effect on clinical bovine endometritis. Conclusion The recombinant Lactobacillus johnsonii expressing GM-CSF demonstrated protective effects against postpartum endometritis in bovines by reducing inflammatory cytokines. The findings indicate the potential clinical application of this engineered strain in preventing postpartum uterine inflammation, offering a novel and effective protective option for related disorders and improving bovine reproductive efficiency.
Collapse
Affiliation(s)
- Jing Guo
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xu Cao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Caiyu Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Chengkun Zhong
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Simin Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Zhile Fan
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Yi Fang
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - He Ding
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, China
- Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, China
| |
Collapse
|
13
|
Luo M, He N, Xu Q, Wen Z, Wang Z, Zhao J, Liu Y. Roles of prostaglandins in immunosuppression. Clin Immunol 2024; 265:110298. [PMID: 38909972 DOI: 10.1016/j.clim.2024.110298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Prostaglandins (PGs) play a crucial and multifaceted role in various physiological processes such as intercellular signaling, inflammation regulation, neurotransmission, vasodilation, vasoconstriction, and reproductive functions. The diversity and biological significance of these effects are contingent upon the specific types or subtypes of PGs, with each PG playing a crucial role in distinct physiological and pathological processes. Particularly within the immune system, PGs are essential in modulating the function of immune cells and the magnitude and orientation of immune responses. Hence, a comprehensive comprehension of the functions PG signaling pathways in immunosuppressive regulation holds substantial clinical relevance for disease prevention and treatment strategies. The manuscript provides a review of recent developments in PG signaling in immunosuppressive regulation. Furthermore, the potential clinical applications of PGs in immunosuppression are also discussed. While research into the immunosuppressive effects of PGs required further exploration, targeted therapies against their immunosuppressive pathways might open new avenues for disease prevention and treatment.
Collapse
Affiliation(s)
- Minjie Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Nina He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Qing Xu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Zhongchi Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Ziqin Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China
| | - Jie Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| | - Ying Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China; Sepsis Translational Medicine Key Lab of Hunan Province, Changsha 410008, Hunan, China; National Medicine Functional Experimental Teaching Center, Changsha 410008, Hunan, China.
| |
Collapse
|
14
|
Zhou X, Shen K, Cao S, Li P, Xiao J, Dong J, Cheng Q, Hu L, Xu Z, Yang L. Polymorphism rs2327430 in TCF21 predicts the risk and prognosis of gastric cancer by affecting the binding between TFAP2A and TCF21. Cancer Cell Int 2024; 24:159. [PMID: 38714991 PMCID: PMC11075239 DOI: 10.1186/s12935-024-03343-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Single nuclear polymorphisms (SNPs) have been published to be correlated with multiple diseases. Transcription Factor 21 (TCF21) is a critical transcription factor involved in various types of cancers. However, the association of TCF21 genetic polymorphisms with gastric cancer (GC) susceptibility and prognosis remains unclear. METHODS A case-control study comprising 890 patients diagnosed with GC and an equal number of cancer-free controls was conducted. After rigorous statistical analysis, molecular experiments were carried out to elucidate the functional significance of the SNPs in the context of GC. RESULTS TCF21 rs2327430 (OR = 0.78, P = 0.026) provides protection against GC, while rs4896011 (OR = 1.39, P = 0.005) exhibit significant associations with GC risk. Furthermore, patients with the (TC + CC) genotype of rs2327430 demonstrate a relatively favorable prognosis (OR = 0.47, P = 0.012). Mechanistically, chromatin immunoprecipitation assay and luciferase reporter assay revealed that the C allele of rs2327430 disrupts the binding of Transcription Factor AP-2 Alpha (TFAP2A) to the promoter region of TCF21, resulting in increased expression of TCF21 and inhibition of malignant behaviors in GC cells. CONCLUSION Our findings highlight the significant role of TCF21 SNPs in both the risk and prognosis of GC and provide valuable insights into the underlying molecular mechanisms. Specifically, the disruptive effect of rs2327430 on TCF21 expression and its ability to modulate malignant cell behaviors suggest that rs2327430 may serve as a potential predictive marker for GC risk and prognosis.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Kuan Shen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Shuqing Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Pengyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jiacheng Dong
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Quan Cheng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Li Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Li Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
15
|
Tosca MA, Varricchio A, Schiavetti I, Naso M, Damiani V, Ciprandi G. Managing children with frequent respiratory infections and associated wheezing: a preliminary randomized study with a new multicomponent nasal spray. Allergol Immunopathol (Madr) 2024; 52:22-30. [PMID: 38721952 DOI: 10.15586/aei.v52i3.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Preschoolers frequently have respiratory infections (RIs), which may cause wheezing in some subjects. Type 2 polarization may favor increased susceptibility to RIs and associated wheezing. Non-pharmacological remedies are garnering increasing interest as possible add-on therapies. The present preliminary study investigated the efficacy and safety of a new multi-component nasal spray in preschoolers with frequent RIs and associated wheezing. METHODS Some preschoolers with these characteristics randomly took this product, containing lactoferrin, dipotassium glycyrrhizinate, carboxymethyl-beta-glucan, and vitamins C and D3 (Saflovir), two sprays per nostril twice daily for 3 months. Other children were randomly treated only with standard therapy. Outcomes included the number of RIs and wheezing episodes, use of medications, and severity of clinical manifestations. RESULTS Preschoolers treated add-on with this multicomponent product experienced fewer RIs and used fewer beta-2 agonists than untreated children (P = 0.01 and 0.029, respectively). CONCLUSIONS This preliminary study demonstrated that a multicomponent product, administered add-on as a nasal spray, could reduce the incidence of RIs and use of symptomatic drugs for relieving wheezing in children.
Collapse
Affiliation(s)
| | | | | | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | |
Collapse
|
16
|
Wang J, Liu S, Meng X, Zhao X, Wang T, Lei Z, Lehmann HI, Li G, Alcaide P, Bei Y, Xiao J. Exercise Inhibits Doxorubicin-Induced Cardiotoxicity via Regulating B Cells. Circ Res 2024; 134:550-568. [PMID: 38323433 PMCID: PMC11233173 DOI: 10.1161/circresaha.123.323346] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Doxorubicin is an effective chemotherapeutic agent, but its use is limited by acute and chronic cardiotoxicity. Exercise training has been shown to protect against doxorubicin-induced cardiotoxicity, but the involvement of immune cells remains unclear. This study aimed to investigate the role of exercise-derived B cells in protecting against doxorubicin-induced cardiotoxicity and to further determine whether B cell activation and antibody secretion play a role in this protection. METHODS Mice that were administered with doxorubicin (5 mg/kg per week, 20 mg/kg cumulative dose) received treadmill running exercise. The adoptive transfer of exercise-derived splenic B cells to μMT-/- (B cell-deficient) mice was performed to elucidate the mechanism of B cell regulation that mediated the effect of exercise. RESULTS Doxorubicin-administered mice that had undergone exercise training showed improved cardiac function, and low levels of cardiac apoptosis, atrophy, and fibrosis, and had reduced cardiac antibody deposition and proinflammatory responses. Similarly, B cell pharmacological and genetic depletion alleviated doxorubicin-induced cardiotoxicity, which phenocopied the protection of exercise. In vitro performed coculture experiments confirmed that exercise-derived B cells reduced cardiomyocyte apoptosis and fibroblast activation compared with control B cells. Importantly, the protective effect of exercise on B cells was confirmed by the adoptive transfer of splenic B cells from exercised donor mice to μMT-/- recipient mice. However, blockage of Fc gamma receptor IIB function using B cell transplants from exercised Fc gamma receptor IIB-/- mice abolished the protection of exercise-derived B cells against doxorubicin-induced cardiotoxicity. Mechanistically, we found that Fc gamma receptor IIB, an important B cell inhibitory receptor, responded to exercise and increased B cell activation threshold, which participated in exercise-induced protection against doxorubicin-induced cardiotoxicity. CONCLUSIONS Our results demonstrate that exercise training protects against doxorubicin-induced cardiotoxicity by upregulating Fc gamma receptor IIB expression in B cells, which plays an important anti-inflammatory role and participates in the protective effect of exercise against doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Shuqin Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinxiu Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xuan Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tianhui Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhiyong Lei
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht 3508GA, The Netherlands
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, Utrecht 3508GA, The Netherlands
| | - H. Immo Lehmann
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
17
|
Liu Q, Chen Y, Xie P, Luo Y, Wang B, Meng Y, Zhong J, Mei J, Zou W. Development of a predictive machine learning model for pathogen profiles in patients with secondary immunodeficiency. BMC Med Inform Decis Mak 2024; 24:48. [PMID: 38350899 PMCID: PMC10863296 DOI: 10.1186/s12911-024-02447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Secondary immunodeficiency can arise from various clinical conditions that include HIV infection, chronic diseases, malignancy and long-term use of immunosuppressives, which makes the suffering patients susceptible to all types of pathogenic infections. Other than HIV infection, the possible pathogen profiles in other aetiology-induced secondary immunodeficiency are largely unknown. METHODS Medical records of the patients with secondary immunodeficiency caused by various aetiologies were collected from the First Affiliated Hospital of Nanchang University, China. Based on these records, models were developed with the machine learning method to predict the potential infectious pathogens that may inflict the patients with secondary immunodeficiency caused by various disease conditions other than HIV infection. RESULTS Several metrics were used to evaluate the models' performance. A consistent conclusion can be drawn from all the metrics that Gradient Boosting Machine had the best performance with the highest accuracy at 91.01%, exceeding other models by 13.48, 7.14, and 4.49% respectively. CONCLUSIONS The models developed in our study enable the prediction of potential infectious pathogens that may affect the patients with secondary immunodeficiency caused by various aetiologies except for HIV infection, which will help clinicians make a timely decision on antibiotic use before microorganism culture results return.
