1
|
Zhu Z, Cao S, Li H, Zhang Z, Lu Q, Li H, Shen L, Wang Z, Yang N, Yu J, Li J, Zheng M, Nie C, Tong A, Shao B. Myeloid-derived suppressor cell-targeted virus-like particles synergistically activate innate immune response for cancer immunotherapy. J Control Release 2025; 381:113603. [PMID: 40049520 DOI: 10.1016/j.jconrel.2025.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
The importance of the tumor microenvironment in dynamically modulating neoplastic process, fostering proliferation, survival and migration is now widely appreciated. Therapeutics directed to various components of tumor microenvironment, especially tumor-associated macrophages and myeloid-derived suppressor cells (MDSCs), have become an attractive avenue for cancer immunotherapy. Virus-like particles (VLPs) derived from cowpea chlorotic mottle viruses (CCMV) have been used extensively in biotechnology and are ideal platforms for the targeted delivery of therapeutic drugs for cancer immunotherapy. Here, oxidative dsDNAs, which have excellent immunostimulatory effects, are encapsulated into CCMV (CPD VLPs). CPD VLPs could be effectively taken up by macrophages and subsequently trigger Cyclic GMP-AMP synthase-stimulator of interferon genes pathway and NLRP3/Caspase-1/Gasdermin D -dependent pyroptosis pathway. To increase tumor-targeting specificity and reduce toxicity in bystander healthy tissues, peptides targeting MDSCs are conjugated to the exterior surfaces of the CPD VLPs named CPD-TP VLPs. CPD-TP VLPs can home to tumor side and induce a robust antitumor response by reprogramming tumor microenvironment. Notably, CPD-TP VLPs administration is also efficacious against lung metastasis from breast cancer. Moreover, the combination of CPD-TP VLPs with programmed cell death protein 1 (PD-1) blockade could improve therapeutic response of PD-1 antibody treatment in "immune-cold" mouse tumor models. Therefore, this study presents a novel design for VLP-based cancer vaccine.
Collapse
Affiliation(s)
- Zhixiong Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qizhong Lu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayun Yu
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan province, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Bin Shao
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Mahmoudi Gharehbaba A, Soltanmohammadi F, Vandghanooni S, Eskandani M, Adibkia K. A comprehensive review on overcoming the multifaceted challenge of cancer multidrug resistance: The emerging role of mesoporous silica nanoparticles. Biomed Pharmacother 2025; 186:118045. [PMID: 40215648 DOI: 10.1016/j.biopha.2025.118045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
Multidrug resistance (MDR) is a significant challenge in tumor treatment, severely reducing the effectiveness of anticancer drugs and contributing to high mortality rates. This article overviews the various factors involved in the development of MDR, such as changes in drug targets, increased DNA repair mechanisms, and the impact of the tumor microenvironment. It also emphasizes the potential of mesoporous silica nanoparticles (MSNs) as a drug delivery system to combat MDR. With their unique characteristics-such as a high surface area, adjustable pore sizes, and the ability to be functionalized for targeted delivery-MSNs serve as excellent carriers for the simultaneous delivery of chemotherapeutics and siRNAs aimed at reversing resistance pathways. The paper focuses on innovative methods using MSNs for direct intranuclear delivery of their cargos to overcome efflux barrier and improve the effectiveness of combination therapies. This review highlights a promising approach for enhancing cancer treatment outcomes by integrating advanced nanotechnology with traditional therapies, addressing the ongoing challenge of MDR in oncology.
Collapse
Affiliation(s)
- Adel Mahmoudi Gharehbaba
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soltanmohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Khosro Adibkia
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Aakel N, Mohammed R, Fathima A, Kerzabi R, Abdallah A, Ibrahim WN. Role of Exosome in Solid Cancer Progression and Its Potential Therapeutics in Cancer Treatment. Cancer Med 2025; 14:e70941. [PMID: 40344389 PMCID: PMC12063069 DOI: 10.1002/cam4.70941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Exosomes are extracellular vesicles ranging from 40 to 100 nm in diameter that mediate intercellular communication by transferring proteins, lipids, nucleic acids, and other metabolites. In the context of cancer, exosomes influence the tumor microenvironment by carrying regulatory RNAs such as miRNA, circRNA, and lncRNA. They originate from various cells, including adipocytes, fibroblasts, and hepatocellular carcinoma (HCC) cells, and can either promote or inhibit cancer progression through pathways like MAPK and PI3K-Akt. AIM This review aims to explore the role of exosomes in the progression of solid cancers, emphasizing their self-induced activation mechanisms and how they modulate tumor behavior. METHODOLOGY A comprehensive review of recent literature was conducted, focusing on studies that investigated the biological functions of exosomes in solid tumor progression, including their molecular cargo, cellular origin, and involvement in signaling pathways. RESULTS Findings from multiple studies indicate that cancer-derived exosomes contribute to tumor proliferation, metastasis, and therapy resistance by enhancing communication within the tumor microenvironment. These vesicles activate oncogenic pathways and can serve as biomarkers or therapeutic targets due to their role in disease modulation. CONCLUSION Exosomes play a pivotal role in solid cancer progression and offer significant potential in advancing our understanding of tumor biology. Their capacity to influence key signaling pathways and facilitate intercellular communication makes them promising candidates for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Nada Aakel
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rawdhah Mohammed
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Assela Fathima
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Rabia Kerzabi
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Atiyeh Abdallah
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical ScienceCollege of Health Sciences, QU Health, Qatar UniversityDohaQatar
| |
Collapse
|
4
|
Chen X, Zhong X, Zhang F, Zhou X, Yue X, Li X. Molecular mechanisms and therapeutic targets in glioblastoma multiforme: network and single-cell analyses. Sci Rep 2025; 15:10558. [PMID: 40148380 PMCID: PMC11950307 DOI: 10.1038/s41598-025-92867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor associated with poor survival outcomes and is driven by a complex tumor microenvironment (TME) that promotes tumor progression and treatment resistance. To explore the role of the TME in GBM, we analyzed glioma-related microarray and single-cell RNA sequencing (scRNA-seq) datasets from the Gene Expression Omnibus (GEO). Functional enrichment and weighted gene coexpression network analyses revealed distinct immune profiles, metabolic alterations, and differences in chemotherapeutic drug sensitivity between the high-risk and low-risk patient groups. scRNA-seq data processed with the 'Seurat' package were used to identify differentially expressed genes in pericytes, endothelial cells, and glioma cells, particularly those involved in extracellular matrix (ECM) remodeling. A 17-gene prognostic signature developed through Cox regression and LASSO analyses revealed that key genes (COL1A1, COL4A1, and VIM) were significantly associated with survival outcomes in GBM patients. Drug sensitivity analyses using data from the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) identified potential targeted therapies for GBM, including SB-505,124, staurosporine, and AZD8186. This integrative study underscores the critical roles of the ECM and synaptic remodeling in GBM and suggests novel therapeutic targets to improve personalized treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Zhong
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Zhang
- Department of Blood Transfusion, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610021, Sichuan, China
| | - Xiaomei Zhou
- Sichuan Provincial Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Xueru Li
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Santibanez JF. Myeloid-Derived Suppressor Cells: Implications in Cancer Immunology and Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:25203. [PMID: 40152373 DOI: 10.31083/fbl25203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 03/29/2025]
Abstract
Myeloid-derived suppressor cells (MDSCs) are believed to be key promoters of tumor development and are recognized as a hallmark of cancer cells' ability to evade the immune system evasion. MDSC levels often increase in peripheral blood and the tumor microenvironment (TME). These cells exert immunosuppressive functions, weakening the anticancer immune surveillance system, in part by repressing T-cell immunity. Moreover, MDSCs may promote tumor progression and interact with cancer cells, increasing MDSC expansion and favoring an immunotolerant TME. This review analyzes the primary roles of MDSCs in cancer and T-cell immunity, discusses the urgent need to develop effective MDSC-targeted therapies, and highlights the potential synergistic combination of MDSC targeting with chimeric antigen receptors and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, 8370993 Santiago, Chile
| |
Collapse
|
6
|
Kang N, Ge W, Hu J, Zhao Y, Zheng H, Lu X. Cancer-associated fibroblasts derived-exosomal circ_0076535 promotes esophageal squamous cell carcinoma progression. Technol Health Care 2025; 33:1088-1098. [PMID: 40105157 DOI: 10.1177/09287329241291432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
BackgroundEsophageal cancer (EC) is a common malignant tumor of the digestive tract and an important health-related problem in many developing countries. Esophageal squamous cell carcinoma (ESCC) is the most common subtype of EC. The cancer-associated fibroblasts (CAFs) are the major stromal cells in ESCC microenvironment. They play important role in ESCC proliferation, metastasis, angiogenesis and chemotherapy resistance through paracrine processes. However, the roles of circRNAs enriched in CAF-derived exosmes have not been reported.ObjectiveTo explore the mechanisms of how CAF affects ESCC proliferation and metastasis through paracrine processes and to investigate the role of circRNAs enriched in CAF-derived exosomes.MethodsExosomes were isolated from the conditional medium of CAF using differential ultracentrifugation, and then validated by Nanosight analysis. Exosome secretion inhibitor-GW4869 validates the pro-carcinogenic role of exosomes. The qRT-PCR showed the highest expression of circ_0076535 in the exosomal CircRNA, and knockdown of it confirmed its function. Online bioinformatics tool was utilized to predict the potential target gene of circ_0076535, and captured miR-145-5p as the target gene with high predictive value. The targeting association between miR-145-5p and circ_0076535 is further confirmed by the dual luciferase reporter experiment. The stimulation of tumour development and EMT by the CAF-derived exosome circ_0076535 is further validated in vivo.ResultsIn our research, we found that CAF-derived exosomes increased proliferation, migration, invasion and EMT in ESCC cells. Circ_0076535 was highly enriched in CAF-exosomes and transferred into ESCC cells directly depend on internalization of exosomes. CAF-exosomal circ_0076535 increased the level of circ_0076535 in ESCC cells and induced EMT. Mechanistic experiments revealed circ_0076535 acted as a sponge to absorb miR-145-5p and activated NF-κB signaling pathway.Conclusions: Conclusively, CAF-exosomal circ_0076535 promoted the ESCC progression via miR-145-5p/NF-κB axis and expected to be a potential biomarker for early diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Ningning Kang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Ge
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinxiu Hu
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuan Zhao
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Zheng
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuan Lu
- School of Biology and Food Engineering, Hefei Normal University, Hefei, China
| |
Collapse
|
7
|
Zhang X, Chen Y, Liu X, Li G, Zhang S, Zhang Q, Cui Z, Qin M, Simon HU, Terzić J, Kocic G, Polić B, Yin C, Li X, Zheng T, Liu B, Zhu Y. STING in cancer immunoediting: Modeling tumor-immune dynamics throughout cancer development. Cancer Lett 2025; 612:217410. [PMID: 39826670 DOI: 10.1016/j.canlet.2024.217410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Cancer immunoediting is a dynamic process of tumor-immune system interaction that plays a critical role in cancer development and progression. Recent studies have highlighted the importance of innate signaling pathways possessed by both cancer cells and immune cells in this process. The STING molecule, a pivotal innate immune signaling molecule, mediates DNA-triggered immune responses in both cancer cells and immune cells, modulating the anti-tumor immune response and shaping the efficacy of immunotherapy. Emerging evidence has shown that the activation of STING signaling has dual opposing effects in cancer progression, simultaneously provoking and restricting anti-tumor immunity, and participating in every phase of cancer immunoediting, including immune elimination, equilibrium, and escape. In this review, we elucidate the roles of STING in the process of cancer immunoediting and discuss the dichotomous effects of STING agonists in the cancer immunotherapy response or resistance. A profound understanding of the sophisticated roles of STING signaling pathway in cancer immunoediting would potentially inspire the development of novel cancer therapeutic approaches and overcome the undesirable protumor effects of STING activation.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yan Chen
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Xi Liu
- Department of Cardiology, ordos central hospital, Ordos, People's Republic of China
| | - Guoli Li
- Department of Colorectal and Anal Surgery, Chifeng Municipal Hospital, Chifeng Clinical Medical School of Inner Mongolia Medical University, Chifeng, People's Republic of China
| | - Shuo Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China
| | - Qi Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Zihan Cui
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Minglu Qin
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland; Institute of Biochemistry, Brandenburg Medical School, Neuruppin, 16816, Germany
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, 18000 Nis, Serbia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Croatia
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, People's Republic of China.
