1
|
Quach HQ, Ratishvili T, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. Immunogenicity of a peptide-based vaccine for measles: a pilot evaluation in a mouse model. Sci Rep 2024; 14:18776. [PMID: 39138335 PMCID: PMC11322560 DOI: 10.1038/s41598-024-69825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Although neutralizing antibody is an established correlate of protection for measles, T cell-mediated responses play at least two critical roles in immunity to measles: first, through provision of 'help' enabling robust humoral immune responses; and second, through clearance of measles virus-infected cells. Previously, we identified 13 measles-derived peptides that bound to human leukocyte antigen (HLA) molecules in Priess cells infected with measles virus. In this study, we evaluated the immunogenicity of these peptides in a transgenic mouse model. Our results demonstrated that these peptides induced Th1-biased immune responses at varying levels. Of the 13 peptides, the top four immunogenic peptides were further selected for a viral challenge study in mice. A vaccine based on a combination of these four peptides reduced morbidity and weight loss after viral challenge compared to placebo. Our results emphasize the potential of T cell-mediated, peptide-based vaccines against measles.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
AlRashdan Y, Al-Jaff K, Najdawi M, Sirhan A. Occult hepatitis B in blood donation centers. J Med Life 2023; 16:571-578. [PMID: 37305817 PMCID: PMC10251394 DOI: 10.25122/jml-2023-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023] Open
Abstract
Occult hepatitis B (OHB) is characterized by the presence of hepatitis B virus (HBV) DNA in the blood of individuals who test negative for the hepatitis B surface antigen (HBsAg). OHB in blood donors can lead to HBV transmission through transfusions, yet the prevalence of OHB in Basrah, Iraq, is unknown. This study aimed to determine the prevalence of OHB in blood donation centers in Basrah and investigate the immune response to HBV in OHB-positive donors. We recruited 450 blood donors and categorized them into four groups based on HBV markers: the HBsAg-negative/HBsAb-negative/HBcAb-positive group, the recovery group (HBsAg-negative/HBsAb-positive/HBcAb-positive), the patient group (HBsAg-positive/HBsAb-negative/HBcAb-positive), and the apparently healthy group (negative for all HBV markers). We measured levels of IgG, IgM, complement components (C3 and C4), ALT, AST, and serum ALP in OHB-positive donors. Of the 450 donors, 97 (21.6%) were OHB-positive. IgG levels were significantly higher than IgM levels in OHB-positive donors. Healthy and HBsAg-negative/HBsAb-positive donors had significantly lower C3 levels than patients. IgG levels were significantly higher than IgM in both the patient and recovery groups. C3 levels were higher than C4 levels in all groups. The serum ALP level was significantly higher in the patient group. OHB prevalence in Basrah blood donors is high, indicating the potential for HBV transmission. OHB-positive donors showed an immune response to HBV. Our study provides insights into OHB prevalence and immune response in Basrah, with implications for diagnostic and therapeutic approaches in blood donation centers.
Collapse
Affiliation(s)
- Yazan AlRashdan
- Department of Pharmacy, Faculty of Pharmacy, Amman Arab University, Amman, Jordan
| | - Khalid Al-Jaff
- Department of Pharmacy, Faculty of Pharmacy, Amman Arab University, Amman, Jordan
| | - Manal Najdawi
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Ala’ Sirhan
- Department of Pharmacy, Faculty of Pharmacy, Amman Arab University, Amman, Jordan
| |
Collapse
|
3
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
4
|
Ebenig A, Lange MV, Mühlebach MD. Versatility of live-attenuated measles viruses as platform technology for recombinant vaccines. NPJ Vaccines 2022; 7:119. [PMID: 36243743 PMCID: PMC9568972 DOI: 10.1038/s41541-022-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Live-attenuated measles virus (MeV) has been extraordinarily effective in preventing measles infections and their often deadly sequelae, accompanied by remarkable safety and stability since their first licensing in 1963. The advent of recombinant DNA technologies, combined with systems to generate infectious negative-strand RNA viruses on the basis of viral genomes encoded on plasmid DNA in the 1990s, paved the way to generate recombinant, vaccine strain-derived MeVs. These live-attenuated vaccine constructs can encode and express additional foreign antigens during transient virus replication following immunization. Effective humoral and cellular immune responses are induced not only against the MeV vector, but also against the foreign antigen cargo in immunized individuals, which can protect against the associated pathogen. This review aims to present an overview of the versatility of this vaccine vector as platform technology to target various diseases, as well as current research and developmental stages, with one vaccine candidate ready to enter phase III clinical trials to gain marketing authorization, MV-CHIK.
Collapse
Affiliation(s)
- Aileen Ebenig
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Mona V Lange
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, D-63225, Langen, Germany.