Collapse
Affiliation(s)
- Qianning Liu
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, China
| | - Yifan Chen
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, China
| | - Peng Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ying Luo
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
- Department of Infectious Diseases, Third People's Hospital of Jiujiang, Jiujiang, 332000, Jiangxi, China
| | - Buxuan Wang
- School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, China
| | - Yuanxi Meng
- The First Clinical Medical College,Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiaqian Zhong
- The First Clinical Medical College,Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jiaqi Mei
- The First Clinical Medical College,Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Zou
- Department of Infectious Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
He CF, Xiong W, Li XF, Jiang GZ, Zhang L, Liu ZS, Liu WB. The P4' Peptide-Carrying Bacillus subtilis in Cottonseed Meal Improves the Chinese Mitten Crab Eriocheir sinensis Innate Immunity, Redox Defense, and Growth Performance. AQUACULTURE NUTRITION 2024; 2024:3147505. [PMID: 38374819 PMCID: PMC10876306 DOI: 10.1155/2024/3147505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
This study developed a recombinant Bacillus subtilis to carry the LGSPDVIVIR peptide (cmP4) isolated from the hydrolyzed products of cottonseed meal with excellent antioxidant and immune-enhancing properties in vitro. It was carried as a tandem of five cmP4 peptides (cmP4') to be stably expressed on a large scale. Then, its effectiveness was evaluated in Chinese mitten crab (Eriocheir sinensis) based on growth performance, redox defense, and innate immunity. A total of 280 crabs (mean body weight: 41.40 ± 0.14) were randomly assigned to seven diets including a control one (without B. subtilis) and six experimental ones with different doses (107,108, and 109 CFU/kg) of unmodified and recombinant B. subtilis, respectively, for 12 weeks. Each diet was tested in four tanks of crabs (10/tank). In terms of bacterial dosages, the final weight (FW), weight gain (WG), hemolymph and hepatopancreatic activities of superoxide dismutase (SOD), catalase (CAT), lysosome (LZM), acid phosphatase (ACP) and alkaline phosphatase (AKP), and hepatopancreatic transcriptions of cat, mitochondrial manganese superoxide dismutase (mtmnsod), thioredoxin-1 (trx1), and prophenoloxidase (propo) all increased significantly with increasing B. subtilis dosages, while hemolymph and hepatopancreatic malondialdehyde (MDA) content and the transcriptions of toll like receptors (tlrs), NF-κB-like transcription factor (relish), and lipopolysaccharide-induced TNF-α factor (litaf) all decreased remarkably. In terms of bacterial species, the recombinant B. subtilis group obtained significantly high values of FW, WG, hemolymph, and hepatopancreatic activities of SOD, CAT, LZM, ACP, and AKP, and the transcriptions of mtmnsod, peroxiredoxin 6 (prx6), and propo compared with the unmodified B. subtilis, while opposite results were noted in hemolymph and hepatopancreatic MDA content and the transcriptions of tlrs, relish, and litaf. These results indicated that dietary supplementation with 109 CFU/kg of recombinant B. subtilis can improve the growth performance, redox defense, and nonspecific immunity of E. sinensis.
Collapse
Affiliation(s)
- Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Zi-Shang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, China
| |
Collapse
|
19
|
Calder PC, Bach-Faig A, Bevacqua T, Caballero Lopez CG, Chen ZY, Connolly D, Koay WL, Meydani SN, Pinar AS, Ribas-Filho D, Pierre A. Vital role for primary healthcare providers: urgent need to educate the community about daily nutritional self-care to support immune function and maintain health. BMJ Nutr Prev Health 2023; 6:392-401. [PMID: 38618551 PMCID: PMC11009526 DOI: 10.1136/bmjnph-2023-000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 04/16/2024] Open
Abstract
The importance of self-care to improve health and social well-being is well recognised. Nevertheless, there remains a need to encourage people to better understand how their body works, and how to keep it healthy. Because of its important role, part of this understanding should be based on why the immune system must be supported. This highly complex system is essential for defending against pathogens, but also for maintaining health throughout the body by preserving homeostasis and integrity. Accordingly, the immune system requires active management for optimal functioning and to reduce the risk of chronic diseases. In addition to regular exercise, healthy sleeping patterns, cultivating mental resilience, adequate nutrition through healthy and diverse dietary habits is key to the daily support of immune function. Diet and the immune system are closely intertwined, and a poor diet will impair immunity and increase the risk of acute and chronic diseases. To help elucidate the roles of primary healthcare providers in supporting individuals to engage in self-care, an international group of experts reviewed the evidence for the roles of the immune system in maintaining health and for nutrition in daily immune support, and discussed implications for population health and clinical practice.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Reseaech Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - Anna Bach-Faig
- Faculty of Health Sciences, Open University of Catalonia, Barcelona, Spain
- Food and Nutrition Area, Barcelona Official College of Pharmacists, Barcelona, Spain
| | | | | | - Zheng-Yu Chen
- International Pharmaceutical Federation, Shanghai, China
| | | | | | - Simin N Meydani
- Tufts Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | | | - Durval Ribas-Filho
- Padre Albino Foundation, Faculty of Medicine, Catanduva, São Paulo, Brazil
| | | |
Collapse
|
20
|
Izadfar F, Belyani S, Pormohammadi M, Alizadeh S, Hashempor M, Emadi E, Sangsefidi ZS, Jalilvand MR, Abdollahi S, Toupchian O. The effects of grapes and their products on immune system: a review. Immunol Med 2023; 46:158-162. [PMID: 37158605 DOI: 10.1080/25785826.2023.2207896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Immune system plays a significant role in preventing and controlling diseases. Some studies reported the beneficial effects of grapes and their products on immunity. However, their results are controversial. This review aimed to discuss the effects of grapes and their products on immune system and their mechanisms of action. Although various in-vio and in-vitro studies and some human studies suggested that grapes and their products may help to improve the immune system's function, clinical trials in this area are limited and inconsistent.In conclusions, although, consumption of grapes and their products may help to having a healthy immune syste, further studies particularly human studies are required to clarify the precise effects of them and their mechanisms regarding immune system.