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; School of Stomatology, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Yuanyuan Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, People's Republic of China; Department of Pathology, Harbin Medical University, Harbin, 150081, People's Republic of China.
| |
Collapse
|
8
|
Zheng Y, Shi J. EFNB1 drives glioma progression and shapes the immune microenvironment: a potential prognostic biomarker. Discov Oncol 2025; 16:249. [PMID: 40014231 PMCID: PMC11868007 DOI: 10.1007/s12672-025-01867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Gliomas, a heterogeneous group of tumors affecting the brain and spinal cord, present a significant clinical challenge. Ephrin B1 (EFNB1) has been implicated in various malignancies. However, its role in gliomas remained poorly understood. Hence, this study aimed to elucidate the connection between EFNB1 and the progression of glioma. A retrospective RNA-seq analysis was conducted by utilizing the data from glioma patients in the TCGA and CGGA databases. Kaplan-Meier survival analysis and multivariate regression models were employed to evaluate the prognostic significance of EFNB1. RT-PCR was used to quantify EFNB1 expression in glioma tissues and cell lines. Meanwhile, in vitro assays were carried out to assess its functional roles in glioma cells. Our findings demonstrated that EFNB1 expression was significantly elevated in gliomas and other cancers. Moreover, high EFNB1 expression was closely correlated with advanced clinical stages and poor prognosis. Notably, multivariate analysis identified EFNB1 as an independent prognostic factor for overall survival. KEGG pathway analysis suggested that EFNB1 was involved in critical biological processes, including the cell cycle, protein processing in the endoplasmic reticulum, Epstein-Barr virus infection, and Salmonella infection. Furthermore, EFNB1 expression was associated with immune cell infiltration, particularly Th2 cells, macrophages, and plasmacytoid dendritic cells. In glioma cells, EFNB1 expression was markedly increased. Consequently, functional experiments demonstrated that EFNB1 knockdown inhibited glioma cell proliferation, invasion, and migration. These results highlighted EFNB1 as a novel independent prognostic biomarker and suggest its potential role in shaping the immunological microenvironment of gliomas.
Collapse
Affiliation(s)
- Yungui Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, China
| | - Jiasong Shi
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, China.
| |
Collapse
|
9
|
Dalpati N, Rai SK, Sharma P, Sarangi PP. Integrins and integrin-driven secretory pathways as multi-dimensional regulators of tumor-associated macrophage recruitment and reprogramming in tumor microenvironment. Matrix Biol 2025; 135:55-69. [PMID: 39645091 DOI: 10.1016/j.matbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Integrins, a group of transmembrane receptors, play a crucial role in mediating the interactions between cells and extracellular matrix (ECM) proteins. The intracellular signaling initiated by these cell-matrix interactions in leukocytes mediates many essential cellular processes such as survival, migration, metabolism, and other immunological functions. Macrophages, as phagocytes, participate in both proinflammatory and anti-inflammatory processes, including progression. Numerous reports have shown that the integrin-regulated secretome, comprising cytokines, chemokines, growth factors, proteases, and other bioactive molecules, is a crucial modulator of macrophage functions in tumors, significantly influencing macrophage programming and reprogramming within the tumor microenvironment (TME) in addition to driving their step-by-step entry process into tumor tissue spaces. Importantly, studies have demonstrated a pivotal role for integrin receptor-mediated secretome and associated signaling pathways in functional reprogramming from anti-tumorigenic to pro-tumorigenic phenotype in tumor-associated macrophages (TAMs). In this comprehensive review, we have provided an in-depth analysis of the latest findings of various key pathways, mediators, and signaling cascades associated with integrin-driven polarization of macrophages in tumors. This manuscript will provide an updated understanding of the modulation of inflammatory monocytes/ macrophages and TAMs by integrin-driven secretory pathways in various functions such as migration, differentiation, and their role in tumor progression, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Nibedita Dalpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Prerna Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
10
|
Yuan J, Jiang Y, Chen F, Li T, Zeng Z, Ruan S, Yan J, Lu J, Li Q, Yuan J, Tong Q. Clinical implications of DNA ploidy, stroma, and nucleotyping in predicting peritoneal metastasis risk for gastric cancer. BMC Cancer 2025; 25:144. [PMID: 39863844 PMCID: PMC11762900 DOI: 10.1186/s12885-025-13564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis. METHODS A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital. Tumor tissues were sectioned and stained. DNA ploidy, stroma, and nucleotyping were quantified using microscopy and digital analysis software. Data analysis was employed by Pearson Chi-square, continuous correction Chi-square, and binary logistic regression. RESULTS Using both univariate and multivariate analysis, pathological T stage and nucleotyping exhibited a positive correlation with peritoneal metastasis. DNA ploidy and stroma showed a positive correlation in univariate analysis. Chi-square tests demonstrated a positive correlation of DNA ploidy, stroma, and nucleotyping with peritoneal metastasis. The combined application of these three indicators displayed heightened predictive value for peritoneal metastasis. Non-diploid status, high stroma, and chromosomal heterogeneity emerged as positive factors for peritoneal metastasis in gastric cancer. CONCLUSIONS DNA ploidy, stroma, and nucleotyping prove to be predictive factors for peritoneal metastasis, with enhanced predictive efficacy when combined in pairs.
Collapse
Affiliation(s)
- Jingwen Yuan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Colorectal Surgery Department, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yue Jiang
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Fangfang Chen
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin, 300100, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, The First Clinical College of Wuhan University, Wuhan, 430060, Hubei, China
| | - Junfeng Yan
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiatong Lu
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qiang Li
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qiang Tong
- Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
11
|
Rubí-Sans G, Nyga A, Mateos-Timoneda MA, Engel E. Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts. BIOMATERIALS ADVANCES 2025; 166:214061. [PMID: 39406156 DOI: 10.1016/j.bioadv.2024.214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 11/13/2024]
Abstract
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex three-dimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain.
| |
Collapse
|
12
|
Zhang N, Haizhen Z, Zhang R, Li X. Machine learning-based selection of immune cell markers in osteosarcoma: prognostic determination and validation of CLK1 in disease progression. Front Immunol 2024; 15:1468875. [PMID: 39742274 PMCID: PMC11685004 DOI: 10.3389/fimmu.2024.1468875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Osteosarcoma (OS) is a malignancy of the bone that mainly afflicts younger individuals. Despite existing treatment approaches, patients with metastatic or recurrent disease generally face poor prognoses. A greater understanding of the tumor microenvironment (TME) is critical for enhancing outcomes in OS patients. Methods The clinical and RNA expression data of OS patients were extracted from the TARGET database. The single-cell RNA sequencing (scRNA-seq) data of 11 OS samples was retrieved from the GEO database, and analyzed using the Seurat package of R software. Copy number variation (CNV) was analyzed using the InferCNV software. The potential interactions between the different cells in the TME was analyzed with the CellChat package. A multi-algorithm-based computing framework was used to calculate the tumor-infiltrating immune cell (TIIC) scores. A prognostic model was constructed using 20 machine learning algorithms. Maftools R package was used to characterize the genomic variation landscapes in the patient groups stratified by TIIC score. The human OS cell lines MG63 and U2OS were used for the functional assays. Cell proliferation and migration were analyzed by the EdU assay and Transwell assay respectively. CLK1 protein expression was measured by immunoblotting. Results We observed higher CNV in the OS cells compared to endothelial cells. In addition, there was distinct transcriptional heterogeneity across the OS cells, and cluster 1 was identified as the terminal differentiation state. S100A1, TMSB4X, and SLPI were the three most significantly altered genes along with the pseudo-time trajectory. Cell communication analysis revealed an intricate network between S100A1+ tumor cells and other TME cells. Cluster 1 exhibited significantly higher aggressiveness features, which correlated with worse clinical outcomes. A prognostic model was developed based on TIIC-related genes that were screened using machine learning algorithms, and validated in multiple datasets. Higher TIIC signature score was associated with lower cytotoxic immune cell infiltration and generally inferior immune response and survival rate. Moreover, TIIC signature score was further validated in the datasets of other cancers. CLK1 was identified as a potential oncogene that promotes the proliferation and migration OS cells. Conclusion A TIIC-based gene signature was developed that effectively predicted the prognosis of OS patients, and was significantly associated with immune infiltration and immune response. Moreover, CLK1 was identified as an oncogene and potential therapeutic target for OS.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology, Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Zhou Haizhen
- Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Runqi Zhang
- Pathology Teaching and Research Office, Xi’an Medicine College, Xi’an, Shaanxi, China
| | - Xiaoju Li
- Department of Pathology, Honghui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Li Y, Sun W, Yuan S, Liu X, Zhang Z, Gu R, Li P, Gu X. The role of cuproptosis in gastric cancer. Front Immunol 2024; 15:1435651. [PMID: 39539553 PMCID: PMC11558255 DOI: 10.3389/fimmu.2024.1435651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
As a biologically essential transition metal, copper is widely involved in various enzymatic reactions and crucial biological processes in the body. It plays an increasingly important role in maintaining normal cellular metabolism and supporting the growth and development of the human body. As a trace element, copper maintains the dynamic balance of its concentration in body fluids through active homeostatic mechanisms. Both excess and deficiency of copper ions can impair cell function, ultimately leading to cell damage and death. Cuproptosis is a novel form of cell death where copper ions cause cell death by directly binding to the lipoylated components of the citric acid cycle (CAC) in mitochondrial respiration and interfering with the levels of iron-sulfur cluster (Fe-S cluster) proteins, ultimately causing protein toxic stress. Its primary characteristics are Cu2+ concentration dependence and high expression in mitochondrial respiratory cells. Recent research has revealed that, compared to other forms of programmed cell death such as apoptosis, necrosis, and autophagy, cuproptosis has unique morphological and biochemical features. Cuproptosis is associated with the occurrence and development of various diseases, including cancer, neurodegenerative diseases, and cardiovascular diseases. This article focuses on a review of the relevance of cuproptosis in gastric cancer (GC).