| |
Collapse
|
5
|
Getz WM, Salter R, Vissat LL. Simulation applications to support teaching and research in epidemiological dynamics. BMC MEDICAL EDUCATION 2022; 22:632. [PMID: 35987608 PMCID: PMC9391658 DOI: 10.1186/s12909-022-03674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND An understanding of epidemiological dynamics, once confined to mathematical epidemiologists and applied mathematicians, can be disseminated to a non-mathematical community of health care professionals and applied biologists through simple-to-use simulation applications. We used Numerus Model Builder RAMP Ⓡ (Runtime Alterable Model Platform) technology, to construct deterministic and stochastic versions of compartmental SIR (Susceptible, Infectious, Recovered with immunity) models as simple-to-use, freely available, epidemic simulation application programs. RESULTS We take the reader through simulations used to demonstrate the following concepts: 1) disease prevalence curves of unmitigated outbreaks have a single peak and result in epidemics that 'burn' through the population to become extinguished when the proportion of the susceptible population drops below a critical level; 2) if immunity in recovered individuals wanes sufficiently fast then the disease persists indefinitely as an endemic state, with possible dampening oscillations following the initial outbreak phase; 3) the steepness and initial peak of the prevalence curve are influenced by the basic reproductive value R0, which must exceed 1 for an epidemic to occur; 4) the probability that a single infectious individual in a closed population (i.e. no migration) gives rise to an epidemic increases with the value of R0>1; 5) behavior that adaptively decreases the contact rate among individuals with increasing prevalence has major effects on the prevalence curve including dramatic flattening of the prevalence curve along with the generation of multiple prevalence peaks; 6) the impacts of treatment are complicated to model because they effect multiple processes including transmission, recovery and mortality; 7) the impacts of vaccination policies, constrained by a fixed number of vaccination regimens and by the rate and timing of delivery, are crucially important to maximizing the ability of vaccination programs to reduce mortality. CONCLUSION Our presentation makes transparent the key assumptions underlying SIR epidemic models. Our RAMP simulators are meant to augment rather than replace classroom material when teaching epidemiological dynamics. They are sufficiently versatile to be used by students to address a range of research questions for term papers and even dissertations.
Collapse
Affiliation(s)
- Wayne M Getz
- Department Environmental Science, Policy and Management, University of California, Berkeley, 94720 CA USA
- School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Durban, 4000 South Africa
- Numerus Inc, 850 Iron Point Road, Folsom, 95630 CA USA
| | - Richard Salter
- Numerus Inc, 850 Iron Point Road, Folsom, 95630 CA USA
- Computer Science Department, Oberlin College, Oberlin, 44074 OH USA
| | - Ludovica Luisa Vissat
- Department Environmental Science, Policy and Management, University of California, Berkeley, 94720 CA USA
| |
Collapse
|
6
|
Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev 2020; 56:39-48. [PMID: 32718830 PMCID: PMC7333629 DOI: 10.1016/j.cytogfr.2020.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022]
Abstract
Cancer immunotherapy using tumor-selective, oncolytic viruses is an emerging therapeutic option for solid and hematologic malignancies. A considerable variety of viruses ranging from small picornaviruses to large poxviruses are currently being investigated as potential candidates. In the early days of virotherapy, non-engineered wild-type or vaccine-strain viruses were employed. However, these viruses often did not fully satisfy the major criteria of safety and efficacy. Since the advent of reverse genetics systems for manipulating various classes of viruses, the field has shifted to developing genetically engineered viruses with an improved therapeutic index. In this review, we will summarize the concepts and strategies of multi-level genetic engineering of oncolytic measles virus, a prime candidate for cancer immunovirotherapy. Furthermore, we will provide a brief overview of measles virus-based multimodal combination therapies for improved tumor control and clinical efficacy.
Collapse
Affiliation(s)
- Mathias F Leber
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| | - Serge Neault
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Elise Jirovec
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Russell Barkley
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Aida Said
- Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada; University of Ottawa, Faculty of Medicine, Department of Cellular and Molecular Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Guy Ungerechts
- German Cancer Research Center (DKFZ), Clinical Cooperation Unit Virotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Heidelberg University Hospital, Department of Medical Oncology, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; Ottawa Hospital Research Institute, Cancer Therapeutics Program, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| |
Collapse
|
7
|
A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc Natl Acad Sci U S A 2020; 117:32657-32666. [PMID: 33257540 PMCID: PMC7768780 DOI: 10.1073/pnas.2014468117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The COVID-19 pandemic has already caused over 1 million deaths. Therefore, effective vaccine concepts are urgently needed. In search of such a concept, we have analyzed a measles virus-based vaccine candidate targeting SARS-CoV-2. Using this well-known, safe vaccine backbone, we demonstrate here induction of functional immune responses in both arms of adaptive immunity, yielding antiviral efficacy in vivo with the desired immune bias. Consequently, no immunopathologies became evident during challenge experiments. Moreover, the candidate still induces immunity against the measles, recognized as a looming second menace, when countries are forced to stop routine vaccination campaigns in the face of COVID-19. Thus, a bivalent measles-based COVID-19 vaccine could be the solution for two significant public health threats. The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.