Collapse
Affiliation(s)
- Fatemeh Izadfar
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Saba Belyani
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Masomeh Pormohammadi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Simin Alizadeh
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mehrara Hashempor
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health ServicesYazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mohammad Reza Jalilvand
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| |
Collapse
|
21
|
Liu RD, Meng XY, Le Li C, Xu QY, Lin XZ, Dong BR, Ye CY, Miao TT, Si XY, Long SR, Cui J, Wang ZQ. Trichinella spiralis cathepsin L induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of newborn larvae. Parasit Vectors 2023; 16:433. [PMID: 37993938 PMCID: PMC10666456 DOI: 10.1186/s13071-023-06051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND During the early stages of Trichinella spiralis infection, macrophages predominantly undergo polarization to the M1-like phenotype, causing the host's inflammatory response and resistance against T. spiralis infection. As the disease progresses, the number of M2-type macrophages gradually increases, contributing to tissue repair processes within the host. While cysteine protease overexpression is typically associated with inflammation, the specific role of T. spiralis cathepsin L (TsCatL) in mediating macrophage polarization remains unknown. The aim of this study was to assess the killing effect of macrophage polarization mediated by recombinant T. spiralis cathepsin L domains (rTsCatL2) on newborn larvae (NBL). METHODS rTsCatL2 was expressed in Escherichia coli strain BL21. Polarization of the rTsCatL2-induced RAW264.7 cells was analyzed by enzyme-linked immunosorbent assay (ELISA), quantitative PCR (qPCR), western blot, immunofluorescence and flow cytometry. The effect of JSH-23, an inhibitor of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), on rTsCatL2-induced M1 polarization investigated. Cytotoxic effects of polarized macrophages on NBL were observed using in vitro killing assays. RESULTS Following the co-incubation of rTsCatL2 with RAW264.7 murine macrophage cells, qPCR and ELISA revealed increased transcription and secretion levels of inducible nitric oxide synthase (iNOS), interleukin (IL)-6, IL-1β and tumor necrosis factor alpha (TNF-α) in macrophages. Western blot analysis showed a significant increase in iNOS protein expression, while the expression level of arginase-1 protein remained unchanged. Flow cytometry revealed a substantial increase in the number of CD86-labeled macrophages. The western blot results also indicated that rTsCatL2 increased the expression levels of phospho-NF-κB and phospho-nuclear factor-κB inhibitor alpha (IκB-α) proteins in a dose-dependent manner, while immunofluorescence revealed that rTsCatL2 induced nuclear translocation of the p65 subunit of NF-κB (NF-κB p65) protein in macrophages. The inhibitory effect of JSH-23 suppressed and abrogated the effect of rTsCatL2 in promoting M1 macrophage polarization. rTsCatL2 mediated polarization of macrophages to the M1-like phenotype and enhanced macrophage adhesion and antibody-dependent cell-mediated cytotoxicity (ADCC) killing of NBL. CONCLUSIONS The results indicated that rTsCatL2 induces macrophage M1 polarization via the NF-κB pathway and enhances the ADCC killing of NBL. This study provides a further understanding of the interaction mechanism between T. spiralis and the host.
Collapse
Affiliation(s)
- Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xiang Yu Meng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Le Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Qiu Yi Xu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Zhi Lin
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Rang Dong
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chu Yan Ye
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Tian Tian Miao
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Yi Si
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Kang K, Deng X, Xie W, Chen J, Lin H, Chen Z. Rhodotorula mucilaginosa ZTHY2 Attenuates Cyclophosphamide-Induced Immunosuppression in Mice. Animals (Basel) 2023; 13:3376. [PMID: 37958131 PMCID: PMC10648412 DOI: 10.3390/ani13213376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Rhodotorula mucilaginosa (R. mucilaginosa) can enhance the immune and antioxidant function of the body. However, whether R. mucilaginosa has an immunoregulatory effect on cyclophosphamide (CTX)-induced immunosuppressed animals remains to be clarified. In this study, the R. mucilaginosa ZTHY2 that we isolated from the coastal waters of the South China Sea previously was prepared in order to investigate its immunoprotective effect on CTX-induced immunosuppression in mice, and the effects were compared to those of Lactobacillus acidophilus (LA) (a well-known probiotic). Seventy-two male SPF mice were divided into six groups: The C group (control); IM group (immunosuppressive model group) (+CTX); Rl, Rm, and Rh groups (+CTX+low, medium, and high concentration of R. mucilaginosa, respectively); and PC (positive control) group (+CTX+LA). After a 28-day feeding trial, blood samples were taken for biochemical and serum immunological analysis, and the thymus and spleen were collected to analyze the organ index, lymphocyte proliferation and differentiation, and antioxidant capacity. The findings showed that R. mucilaginosa ZTHY2 improved the spleen and thymus indices, effectively attenuated immune organ atrophy caused by CTX, and enhanced the proliferation of T and B lymphocytes induced by ConA and LPS. R. mucilaginosa ZTHY2 promoted the secretion of cytokines and immunoglobulins and significantly increased the contents of IL-2, IL-4, IL-6, TNF-α, IFN-γ, IgA, IgG, IgM, CD4, CD8, CD19, and CD20 in serum. The proportion of CD4+, CD8+, CD19+, and CD20+ lymphocytes in spleen, thymus, and mesenteric lymph nodes were increased. In addition, R. mucilaginosa ZTHY2 reduced the reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increased glutathione (GSH), total superoxide dismutase (SOD), and catalase (CAT) levels. Our results indicated that R. mucilaginosa ZTHY2 can significantly enhance the immune function of immunosuppressed mice, and improving antioxidant capacity thus attenuates CTX-induced immunosuppression and immune organ atrophy.
Collapse
Affiliation(s)
- Kai Kang
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Xinyi Deng
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Weitian Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Jinjun Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Hongying Lin
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
| | - Zhibao Chen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (K.K.); (X.D.); (W.X.); (J.C.); (H.L.)
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang 524088, China
| |
Collapse
|
23
|
Han X, Vollmer D, Enioutina EY. Immunomodulatory Effects of Modified Bovine Colostrum, Whey, and Their Combination with Other Natural Products: Effects on Human Peripheral Blood Mononuclear Cells. CURRENT THERAPEUTIC RESEARCH 2023; 99:100720. [PMID: 37885900 PMCID: PMC10598499 DOI: 10.1016/j.curtheres.2023.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Background Many natural products have immunomodulatory properties. However, the mechanism of immunomodulatory activities are poorly understood. Objectives This study evaluated the influence of bovine colostrum products, a whey product, or their combinations with other natural products on human peripheral blood mononuclear cells' (PBMC) ability to produce cytokines upon activation. Methods PBMCs were pretreated with ultrafiltered colostrum, nano-filtered bovine colostrum, egg yolk extract, a botanical blend, colostrum + egg yolk extract, colostrum + egg yolk + botanical blend, and fermented whey and then stimulated with lipopolysaccharide or phytohemagglutinin. Cytokine production was measured by the Luminex assay. Results All study products demonstrated immunomodulatory properties by regulating cytokines production by activated PBMCs. Ultrafiltered colostrum alone displayed the highest immune stimulatory activity. It stimulated proinflammatory cytokine production by lipopolysaccharide-activated PBMCs and suppressed cytokine production by phytohemagglutinin-activated cells. Other study products mainly suppressed cytokine release by both cell types. The immunomodulatory properties depended upon the dose of the products used in the study. Conclusions All tested products modulated innate and adaptive immune cell activities. Most of the products demonstrated anti-inflammatory properties, except ultrafiltered colostrum, which stimulated the lipopolysaccharide-activated PBMC production of inflammatory cytokines. These products can be potentially used to support overall immune health.
Collapse
Affiliation(s)
| | | | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
24
|
Cassatt DR, Winters TA, PrabhuDas M. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:389-395. [PMID: 37702416 PMCID: PMC10599297 DOI: 10.1667/rade-22-00197.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ionizing radiation causes acute damage and loss of bone marrow and peripheral immune cells that can result in high mortality due to reduced resistance to infections and hemorrhage. Besides these acute effects, tissue damage from radiation can trigger inflammatory responses, leading to progressive and chronic tissue damage by radiation-induced loss of immune cell types that are required for resolving tissue injuries. Understanding the mechanisms involved in radiation-induced immune system injury and repair will provide new insights for developing medical countermeasures that help restore immune homeostasis. For these reasons, The Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID) convened a two-day workshop, along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN). This workshop, titled "Immune Dysfunction from Radiation Exposure," was held virtually on September 9-10, 2020; this Commentary provides a high-level overview of what was discussed at the meeting.