Collapse
Affiliation(s)
- Yixian Li
- Nanjing University of Chinese Medicine, the First Clinical Medical College, Nanjing, Jiangsu, China
| | - Wenhao Sun
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Shaolin Yuan
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Xinxin Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine Jiangsu Province, Nanjing, Jiangsu, China
| | - Ziqi Zhang
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Renjun Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pengfei Li
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
15
|
Zheng K, Li M. Predicting Survival Signature of Bladder Cancer Related to Cancer-Associated Fibroblast (CAF) Constructed by Intersecting Genes in TCGA and GEO. Mol Biotechnol 2024; 66:2532-2547. [PMID: 37749482 DOI: 10.1007/s12033-023-00892-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Bladder cancer was one of the most common carcinomas around the world. However, the mechanism of the disease still remained to be investigated. We expected to establish a prognostic survival model with 9 prognostic genes to predict overall survival (OS) in patients of bladder cancer. The gene expression data of bladder cancer were obtained from TCGA and GEO datasets. TCGA and GEO datasets were used for screening prognostic genes along with developing and validating a 9-gene prognostic survival model by method of weighted gene co-expression network analysis (WGCNA) and LASSO with Cox regression. The relative analysis of evaluate tumor burden mutation (TBM), GO, KEGG, chemotherapy drug and functional pathway were also performed based on CAF-related mRNAs. 151 Overlapping CAF-related genes were distinguished after intersecting differentially expressed genes from 945 genes in TCGA and 491 genes in GEO dataset. 9 Prognostic genes (MSRB2, AGMAT, KLF6, DDAH2, GADD45B, SERPINE2, STMN3, TEAD2, and COMP) were used for construction of prognostic model after LASSO with Cox regression. Receiver operating characteristic (ROC) curves showed a good survival prediction by this model. Functional analysis indicated chemokine, cytokine, ECM interaction, oxidative stress and apoptosis were highly appeared. Potential drugs targeted different CAF-related genes like vemurafenib, irofulven, ghiotepa, and idarubicin were found as well. We constructed a novel 9 CAF-related mRNAs prognostic model and explored the gene expression and potential functional information of related genes, which might be worthy of clinical application. In addition, potential chemotherapy drugs could provide useful insights into the potential clinical treatment of bladder cancer.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Mengting Li
- Department of Gastroenterology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
17
|
Xue K, Li J, Huang R. The immunoregulatory role of gut microbiota in the incidence, progression, and therapy of breast cancer. Front Cell Infect Microbiol 2024; 14:1411249. [PMID: 39035351 PMCID: PMC11257971 DOI: 10.3389/fcimb.2024.1411249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Breast cancer (BrCa) is the most prevalent malignant tumor in women and one of the leading causes of female mortality. Its occurrence and progression are influenced by various factors, including genetics, environment, lifestyle, and hormones. In recent years, the gut microbiota has been identified as a significant factor affecting BrCa. The gut microbiota refers to the collective population of various microorganisms in the human gastrointestinal tract. Gut microbiota is closely associated with human health and disease development, participating in crucial physiological functions such as digestion, metabolism, immune response, and neural regulation. It has been found to influence the occurrence and treatment of BrCa through a variety of mechanisms. This article aims to review the immunomodulatory role of the gut microbiota in the development and treatment of BrCa.
Collapse
Affiliation(s)
| | | | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Gao P, Li H, Qiao Y, Nie J, Cheng S, Tang G, Dai X, Cheng H. A cuproptosis-related gene DLAT as a novel prognostic marker and its relevance to immune infiltration in low-grade gliomas. Heliyon 2024; 10:e32270. [PMID: 38961981 PMCID: PMC11219321 DOI: 10.1016/j.heliyon.2024.e32270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
DLAT has been recognized as a cuproptosis-related gene that is crucial for cuproptosis in earlier research. The study is to look at how DLAT affects individuals with low-grade glioma's prognosis and immune infiltration. The Genotype-Tissue Expression (GTEx) database and the TCGA database were used in this work to download RNAseq data in TPM format. DLAT was found to be overexpressed in LGG by comparing DLAT expression levels between LGG and normal brain tissue, and the expression of DLAT was verified by immunohistochemistry and semi-quantitative analysis. Then, the functional enrichment analysis revealed that the biological functional pathways and possible signal transduction pathways involved were primarily focused on extracellular matrix organization, transmembrane transporter complex, ion channel complex, channel activity, neuroactive ligand-receptor interaction, complement and coagulation cascades, and channel activity. The level of immune cell infiltration by plasmacytoid dendritic cells and CD8 T cells was subsequently evaluated using single-sample gene set enrichment analysis, which showed that high DLAT expression was inversely connected with that level of infiltration. The link between the methylation and mRNA transcription of DLAT was then further investigated via the MethSurv database, and the results showed that DLAT's hypomethylation status was linked to a poor outcome. Finally, by evaluating the prognostic value of DLAT using the Cox regression analysis and Kaplan-Meier technique, a column line graph was created to forecast the overall survival (OS) rate at 1, 3, and 5 years after LGG identification. The aforementioned results demonstrated that high DLAT expression significantly decreased OS and DSS, and that overexpression of DLAT in LGG was significantly linked with WHO grade, IDH status, primary therapy outcome, overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) events. DLAT was discovered as a separate predictive sign of OS in the end. DLAT might thus represent a brand-new predictive biomarker.
Collapse
Affiliation(s)
- Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Huaixu Li
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Yang Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jianyu Nie
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Sheng Cheng
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230022, PR China
| | - Guozhang Tang
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University, Hefei, 230022, PR China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, PR China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| |
Collapse
|
19
|
Xiao Y, Wang Z, Gu M, Wei P, Wang X, Li W. Cancer-associated fibroblasts: heterogeneity and their role in the tumor immune response. Clin Exp Med 2024; 24:126. [PMID: 38864912 PMCID: PMC11169017 DOI: 10.1007/s10238-024-01375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
In recent decades, many reports have been published on the composition and function of the tumor microenvironment (TME), among which cancer-associated fibroblasts (CAFs) have received much attention. CAFs have different degrees of heterogeneity in terms of their origin, phenotype, and function and can be divided into different subpopulations. These subgroups may play different roles in the occurrence and development of tumors. In addition, CAFs are closely associated with tumor immunity and have been found to regulate immune cell activity and to suppress the tumor immune response. In this review, we systematize the heterogeneity and characteristics of CAFs, discuss how specific CAF subgroups contribute to cancer progression by inducing an immunosuppressive microenvironment, and finally, we examine the future clinical applications of CAF subgroups.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaojue Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weiying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.
| |
Collapse
|
20
|
Tian P, Wei J, Li J, Ren J, He C. Cancer-Associated Fibroblasts Boost Tumorigenesis of Clear Cell Renal Cell Carcinoma via Exosome-Mediated Paracrine SNHG1. Biochem Genet 2024; 62:2033-2048. [PMID: 37815626 DOI: 10.1007/s10528-023-10512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Despite the dominant roles of cancer-associated fibroblasts (CAFs) have attached much attention in tumorigenesis, the CAFs-derived molecular determinants that regulate renal cell carcinoma (RCC) development remains elusive. Our previous study uncovered an oncogenic SNHG1 in the immune escape of RCC, whereas CAFs-derived exosomes could be a source accounting for increasing SNHG1 in RCC cells, this is still a mystery. The obtained CAFs and normal fibroblast (NFs) from fresh RCC and adjacent tissues were firstly identified using western blot and immunofluorescent staining. The enrichment of SNHG1 was validated by RT-qPCR. CAFs-derived exosomes were isolated from conditioned medium using ultracentrifugation method and ExoQuick-TC system. The internalization of exosomes, transfer of SNHG1, was measured by immunofluorescence. Regulation of conditioned medium or exosomal SNHG1 from CAFs on RCC biological functions was evaluated by CCK-8, EdU incorporation, colony formation, and transwell assays to assess the RCC cell proliferation, migration, and invasion. SNHG1 was significantly upregulated in CAFs isolated from RCC stroma. Exosomes derived from CAFs transferred SNHG1 to RCC cells and resulted in an increased SNHG1 expression in RCC cells. The exosomes excreted by CAFs promoted RCC cell proliferation, migration, and invasion, whereas the promotion effect of CAFs-exosomes on RCC progression was attenuated by SNHG1 knockdown. The present study revealed a new mechanism of exosomal SNHG1 extracted from CAFs enhanced RCC progression and may provide a potential target for the treatment of RCC.
Collapse
Affiliation(s)
- Pei Tian
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Jinxing Wei
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Jing Li
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Junkai Ren
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China
| | - Chaohong He
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, People's Republic of China.
| |
Collapse
|
21
|
Xin H, Chen Y, Niu H, Li X, Gai X, Cui G. Integrated Analysis Construct a Tumor-Associated Macrophage Novel Signature with Promising Implications in Predicting the Prognosis and Immunotherapeutic Response of Gastric Cancer Patients. Dig Dis Sci 2024; 69:2055-2073. [PMID: 38573378 DOI: 10.1007/s10620-024-08365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Gastric cancer (GC) remains one of the most prevalent malignant tumors worldwide. At present, tumor-associated macrophages (TAMs) are essential in the progression, metastasis, and drug resistance of tumors. Therefore, TAMs can be a crucial target for tumor treatment. AIMS We intended to investigate the TAM characteristics in GC and develop a risk signature based on TAM to predict the prognosis of GC patients. METHODS The single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data were acquired from a publicly available database. We utilized the Seurat pipeline to process the scRNA-seq data and determine TAM cell types using marker genes. Univariate Cox regression analysis was utilized to examine TAM-related prognostic genes, and then we employed Lasso-Cox regression analysis, and Multivariate Cox regression analysis established a novel risk profile to forecast the clinical value of the model with a new nomogram combining risk profiles and clinicopathological characteristics. RESULTS The current study employed scRNA-seq data to identify five TAM clusters in GC, among which four were significantly associated with GC prognosis. Accordingly, we further developed a TAM-related risk signature utilizing nine genes. After evaluation, our model accurately predicted the prognosis of gastric cancer. Generally, GC patients with low TAMS scores exhibited a more favorable prognosis, greater benefits from immunotherapy, and higher levels of immune cell infiltration. CONCLUSIONS The prognosis of GC can be effectively predicted by TAM-based risk signatures, and the signature may provide a new perspective for comprehensively guiding clinical diagnosis, prediction, and immunotherapy for gastric cancer.