Collapse
|
8
|
Abu-Raya B, Maertens K, Edwards KM, Omer SB, Englund JA, Flanagan KL, Snape MD, Amirthalingam G, Leuridan E, Damme PV, Papaevangelou V, Launay O, Dagan R, Campins M, Cavaliere AF, Frusca T, Guidi S, O'Ryan M, Heininger U, Tan T, Alsuwaidi AR, Safadi MA, Vilca LM, Wanlapakorn N, Madhi SA, Giles ML, Prymula R, Ladhani S, Martinón-Torres F, Tan L, Michelin L, Scambia G, Principi N, Esposito S. Global Perspectives on Immunization During Pregnancy and Priorities for Future Research and Development: An International Consensus Statement. Front Immunol 2020; 11:1282. [PMID: 32670282 PMCID: PMC7326941 DOI: 10.3389/fimmu.2020.01282] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Immunization during pregnancy has been recommended in an increasing number of countries. The aim of this strategy is to protect pregnant women and infants from severe infectious disease, morbidity and mortality and is currently limited to tetanus, inactivated influenza, and pertussis-containing vaccines. There have been recent advancements in the development of vaccines designed primarily for use in pregnant women (respiratory syncytial virus and group B Streptococcus vaccines). Although there is increasing evidence to support vaccination in pregnancy, important gaps in knowledge still exist and need to be addressed by future studies. This collaborative consensus paper provides a review of the current literature on immunization during pregnancy and highlights the gaps in knowledge and a consensus of priorities for future research initiatives, in order to optimize protection for both the mother and the infant.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kirsten Maertens
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Kathryn M. Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Saad B. Omer
- Department of Internal Medicine (Infectious Diseases), Department of Epidemiology of Microbial Diseases, Yale School of Medicine, Yale School of Public Health, New Haven, CT, United States
| | - Janet A. Englund
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, United States
| | - Katie L. Flanagan
- Faculty of Health Sciences, School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Matthew D. Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gayatri Amirthalingam
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Elke Leuridan
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Pierre Van Damme
- Faculty of Medicine and Health Sciences, Centre for the Evaluation of Vaccination, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Vana Papaevangelou
- Third Department of Pediatrics, University Hospital ATTIKON, National and Kapodistrian University of Athens, Athens, Greece
| | - Odile Launay
- Université de Paris, Inserm, CIC 1417, F-CRIN I REIVAC, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Magda Campins
- Preventive Medicine and Epidemiology Department, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Anna Franca Cavaliere
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Frusca
- Department of Medicine and Surgery, Obstetrics and Gynaecology Unit, University of Parma, Parma, Italy
| | - Sofia Guidi
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Miguel O'Ryan
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences and Associate Researcher, Millennium Institute of Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Ulrich Heininger
- Pediatric Infectious Diseases, University of Basel Children's Hospital, Basel, Switzerland
| | - Tina Tan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Ahmed R. Alsuwaidi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marco. A. Safadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Luz M. Vilca
- Unit of Obstetrics and Gynecology, Buzzi Hospital - ASST Fatebenefratelli Sacco, University of Milan, Milan, Italy
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shabir A. Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michelle L. Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Roman Prymula
- School of Medicine Hradec Kralove, Institute of Social Medicine, Charles University Prague, Prague, Czechia
| | - Shamez Ladhani
- Immunisation and Countermeasures Division, National Infection Service, Public Health England, London, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, University of Santiago, Santiago de Compostela, Spain
| | - Litjen Tan
- Immunization Action Coalition, St. Paul, MN, United States
| | - Lessandra Michelin
- Infectious Diseases and Vaccinology Division, Health Sciences Post Graduation Program, University of Caxias Do Sul, Caxias Do Sul, Brazil
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Susanna Esposito
- Department of Medicine and Surgery, Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Parma, Italy
| |
Collapse
|
9
|
Nelson AN, Lin WHW, Shivakoti R, Putnam NE, Mangus L, Adams RJ, Hauer D, Baxter VK, Griffin DE. Association of persistent wild-type measles virus RNA with long-term humoral immunity in rhesus macaques. JCI Insight 2020; 5:134992. [PMID: 31935196 DOI: 10.1172/jci.insight.134992] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/21/2023] Open
Abstract
Recovery from measles results in life-long protective immunity. To understand induction of long-term immunity, rhesus macaques were studied for 6 months after infection with wild-type measles virus (MeV). Infection caused viremia and rash, with clearance of infectious virus by day 14. MeV RNA persisted in PBMCs for 30-90 days and in lymphoid tissue for 6 months most often in B cells but was rarely detected in BM. Antibody with neutralizing activity and binding specificity for MeV nucleocapsid (N), hemagglutinin (H), and fusion proteins appeared with the rash and avidity matured over 3-4 months. Lymph nodes had increasing numbers of MeV-specific antibody-secreting cells (ASCs) and germinal centers with late hyalinization. ASCs appeared in circulation with the rash and continued to appear along with peripheral T follicular helper cells for the study duration. ASCs in lymph nodes and PBMCs produced antibody against both H and N, with more H-specific ASCs in BM. During days 14-21, 20- to 100-fold more total ASCs than MeV-specific ASCs appeared in circulation, suggesting mobilization of preexisting ASCs. Therefore, persistence of MeV RNA in lymphoid tissue was accompanied by continued germinal center formation, ASC production, avidity maturation, and accumulation of H-specific ASCs in BM to sustain neutralizing antibody and protective immunity.
Collapse
Affiliation(s)
- Ashley N Nelson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wen-Hsuan W Lin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rupak Shivakoti
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicole E Putnam
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Lisa Mangus
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Nigar S, Shimosato T. Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Front Nutr 2019; 6:140. [PMID: 31508424 PMCID: PMC6718720 DOI: 10.3389/fnut.2019.00140] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unmethylated cytosine–guanine dinucleotide (CpG) motifs are potent stimulators of the host immune response. Cellular recognition of CpG motifs occurs via Toll-like receptor 9 (TLR9), which normally activates immune responses to pathogen-associated molecular patterns (PAMPs) indicative of infection. Oligodeoxynucleotides (ODNs) containing unmethylated CpGs mimic the immunostimulatory activity of viral/microbial DNA. Synthetic ODNs harboring CpG motifs resembling those identified in viral/microbial DNA trigger an identical response, such that these immunomodulatory ODNs have therapeutic potential. CpG DNA has been investigated as an agent for the management of malignancy, asthma, allergy, and contagious diseases, and as an adjuvant in immunotherapy. In this review, we discuss the potential synergy between synthetic ODNs and other synthetic molecules and their immunomodulatory effects. We also summarize the different synthetic molecules that function as immune modulators and outline the phenomenon of TLR-mediated immune responses. We previously reported a novel synthetic ODN that acts synergistically with other synthetic molecules (including CpG ODNs, the synthetic triacylated lipopeptide Pam3CSK4, lipopolysaccharide, and zymosan) that could serve as an immune therapy. Additionally, several clinical trials have evaluated the use of CpG ODNs with other immune factors such as granulocyte-macrophage colony-stimulating factor, cytokines, and both endosomal and cell-surface TLR ligands as adjuvants for the augmentation of vaccine activity. Furthermore, we discuss the structural recognition of ODNs by TLRs and the mechanism of functional modulation of TLRs in the context of the potential application of ODNs as wide-spectrum therapeutic agents.