Collapse
Affiliation(s)
- David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
25
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
26
|
Khadzhieva MB, Kolobkov DS, Kashatnikova DA, Gracheva AS, Redkin IV, Kuzovlev AN, Salnikova LE. Rare Variants in Primary Immunodeficiency Genes and Their Functional Partners in Severe COVID-19. Biomolecules 2023; 13:1380. [PMID: 37759780 PMCID: PMC10526997 DOI: 10.3390/biom13091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The development of severe COVID-19, which is a complex multisystem disease, is thought to be associated with many genes whose action is modulated by numerous environmental and genetic factors. In this study, we focused on the ideas of the omnigenic model of heritability of complex traits, which assumes that a small number of core genes and a large pool of peripheral genes expressed in disease-relevant tissues contribute to the genetics of complex traits through interconnected networks. We hypothesized that primary immunodeficiency disease (PID) genes may be considered as core genes in severe COVID-19, and their functional partners (FPs) from protein-protein interaction networks may be considered as peripheral near-core genes. We used whole-exome sequencing data from patients aged ≤ 45 years with severe (n = 9) and non-severe COVID-19 (n = 11), and assessed the cumulative contribution of rare high-impact variants to disease severity. In patients with severe COVID-19, an excess of rare high-impact variants was observed at the whole-exome level, but maximal association signals were detected for PID + FP gene subsets among the genes intolerant to LoF variants, haploinsufficient and essential. Our exploratory study may serve as a model for new directions in the research of host genetics in severe COVID-19.
Collapse
Affiliation(s)
- Maryam B. Khadzhieva
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (M.B.K.); (A.S.G.); (A.N.K.)
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (D.A.K.)
- The Laboratory of Molecular Immunology, National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | - Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (D.A.K.)
| | - Darya A. Kashatnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (D.A.K.)
| | - Alesya S. Gracheva
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (M.B.K.); (A.S.G.); (A.N.K.)
- The Department of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ivan V. Redkin
- Competence Center for the Development of AI Technology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia;
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (M.B.K.); (A.S.G.); (A.N.K.)
| | - Lyubov E. Salnikova
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (M.B.K.); (A.S.G.); (A.N.K.)
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (D.A.K.)
- The Laboratory of Molecular Immunology, National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
27
|
Valenciano-Bellido S, Caaveiro JMM, Nakakido M, Kuroda D, Aikawa C, Nakagawa I, Tsumoto K. Targeting hemoglobin receptors IsdH and IsdB of Staphylococcus aureus with a single VHH antibody inhibits bacterial growth. J Biol Chem 2023; 299:104927. [PMID: 37330175 PMCID: PMC10466926 DOI: 10.1016/j.jbc.2023.104927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus, or MRSA, is one of the major causative agents of hospital-acquired infections worldwide. Novel antimicrobial strategies efficient against antibiotic-resistant strains are necessary and not only against S. aureus. Among those, strategies that aim at blocking or dismantling proteins involved in the acquisition of essential nutrients, helping the bacteria to colonize the host, are intensively studied. A major route for S. aureus to acquire iron from the host organism is the Isd (iron surface determinant) system. In particular, the hemoglobin receptors IsdH and IsdB located on the surface of the bacterium are necessary to acquire the heme moiety containing iron, making them a plausible antibacterial target. Herein, we obtained an antibody of camelid origin that blocked heme acquisition. We determined that the antibody recognized the heme-binding pocket of both IsdH and IsdB with nanomolar order affinity through its second and third complementary-determining regions. The mechanism explaining the inhibition of acquisition of heme in vitro could be described as a competitive process in which the complementary-determining region 3 from the antibody blocked the acquisition of heme by the bacterial receptor. Moreover, this antibody markedly reduced the growth of three different pathogenic strains of MRSA. Collectively, our results highlight a mechanism for inhibiting nutrient uptake as an antibacterial strategy against MRSA.
Collapse
Affiliation(s)
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chihiro Aikawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
28
|
Gao J, Zhang H, Zhang F. Research progress of TIPE2 in immune-related diseases. Int Immunopharmacol 2023; 121:110514. [PMID: 37348234 DOI: 10.1016/j.intimp.2023.110514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
The tumor necrosis factor α-induced protein 8 (TNFAIP8) family, which consists of TNFAIP8 (TIPE), TNFAIP8L1 (TIPE1), TNFAIP8L2 (TIPE2) and TNFAIP8L3 (TIPE3), has recently emerged as a regulatory factor involved in immune response and tumorigenesis. Among its members, TIPE2 acts as a negative regulator of both innate and adaptive immunity, playing a crucial role in maintaining immune homeostasis by negatively regulating T cell receptor (TCR) and toll-like receptor (TLR) signal transduction. Immune homeostasis is an indispensable characteristic of the immune system, which prevents harmful inflammatory reactions and ensures the proper functioning of the body. A large number of studies have shown that abnormal TIPE2 expression exists in a variety of inflammation-related diseases such as asthma, colitis, and systemic lupus erythematosus, highlighting the importance of comprehending its function for the prevention and treatment of immune-related conditions. This review aims to provide an overview of the in vivo distribution and expression of TIPE2, its regulatory role in central and peripheral immune-related diseases, and the underlying mechanisms that govern its function in the inflammatory response. By delving into these aspects, a deeper understanding of the role and functionality of TIPE2 in inflammatory responses can be achieved.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Hanting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266000, China.
| |
Collapse
|
29
|
Abstract
Investigation of fungal biology has been frequently motivated by the fact that many fungal species are important plant and animal pathogens. Such efforts have contributed significantly toward our understanding of fungal pathogenic lifestyles (virulence factors and strategies) and the interplay with host immune systems. In parallel, work on fungal allorecognition systems leading to the characterization of fungal regulated cell death determinants and pathways, has been instrumental for the emergent concept of fungal immunity. The uncovered evolutionary trans-kingdom parallels between fungal regulated cell death pathways and innate immune systems incite us to reflect further on the concept of a fungal immune system. Here, I briefly review key findings that have shaped the fungal immunity paradigm, providing a perspective on what I consider its most glaring knowledge gaps. Undertaking to fill such gaps would establish firmly the fungal immune system inside the broader field of comparative immunology.
Collapse
Affiliation(s)
- Asen Daskalov
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
30
|
Sun H, Wang H, Pan H, Zuo Y, Zhao R, Huang R, Xue Y, Song H. CD19 (+) B Cell Combined with Prognostic Nutritional Index Predicts the Clinical Outcomes of Patients with Gastric Cancer Who Underwent Surgery. Cancers (Basel) 2023; 15:cancers15092531. [PMID: 37173997 PMCID: PMC10177131 DOI: 10.3390/cancers15092531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: The aim of this study was to explore the predictive ability of lymphocyte subsets for the prognosis of gastric cancer patients who underwent surgery and the prognostic value of CD19 (+) B cell combined with the Prognostic Nutritional Index (PNI). (2) Methods: This study involved 291 patients with gastric cancer who underwent surgery at our institution between January 2016 and December 2017. All patients had complete clinical data and peripheral lymphocyte subsets. Differences in clinical and pathological characteristics were examined using the Chi-square test or independent sample t-tests. The difference in survival was evaluated using Kaplan-Meier survival curves and the Log-rank test. Cox's regression analysis was performed to identify independent prognostic indicators, and nomograms were used to predict survival probabilities. (3) Results: Patients were categorized into three groups based on their CD19 (+) B cell and PNI levels, with 56 cases in group one, 190 cases in group two, and 45 cases in group three. Patients in group one had a shorter progression-free survival (PFS) (HR = 0.444, p < 0.001) and overall survival (OS) (HR = 0.435, p < 0.001). CD19 (+) B cell-PNI had the highest area under the curve (AUC) compared with other indicators, and it was also identified as an independent prognostic factor. Moreover, CD3 (+) T cell, CD3 (+) CD8 (+) T cell, and CD3 (+) CD16 (+) CD56 (+) NK T cell were all negatively correlated with the prognosis, while CD19 (+) B cell was positively associated with the prognosis. The C-index and 95% confidence interval (CI) of nomograms for PFS and OS were 0.772 (0.752-0.833) and 0.773 (0.752-0.835), respectively. (4) Conclusions: Lymphocyte subsets including CD3 (+) T cell, CD3 (+) CD8 (+) T cell, CD3 (+) CD16 (+) CD56 (+) NK T cell, and CD19 (+) B cell were related to the clinical outcomes of patients with gastric cancer who underwent surgery. Additionally, PNI combined with CD19 (+) B cell had higher prognostic value and could be used to identify patients with a high risk of metastasis and recurrence after surgery.