Collapse
Affiliation(s)
- Hua Xin
- Laboratory Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Yu Chen
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Honglin Niu
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Xuebin Li
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Xuejie Gai
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China
| | - Guoli Cui
- Laboratory Medicine, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China.
- Clinical Medicine Department, Jiamusi University, Jiamusi, 154000, Heilongjiang Province, China.
| |
Collapse
|
22
|
Li S, Zhao J, Wang G, Yao Q, Leng Z, Liu Q, Jiang J, Wang W. Based on scRNA-seq and bulk RNA-seq to establish tumor immune microenvironment-associated signature of skin melanoma and predict immunotherapy response. Arch Dermatol Res 2024; 316:262. [PMID: 38795156 DOI: 10.1007/s00403-024-03080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 10/28/2023] [Accepted: 04/26/2024] [Indexed: 05/27/2024]
Abstract
Skin cutaneous melanoma (SKCM), a form of skin cancer, ranks among the most formidable and lethal malignancies. Exploring tumor microenvironment (TME)-based prognostic indicators would help improve the efficacy of immunotherapy for SKCM patients. This study analyzed SKCM scRNA-seq data to cluster non-malignant cells that could be used to explore the TME into nine immune/stromal cell types, including B cells, CD4 T cells, CD8 T cells, dendritic cells, endothelial cells, Fibroblasts, macrophages, neurons, and natural killer (NK) cells. Using data from The Cancer Genome Atlas (TCGA), we employed SKCM expression profiling to identify differentially expressed immune-associated genes (DEIAGs), which were then incorporated into weighted gene co-expression network analysis (WGCNA) to investigate TME-associated hub genes. Discover candidate small molecule drugs based on pivotal genes. Tumor immune microenvironment-associated genes (TIMAGs) for constructing TIMAS were identified and validated. Finally, the characteristics of TIAMS subgroups and the ability of TIMAS to predict immunotherapy outcomes were analyzed. We identified five TIMAGs (CD86, CD80, SEMA4D, C1QA, and IRF1) and used them to construct TIMAS. In addition, five potential SKCM drugs were identified. The results showed that TIMAS-low patients were associated with immune-related signaling pathways, high MUC16 mutation frequency, high T cell infiltration, and M1 macrophages, and were more favorable for immunotherapy. Collectively, TIMAS constructed by comprehensive analysis of scRNA-seq and bulk RNA-seq data is a promising marker for predicting ICI treatment outcomes and improving individualized therapy for SKCM patients.
Collapse
Affiliation(s)
- Shanshan Li
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Junjie Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Guangyu Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhe Leng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qinglei Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jun Jiang
- Department of Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
23
|
Czekay RP, Higgins CE, Aydin HB, Samarakoon R, Subasi NB, Higgins SP, Lee H, Higgins PJ. SERPINE1: Role in Cholangiocarcinoma Progression and a Therapeutic Target in the Desmoplastic Microenvironment. Cells 2024; 13:796. [PMID: 38786020 PMCID: PMC11119900 DOI: 10.3390/cells13100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A heterogenous population of inflammatory elements, other immune and nonimmune cells and cancer-associated fibroblasts (CAFs) are evident in solid malignancies where they coexist with the growing tumor mass. In highly desmoplastic malignancies, CAFs are the prominent mesenchymal cell type in the tumor microenvironment (TME), where their presence and abundance signal a poor prognosis. CAFs play a major role in the progression of various cancers by remodeling the supporting stroma into a dense, fibrotic matrix while secreting factors that promote the maintenance of cancer stem-like characteristics, tumor cell survival, aggressive growth and metastasis and reduced sensitivity to chemotherapeutics. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Identifying the molecular underpinnings for such multidirectional crosstalk among the various normal and neoplastic cell types in the TME may provide new targets and novel opportunities for therapeutic intervention. This review highlights recent concepts regarding the complexity of CAF biology in cholangiocarcinoma, a highly desmoplastic cancer. The discussion focuses on CAF heterogeneity, functionality in drug resistance, contributions to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
Affiliation(s)
- Ralf-Peter Czekay
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Craig E. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Hasan Basri Aydin
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Rohan Samarakoon
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Nusret Bekir Subasi
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Stephen P. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Hwajeong Lee
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| |
Collapse
|
24
|
Tang L, Xu H, Wu T, Wu W, Lu Y, Gu J, Wang X, Zhou M, Chen Q, Sun X, Cai H. Advances in tumor microenvironment and underlying molecular mechanisms of bladder cancer: a systematic review. Discov Oncol 2024; 15:111. [PMID: 38602556 PMCID: PMC11009183 DOI: 10.1007/s12672-024-00902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/21/2024] [Indexed: 04/12/2024] Open
Abstract
Bladder cancer is one of the most frequent malignant tumors of the urinary system. The prevalence of bladder cancer among men and women is roughly 5:2, and both its incidence and death have been rising steadily over the past few years. At the moment, metastasis and recurrence of advanced bladder cancer-which are believed to be connected to the malfunction of multigene and multilevel cell signaling network-remain the leading causes of bladder cancer-related death. The therapeutic treatment of bladder cancer will be greatly aided by the elucidation of these mechanisms. New concepts for the treatment of bladder cancer have been made possible by the advancement of research technologies and a number of new treatment options, including immunotherapy and targeted therapy. In this paper, we will extensively review the development of the tumor microenvironment and the possible molecular mechanisms of bladder cancer.
Collapse
Affiliation(s)
- Liu Tang
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Tong Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Wenhao Wu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Yuhao Lu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Jijia Gu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China
| | - Xiaoling Wang
- Department of Urology, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Mei Zhou
- Department of Nursing, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Qiuyang Chen
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Xuan Sun
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, Jiangsu, China.
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| |
Collapse
|
25
|
Choi JY, Seok HJ, Lee DH, Lee E, Kim TJ, Bae S, Shin I, Bae IH. Tumor-derived miR-6794-5p enhances cancer growth by promoting M2 macrophage polarization. Cell Commun Signal 2024; 22:190. [PMID: 38521953 PMCID: PMC10960442 DOI: 10.1186/s12964-024-01570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Solid tumors promote tumor malignancy through interaction with the tumor microenvironment, resulting in difficulties in tumor treatment. Therefore, it is necessary to understand the communication between cells in the tumor and the surrounding microenvironment. Our previous study revealed the cancer malignancy mechanism of Bcl-w overexpressed in solid tumors, but no study was conducted on its relationship with immune cells in the tumor microenvironment. In this study, we sought to discover key factors in exosomes secreted from tumors overexpressing Bcl-w and analyze the interaction with the surrounding tumor microenvironment to identify the causes of tumor malignancy. METHODS To analyze factors affecting the tumor microenvironment, a miRNA array was performed using exosomes derived from cancer cells overexpressing Bcl-w. The discovered miRNA, miR-6794-5p, was overexpressed and the tumorigenicity mechanism was confirmed using qRT-PCR, Western blot, invasion, wound healing, and sphere formation ability analysis. In addition, luciferase activity and Ago2-RNA immunoprecipitation assays were used to study the mechanism between miR-6794-5p and its target gene SOCS1. To confirm the interaction between macrophages and tumor-derived miR-6794-5p, co-culture was performed using conditioned media. Additionally, immunohistochemical (IHC) staining and flow cytometry were performed to analyze macrophages in the tumor tissues of experimental animals. RESULTS MiR-6794-5p, which is highly expressed in exosomes secreted from Bcl-w-overexpressing cells, was selected, and it was shown that the overexpression of miR-6794-5p increased migratory ability, invasiveness, and stemness maintenance by suppressing the expression of the tumor suppressor SOCS1. Additionally, tumor-derived miR-6794-5p was delivered to THP-1-derived macrophages and induced M2 polarization by activating the JAK1/STAT3 pathway. Moreover, IL-10 secreted from M2 macrophages increased tumorigenicity by creating an immunosuppressive environment. The in vitro results were reconfirmed by confirming an increase in M2 macrophages and a decrease in M1 macrophages and CD8+ T cells when overexpressing miR-6794-5p in an animal model. CONCLUSIONS In this study, we identified changes in the tumor microenvironment caused by miR-6794-5p. Our study indicates that tumor-derived miR-6794-5p promotes tumor aggressiveness by inducing an immunosuppressive environment through interaction with macrophage.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Eunju Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Tae-Jin Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
26
|
Deng W, Liu X, Huang S, Wu Z, Alessandro F, Lin Q, Cai Z, Zhang Z, Huang Y, Wang H, Yuan Z. CXCL16 promotes tumor metastasis by regulating angiogenesis in the tumor micro-environment of BRAF V600E mutant colorectal cancer. Transl Oncol 2024; 41:101854. [PMID: 38232513 PMCID: PMC10827530 DOI: 10.1016/j.tranon.2023.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024] Open
Abstract
Patients of colorectal cancer (CRC) with BRAF V600E mutation obtain poor prognosis. This study aimed to explore the role and mechanism of BRAF V600E mutation in angiogenesis of tumor micro-environment (TME). It has been reported that CXCL16 expression in TME is closely related to BRAF mutation. Clinicopathological features of CRC with BRAF V600E mutant or wild type were collected in this study. Immunohistochemistry (IHC) assays were conducted to test the expressions of vascular endothelial growth factor (VEGF), CD31 and CXCL16. ROC curve was used to determine the optimal cut off values of CXCL16. A total of 680 patients including 141 BRAF V600E type and 679 wild type were included. BRAF V600E mutant tumors were presented with significant worse clinicopathological features and a shorter overall survival (OS) than wild-type. Besides, chemokines CXCL16 was up-regulated in BRAF V600E mutant tissues and was associated with poorer prognosis. In addition, VEGF levels and vascular endothelial cell density was significantly increased in BRAF mutation. At last, CXCL16 was positively correlated with VEGF expression and vascular endothelial cell density. In conclusion, BRAF V600E mutations may promote metastasis of CRC by regulating CXCL16 expression and promoting angiogenesis in the TME.
