1
|
Ma J, Gong T, Luo T, Li S, Zhong L, Zhao X, Mei C, Bu H, Jia Z, Kuang X, Wang X, Fu Z, Tian D. Exacerbated lung inflammation in offspring with high maternal antibody levels following secondary RSV exposure. Front Immunol 2024; 15:1377374. [PMID: 38745662 PMCID: PMC11091276 DOI: 10.3389/fimmu.2024.1377374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the primary cause of bronchiolitis-related hospitalizations among children under 5 years of age, with reinfection being common throughout life. Maternal vaccination has emerged as a promising strategy, delivering elevated antibody levels to newborns for immediate protection. However, limited research has explored the protective efficacy of maternal antibodies (matAbs) against secondary RSV infections in offspring. To address this gap, we employed a mouse model of maternal RSV vaccination and secondary infection of offspring to evaluate lung pathology following RSV reinfection in mice with varying levels of maternal antibody (matAb). Additionally, we aimed to investigate the potential causes of exacerbated lung inflammation in offspring with high matAb levels following secondary RSV exposure. Our findings revealed that offspring with elevated levels of maternal pre-F antibody demonstrated effective protection against lung pathology following the initial RSV infection. However, this protection was compromised upon reinfection, manifesting as heightened weight loss, exacerbated lung pathology, increased expression of RSV-A N genes, eosinophilia, enhanced IL-5, IL-13, MUC5AC, and eosinophils Major Basic Protein (MBP) production in lung tissue compared to offspring lacking matAbs. Importantly, these unexpected outcomes were not attributed to antibody-dependent enhancement (ADE) resulting from declining matAb levels over time. Notably, our findings showed a decline in secretory IgA (sIgA), mucosal IgA, and mucosal IgG levels in offspring with high matAb levels post-primary RSV challenge. We propose that this decline may be a critical factor contributing to the ineffective protection observed during secondary RSV exposure. Overall, these findings offer valuable insights into maternal vaccination against RSV, contributing to a comprehensive understanding and mitigation of potential risks associated with maternal RSV vaccination.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Ting Gong
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Tingting Luo
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Shuanglian Li
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Li Zhong
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Xin Zhao
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Chenghao Mei
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Huaqin Bu
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Zhenxing Jia
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Xiaohu Kuang
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Xiaoli Wang
- Department of mAbs Discovery, Zhuhai Trinomab Pharmaceutical Co., Ltd, Zhuhai, China
| | - Zhou Fu
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
| | - Daiyin Tian
- Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China
- Department of Respiratory Medicine, Yibin Hospital Affiliated to Children’s Hospital of Chongqing Medical University, Yibin, China
| |
Collapse
|
2
|
Lin GL, Drysdale SB, Snape MD, O’Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Bonsall D, Ansari MA, Öner D, Aerssens J, Butler C, Bont L, Openshaw P, Martinón-Torres F, Nair H, Bowden R, Golubchik T, Pollard AJ. Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus. Nat Commun 2021; 12:5125. [PMID: 34446722 PMCID: PMC8390747 DOI: 10.1038/s41467-021-25265-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in young children globally, but little is known about within-host RSV diversity. Here, we characterised within-host RSV populations using deep-sequencing data from 319 nasopharyngeal swabs collected during 2017-2020. RSV-B had lower consensus diversity than RSV-A at the population level, while exhibiting greater within-host diversity. Two RSV-B consensus sequences had an amino acid alteration (K68N) in the fusion (F) protein, which has been associated with reduced susceptibility to nirsevimab (MEDI8897), a novel RSV monoclonal antibody under development. In addition, several minor variants were identified in the antigenic sites of the F protein, one of which may confer resistance to palivizumab, the only licensed RSV monoclonal antibody. The differences in within-host virus populations emphasise the importance of monitoring for vaccine efficacy and may help to explain the different prevalences of monoclonal antibody-escape mutants between the two subgroups.