Collapse
Affiliation(s)
- Hao Sun
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Huibo Wang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Hongming Pan
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Yanjiao Zuo
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Ruihu Zhao
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Rong Huang
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Yingwei Xue
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| | - Hongjiang Song
- Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin 150081, China
| |
Collapse
|
31
|
Shen K, Zhou X, Hu L, Xiao J, Cheng Q, Wang Y, Liu K, Fan H, Xu Z, Yang L. Rs15285, a functional polymorphism located in lipoprotein lipase, predicts the risk and prognosis of gastric cancer. Appl Microbiol Biotechnol 2023; 107:3243-3256. [PMID: 37036527 DOI: 10.1007/s00253-023-12505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Lipoprotein lipase (LPL), a crucial gene in lipid metabolism, has a significant role in the progression of malignant tumors. The purpose of this research was to investigate the impact of rs15285 found in the LPL gene's 3'UTR region on the risk, biological behavior, and gastric cancer (GC) prognosis as well as to examine its potential function. Genotyping of rs15285 in 888 GC cases and 874 controls was conducted by SNaPshot technology. We used bioinformatics analysis and in vitro experiments to study the role of rs15285. First, this study revealed for the first time that polymorphism rs15285 increases the risk of GC (OR = 1.48, 95%CI = 1.16-1.89, P = 0.002). Although no relationship was found between rs12585 and the pathological features of GC, the prognosis of individuals with the rs12585 TT genotype was poorer than that of patients with the CC or CC+CT genotype (HR = 2.39 for TT vs. CC, P = 0.025; HR = 2.38 for TT vs. CC+CT, P = 0.025). In addition, bioinformatics analysis showed rs12585 may affect the binding of miRNAs to LPL, resulting in an increase of LPL expression to promote cancer progression. Ultimately, in vitro tests revealed that the rs15285 T allele increased LPL expression on the mRNA as well as the protein levels, promoting GC cell proliferation, invasion, and metastasis. The LPL rs12528 TT genotype increased the risk of GC and predicted a poor prognosis. Mechanistically, the rs15285 T allele could improve the expression of LPL, and thus promotes the malignant phenotype of GC. Therefore, our study may provide new biological predictors and a theoretical basis for the prognosis and customized therapy of stomach cancer patients. KEY POINTS: • Rs15285 polymorphism is a risk factor for GC. • Rs12585 TT genotype predicts a bad outcome in GC individuals. • Rs15285 T allele enhances GC cells malignant biological behavior.
Collapse
Affiliation(s)
- Kuan Shen
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xinyi Zhou
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Li Hu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Jian Xiao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Quan Cheng
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Yuanhang Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Hao Fan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
32
|
Farghali M, Mohamed IMA, Osman AI, Rooney DW. Seaweed for climate mitigation, wastewater treatment, bioenergy, bioplastic, biochar, food, pharmaceuticals, and cosmetics: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:97-152. [PMID: 36245550 PMCID: PMC9547092 DOI: 10.1007/s10311-022-01520-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 05/02/2023]
Abstract
The development and recycling of biomass production can partly solve issues of energy, climate change, population growth, food and feed shortages, and environmental pollution. For instance, the use of seaweeds as feedstocks can reduce our reliance on fossil fuel resources, ensure the synthesis of cost-effective and eco-friendly products and biofuels, and develop sustainable biorefinery processes. Nonetheless, seaweeds use in several biorefineries is still in the infancy stage compared to terrestrial plants-based lignocellulosic biomass. Therefore, here we review seaweed biorefineries with focus on seaweed production, economical benefits, and seaweed use as feedstock for anaerobic digestion, biochar, bioplastics, crop health, food, livestock feed, pharmaceuticals and cosmetics. Globally, seaweeds could sequester between 61 and 268 megatonnes of carbon per year, with an average of 173 megatonnes. Nearly 90% of carbon is sequestered by exporting biomass to deep water, while the remaining 10% is buried in coastal sediments. 500 gigatonnes of seaweeds could replace nearly 40% of the current soy protein production. Seaweeds contain valuable bioactive molecules that could be applied as antimicrobial, antioxidant, antiviral, antifungal, anticancer, contraceptive, anti-inflammatory, anti-coagulants, and in other cosmetics and skincare products.
Collapse
Affiliation(s)
- Mohamed Farghali
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 Japan
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Israa M. A. Mohamed
- Department of Animal and Poultry Hygiene and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
- Graduate School of Animal and Veterinary Sciences and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555 Japan
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| | - David W. Rooney
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland BT9 5AG UK
| |
Collapse
|
33
|
Pedroza-Escobar D, Castillo-Maldonado I, González-Cortés T, Delgadillo-Guzmán D, Ruíz-Flores P, Cruz JHS, Espino-Silva PK, Flores-Loyola E, Ramirez-Moreno A, Avalos-Soto J, Téllez-López MÁ, Velázquez-Gauna SE, García-Garza R, Vertti RDAP, Torres-León C. Molecular Bases of Protein Antigenicity and Determinants of Immunogenicity, Anergy, and Mitogenicity. Protein Pept Lett 2023; 30:719-733. [PMID: 37691216 DOI: 10.2174/0929866530666230907093339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The immune system is able to recognize substances that originate from inside or outside the body and are potentially harmful. Foreign substances that bind to immune system components exhibit antigenicity and are defined as antigens. The antigens exhibiting immunogenicity can induce innate or adaptive immune responses and give rise to humoral or cell-mediated immunity. The antigens exhibiting mitogenicity can cross-link cell membrane receptors on B and T lymphocytes leading to cell proliferation. All antigens vary greatly in physicochemical features such as biochemical nature, structural complexity, molecular size, foreignness, solubility, and so on. OBJECTIVE Thus, this review aims to describe the molecular bases of protein-antigenicity and those molecular bases that lead to an immune response, lymphocyte proliferation, or unresponsiveness. CONCLUSION The epitopes of an antigen are located in surface areas; they are about 880-3,300 Da in size. They are protein, carbohydrate, or lipid in nature. Soluble antigens are smaller than 1 nm and are endocytosed less efficiently than particulate antigens. The more the structural complexity of an antigen increases, the more the antigenicity increases due to the number and variety of epitopes. The smallest immunogens are about 4,000-10,000 Da in size. The more phylogenetically distant immunogens are from the immunogen-recipient, the more immunogenicity increases. Antigens that are immunogens can trigger an innate or adaptive immune response. The innate response is induced by antigens that are pathogen-associated molecular patterns. Exogenous antigens, T Dependent or T Independent, induce humoral immunogenicity. TD protein-antigens require two epitopes, one sequential and one conformational to induce antibodies, whereas, TI non-protein-antigens require only one conformational epitope to induce low-affinity antibodies. Endogenous protein antigens require only one sequential epitope to induce cell-mediated immunogenicity.