Collapse
Affiliation(s)
- Weihao Deng
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Shuhui Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zhijie Wu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Fichera Alessandro
- Colon and Rectal Surgery, Baylor University Medical Center, TX, United States of America
| | - Qingfeng Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zonglu Cai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China
| | - Zitong Zhang
- Department of General Surgery, Houjie Hospital, Dongguan, Guangdong, China.
| | - Yan Huang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| | - Hui Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| | - Zixu Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, China; Department of General Surgery, Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, China.
| |
Collapse
|
27
|
Jin Y, Huang Y, Ren H, Huang H, Lai C, Wang W, Tong Z, Zhang H, Wu W, Liu C, Bao X, Fang W, Li H, Zhao P, Dai X. Nano-enhanced immunotherapy: Targeting the immunosuppressive tumor microenvironment. Biomaterials 2024; 305:122463. [PMID: 38232643 DOI: 10.1016/j.biomaterials.2023.122463] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024]
Abstract
The tumor microenvironment (TME), which is mostly composed of tumor cells, immune cells, signaling molecules, stromal tissue, and the vascular system, is an integrated system that is conducive to the formation of tumors. TME heterogeneity makes the response to immunotherapy different in different tumors, such as "immune-cold" and "immune-hot" tumors. Tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells are the major suppressive immune cells and their different phenotypes interact and influence cancer cells by secreting different signaling factors, thus playing a key role in the formation of the TME as well as in the initiation, growth, and metastasis of cancer cells. Nanotechnology development has facilitated overcoming the obstacles that limit the further development of conventional immunotherapy, such as toxic side effects and lack of targeting. In this review, we focus on the role of three major suppressive immune cells in the TME as well as in tumor development, clinical trials of different drugs targeting immune cells, and different attempts to combine drugs with nanomaterials. The aim is to reveal the relationship between immunotherapy, immunosuppressive TME and nanomedicine, thus laying the foundation for further development of immunotherapy.
Collapse
Affiliation(s)
- Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yangyue Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China
| | - Hui Ren
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Huanhuan Huang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Postgraduate Training Base Alliance of Wenzhou Medical University, Hangzhou, 310022, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Zhou Tong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Fonseca L, Borges Duarte D, Brandão JR, Alves Pereira C, Amado A, Gouveia P, Couto Carvalho A, Borges F, Freitas C. Papillary thyroid carcinoma: the impact of histologic vascular invasion. Minerva Endocrinol (Torino) 2024; 49:69-75. [PMID: 36251020 DOI: 10.23736/s2724-6507.22.03749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
BACKGROUND The American Thyroid Association (ATA) recurrence risk prediction system considers vascular invasion (VI) as a relative indicator for adjuvant radioactive iodine (RAI) treatment, nevertheless VI final role in PTC management is yet to be defined. This study aims to assess the impact of histologic VI in papillary thyroid carcinoma (PTC). METHODS A retrospective study with PTC patients admitted in our Thyroid Cancer Unit, between January 1960 and December 2016 was performed. We reviewed 905 patient records with 275 having full information about VI on their pathological reports. Demographic and clinical variables were obtained, and univariate/multivariate analysis was performed in order to obtain potential predictive prognostic factors. RESULTS Fifty-one out 275 patients presented VI (18.5%; 95% CI 14.4-23.6%), these individuals had larger tumors (median 19 mm vs. 12 mm, P<0.001) with more frequent extraglandular invasion (54.0% vs. 17.1%, P<0.001), regional lymph nodes involvement (29.8% vs. 12.6%, P=0.003)and distant metastasis (10.9% vs. 1.9%, P=0.003) at diagnosis. VI was an independent predictor for regional lymph node and/or distant metastasis at diagnosis (OR 2.93 [IC 95% 1.16-7.41, P=0.008]). After a median follow-up time was 68.5 months patients with VI presented higher rates of local recurrence and lymph node metastasis recurrence. CONCLUSIONS In this study, the presence of VI in PTC is associated to higher rate of lymph node and distant metastasis at diagnosis. Its presence should be probably considered an adverse prognostic factor in PTC, perhaps justifying more aggressive therapeutic and follow-up approaches in such cases.
Collapse
Affiliation(s)
- Liliana Fonseca
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal -
| | - Diana Borges Duarte
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - José R Brandão
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - Catarina Alves Pereira
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - Ana Amado
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - Patrícia Gouveia
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - André Couto Carvalho
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - Fátima Borges
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| | - Cláudia Freitas
- Unit of Endocrinology, Department of Diabetes and Metabolism, University Hospital of Porto, Porto, Portugal
| |
Collapse
|
29
|
Guo S, Chen P, Yang Y, Wei W, Pan Y, Zeng F, Fan L, Wang W. Tumor-to-stroma cd8 + t cells ratio combined with cancer-associated fibroblasts: an innovative approach to predicting lymph node metastases of cervical cancer. J Cancer Res Clin Oncol 2024; 150:93. [PMID: 38369672 PMCID: PMC10874907 DOI: 10.1007/s00432-023-05578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/02/2023] [Indexed: 02/20/2024]
Abstract
PURPOSE Precise identification of lymph node metastases is vital for the management of cervical cancer. However, the existing diagnostic methods for lymph node metastases have certain drawbacks. In this study, we aim to explore the expression of cancer-associated fibroblasts (CAFs) and tumor-to-stroma CD8+ T cells ratio (CD8+ T cells T:S ratio) and its association with lymph node metastases of cervical cancer. METHODS Hundred and ten cervical cancer tissues and 39 biopsy tissues from patients were investigated immunocytochemically for the expression of CAFs and CD8+ T cells. The statistical correlation analysis was carried out using the SPSS system. RESULTS A strong and statistically significant negative correlation (r= - 0.690; P < 0.001) was observed between CAF density and CD8+ T cells T:S ratio. Not only were CAFs density and CD8+ T cells T:S ratio correlated with lymph node metastases respectively (P < 0.001), but the combination of them also significantly correlated with lymph node metastases (P < 0.001). Then, we constructed the combined diagnosis model (Logit (P) = - 4.446 + 0.300 × CAFs + 0.752 × CD8+ T cells T:S Ratio) of cervical cancer lymph node metastases. ROC curves analysis showed that the ROC curves areas for CAFs, CD8+ T cells T:S ratio, and a combination of both are 0.879, 0.747, and 0.951. Then, the prediction model was verified by biopsy specimens and consistent results were obtained. CONCLUSIONS The combination of CAF density and CD8+ T cells T:S ratio has a significant predictive value for lymph node metastases in patients with cervical cancer.
Collapse
Affiliation(s)
- Shuangshuang Guo
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peiyu Chen
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yang Yang
- The Six Affiliated Hospital, Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Wenfei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, China
| | - YuHua Pan
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fanke Zeng
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Liangsheng Fan
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Guangzhou Medical University, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
30
|
Contreras-Panta EW, Choi E, Goldenring JR. The Fibroblast Landscape in Stomach Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 17:671-678. [PMID: 38342299 PMCID: PMC10957461 DOI: 10.1016/j.jcmgh.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Numerous recent studies using single cell RNA sequencing and spatial transcriptomics have shown the vast cell heterogeneity, including epithelial, immune, and stromal cells, present in the normal human stomach and at different stages of gastric carcinogenesis. Fibroblasts within the metaplastic and dysplastic mucosal stroma represent key contributors to the carcinogenic microenvironment in the stomach. The heterogeneity of fibroblast populations is present in the normal stomach, but plasticity within these populations underlies their alterations in association with both metaplasia and dysplasia. In this review, we summarize and discuss efforts over the past several years to study the fibroblast components in human stomach from normal to metaplasia, dysplasia, and cancer. In the stomach, myofibroblast populations increase during late phase carcinogenesis and are a source of matrix proteins. PDGFRA-expressing telocyte-like cells are present in normal stomach and expand during metaplasia and dysplasia in close proximity with epithelial lineages, likely providing support for both normal and metaplastic progenitor niches. The alterations in fibroblast transcriptional signatures across the stomach carcinogenesis process indicate that fibroblast populations are likely as plastic as epithelial populations during the evolution of carcinogenesis.
Collapse
Affiliation(s)
- Ela W Contreras-Panta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James R Goldenring
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
31
|
Zheng CS, Huang WM, Xia HM, Mi JL, Li YQ, Liang HQ, Zhou L, Lu ZX, Wu F. Oncogenic and immunological roles of RACGAP1 in pan-cancer and its potential value in nasopharyngeal carcinoma. Apoptosis 2024; 29:243-266. [PMID: 37670104 DOI: 10.1007/s10495-023-01884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.
Collapse
Affiliation(s)
- Cheng-Shan Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Wei-Mei Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hong-Mei Xia
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jing-Lin Mi
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Yuan-Qing Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Hui-Qing Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Li Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Zhou-Xue Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China
| | - Fang Wu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, Guangxi, China.
| |
Collapse
|
32
|
Bakkalci D, Al-Badri G, Yang W, Nam A, Liang Y, Khurram SA, Heavey S, Fedele S, Cheema U. Spatial transcriptomic interrogation of the tumour-stroma boundary in a 3D engineered model of ameloblastoma. Mater Today Bio 2024; 24:100923. [PMID: 38226014 PMCID: PMC10788620 DOI: 10.1016/j.mtbio.2023.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024] Open
Abstract
Stromal cells are key components of the tumour microenvironment (TME) and their incorporation into 3D engineered tumour-stroma models is essential for tumour mimicry. By engineering tumouroids with distinct tumour and stromal compartments, it has been possible to identify how gene expression of tumour cells is altered and influenced by the presence of different stromal cells. Ameloblastoma is a benign epithelial tumour of the jawbone. In engineered, multi-compartment tumouroids spatial transcriptomics revealed an upregulation of oncogenes in the ameloblastoma transcriptome where osteoblasts were present in the stromal compartment (bone stroma). Where a gingival fibroblast stroma was engineered, the ameloblastoma tumour transcriptome revealed increased matrix remodelling genes. This study provides evidence to show the stromal-specific effect on tumour behaviour and illustrates the importance of engineering biologically relevant stroma for engineered tumour models. Our novel results show that an engineered fibroblast stroma causes the upregulation of matrix remodelling genes in ameloblastoma which directly correlates to measured invasion in the model. In contrast the presence of a bone stroma increases the expression of oncogenes by ameloblastoma cells.