Collapse
Affiliation(s)
- Shireen Nigar
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
11
|
Pittet LF, Verolet CM, McLin VA, Wildhaber BE, Rodriguez M, Cherpillod P, Kaiser L, Siegrist CA, Posfay-Barbe KM. Multimodal safety assessment of measles-mumps-rubella vaccination after pediatric liver transplantation. Am J Transplant 2019; 19:844-854. [PMID: 30171797 DOI: 10.1111/ajt.15101] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/31/2018] [Accepted: 08/18/2018] [Indexed: 01/25/2023]
Abstract
Live-attenuated vaccines are currently contraindicated in solid-organ transplant recipients. However, the risk of vaccine-preventable infections is lifelong, and can be particularly severe after transplantation. In this prospective interventional national cohort study, 44 pediatric liver transplant recipients with measles IgG antibodies <150 IU/L (below seroprotection threshold) received measles-mumps-rubella vaccine (MMR) at a median of 6.3 years posttransplantation (interquartile range, 4.0 to 10.9). A maximum of two additional doses were administered in nonresponders or when seroprotection was lost. Vaccine responses occurred in 98% (95% confidence interval [CI], 88-100) of patients. Seroprotection at 1-, 2-, and 3-year follow-up reached 62% (95% CI, 45-78), 86% (95% CI, 70-95), and 89% (95% CI, 67-99), respectively. All patients responded appropriately to the booster dose(s). Vaccinations were well tolerated and no serious adverse event attributable to vaccination was identified during the 8-week follow-up period (or later), using a multimodal approach including standardized telephone interviews, diarized side effect reporting, and monitoring of vaccinal virus shedding. We conclude that live attenuated MMR vaccine can be administered in liver transplant recipients fulfilling specific eligibility criteria (>1 year posttransplantation, low immunosuppression, lymphocyte count ≥0.75 G/L), inducing seroprotection in most subjects. (Clinicaltrials.gov number NCT01770119).
Collapse
Affiliation(s)
- Laure F Pittet
- Department of Pediatrics, Division of General Pediatrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Charlotte M Verolet
- Department of Pediatrics, Division of General Pediatrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Valérie A McLin
- Department of Pediatrics, Pediatric Gastroenterology, Hepatology and Nutrition Unit, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Barbara E Wildhaber
- Department of Pediatrics, University Center of Pediatric Surgery of Western Switzerland, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Maria Rodriguez
- Department of Pediatrics, Division of General Pediatrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Pascal Cherpillod
- Laboratory of Virology, Division of Infectious Diseases, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases, University Hospital of Geneva and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Department of Pediatrics, Division of General Pediatrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.,Centre for Vaccinology, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Pediatrics, Division of General Pediatrics, Children's Hospital, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
12
|
Tweyongyere R, Nassanga BR, Muhwezi A, Odongo M, Lule SA, Nsubuga RN, Webb EL, Cose SC, Elliott AM. Effect of Schistosoma mansoni infection and its treatment on antibody responses to measles catch-up immunisation in pre-school children: A randomised trial. PLoS Negl Trop Dis 2019; 13:e0007157. [PMID: 30763405 PMCID: PMC6392333 DOI: 10.1371/journal.pntd.0007157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 02/27/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosoma infection is associated with immune modulation that can influence responses to non-schistosome antigens. Vaccine responses may be impaired in S. mansoni-infected individuals. We investigated effects of S. mansoni infection on responses to childhood measles catch-up immunisation and of praziquantel treatment on this outcome in a randomised trial. METHODOLOGY The Immune Modulation and Childhood Immunisation (IMoChI) study was based in Entebbe, Uganda. Children aged 3-5 years (193 S. mansoni-infected and 61 uninfected) were enrolled. Infected children were randomised in a 1:1:1 ratio to receive praziquantel 2 weeks before, at time of, or 1 week after, measles catch-up immunisation. Plasma anti-measles IgG was measured at enrolment, 1 week and 24 weeks after measles immunisation. Primary outcomes were IgG levels and percentage of participants with levels considered protective against measles. RESULTS Anti-measles IgG levels increased following immunisation, but at 1 week post-immunisation S. mansoni-infected, compared to uninfected, children had lower levels of anti-measles IgG (adjusted geometric mean ratio (aGMR) 0.4 [95% CI 0.2-0.7]) and the percentage with protective antibody levels was also lower (adjusted odds ratio 0.1 [0-0.9]). Among S. mansoni-infected children, anti-measles IgG one week post-immunisation was higher among those treated with praziquantel than among those who were not yet treated (treatment before immunisation, aGMR 2.3 [1.5-4.8]; treatment at immunisation aGMR 1.8 [1.1-3.5]). At 24 weeks post-immunisation, IgG levels did not differ between the trial groups, but tended to be lower among previously-infected children who were still S mansoni stool-positive than among those who became stool-negative. CONCLUSIONS AND SIGNIFICANCE Our findings suggest that S. mansoni infection among pre-school children is associated with a reduced antibody response to catch-up measles immunisation, and that praziquantel treatment improves the response. S. mansoni infection may contribute to impaired vaccine responses in endemic populations; effective schistosomiasis control may be beneficial for vaccine efficacy. This should be further explored. TRIAL REGISTRATION ISRCTN87107592.