Collapse
Affiliation(s)
- David Pedroza-Escobar
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Irais Castillo-Maldonado
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Tania González-Cortés
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Dealmy Delgadillo-Guzmán
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Pablo Ruíz-Flores
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Jorge Haro Santa Cruz
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Perla-Karina Espino-Silva
- Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | - Erika Flores-Loyola
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Agustina Ramirez-Moreno
- Facultad de Ciencias Biologicas, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27276, Mexico
| | - Joaquín Avalos-Soto
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | - Miguel-Ángel Téllez-López
- Cuerpo Academico Farmacia y Productos Naturales, Facultad de Ciencias Quimicas, Universidad Juarez del Estado de Durango, Gomez Palacio, Mexico
| | | | - Rubén García-Garza
- Facultad de Medicina, Universidad Autonoma de Coahuila, Unidad Torreon, Torreon, Coahuila, 27000, Mexico
| | | | - Cristian Torres-León
- Centro de Investigacion y Jardin Etnobiologico, Universidad Autonoma de Coahuila, Viesca, Coahuila, 27480, Mexico
| |
Collapse
|
34
|
Luaibi AR, Al-Saffar M, Jalil AT, Rasol MA, Fedorovich EV, Saleh MM, Ahmed OS. Long non-coding RNAs: The modulators of innate and adaptive immune cells. Pathol Res Pract 2023; 241:154295. [PMID: 36608622 DOI: 10.1016/j.prp.2022.154295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Before very sensitive current genomics platforms were discovered, long non-coding RNAs (lncRNAs) as controllers of gene expression, were thought to be accumulated genetic garbage. The past few years have seen a lot of interest in a large classification of non-coding transcripts with an indeterminate length of more than 200 nucleotides [1]. lncRNAs' association with immunity and disease progression has been revealed by a growing body of experimental research. Only a limited subset of lncRNAs, however, has solid proof of their role. It is also clear that various immune cells express lncRNAs differently. In this review, we concentrated on the role of lncRNA expression in the regulation of immune cell function and response to pathological conditions in macrophages, dendritic cells, natural killer (NK) cells, neutrophils, Myeloid-derived suppressor cells (MDSCs), T cells, and B cells. The innate and adaptive immune response systems may be significantly regulated by lncRNAs, according to emerging research. To discover possible therapeutic targets for the therapy of different diseases, it may be helpful to have a better realization of the molecular mechanisms beyond the role of lncRNAs in the immune response. Therefore, it is crucial to investigate lncRNA expression and comprehend its significance for the immune system.
Collapse
Affiliation(s)
- Aseel Riyadh Luaibi
- Utbah bin Ghazwan High School for Girls, Al_Karkh first Directorate of Education, Ministry of Education, Baghdad, Iraq
| | - Montaha Al-Saffar
- Community Health Department, Institute of Medical Technology /Baghdad, Middle Technical University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Mustafa Asaad Rasol
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Eremin Vladimir Fedorovich
- Republican Scientific and Practical Center for Transfusiology and Medical, Biotechnologies, Minsk, Belarus
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Department of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
35
|
Kacharava T, Giorgadze E, Janjgava S, Lomtadze N, Taboridze I. Correlation Between Vitamin B12 Deficiency and Autoimmune Thyroid Diseases. Endocr Metab Immune Disord Drug Targets 2023; 23:86-94. [PMID: 35761487 DOI: 10.2174/1871530322666220627145635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune thyroid diseases (AITD) are the most prevalent organ-specific autoimmune disorders. Vitamin B12 plays an important role in the proper functioning of the immune system. The aim of this study was therefore to investigate the correlation between vitamin B12 deficiency and AITD. MATERIALS AND METHODS A total of 306 patients (aged 18-65 years, mean - 37.6 ± 11.3 years and comprising 87 males and 219 females) were studied retrospectively (observational study). Patients were divided into groups: with and without vitamin B12 deficiency, and with and without AITD. Differences between groups were evaluated by Fisher's exact test for qualitative variables and by Student's t-test for quantitative variables. Correlations for quantitative factors were determined by the Pearson correlation coefficient and for qualitative factors by Spearman correlation analysis. The sensitivity and specificity of vitamin B12 deficiency for AITD were calculated by ROC analysis. RESULTS The vitamin B12 level was significantly lower in patients with AITD (and 200.70 + 108.84) compared to controls (393.41+150.78 p<0.0001). Patients with vitamin B12 deficiency were characterized by significantly higher mean values of anti-TPO (236.60+455.74) compared to controls (39.51+165.57 p<0.0001). Vitamin B12 levels were inversely correlated to anti-TPO levels (r=- 0.233, p<0.001). Roc analysis of vitamin B12 as a diagnostic test for AITD gave the area under curve as 0.881 (95% CI: 0.839-0.924), a sensitivity of - 0.947, a specificity of - 0.768, and a cutoff value of - 178.9. CONCLUSION The vitamin B12 level correlates significantly to AITD. The concentration of vitamin B12 should therefore be determined in patients with autoimmune thyroiditis as a diagnostic test with high sensitivity and good specificity.
Collapse
Affiliation(s)
- Tinatin Kacharava
- Departmetn of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| | - Elene Giorgadze
- Departmetn of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| | - Shota Janjgava
- Departmetn of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| | - Nino Lomtadze
- Departmetn of Medicine, Ivane Javakhishvili Tbilisi State University. Tbilisi, Georgia
| | - Iamze Taboridze
- School of Medicine and Dentistry, David Agmashenebeli University of Georgia, Tbilisi, Georgia
| |
Collapse
|
36
|
Sharma M, Mahto JK, Dhaka P, Neetu N, Tomar S, Kumar P. MD simulation and MM/PBSA identifies phytochemicals as bifunctional inhibitors of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12048-12061. [PMID: 34448684 DOI: 10.1080/07391102.2021.1969285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global spread of SARS-CoV-2 has resulted in millions of fatalities worldwide, making it crucial to identify potent antiviral therapeutics to combat this virus. We employed structure-assisted virtual screening to identify phytochemicals that can target the two proteases which are essential for SARS-CoV-2 replication and transcription, the main protease and papain-like protease. Using virtual screening and molecular dynamics, we discovered new phytochemicals with inhibitory activity against the two proteases. Isoginkgetin, kaempferol-3-robinobioside, methyl amentoflavone, bianthraquinone, podocarpusflavone A, and albanin F were shown to have the best affinity and inhibitory potential among the compounds, and can be explored clinically for use as inhibitors of novel coronavirus SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Preeti Dhaka
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
37
|
Lee J, Kim S, Kang CH. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms 2022; 10:2247. [PMID: 36422317 PMCID: PMC9698684 DOI: 10.3390/microorganisms10112247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Lactic acid bacteria (LAB) can improve host health and has strong potential for use as a health functional food. Specific strains of LAB have been reported to exert immunostimulatory effects. The primary goal of this study was to evaluate the immunostimulatory activities of novel LAB strains isolated from humans and foods and to investigate the probiotic properties of these strains. Cell-free supernatants (CFS) obtained from selected LAB strains significantly increased phagocytosis and level of nitric oxide (NO) and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 macrophage cells. The protein expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, which are immunomodulators, was also upregulated by CFS treatment. CFS markedly induced the phosphorylation of nuclear factor-κB (NF-κB) and MAPKs (ERK, JNK, and p38). In addition, the safety of the LAB strains used in this study was demonstrated by hemolysis and antibiotic resistance tests. Their stability was confirmed under simulated gastrointestinal conditions. Taken together, these results indicate that the LAB strains selected in this study could be useful as probiotic candidates with immune-stimulating activity.