Collapse
Affiliation(s)
- Deniz Bakkalci
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| | - Georgina Al-Badri
- Department of Mathematics, University College London, 25 Gordon Street, WC1H 0AY, London, UK
| | - Wei Yang
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Andy Nam
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Yan Liang
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109, USA
| | - Syed Ali Khurram
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, S10 2TA, Sheffield, UK
| | - Susan Heavey
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| | - Stefano Fedele
- Eastman Dental Institute, University College London, London, UK
| | - Umber Cheema
- UCL Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, W1W 7TS, London, UK
| |
Collapse
|
33
|
Espírito Santo J, Ladeirinha A, Alarcão A, Strelet E, Reis M, Santos R, Carvalho L. Preoperative Locoregional Therapy May Relate with Stemness and Distinct Transitions Between Epithelial and Mesenchymal States in Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101268. [PMID: 38076372 PMCID: PMC10709210 DOI: 10.1016/j.jceh.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/12/2023] [Indexed: 01/05/2025] Open
Abstract
Background/Objectives Locoregional therapy (LRT) might impel hepatocellular carcinoma (HCC) to exhibit different phenotypes by modulating tumoral cell adaptation. HCCs presurgically treated with LRT were studied, focusing on stemness and mesenchymal features. Methods Clinicopathological and immunohistochemical data (Ki67, p53, EpCAM, CK19, CK7, ASMA and vimentin expression) were considered in 89 HCC nodules (30 treated with LRT; 59 non-treated), comprising 46 liver transplanted/surgically resected patients. Results In LRT group, well and poorly differentiated tumors without fibrous encapsulation were predominant (P < 0.05) and peritumoral necroinflammation severity tended to be greater. Peritumoral Ki67 expression was higher (P < 0.05) and p53, EpCAM, CK19 and CK7 peritumoral expression was relevant after LRT, where ablated carcinomas displayed higher peritumoral CK19 expression (P < 0.05). Tumoral ASMA and vimentin expression was higher in non-LRT group (P < 0.05). In LRT group, an exclusive association between progenitor/cholangiocytic cell and mesenchymal markers expressed by tumoral cells was observed (P < 0.05): EpCAM tumoral expression associated with vimentin stromal expression; tumoral CK19 expression associated with stromal ASMA expression; tumoral CK7 expression associated with tumoral vimentin expression. Conclusion Peritumoral cellular proliferation and expression of progenitor/cholangiocytic cell markers seem to be more frequent after LRT, with a distinctive epithelial-mesenchymal interplay and plasticity in peritumoral and tumoral compartments.
Collapse
Affiliation(s)
- Joana Espírito Santo
- Coimbra Hospital and University Centre, Adult Liver Transplantation Unit, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Ladeirinha
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Ana Alarcão
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Eugeniu Strelet
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Marco Reis
- Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II – Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Rui Santos
- Coimbra Hospital and University Centre, Internal Medicine Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Coimbra Hospital and University Centre, Pathology Department, Praceta Professor Mota Pinto, 3004-561 Coimbra, Portugal
| |
Collapse
|
34
|
Zhang J, Song L, Li G, Liang A, Cai X, Huang Y, Zhu X, Zhou X. Comprehensive assessment of base excision repair (BER)-related lncRNAs as prognostic and functional biomarkers in lung adenocarcinoma: implications for personalized therapeutics and immunomodulation. J Cancer Res Clin Oncol 2023; 149:17199-17213. [PMID: 37789154 DOI: 10.1007/s00432-023-05435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and comprehending its molecular mechanisms is pivotal for advancing treatment efficacy. This study aims to explore the prognostic and functional significance of base excision repair (BER)-related long non-coding RNAs (BERLncs) in LUAD. METHODS A risk score model for BERLncs was developed using the least absolute shrinkage and selection operator regression and Cox regression analysis. Model validation and prognostic evaluation were performed using Kaplan-Meier and receiver-operating characteristic curve analyses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to elucidate the potential biological functions of BERLncs. Comparative analyses were carried out to investigate disparities in tumor mutation burden (TMB), immune infiltration, tumor immune dysfunction and exclusion (TIDE) score, chemosensitivity, and immune checkpoint gene expression between the two risk groups. RESULTS A predictive risk score model comprising 19 BERLncs was successfully developed. Patients were divided into high-risk and low-risk groups according to the median risk score. The high-risk subgroup exhibited significantly inferior overall survival. Functional enrichment analysis revealed pathways associated with lung cancer development, notably the neuroactive ligand-receptor interaction pathway. High-risk patients demonstrated elevated TMB, diminished TIDE scores, and an immunosuppressive tumor microenvironment, while low-risk patients displayed potential benefits from immunotherapy. Additionally, the risk model identified potential anticancer agents. CONCLUSION The risk score model based on BERLncs shows promise as a prognostic biomarker for LUAD patients, providing valuable insights for clinical decision-making, therapeutic strategies, and understanding of underlying biological mechanisms.
Collapse
Affiliation(s)
- Junzheng Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Lu Song
- Department of Clinical Laboratory, Qingdao City Sixth People's Hospital, Qingdao, China
| | - Guanrong Li
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Anqi Liang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoting Cai
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yaqi Huang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
35
|
Li M, Zhai P, Mu X, Song J, Zhang H, Su J. Hypoxic BMSC-derived exosomal miR-652-3p promotes proliferation and metastasis of hepatocarcinoma cancer cells via targeting TNRC6A. Aging (Albany NY) 2023; 15:12780-12793. [PMID: 37976119 DOI: 10.18632/aging.205025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 08/20/2023] [Indexed: 11/19/2023]
Abstract
Cancer microenvironment plays an important role in the proliferation and metastasis of hepatocarcinoma cancer cells (HCC). Exosomes from bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment. In this study, we reveal that miRNA-652-3P from BMSC-derived exosomes promotes proliferation and metastasis in HCC. The ability of cancer proliferation, migration and invasion can be evaluated after co-culture by CCK-8, wound healing and transwell assay. Isolated exosomes were identified by transmission electron microscopy (TEM) and the biomarkers of the purified exosomes were showed in West-blotting (WB). MiR-652-3p was detected in the HepG2 and 7721 after co-culturing with exosome derived from BMSCs under different conditions. Target authentication was performed by a luciferase reporter assay to confirm the presumptive target of miR-652-3p. After overexpressing miR-652-3p, the mRNA and protein expression level of TNRC6A in HCC was examined by q-PCR and WB. Further, we observed greater miR-652-3p upregulation in hypoxic BMSCs-exosomes than in normal- exosomes. In addition, a miR-652-3p inhibitor attenuates the proliferation and metastasis of HCC cells after co-culturing with BMSCs. Our data demonstrate that hypoxic BMSCs-derived exosomal miR-652-3p promotes proliferation in HCC cells by inhibiting TNRC6A. The BMSCs-derived exosomal miR-652-3p may help find patient-targeted therapies in hepatocarcinoma cancer.
Collapse
Affiliation(s)
- Mei Li
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Pengtao Zhai
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Xudong Mu
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Juanrong Song
- Department of Minimally Invasive, Shaanxi Cancer Hospital, Xi’an 710061, Shaanxi, China
| | - Huilin Zhang
- Digestive Endoscopy Treatment Center, Xi’an International Medical Center Hospital, Gaoxin, Xi’an 710100, Shaanxi, China
| | - Juan Su
- Department of Gastroenterology, Xi’an International Medical Center Hospital, Gaoxin, Xi’an 710100, Shaanxi, China
| |
Collapse
|
36
|
Li H, Dai X, Zhou L, Nie J, Cheng H, Gao P. Ferroptosis-related gene MTF-1 as a novel prognostic biomarker in low-grade glioma and its correlation with immune infiltration. Heliyon 2023; 9:e21159. [PMID: 38027604 PMCID: PMC10643104 DOI: 10.1016/j.heliyon.2023.e21159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Metal-responsive transcription factor-1 performs a necessary position in a range of cancers. It is unknown, though, how the prognosis of patients with low-grade gliomas is related to immune infiltration. Method The Cancer Genome Atlas database was used in this investigation to evaluate MTF-1 transcription in low-grade glioma and healthy brain tissues, and immunohistochemistry was used to confirm MTF-1 levels. By using functional enrichment analysis and R software, the putative biological roles and signaling pathways connected to MTF-1 in LGG as well as its prognostic significance were investigated. Further research was done on the connection involving MTF-1 and tumor mutational burden in LGG. Finally, the research evaluated how MTF-1 and immune cell infiltration are related. Results We noticed that the WHO grade, 1p/19q codeletion, and older age were all substantially linked with MTF-1 overexpression in low-grade gliomas. OS and disease-specific survival were significantly lowered as a result of MTF-1 transcription. MTF-1 was recognized as an independent OS prognostic predictor with a poor prognosis by multifactorial Cox analysis. Functional enrichment analysis revealed that the primary enrichment pathways were chemical carcinogenesis-receptor activation and the generation of miRNAs implicated in gene suppression by miRNA. Additionally, there was a negative correlation between MTF-1 overexpression and the degree of immune cell infiltration in neutrophils and DC. Conclusion MTF-1 may be a novel prognostic biomarker.
Collapse
Affiliation(s)
- Huaixu Li
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000, PR China
| | - Lv Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Jianyu Nie
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Peng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, PR China
| |
Collapse
|
37
|
Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the research of tumor microenvironment. Front Immunol 2023; 14:1285540. [PMID: 37965341 PMCID: PMC10641410 DOI: 10.3389/fimmu.2023.1285540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Single-cell sequencing is a technique for detecting and analyzing genomes, transcriptomes, and epigenomes at the single-cell level, which can detect cellular heterogeneity lost in conventional sequencing hybrid samples, and it has revolutionized our understanding of the genetic heterogeneity and complexity of tumor progression. Moreover, the tumor microenvironment (TME) plays a crucial role in the formation, development and response to treatment of tumors. The application of single-cell sequencing has ushered in a new age for the TME analysis, revealing not only the blueprint of the pan-cancer immune microenvironment, but also the heterogeneity and differentiation routes of immune cells, as well as predicting tumor prognosis. Thus, the combination of single-cell sequencing and the TME analysis provides a unique opportunity to unravel the molecular mechanisms underlying tumor development and progression. In this review, we summarize the recent advances in single-cell sequencing and the TME analysis, highlighting their potential applications in cancer research and clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Guoan Chen
- Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
38
|
Zheng H, Wang G, Wang Y, Liu J, Ma G, Du J. Systematic analysis reveals a pan-cancer SNHG family signature predicting prognosis and immunotherapy response. iScience 2023; 26:108055. [PMID: 37854704 PMCID: PMC10579433 DOI: 10.1016/j.isci.2023.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Small nucleolar RNA host genes (SNHGs) are a special family of long non-coding RNAs (lncRNAs), which not only function in a way similar to other lncRNAs but also influence the intracellular level of small nucleolar RNAs to modulate cancers. However, the features of SNHGs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We found that SNHGs were commonly deregulated and correlated with patient survival in various cancers. The critical role of DNA methylation and somatic alterations on deregulation was also identified. SNHG family score was significantly associated with survival, multiple tumor characteristics, and tumor microenvironment. SNHG-related risk score could serve as a prognostic and immunotherapeutic response biomarker based on multiple databases. This study emphasizes the potential of SNHGs as biomarkers for prognosis and immunotherapeutic response, enabling further research into the immune regulatory mechanism and therapeutic potentials of SNHGs in cancer.
Collapse
Affiliation(s)
- Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guanghui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jichang Liu
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
39
|
Abstract
Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.