Collapse
Affiliation(s)
- Robert Tweyongyere
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Beatrice R. Nassanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Allan Muhwezi
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Matthew Odongo
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Swaib A. Lule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Rebecca N. Nsubuga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Emily L. Webb
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| | - Stephen C. Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| | - Alison M. Elliott
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, Keppel Street, London United Kingdom
| |
Collapse
|
13
|
Hedrick SM. The Imperative to Vaccinate. J Pediatr 2018; 201:259-263. [PMID: 30054163 PMCID: PMC7131101 DOI: 10.1016/j.jpeds.2018.06.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/01/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Stephen M. Hedrick
- Reprint requests: Stephen M. Hedrick, PhD, UC San Diego, Molecular Biology, 9500 Gilman Dr, La Jolla, CA 92093-0377
| |
Collapse
|
14
|
Fujiyuki T, Horie R, Yoneda M, Kuraishi T, Yasui F, Kwon HJ, Munekata K, Ikeda F, Hoshi M, Kiso Y, Omi M, Sato H, Kida H, Hattori S, Kohara M, Kai C. Efficacy of recombinant measles virus expressing highly pathogenic avian influenza virus (HPAIV) antigen against HPAIV infection in monkeys. Sci Rep 2017; 7:12017. [PMID: 28931922 PMCID: PMC5607339 DOI: 10.1038/s41598-017-08326-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) is a serious threat not only to domestic fowls but also to humans. Vaccines inducing long-lasting immunity against HPAIV are required. In the present study, we generated recombinant measles virus (MV) expressing the hemagglutinin protein of HPAIV without the multibasic site necessary for its pathogenicity in chickens using the backbone of an MV vaccine strain (rMV-Ed-H5HA) or a wild-type MV-derived mutant (rMV-HL-Vko-H5HA). We examined protective efficacy of the candidate vaccines in the monkey infection model by the challenge with a HPAIV (H5N1). Cynomolgus monkeys inoculated with the candidate vaccines produced both anti-H5 HA and anti-MV antibodies. They recovered earlier from influenza symptoms than unvaccinated monkeys after the challenge with the HPAIV strain. Chest radiography and histopathological analyses confirmed less severe pneumonia in the vaccinated monkeys. Vaccination tended to suppress viral shedding and reduced the interleukin-6 levels in the lungs. Furthermore, the vaccination with rMV-Ed-H5HA of monkeys with pre-existing anti-MV immunity induced the production of anti-H5 HA antibodies. These results suggest that both candidate vaccines effectively reduce disease severity in naïve hosts, and that rMV-Ed-H5HA is a particularly good candidate vaccine against HPAIV infection.
Collapse
Affiliation(s)
- Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Horie
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takeshi Kuraishi
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.,Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hyun-Jeong Kwon
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Fusako Ikeda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Miho Hoshi
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuri Kiso
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Mio Omi
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan. .,Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima, 894-1531, Japan.
| |
Collapse
|
15
|
Abstract
The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.
Collapse
Affiliation(s)
- Michael D Mühlebach
- Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225, Langen, Germany.
| |
Collapse
|
16
|
Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens. J Virol 2017; 91:JVI.02077-16. [PMID: 28148801 DOI: 10.1128/jvi.02077-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains.IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens.
Collapse
|
17
|
Faucette AN, Unger BL, Gonik B, Chen K. Maternal vaccination: moving the science forward. Hum Reprod Update 2014; 21:119-35. [PMID: 25015234 DOI: 10.1093/humupd/dmu041] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infections remain one of the leading causes of morbidity in pregnant women and newborns, with vaccine-preventable infections contributing significantly to the burden of disease. In the past decade, maternal vaccination has emerged as a promising public health strategy to prevent and combat maternal, fetal and neonatal infections. Despite a number of universally recommended maternal vaccines, the development and evaluation of safe and effective maternal vaccines and their wide acceptance are hampered by the lack of thorough understanding of the efficacy and safety in the pregnant women and the offspring. METHODS An outline was synthesized based on the current status and major gaps in the knowledge of maternal vaccination. A systematic literature search in PUBMED was undertaken using the key words in each section title of the outline to retrieve articles relevant to pregnancy. Articles cited were selected based on relevance and quality. On the basis of the reviewed information, a perspective on the future directions of maternal vaccination research was formulated. RESULTS Maternal vaccination can generate active immune protection in the mother and elicit systemic immunoglobulin G (IgG) and mucosal IgG, IgA and IgM responses to confer neonatal protection. The maternal immune system undergoes significant modulation during pregnancy, which influences responsiveness to vaccines. Significant gaps exist in our knowledge of the efficacy and safety of maternal vaccines, and no maternal vaccines against a large number of old and emerging pathogens are available. Public acceptance of maternal vaccination has been low. CONCLUSIONS To tackle the scientific challenges of maternal vaccination and to provide the public with informed vaccination choices, scientists and clinicians in different disciplines must work closely and have a mechanistic understanding of the systemic, reproductive and mammary mucosal immune responses to vaccines. The use of animal models should be coupled with human studies in an iterative manner for maternal vaccine experimentation, evaluation and optimization. Systems biology approaches should be adopted to improve the speed, accuracy and safety of maternal vaccine targeting.
Collapse
Affiliation(s)
- Azure N Faucette
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Benjamin L Unger
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA
| | - Bernard Gonik
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI 48201, USA Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA Department of Immunology and Microbiology, Wayne State University, Detroit, MI 48201, USA Department of Oncology, Wayne State University, Detroit, MI 48201, USA Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Jelicic K, Cimbro R, Nawaz F, Huang DW, Zheng X, Yang J, Lempicki RA, Pascuccio M, Van Ryk D, Schwing C, Hiatt J, Okwara N, Wei D, Roby G, David A, Hwang IY, Kehrl JH, Arthos J, Cicala C, Fauci AS. The HIV-1 envelope protein gp120 impairs B cell proliferation by inducing TGF-β1 production and FcRL4 expression. Nat Immunol 2013; 14:1256-65. [PMID: 24162774 PMCID: PMC3870659 DOI: 10.1038/ni.2746] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/25/2013] [Indexed: 01/08/2023]
Abstract
The humoral immune response after acute infection with HIV-1 is delayed and ineffective. The HIV-1 envelope protein gp120 binds to and signals through integrin α4β7 on T cells. We found that gp120 also bound to and signaled through α4β7 on naive B cells, which resulted in an abortive proliferative response. In primary B cells, signaling by gp120 through α4β7 resulted in increased expression of the immunosuppressive cytokine TGF-β1 and FcRL4, an inhibitory receptor expressed on B cells. Coculture of B cells with HIV-1-infected autologous CD4(+) T cells also increased the expression of FcRL4 by B cells. Our findings indicated that in addition to mediating chronic activation of the immune system, viral proteins contributed directly to HIV-1-associated B cell dysfunction. Our studies identify a mechanism whereby the virus may subvert the early HIV-1-specific humoral immune response.