Collapse
Affiliation(s)
| | | | - Chang-Ho Kang
- MEDIOGEN Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea
| |
Collapse
|
38
|
Lioulios G, Mitsoglou Z, Fylaktou A, Xochelli A, Christodoulou M, Stai S, Moysidou E, Konstantouli A, Nikolaidou V, Papagianni A, Stangou M. Exhausted but Not Senescent T Lymphocytes Predominate in Lupus Nephritis Patients. Int J Mol Sci 2022; 23:ijms232213928. [PMID: 36430418 PMCID: PMC9694088 DOI: 10.3390/ijms232213928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lupus nephritis (LN), a chronic inflammatory disease, is characterized by the substantial disruption of immune homeostasis. This study examines its effects on the T lymphocyte phenotype and, particularly, its senescence- and exhaustion-related immune alterations. T cell subpopulations were determined with flow cytometry in 30 LN patients and 20 healthy controls (HCs), according to the expression of senescence- (CD45RA, CCR7, CD31, CD28, CD57), and exhaustion- (PD1) related markers. The immune phenotype was associated with disease activity and renal histology. LN patients were characterized by pronounced lymphopenia, mainly affecting the CD4 compartment, with a concurrent reduction in the naïve, central and effector memory subsets compared to the HCs. In the CD8 compartment, the naïve subsets were significantly lower than that of the HCs, but a shift in the T cells occurred towards the central memory population. CD4+PD1+ and CD8+PD1+ cells were increased in the LN patients compared to the HCs. However, in CD4 T cells, the increase was limited to CD45RA+, whereas in CD8 T cells, both CD45RA+ and CD45RA- subsets were affected. Disease activity was correlated with CD4+PD1+ and highly differentiated CD4+CD28-CD57+ cells. Histology was only associated with CD4 T cell disturbances, with stage IV presenting reduced naïve and increased senescent subsets. Exhausted T lymphocyte subpopulations predominate within LN patients, while the T cell phenotype varies depending on disease activity.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
- Correspondence:
| | - Zoi Mitsoglou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Eleni Moysidou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Afroditi Konstantouli
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, General Hospital “Hippokratio”, 54642 Thessaloniki, Greece
| |
Collapse
|
39
|
Morbidity and Mortality of Neutropenic Patients in Visceral Surgery: A Narrative Review. Cells 2022; 11:cells11203314. [PMID: 36291181 PMCID: PMC9600855 DOI: 10.3390/cells11203314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Leukocytes are essential for the function of the immune system and cell–cell interaction in the human body, but hematological diseases as well as chemotherapeutic treatments due to cancer lead to occasionally or even permanent leukocyte deficiency. Normally, more than 50% of leukocytes are neutrophilic granulocytes, and leukopenia is, therefore, mostly characterized by a decrease in neutrophilic granulocytes. The consequence of neutropenia is increased susceptibility to infection, but also healing disorders are suggestable due to the disturbed cell–cell interaction. While there is no surgical treatment for leucocyte disorders, patients suffering from neutropenia are sometimes in need of surgery for other reasons. Less is known about the morbidity and mortality of this patients, which is why this narrative review critically summarizes the results of recent research in this particular field. The results of this review suggest that neutropenic patients in need of emergency surgery have a higher mortality risk compared to non-neutropenic patients. In contrast, in elective surgery, there was not a clear tendency for a higher mortality risk of neutropenic patients. The role of neutrophilic granulocytes in inflammation and immunity in surgical patients is emphasized by the results, but most of the evaluated studies showed methodological flaws due to small sample sizes or risk of bias. Further research has to evaluate the risk for postoperative complications, particularly of infectious complications such as surgical site infections, in neutropenic patients undergoing elective surgery, and should address the role of neutrophilic function in postoperative morbidity and mortality.
Collapse
|
40
|
de Sousa Fernandes MS, Santos GCJ, Filgueira TO, Gomes DA, Barbosa EAS, dos Santos TM, Câmara NOS, Castoldi A, Souto FO. Cytokines and Immune Cells Profile in Different Tissues of Rodents Induced by Environmental Enrichment: Systematic Review. Int J Mol Sci 2022; 23:ijms231911986. [PMID: 36233282 PMCID: PMC9570198 DOI: 10.3390/ijms231911986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Environmental Enrichment (EE) is based on the promotion of socio-environmental stimuli, which mimic favorable environmental conditions for the practice of physical activity and health. The objective of the present systematic review was to evaluate the influence of EE on pro-and anti-inflammatory immune parameters, but also in cell activation related to the innate and acquired immune responses in the brain and peripheral tissues in rodents. Three databases [PubMed (2209 articles), Scopus (1154 articles), and Science Direct (1040 articles)] were researched. After applying the eligibility criteria, articles were selected for peer review, independently, as they were identified by September 2021. The protocol for this systematic review was registered in the PROSPERO. Of the 4417 articles found, 16 were selected for this systematic review. In the brain, EE promoted a reduction in proinflammatory cytokines and chemokines. In the blood, EE promoted a higher percentage of leukocytes, an increase in CD19+ B lymphocytes, and the proliferation of Natura Killer (NK cells). In the bone marrow, there was an increase in the number of CD27- and CD11b+ mature NK cells and a reduction in CD27- and CD11b+ immature Natural Killer cells. In conclusion, EE can be an immune modulation approach and plays a key role in the prevention of numerous chronic diseases, including cancer, that have a pro-inflammatory response and immunosuppressive condition as part of their pathophysiology.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Faculdade de Comunicação Turismo e Tecnologia de Olinda, Olinda 53030-010, Brazil
| | | | - Tayrine Ordonio Filgueira
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | - Dayane Aparecida Gomes
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | | | - Tony Meireles dos Santos
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Centro de Ciências da Médicas, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Departamento de Educação Física, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Núcleo de Ciências da Vida-NCV, Centro Acadêmico do Agreste—CAA, Universidade Federal de Pernambuco, Caruaru 55014-900, Brazil
| | - Fabricio Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Brazil
- Núcleo de Ciências da Vida-NCV, Centro Acadêmico do Agreste—CAA, Universidade Federal de Pernambuco, Caruaru 55014-900, Brazil
- Correspondence:
| |
Collapse
|
41
|
da Silva GB, Yamauchi MA, Bagatini MD. Oxidative stress in Hashimoto's thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem 2022; 478:949-966. [PMID: 36168075 DOI: 10.1007/s11010-022-04564-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
A number of studies have shown that oxidative stress is related to the pathogenesis of several immunological diseases, such as Hashimoto's thyroiditis (HT), although there is no plausible mechanism to explain it. Thus, we aimed at hypothesizing and providing some possible mechanisms linking oxidative stress to autoimmunity aspects and its implications for HT, as well as adjuvant therapeutic proposals to mitigate the deleterious effects. Our hypothesis is that deficient eating habits, autoimmune regulator gene predisposing gene, dysbiosis and molecular mimicry, unfolded proteins and stress in the endoplasmic reticulum, and thymus involution appear to be the main potential factors leading to HT oxidative stress. Likewise, we show that the use of minerals selenium and zinc, vitamins D and C, as well as probiotics, can be interesting adjuvant therapies for the control of oxidative damage and poor prognosis of HT. Further clinical trials are needed to understand the real beneficial and side effects of these supplements.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Milena Ayumi Yamauchi
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil
| | - Margarete Dulce Bagatini
- Post Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, 89815-899, Brazil.
| |
Collapse
|
42
|
A Water-Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8723119. [PMID: 36124017 PMCID: PMC9482487 DOI: 10.1155/2022/8723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Background The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p–NF–κB P65, IKB-α, and p-IKB-α. Conclusion PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.
Collapse
|
43
|
Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, Ji G, Wu T. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022; 153:113341. [PMID: 35785704 DOI: 10.1016/j.biopha.2022.113341] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Sphingosine 1-phosphate receptor (S1PR), as a kind of G protein-coupled receptor, has five subtypes, including S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. Sphingosine 1-phosphate receptor (S1P) and S1PR regulate the trafficking of neutrophils and some cells, which has great effects on immune systems, lung tissue, and liver tissue. Presently, many related reports have proved that S1PR has a strong effect on the migration of lymphocytes, tumor cells, neutrophils, and many other cells via the regulation of signals, pathways, and enzymes. In this way, S1PR can regulate the relative response of the organism. Thus, S1PR has become a possible target for the treatment of autoimmune diseases, pulmonary disease, liver disease, and cancer. In this review, we mainly focus on the research of the S1PR for the new therapeutic directions of different diseases and is expected to assist support in the clinic and drug use.
Collapse
Affiliation(s)
- Hongyu Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuxia Tian
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
44
|
Declercq A, Bouwmeester R, Hirschler A, Carapito C, Degroeve S, Martens L, Gabriels R. MS 2Rescore: Data-driven rescoring dramatically boosts immunopeptide identification rates. Mol Cell Proteomics 2022; 21:100266. [PMID: 35803561 PMCID: PMC9411678 DOI: 10.1016/j.mcpro.2022.100266] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Immunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MS2PIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator. However, as MS2PIP was tailored toward tryptic peptides, we have here retrained MS2PIP to include nontryptic peptides. Interestingly, the new models not only greatly improve predictions for immunopeptides but also yield further improvements for tryptic peptides. We show that the integration of new MS2PIP models, DeepLC, and Percolator in one software package, MS2Rescore, increases spectrum identification rate and unique identified peptides with 46% and 36% compared to standard Percolator rescoring at 1% FDR. Moreover, MS2Rescore also outperforms the current state-of-the-art in immunopeptide-specific identification approaches. Altogether, MS2Rescore thus allows substantially improved identification of novel epitopes from existing immunopeptidomics workflows. MS2Rescore significantly boosts immunopeptide identification rates Data-driven post-processing allows for a ten-fold increase in specificity MS2PIP and DeepLC predictors are integrated with Percolator post-processing MS2Rescore accepts identification results from MaxQuant, PEAKS, MS-GF+ and X!Tandem MS2Rescore shows great promise to extend current neo- and xeno-epitope landscapes
Collapse
Affiliation(s)
- Arthur Declercq
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS
| | - Sven Degroeve
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium.