Collapse
Affiliation(s)
- Miri Adler
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arun R Chavan
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Weng J, Chen J. Comprehensive bioinformatics analysis of the role of VWF in the tumor microenvironment of malignant mesothelioma. Medicine (Baltimore) 2023; 102:e35579. [PMID: 37832118 PMCID: PMC10578691 DOI: 10.1097/md.0000000000035579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
To explore the influence and effect of tumor microenvironment on the development of malignant mesothelioma using machine learning methods. 87 open cases were downloaded from the Cancer Genome Atlas database including transcriptome data, clinical data, and mutation data. The immune, stromal, and estimate scores were calculated for each case by using the ESTIMATE algorithm, and then the cases were grouped according to high and low stromal scores to predict all-cause survival in malignant mesothelioma cases. Their mutation data were analyzed to reveal the differences in mutated genes between the 2 groups, and then the von Willebrand factor (VWF) and FCRL3 genes were identified according to the intersection of DEGs and high-frequency mutated genes. Lastly, the correlation between VWF and the immune checkpoint of 22 kinds of immune cells was analyzed by using the CIBERSORT package of R software. A significant difference was found in the survival time of patients between the high and low stromal score groups. High expression of the VWF gene was negatively correlated with the prognosis of malignant mesothelioma, and the expression of VWF was positively correlated with naive B cells and activated CD4 memory T cells and negatively correlated with NK cells. The results revealed that high expression of VWF may involve in the development of malignant mesothelioma, and the anti-CTLA4 immune checkpoint treatment may have certain efficacy.
Collapse
Affiliation(s)
- Jiren Weng
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jing Chen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Li YR, Fang Y, Lyu Z, Zhu Y, Yang L. Exploring the dynamic interplay between cancer stem cells and the tumor microenvironment: implications for novel therapeutic strategies. J Transl Med 2023; 21:686. [PMID: 37784157 PMCID: PMC10546755 DOI: 10.1186/s12967-023-04575-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023] Open
Abstract
Cancer stem cells (CSCs) have emerged as key contributors to tumor initiation, growth, and metastasis. In addition, CSCs play a significant role in inducing immune evasion, thereby compromising the effectiveness of cancer treatments. The reciprocal communication between CSCs and the tumor microenvironment (TME) is observed, with the TME providing a supportive niche for CSC survival and self-renewal, while CSCs, in turn, influence the polarization and persistence of the TME, promoting an immunosuppressive state. Consequently, these interactions hinder the efficacy of current cancer therapies, necessitating the exploration of novel therapeutic approaches to modulate the TME and target CSCs. In this review, we highlight the intricate strategies employed by CSCs to evade immune surveillance and develop resistance to therapies. Furthermore, we examine the dynamic interplay between CSCs and the TME, shedding light on how this interaction impacts cancer progression. Moreover, we provide an overview of advanced therapeutic strategies that specifically target CSCs and the TME, which hold promise for future clinical and translational studies in cancer treatment.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
42
|
Xu W, Zhang W, Zhao D, Wang Q, Zhang M, Li Q, Zhu W, Xu C. Unveiling the role of regulatory T cells in the tumor microenvironment of pancreatic cancer through single-cell transcriptomics and in vitro experiments. Front Immunol 2023; 14:1242909. [PMID: 37753069 PMCID: PMC10518406 DOI: 10.3389/fimmu.2023.1242909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background In order to investigate the impact of Treg cell infiltration on the immune response against pancreatic cancer within the tumor microenvironment (TME), and identify crucial mRNA markers associated with Treg cells in pancreatic cancer, our study aims to delve into the role of Treg cells in the anti-tumor immune response of pancreatic cancer. Methods The ordinary transcriptome data for this study was sourced from the GEO and TCGA databases. It was analyzed using single-cell sequencing analysis and machine learning. To assess the infiltration level of Treg cells in pancreatic cancer tissues, we employed the CIBERSORT method. The identification of genes most closely associated with Treg cells was accomplished through the implementation of weighted gene co-expression network analysis (WGCNA). Our analysis of single-cell sequencing data involved various quality control methods, followed by annotation and advanced analyses such as cell trajectory analysis and cell communication analysis to elucidate the role of Treg cells within the pancreatic cancer microenvironment. Additionally, we categorized the Treg cells into two subsets: Treg1 associated with favorable prognosis, and Treg2 associated with poor prognosis, based on the enrichment scores of the key genes. Employing the hdWGCNA method, we analyzed these two subsets to identify the critical signaling pathways governing their mutual transformation. Finally, we conducted PCR and immunofluorescence staining in vitro to validate the identified key genes. Results Based on the results of immune infiltration analysis, we observed significant infiltration of Treg cells in the pancreatic cancer microenvironment. Subsequently, utilizing the WGCNA and machine learning algorithms, we ultimately identified four Treg cell-related genes (TRGs), among which four genes exhibited significant correlations with the occurrence and progression of pancreatic cancer. Among them, CASP4, TOB1, and CLEC2B were associated with poorer prognosis in pancreatic cancer patients, while FYN showed a correlation with better prognosis. Notably, significant differences were found in the HIF-1 signaling pathway between Treg1 and Treg2 cells identified by the four genes. These conclusions were further validated through in vitro experiments. Conclusion Treg cells played a crucial role in the pancreatic cancer microenvironment, and their presence held a dual significance. Recognizing this characteristic was vital for understanding the limitations of Treg cell-targeted therapies. CASP4, FYN, TOB1, and CLEC2B exhibited close associations with infiltrating Treg cells in pancreatic cancer, suggesting their involvement in Treg cell functions. Further investigation was warranted to uncover the mechanisms underlying these associations. Notably, the HIF-1 signaling pathway emerged as a significant pathway contributing to the duality of Treg cells. Targeting this pathway could potentially revolutionize the existing treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenjia Zhang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongxu Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Man Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Laboratory of Emergency Medicine, School of the Secondary Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wenxin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gastroenterology, Kunshan Third People’s Hospital, Suzhou, Jiangsu, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
43
|
Fisher ML, Balinth S, Hwangbo Y, Wu C, Ballon C, Goldberg GL, Mills AA. Cancer-associated fibroblasts promote cancer stemness by inducing expression of the chromatin-modifying protein CBX4 in squamous cell carcinoma. Carcinogenesis 2023; 44:485-496. [PMID: 37463322 PMCID: PMC10436759 DOI: 10.1093/carcin/bgad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The chromobox-containing protein CBX4 is an important regulator of epithelial cell proliferation and differentiation, and has been implicated in several cancer types. The cancer stem cell (CSC) population is a key driver of metastasis and recurrence. The undifferentiated, plastic state characteristic of CSCs relies on cues from the microenvironment. Cancer-associated fibroblasts (CAFs) are a major component of the microenvironment that can influence the CSC population through the secretion of extracellular matrix and a variety of growth factors. Here we show CBX4 is a critical regulator of the CSC phenotype in squamous cell carcinomas of the skin and hypopharynx. Moreover, CAFs can promote the expression of CBX4 in the CSC population through the secretion of interleukin-6 (IL-6). IL-6 activates JAK/STAT3 signaling to increase ∆Np63α-a key transcription factor that is essential for epithelial stem cell function and the maintenance of proliferative potential that is capable of regulating CBX4. Targeting the JAK/STAT3 axis or CBX4 directly suppresses the aggressive phenotype of CSCs and represents a novel opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Caizhi Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gary L Goldberg
- Zucker School of Medicine, Hofstra University/Northwell Health, Hempstead, NY 11549, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
44
|
Wang L, Shan Y, Zheng S, Li J, Cui P. miR-4780 Derived from N2-Like Neutrophil Exosome Aggravates Epithelial-Mesenchymal Transition and Angiogenesis in Colorectal Cancer. Stem Cells Int 2023; 2023:2759679. [PMID: 37576407 PMCID: PMC10421714 DOI: 10.1155/2023/2759679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Despite significant advances in diagnostic methods and treatment strategies, the prognosis for patients with advanced colon cancer remains poor, and mortality rates are often high due to metastasis. Increasing evidence showed that it is of significant importance to investigate how the tumor microenvironment participates in the development of colorectal cancer (CRC). In this manuscript, neutrophils were sequentially stimulated with all-trans retinoic acid and transforming growth factor-β in turn to induce the neutrophil polarization. Differentially expressed miRNA in neutrophil exosomes have been sequenced by microarray profile, and the effect of N2-like neutrophil-derived exosomal miR-4780 on epithelial-mesenchymal transition (EMT) and angiogenesis was investigated. In our results, we found that neutrophils were enriched in CRC tumor tissue and that CD11b expression correlated with tumor site and serous membrane invasion. At the same time, we demonstrated that internalization of N2 exosomes exacerbated the viability, migration, and invasion of CRC cell lines and inhibited apoptosis. To further investigate the molecular mechanism, we analyzed the miRNA expression profile in the N2-like neutrophils, which led to the selection of hsa-miR-4780 for the subsequent experiment. The overexpression of miR-4780 from N2-like neutrophil-derived exosomes exacerbated EMT and angiogenesis. Moreover, miR-4780 can regulate its target gene SOX11 to effect EMT and angiogenesis in CRC cell lines. CRC with liver metastasis model also validated that aberrant expression of miR-4780 in N2-like neutrophil exosomes exacerbated tumor metastasis and development of tumor via EMT and angiogenesis. In conclusion, our current findings reveal an important mechanism by which mR-4780 from N2-like neutrophil exosomes exacerbates tumor metastasis and progression via EMT and angiogenesis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqiang Shan
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sixin Zheng
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangtao Li
- Department of Gastrointestinal and Anal Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Cui
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, Affiliated Hospital of Changzhi Medical College, Changzhi, China
| |
Collapse
|
45
|
He LN, Li H, Du W, Fu S, luo L, Chen T, Zhang X, Chen C, Jiang Y, Wang Y, Wang Y, Yu H, Zhou Y, Lin Z, Zhao Y, Huang Y, Zhao H, Fang W, Yang Y, Zhang L, Hong S. Machine learning-based risk model incorporating tumor immune and stromal contexture predicts cancer prognosis and immunotherapy efficacy. iScience 2023; 26:107058. [PMID: 37416452 PMCID: PMC10320202 DOI: 10.1016/j.isci.2023.107058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/16/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
The immune and stromal contexture within the tumor microenvironment (TME) interact with cancer cells and jointly determine disease process and therapeutic response. We aimed at developing a risk scoring model based on TME-related genes of squamous cell lung cancer to predict patient prognosis and immunotherapeutic response. TME-related genes were identified through exploring genes that correlated with immune scores and stromal scores. LASSO-Cox regression model was used to establish the TME-related risk scoring (TMErisk) model. A TMErisk model containing six genes was established. High TMErisk correlated with unfavorable OS in LUSC patients and this association was validated in multiple NSCLC datasets. Genes involved in pathways associated with immunosuppressive microenvironment were enriched in the high TMErisk group. Tumors with high TMErisk showed elevated infiltration of immunosuppressive cells. High TMErisk predicted worse immunotherapeutic response and prognosis across multiple carcinomas. TMErisk model could serve as a robust biomarker for predicting OS and immunotherapeutic response.