Collapse
Affiliation(s)
- Katija Jelicic
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Carbonetto P, Stephens M. Integrated enrichment analysis of variants and pathways in genome-wide association studies indicates central role for IL-2 signaling genes in type 1 diabetes, and cytokine signaling genes in Crohn's disease. PLoS Genet 2013; 9:e1003770. [PMID: 24098138 PMCID: PMC3789883 DOI: 10.1371/journal.pgen.1003770] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 07/22/2013] [Indexed: 12/17/2022] Open
Abstract
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn's disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and "Measles" pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study.
Collapse
Affiliation(s)
- Peter Carbonetto
- Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Dept. of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Dept. of Statistics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Kizito D, Tweyongyere R, Namatovu A, Webb EL, Muhangi L, Lule SA, Bukenya H, Cose S, Elliott AM. Factors affecting the infant antibody response to measles immunisation in Entebbe-Uganda. BMC Public Health 2013; 13:619. [PMID: 23816281 PMCID: PMC3733798 DOI: 10.1186/1471-2458-13-619] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 06/25/2013] [Indexed: 11/24/2022] Open
Abstract
Background Vaccine failure is an important concern in the tropics with many contributing elements. Among them, it has been suggested that exposure to natural infections might contribute to vaccine failure and recurrent disease outbreaks. We tested this hypothesis by examining the influence of co-infections on maternal and infant measles-specific IgG levels. Methods We conducted an observational analysis using samples and data that had been collected during a larger randomised controlled trial, the Entebbe Mother and Baby Study (ISRCTN32849447). For the present study, 711 pregnant women and their offspring were considered. Helminth infections including hookworm, Schistosoma mansoni and Mansonella perstans, along with HIV, malaria, and other potential confounding factors were determined in mothers during pregnancy and in their infants at age one year. Infants received their measles immunisation at age nine months. Levels of total IgG against measles were measured in mothers during pregnancy and at delivery, as well as in cord blood and from infants at age one year. Results Among the 711 pregnant women studied, 66% had at least one helminth infection at enrolment, 41% had hookworm, 20% M. perstans and 19% S. mansoni. Asymptomatic malaria and HIV prevalence was 8% and 10% respectively. At enrolment, 96% of the women had measles-specific IgG levels considered protective (median 4274 mIU/ml (IQR 1784, 7767)). IgG levels in cord blood were positively correlated to maternal measles-specific IgG levels at delivery (r = 0.81, p < 0.0001). Among the infants at one year of age, median measles-specific IgG levels were markedly lower than in maternal and cord blood (median 370 mIU/ml (IQR 198, 656) p < 0.0001). In addition, only 75% of the infants had measles-specific IgG levels considered to be protective. In a multivariate regression analysis, factors associated with reduced measles-specific antibody levels in infancy were maternal malaria infection, infant malaria parasitaemia, infant HIV and infant wasting. There was no association with maternal helminth infection. Conclusion Malaria and HIV infection in mothers during pregnancy, and in their infants, along with infant malnutrition, may result in reduction of the antibody response to measles immunisation in infancy. This re-emphasises the importance of malaria and HIV control, and support for infant nutrition, as these interventions may have benefits for vaccine efficacy in tropical settings.
Collapse
Affiliation(s)
- Dennison Kizito
- Co-infection Studies Programme, MRC/UVRI Uganda Research Unit on AIDS, Uganda Virus Research Institute, PO BOX 49, Entebbe, Uganda.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Arababadi MK, Nasiri Ahmadabadi B, Kennedy D. Current information on the immunologic status of occult hepatitis B infection. Transfusion 2012; 52:1819-1826. [PMID: 22404554 DOI: 10.1111/j.1537-2995.2012.03575.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatitis B is one of the most frequently occurring posttransfusion infections. Occult hepatitis B (OB) is a form of hepatitis B in which, despite the presence of hepatitis B virus (HBV) DNA in the serum and hepatocytes of a carrier, hepatitis B surface antigen is absent. In addition to the risk of transfusion of infection, OB can lead to cirrhosis, hepatic cancer, and reactivation of the viral duplication process in the carrier. The mechanisms responsible for progression of OB are yet to be clarified; however, some investigators have suggested that genetic and immunologic variables may play a significant role in the resistance of some individuals and sensitivity of other patients. This review addresses the current information regarding immunologic status of OB-infected patients.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Microbiology, Hematology and Immunology, Faculty of Medicine, and Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | | | |
Collapse
|
22
|
Sparrer KMJ, Pfaller CK, Conzelmann KK. Measles virus C protein interferes with Beta interferon transcription in the nucleus. J Virol 2012; 86:796-805. [PMID: 22072748 PMCID: PMC3255862 DOI: 10.1128/jvi.05899-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022] Open
Abstract
Transcriptional induction of beta interferon (IFN-β) through pattern recognition receptors is a key event in the host defense against invading viruses. Infection of cells by paramyxoviruses, like measles virus (MV) (genus Morbillivirus), is sensed predominantly by the ubiquitous cytoplasmic helicase RIG-I, recognizing viral 5'-triphosphate RNAs, and to some degree by MDA5. While MDA5 activation is effectively prevented by the MV V protein, the viral mechanisms for inhibition of MDA5-independent induction of IFN-β remained obscure. Here, we identify the 186-amino-acid MV C protein, which shuttles between the nucleus and the cytoplasm, as a major viral inhibitor of IFN-β transcription in human cells. Activation of the transcription factor IRF3 by upstream kinases and nuclear import of activated IRF3 were not affected in the presence of C protein, suggesting a nuclear target. Notably, C proteins of wild-type MV isolates, which are poor IFN-β inducers, were found to comprise a canonical nuclear localization signal (NLS), whereas the NLSs of all vaccine strains, irrespective of their origins, were mutated. Site-directed mutagenesis of the C proteins from an MV wild-type isolate and from the vaccine virus strain Schwarz confirmed a correlation of nuclear localization and inhibition of IFN-β transcription. A functional NLS and efficient nuclear accumulation are therefore critical for MV C to retain its potential to downregulate IFN-β induction. We suggest that a defect in efficient nuclear import of C protein contributes to attenuation of MV vaccine strains.