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Belgium; Department of Biomolecular Medicine, Ghent University, Belgium
| |
Collapse
|
45
|
D'Souza LC, Dwivedi S, Raihan F, Yathisha UG, Raghu SV, Mamatha BS, Sharma A. Hsp70 overexpression in Drosophila hemocytes attenuates benzene-induced immune and developmental toxicity via regulating ROS/JNK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1723-1739. [PMID: 35301792 DOI: 10.1002/tox.23520] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Shiwangi Dwivedi
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Faiza Raihan
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Undiganalu Gangadharappa Yathisha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | | | - Bangera Sheshappa Mamatha
- Division of Food Safety and Nutrition, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| | - Anurag Sharma
- Division of Environmental Health and Toxicology, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangaluru, India
| |
Collapse
|
46
|
Kolobkov DS, Sviridova DA, Abilev SK, Kuzovlev AN, Salnikova LE. Genes and Diseases: Insights from Transcriptomics Studies. Genes (Basel) 2022; 13:genes13071168. [PMID: 35885950 PMCID: PMC9317567 DOI: 10.3390/genes13071168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023] Open
Abstract
Results of expression studies can be useful to clarify the genotype-phenotype relationship. However, according to data from recent literature, there is a large group of genes that are revealed as differentially expressed (DE) in many studies, regardless of the biological context. Additional analyses could shed more light on the relationships between genes, their differential expression, and diseases. We generated a set of 9972 disease genes from five gene-phenotype databases (OMIM, ORPHANET, DDG2P, DisGeNet and MalaCards) and a report of the International Union of Immunological Societies. To study transcriptomics of disease and non-disease genes in healthy tissues, we obtained data from the Human Protein Atlas (HPA) website. We analyzed the dependency between expression in healthy tissues and gene occurrence in Gene Expression Omnibus series using tools within the Enrichr libraries. The results of expression studies were annotated with Gene Ontology (GO) and Human Phenotype Ontology (HPO) terms. Using transcriptomics analysis of healthy tissues, we validated the previous findings of higher expression levels of disease genes in pathologically linked tissues compared to other tissues. Preferentially DE genes were generally highly expressed in one or multiple tissues and were enriched for disease genes. According to the results of GO enrichment analyses, both down- and up-regulated DE genes most often took part in immune response, translation and tissue-specific processes. A connection between DE-related pathology and the diversity of HPO terms was found. Investigating a link between expression and phenotype contributes to understanding the mode of development and progression of human diseases.
Collapse
Affiliation(s)
- Dmitry S. Kolobkov
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Darya A. Sviridova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Serikbai K. Abilev
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
| | - Artem N. Kuzovlev
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia;
| | - Lyubov E. Salnikova
- The Laboratory of Ecological Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia; (D.S.K.); (D.A.S.); (S.K.A.)
- The Laboratory of Clinical Pathophysiology of Critical Conditions, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia;
- The Laboratory of Molecular Immunology, Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
- Correspondence:
| |
Collapse
|
47
|
Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022; 184:114181. [PMID: 35278521 PMCID: PMC9035134 DOI: 10.1016/j.addr.2022.114181] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
Major progress in the understanding and treatment of cancer have tremendously improved our knowledge of this complex disease and improved the length and quality of patients' lives. Still, major challenges remain, in particular with respect to cancer metastasis which still escapes effective treatment and remains responsible for 90% of cancer related deaths. In recent years, the advances in cancer cell biology, oncology and tissue engineering converged into the engineered human tissue models of cancer that are increasingly recapitulating many aspects of cancer progression and response to drugs, in a patient-specific context. The complexity and biological fidelity of these models, as well as the specific questions they aim to investigate, vary in a very broad range. When selecting and designing these experimental models, the fundamental question is "how simple is complex enough" to accomplish a specific goal of cancer research. Here we review the state of the art in developing and using the human tissue models in cancer research and developmental drug screening. We describe the main classes of models providing different levels of biological fidelity and complexity, discuss their advantages and limitations, and propose a framework for designing an appropriate model for a given study. We close by outlining some of the current needs, opportunities and challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Kacey Ronaldson-Bouchard
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Pamela L Graney
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Maria Samaritano
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA
| | - Elisa Cimetta
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; Department of Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA; College of Dental Medicine, Columbia University, 622 West 168th Street, VC12-234, New York, NY 10032, USA.
| |
Collapse
|
48
|
Boreggio M, Rosini E, Gambarotti C, Pollegioni L, Fasoli E. Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with D-Amino Acid Oxidase. Mol Biotechnol 2022; 64:1164-1176. [PMID: 35467257 PMCID: PMC9411096 DOI: 10.1007/s12033-022-00488-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2022] [Indexed: 11/27/2022]
Abstract
The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.
Collapse
Affiliation(s)
- Marta Boreggio
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Cristian Gambarotti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varèse, Italy
| | - Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
49
|
Ahmad HI, Jabbar A, Mushtaq N, Javed Z, Hayyat MU, Bashir J, Naseeb I, Abideen ZU, Ahmad N, Chen J. Immune Tolerance vs. Immune Resistance: The Interaction Between Host and Pathogens in Infectious Diseases. Front Vet Sci 2022; 9:827407. [PMID: 35425833 PMCID: PMC9001959 DOI: 10.3389/fvets.2022.827407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system is most likely developed to reduce the harmful impact of infections on the host homeostasis. This defense approach is based on the coordinated activity of innate and adaptive immune system components, which detect and target infections for containment, killing, or expulsion by the body's defense mechanisms. These immunological processes are responsible for decreasing the pathogen burden of an infected host to maintain homeostasis that is considered to be infection resistance. Immune-driven resistance to infection is connected with a second, and probably more important, defensive mechanism: it helps to minimize the amount of dysfunction imposed on host parenchymal tissues during infection without having a direct adverse effect on pathogens. Disease tolerance is a defensive approach that relies on tissue damage control systems to prevent infections from causing harm to the host. It also uncouples immune-driven resistance mechanisms from immunopathology and disease, allowing the body to fight infection more effectively. This review discussed the cellular and molecular processes that build disease tolerance to infection and the implications of innate immunity on those systems. In addition, we discuss how symbiotic relationships with microbes and their control by particular components of innate and adaptive immunity alter disease tolerance to infection.
Collapse
Affiliation(s)
- Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, University of Veterinary and Animal Sciences, Lahore, Pakistan
- *Correspondence: Hafiz Ishfaq Ahmad
| | - Abdul Jabbar
- Department of Clinical Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Nadia Mushtaq
- Department of Biological Sciences, Faculty of Fisheries and Wildlife, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zainab Javed
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Institute of Pharmaceutical Sciences, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Javaria Bashir
- Department of Medical Sciences, Sharif Medical and Dental Hospital, Lahore, Pakistan
| | - Iqra Naseeb
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zain Ul Abideen
- Department of Zoology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Nisar Ahmad
- Department of Livestock Management, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- Jinping Chen
| |
Collapse
|
50
|
Dynamics and correlations in multiplex immune profiling reveal persistent immune inflammation in male drug users after withdrawal. Int Immunopharmacol 2022; 107:108696. [PMID: 35303506 DOI: 10.1016/j.intimp.2022.108696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/05/2022]
Abstract
Drug withdrawal elicits immune responses that contribute to the development of withdrawal symptoms and relapse. The understanding of the immunologic dynamics after drug withdrawal is limited, precluding the finding of promising immune intervention measures. Here, we performed cytokine and multiplex immune profiling in heroin, methamphetamine (METH) and ephedrine users after withdrawal and identified the correlation between cytokines and other immune parameters. We showed that broad and strong inflammatory responses occurred at the early stage after drug withdrawal, and the inflammatory responses showed a downtrend with the extension of withdrawal time. Notably, immune dysregulation remained through and may last longer than 12 months after withdrawal in heroin and METH users. Our findings suggest that cytokines, immune cells, complement and immunoglobulin form a complex immune network that regulates immune responses after withdrawal. These data provide a reference for future scientific research and drug research and development.
Collapse
|