Collapse
Affiliation(s)
- Li-Na He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haifeng Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Du
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha Fu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cellular & Molecular Diagnostic Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linfeng luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuanye Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chen Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongluo Jiang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixing Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuhong Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Endoscopy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Yu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yixin Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of VIP region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zuan Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuanyuan Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yunpeng Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
46
|
Saha S, Müller D, Clark AG. Mechanosensory feedback loops during chronic inflammation. Front Cell Dev Biol 2023; 11:1225677. [PMID: 37492225 PMCID: PMC10365287 DOI: 10.3389/fcell.2023.1225677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Epithelial tissues are crucial to maintaining healthy organization and compartmentalization in various organs and act as a first line of defense against infection in barrier organs such as the skin, lungs and intestine. Disruption or injury to these barriers can lead to infiltration of resident or foreign microbes, initiating local inflammation. One often overlooked aspect of this response is local changes in tissue mechanics during inflammation. In this mini-review, we summarize known molecular mechanisms linking disruption of epithelial barrier function to mechanical changes in epithelial tissues. We consider direct mechanisms, such as changes in the secretion of extracellular matrix (ECM)-modulating enzymes by immune cells as well as indirect mechanisms including local activation of fibroblasts. We discuss how these mechanical changes can modulate local immune cell activity and inflammation and perturb epithelial homeostasis, further dysregulating epithelial barrier function. We propose that this two-way relationship between loss of barrier function and altered tissue mechanics can lead to a positive feedback loop that further perpetuates inflammation. We discuss this cycle in the context of several chronic inflammatory diseases, including inflammatory bowel disease (IBD), liver disease and cancer, and we present the modulation of tissue mechanics as a new framework for combating chronic inflammation.
Collapse
Affiliation(s)
- Sarbari Saha
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| | - Dafne Müller
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
| | - Andrew G. Clark
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany
- University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany
- University of Tübingen, Center for Personalized Medicine, Tübingen, Germany
| |
Collapse
|
47
|
Yang W, Zhao X, Duan L, Niu L, Zhang Y, Zhou W, Li Y, Chen J, Fan A, Xie Q, Liu J, Han Y, Fan D, Hong L. Development and validation of a ligand-receptor pairs signature to predict outcome and provide a therapeutic strategy in gastric cancer. Expert Rev Mol Diagn 2023; 23:619-634. [PMID: 37248704 DOI: 10.1080/14737159.2023.2219843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND An important factor in tumor development and progression is the tumor microenvironment (TME), which is heterogeneous. Previous studies have mainly investigated the expression profile and prognostic values of genes in gastric cancer (GC) at the cell population level but neglected the interactions and heterogeneity between cells. METHODS The pattern of ligand-receptor (LR) interactions was delineated on a scRNA-seq dataset containing 44,953 cells from nine GC patients and a fourth bulk RNA-seq dataset including data from 1159 GC patients. We then constructed an LR.Score scoring model to comprehensively evaluate the influence of LR-pairs on the TME, overall survival, and immunotherapy response in GC patients from several cohorts. RESULTS Cell communication network among 13 cell types was constructed based on the LR-pairs. We proposed a new molecular subtyping model for GC based on the LR-pairs and revealed the differences in prognosis, pathophysiologic features, mutation characteristics, function enrichment, and immunological characteristics among the three subtypes. Finally, an LR.Score model based on LR-pairs was developed and validated on several datasets. CONCLUSIONS Based on the selected LR-pairs, we successfully constructed a novel prediction model and observed its well performance on molecular subtyping, target and pathway screening, prognosis judging, and immunotherapy response predicting.
Collapse
Affiliation(s)
- Wanli Yang
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xinhui Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Northwest University & Xi'an No.3 Hospital, Northwest University, Xi'an, Shaanxi Province, China
| | - Lili Duan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Liaoran Niu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yiding Li
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Junfeng Chen
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Aqiang Fan
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qibin Xie
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jinqiang Liu
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Han
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
48
|
Miaomiao S, Xiaoqian W, Yuwei S, Chao C, Chenbo Y, Yinghao L, Yichen H, Jiao S, Kuisheng C. Cancer-associated fibroblast-derived exosome microRNA-21 promotes angiogenesis in multiple myeloma. Sci Rep 2023; 13:9671. [PMID: 37316504 DOI: 10.1038/s41598-023-36092-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, and angiogenesis determines its progression. In the tumor microenvironment, normal fibroblasts (NFs) are transformed into cancer-associated fibroblasts (CAFs), which can promote angiogenesis. Microribonucleic acid-21 (miR-21) is highly expressed in various tumors. However, research on the relationship between tumor angiogenesis and miR-21 is rare. We analyzed the relationship between miR-21, CAFs, and angiogenesis in MM. NFs and CAFs were isolated from the bone marrow fluids of patients with dystrophic anemia and newly-diagnosed MM. Co-culturing of CAF exosomes with multiple myeloma endothelial cells (MMECs) showed that CAF exosomes were able to enter MMECs in a time-dependent manner and initiate angiogenesis by promoting proliferation, migration, and tubulogenesis. We found that miR-21 was abundant in CAF exosomes, entering MMECs and regulating angiogenesis in MM. By transfecting NFs with mimic NC, miR-21 mimic, inhibitor NC, and miR-21 inhibitor, we found that miR-21 significantly increased the expression of alpha-smooth muscle actin and fibroblast activation protein in NFs. Our results showed that miR-21 can transform NFs into CAFs, and that CAF exosomes promote angiogenesis by carrying miR-21 into MMECs. Therefore, CAF-derived exosomal miR-21 may serve as a novel diagnostic biomarker and therapeutic target for MM.
Collapse
Affiliation(s)
- Sun Miaomiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wang Xiaoqian
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shou Yuwei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen Chao
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yang Chenbo
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liang Yinghao
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Hong Yichen
- BGI College, Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shu Jiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chen Kuisheng
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Henan Province Key Laboratory of Tumor Pathology, Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
49
|
Crane JN, Graham DS, Mona CE, Nelson SD, Samiei A, Dawson DW, Dry SM, Masri MG, Crompton JG, Benz MR, Czernin J, Eilber FC, Graeber TG, Calais J, Federman NC. Fibroblast Activation Protein Expression in Sarcomas. Sarcoma 2023; 2023:2480493. [PMID: 37333052 PMCID: PMC10275689 DOI: 10.1155/2023/2480493] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Fibroblast activation protein alpha (FAP) is highly expressed by cancer-associated fibroblasts in multiple epithelial cancers. The aim of this study was to characterize FAP expression in sarcomas to explore its potential utility as a diagnostic and therapeutic target and prognostic biomarker in sarcomas. Methods Available tissue samples from patients with bone or soft tissue tumors were identified at the University of California, Los Angeles. FAP expression was evaluated via immunohistochemistry (IHC) in tumor samples (n = 63), adjacent normal tissues (n = 30), and positive controls (n = 2) using semiquantitative systems for intensity (0 = negative; 1 = weak; 2 = moderate; and 3 = strong) and density (none, <25%, 25-75%; >75%) in stromal and tumor/nonstromal cells and using a qualitative overall score (not detected, low, medium, and high). Additionally, RNA sequencing data in publicly available databases were utilized to compare FAP expression in samples (n = 10,626) from various cancer types and evaluate the association between FAP expression and overall survival (OS) in sarcoma (n = 168). Results The majority of tumor samples had FAP IHC intensity scores ≥2 and density scores ≥25% for stromal cells (77.7%) and tumor cells (50.7%). All desmoid fibromatosis, myxofibrosarcoma, solitary fibrous tumor, and undifferentiated pleomorphic sarcoma samples had medium or high FAP overall scores. Sarcomas were among cancer types with the highest mean FAP expression by RNA sequencing. There was no significant difference in OS in patients with sarcoma with low versus high FAP expression. Conclusion The majority of the sarcoma samples showed FAP expression by both stromal and tumor/nonstromal cells. Further investigation of FAP as a potential diagnostic and therapeutic target in sarcomas is warranted.
Collapse
Affiliation(s)
- Jacquelyn N. Crane
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, Stem Cell Transplantation & Regenerative Medicine, Stanford University School of Medicine, 1000 Welch Rd, Suite 300, Palo Alto, CA 94304, USA
| | - Danielle S. Graham
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
| | - Christine E. Mona
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Scott D. Nelson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Alireza Samiei
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | - David W. Dawson
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Sarah M. Dry
- University of California Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Marwan G. Masri
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Joseph G. Crompton
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Matthias R. Benz
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Johannes Czernin
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Fritz C. Eilber
- University of California Los Angeles, Department of Surgery, Los Angeles, CA, USA
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Thomas G. Graeber
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jeremie Calais
- University of California Los Angeles, Department of Molecular and Medical Pharmacology, Los Angeles, CA, USA
| | - Noah C. Federman
- University of California Los Angeles, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- University of California Los Angeles, Department of Pediatrics, Los Angeles, CA, USA
| |
Collapse
|
50
|
Zhang Y, Gan W, Ru N, Xue Z, Chen W, Chen Z, Wang H, Zheng X. Comprehensive multi-omics analysis reveals m7G-related signature for evaluating prognosis and immunotherapy efficacy in osteosarcoma. J Bone Oncol 2023; 40:100481. [PMID: 37139222 PMCID: PMC10149372 DOI: 10.1016/j.jbo.2023.100481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Background Osteosarcoma is one of the most prevalent bone malignancies with a poor prognosis. The N7-methylguanosine (m7G) modification facilitates the modification of RNA structure and function tightly associated with cancer. Nonetheless, there is a lack of joint exploration of the relationship between m7G methylation and immune status in osteosarcoma. Methods With the support of TARGET and GEO databases, we performed consensus clustering to characterize molecular subtypes based on m7G regulators in all osteosarcoma patients. The least absolute shrinkage and selection operator (LASSO) method, Cox regression, and receiver operating characteristic (ROC) curves were employed to construct and validate m7G-related prognostic features and derived risk scores. In addition, GSVA, ssGSEA, CIBERSORT, ESTIMATE, and gene set enrichment analysis were conducted to characterize biological pathways and immune landscapes. We explored the relationship between risk scores and drug sensitivity, immune checkpoints, and human leukocyte antigens by correlation analysis. Finally, the roles of EIF4E3 in cell function were verified through external experiments. Results Two molecular isoforms based on regulator genes were identified, which presented significant discrepancies in terms of survival and activated pathways. Moreover, the six m7G regulators most associated with prognosis in osteosarcoma patients were identified as independent predictors for the construction of prognostic signature. The model was well stabilized and outperformed traditional clinicopathological features to reliably predict 3-year (AUC = 0.787) and 5-year (AUC = 0.790) survival in osteosarcoma cohorts. Patients with increased risk scores had a poorer prognosis, higher tumor purity, lower checkpoint gene expression, and were in an immunosuppressive microenvironment. Furthermore, enhanced expression of EIF4E3 indicated a favorable prognosis and affected the biological behavior of osteosarcoma cells. Conclusions We identified six prognostic relevant m7G modulators that may provide valuable indicators for the estimation of overall survival and the corresponding immune landscape in patients with osteosarcoma.
Collapse
|