Collapse
Affiliation(s)
- Konstantin M J Sparrer
- Max von Pettenkofer-Institute and Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | |
Collapse
|
23
|
Kim D, Huey D, Oglesbee M, Niewiesk S. Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 2011; 117:6143-51. [PMID: 21357766 PMCID: PMC3122939 DOI: 10.1182/blood-2010-11-320317] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/05/2011] [Indexed: 11/20/2022] Open
Abstract
The inhibition of vaccination by maternal antibodies is a widely observed phenomenon in human and veterinary medicine. Maternal antibodies are known to suppress the B-cell response. This is similar to antibody feedback mechanism studies where passively transferred antibody inhibits the B-cell response against particulate antigens because of epitope masking. In the absence of experimental data addressing the mechanism underlying inhibition by maternal antibodies, it has been suggested that epitope masking explains the inhibition by maternal antibodies, too. Here we report that in the cotton rat model of measles virus (MV) vaccination passively transferred MV-specific immunoglobulin G inhibit B-cell responses through cross-linking of the B-cell receptor with FcγRIIB. The extent of inhibition increases with the number of antibodies engaging FcγRIIB and depends on the Fc region of antibody and its isotype. This inhibition can be partially overcome by injection of MV-specific monoclonal IgM antibody. IgM stimulates the B-cell directly through cross-linking the B-cell receptor via complement protein 3d and antigen to the complement receptor 2 signaling complex. These data demonstrate that maternal antibodies inhibit B-cell responses by interaction with the inhibitory/regulatory FcγRIIB receptor and not through epitope masking.
Collapse
Affiliation(s)
- Dhohyung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
24
|
Wild-type measles virus interferes with short-term engraftment of human CD34+ hematopoietic progenitor cells. J Virol 2011; 85:7710-8. [PMID: 21593150 DOI: 10.1128/jvi.00532-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.
Collapse
|
25
|
Arababadi MK, Pourfathollah AA, Jafarzadeh A, Hassanshahi G, Shamizadeh A, Ahmadabadi BN, Kennedy D. The status of humoral immunity in occult HBV infection in south-eastern Iranian patients. Clin Res Hepatol Gastroenterol 2011; 35:309-14. [PMID: 21310685 DOI: 10.1016/j.clinre.2010.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/29/2010] [Accepted: 12/02/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Occult hepatitis B infection (OBI) is characterized as a form of hepatitis in which, despite of absence of detectable HBsAg, HBV-DNA is present in patient's peripheral blood. The aim of this study was to investigate components of humoral immunity during OBI as a possible measure of how patients respond to Hepatitis B viral infections. MATERIAL AND METHODS In this study, HBsAg-/anti-HBc+/HBV-DNA+ samples were assigned as OBI cases and SRID techniques were performed to measure levels of circulating antibodies (IgG, IgM and IgA) as well as C3, C4. In addition, complement system function was assessed by CH50. RESULTS Our results showed that the serum levels of IgG and C4 were significantly lower in OBI patients, while IgM and C3 were higher in patients when compared to healthy controls. Serum levels of IgA and CH50 were not significantly different between OBI patients and controls. DISCUSSION Based on these results, it could be concluded that although OBI patients produced elevated levels of IgM there may be a problem converting and progressing this response to generate enough IgG to overcome HBV infection.
Collapse
Affiliation(s)
- Mohammad Kazemi Arababadi
- Department of Microbiology, Hematology and Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | | | | | | | | | | | | |
Collapse
|
26
|
Haralambieva IH, Ovsyannikova IG, Dhiman N, Vierkant RA, Jacobson RM, Poland GA. Differential cellular immune responses to wild-type and attenuated edmonston tag measles virus strains are primarily defined by the viral phosphoprotein gene. J Med Virol 2011; 82:1966-75. [PMID: 20872725 DOI: 10.1002/jmv.21899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The measles virus phosphoprotein (P) gene encodes the P, V, and C proteins, which have multiple functions including type I interferon (IFN) inhibition. With a focus on viral immune modulation, we conducted a study on healthy vaccinees (n=179) to compare cytokine secretion patterns/cell frequencies and gene expression after in vitro encounter with a highly attenuated strain of measles virus (MVEdmtag), wild-type MV (MVwt) or recombinant MVEdmtag expressing the wild-type P gene (MVwtP). Cytokines were quantified by ELISA and Elispot. Gene expression profiling was performed using real-time PCR. We found differential MV-specific cytokine responses to all detected cytokines characterized by significantly higher cytokine levels (P<0.001) and higher frequencies (P<0.0001) of cytokine-producing cells after stimulation with the highly attenuated MVEdmtag strain in comparison with MVwt or MVwtP. Furthermore, gene expression profiling revealed significant cytokine suppression at the transcriptional level for viruses encoding the functional wt P gene, compared to attenuated MVEdmtag (P<0.05). Using lentivirus-mediated stable expression of P gene-encoded proteins in human cell lines, we demonstrated that the expression of the functional wt V protein significantly down-modulated the induction of IFNs type I, II, and III in lymphocytes and monocytes. Taken together our results indicate that Th1, Th2, and innate/inflammatory cytokine responses in vaccinees are suppressed both at the protein and transcriptional level by viruses expressing the functional wt P gene products. The functional P gene-encoded viral proteins (particularly V proteins) emerge as crucial immune evasion factors for modulating and shaping the measles virus-specific cytokine responses in humans.
Collapse
Affiliation(s)
- Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
27
|
Induction of type I interferon secretion through recombinant Newcastle disease virus expressing measles virus hemagglutinin stimulates antibody secretion in the presence of maternal antibodies. J Virol 2010; 85:200-7. [PMID: 20962092 DOI: 10.1128/jvi.01624-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.
Collapse
|
28
|
Frecha C, Lévy C, Cosset FL, Verhoeyen E. Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Mol Ther 2010; 18:1748-57. [PMID: 20736930 PMCID: PMC2951569 DOI: 10.1038/mt.2010.178] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022] Open
Abstract
Efficient gene transfer into quiescent T and B lymphocytes for gene therapy or immunotherapy purposes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as immunodeficiencies, and the development of novel therapeutic strategies for cancers and acquired diseases. Lentiviral vectors (LVs) can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T and B cells. In T cells, completion of reverse transcription (RT), nuclear import, and subsequent integration of the vesicular stomatitis virus G protein pseudotyped LV (VSVG-LV) genome does not occur efficiently unless they are activated via the T-cell receptor (TCR) or by survival-cytokines inducing them to enter into the G(1b) phase of the cell cycle. Lentiviral transduction of B cells is another matter because even B-cell receptor-stimulation inducing proliferation is not sufficient to allow efficient VSVG-LV transduction. Recently, a new LV carrying the glycoproteins of measles virus (MV) at its surface was able to overcome vector restrictions in both quiescent T and B cells. Importantly, naive as well as memory T and B cells were efficiently transduced while no apparent activation, cell-cycle entry, or phenotypic switch were detected, which opens the door to a multitude of gene therapy and immunotherapy applications as reported here.
Collapse
|
29
|
Kobold S, Lütkens T, Cao Y, Bokemeyer C, Atanackovic D. Autoantibodies against tumor-related antigens: Incidence and biologic significance. Hum Immunol 2010; 71:643-51. [DOI: 10.1016/j.humimm.2010.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 01/05/2023]
|
30
|
Flanagan KL, Burl S, Lohman-Payne BL, Plebanski M. The challenge of assessing infant vaccine responses in resource-poor settings. Expert Rev Vaccines 2010; 9:665-74. [PMID: 20518720 PMCID: PMC2937226 DOI: 10.1586/erv.10.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Newborns and infants are highly susceptible to infectious diseases, resulting in high mortality and morbidity, particularly in resource-poor settings. Many vaccines require several booster doses, resulting in an extensive vaccine schedule, and yet there is still inadequate protection from some of these diseases. This is partly due to the immaturity of the neonate and infant immune system. Little is known about the specific modifications to immunological assessment protocols in early life but increasing knowledge of infant immunology has helped provide better recommendations for assessing these responses. Since most new vaccines will eventually be deployed in low-income settings such as Africa, the logistics and resources of assessing immunity in such settings also need to be understood. In this article, we will review immunity to vaccines in early life, discuss the many challenges associated with assessing immunogenicity and provide practical tips.
Collapse
Affiliation(s)
| | - Sarah Burl
- Medical Research Council (UK) The Gambia, Fajara, The Gambia
| | | | - Magdalena Plebanski
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia
| |
Collapse
|
31
|
Itakura J, Kurosaki M, Itakura Y, Maekawa S, Asahina Y, Izumi N, Enomoto N. Reproducibility and usability of chronic virus infection model using agent-based simulation; comparing with a mathematical model. Biosystems 2009; 99:70-8. [PMID: 19751799 DOI: 10.1016/j.biosystems.2009.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/27/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
We created agent-based models that visually simulate conditions of chronic viral infections using two software. The results from two models were consistent, when they have same parameters during the actual simulation. The simulation results comprise a transient phase and an equilibrium phase, and unlike the mathematical model, virus count transit smoothly to the equilibrium phase without overshooting which correlates with actual biology in vivo of certain viruses. We investigated the effects caused by varying all the parameters included in concept; increasing virus lifespan, uninfected cell lifespan, uninfected cell regeneration rate, virus production count from infected cells, and infection rate had positive effects to the virus count during the equilibrium period, whereas increasing the latent period, the lifespan-shortening ratio for infected cells, and the cell cycle speed had negative effects. Virus count at the start did not influence the equilibrium conditions, but it influenced the infection development rate. The space size had no intrinsic effect on the equilibrium period, but virus count maximized when the virus moving speed was twice the space size. These agent-based simulation models reproducibly provide a visual representation of the disease, and enable a simulation that encompasses parameters those are difficult to account for in a mathematical model.
Collapse
Affiliation(s)
- Jun Itakura
- Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, 1-26-1 Kyonan-cho, Musashino-shi, Tokyo 180-8610, Japan.
| | | | | | | | | | | | | |
Collapse
|