Collapse
Affiliation(s)
- Gu-Lung Lin
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon B. Drysdale
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK ,grid.4464.20000 0001 2161 2573Present Address: Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s, University of London, London, UK
| | - Matthew D. Snape
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O’Connor
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- grid.4991.50000 0004 1936 8948Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esther Mellado-Gomez
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mariateresa de Cesare
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M. Azim Ansari
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Deniz Öner
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher Butler
- grid.4991.50000 0004 1936 8948Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Louis Bont
- grid.7692.a0000000090126352Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands ,ReSViNET Foundation, Zeist, Netherlands
| | - Peter Openshaw
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute, Imperial College London, London, UK
| | - Federico Martinón-Torres
- grid.411048.80000 0000 8816 6945Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain ,grid.488911.d0000 0004 0408 4897Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harish Nair
- grid.4305.20000 0004 1936 7988Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Rory Bowden
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.1042.7Present Address: Division of Advanced Technology and Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | | | - Tanya Golubchik
- grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J. Pollard
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
3
|
Penkert RR, Hankins JS, Young NS, Hurwitz JL. Vaccine Design Informed by Virus-Induced Immunity. Viral Immunol 2020; 33:342-350. [PMID: 32366204 PMCID: PMC7247049 DOI: 10.1089/vim.2019.0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
When an individual is exposed to a viral pathogen for the first time, the adaptive immune system is naive and cannot prevent virus replication. The consequence may be severe disease. At the same time, the host may rapidly generate a pathogen-specific immune response that will prevent disease if the virus is encountered again. Parvovirus B19 provides one such example. Children with sickle cell disease can experience life-threatening transient aplastic crisis when first exposed to parvovirus B19, but an effective immune response confers lifelong protection. We briefly examine the induction and benefits of virus-induced immunity. We focus on three human viruses for which there are no licensed vaccines (respiratory syncytial virus, human immunodeficiency virus type 1, and parvovirus B19) and consider how virus-induced immunity may inform successful vaccine design.
Collapse
Affiliation(s)
- Rhiannon R. Penkert
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jane S. Hankins
- Pathology Department, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Neal S. Young
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Julia L. Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Sarkar I, Zardini Buzatto A, Garg R, Li L, van Drunen Littel-van den Hurk S. Metabolomic and Immunological Profiling of Respiratory Syncytial Virus Infection after Intranasal Immunization with a Subunit Vaccine Candidate. J Proteome Res 2019; 18:1145-1161. [PMID: 30706717 DOI: 10.1021/acs.jproteome.8b00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory syncytial virus (RSV) is a significant cause of mortality and morbidity in infants, the elderly, immunocompromised individuals, and patients with congenital heart diseases. Despite extensive efforts, a vaccine against RSV is still not available. We have previously reported the development of a subunit vaccine (ΔF/TriAdj) composed of a truncated version of the fusion protein (ΔF) and a polymer-based combination adjuvant (TriAdj). We compared inflammatory responses of ΔF/TriAdj-vaccinated and unvaccinated mice following intranasal challenge with RSV. Rapid and early inflammatory responses were observed in lung samples from both groups but modulated in the vaccinated group 7 days after the viral challenge. The underlying mechanism of action of ΔF/TriAdj was further studied through LC-MS-based metabolomic profiling by using 12C- or 13C-dansyl labeling for the amine/phenol submetabolome. RSV infection predominantly affected the amino acid biosynthesis pathways and urea cycle, whereas ΔF/TriAdj modulated the concentrations of almost all of the altered metabolites. Tryptophan metabolites were significantly affected, including indole, l-kynurenine, xanthurenic acid, serotonin, 5-hydroxyindoleacetic acid, and 6-hydroxymelatonin. The results from the present study provide further mechanistic insights into the mode of action of this RSV vaccine candidate and have important implications in the design of metabolic therapeutic interventions.
Collapse
Affiliation(s)
- Indranil Sarkar
- VIDO-InterVac , University of Saskatchewan , Saskatoon S7N 5E3 , Canada.,Microbiology and Immunology , University of Saskatchewan , Saskatoon S7N 5E5 , Canada
| | | | - Ravendra Garg
- VIDO-InterVac , University of Saskatchewan , Saskatoon S7N 5E3 , Canada
| | - Liang Li
- Department of Chemistry , University of Alberta , Edmonton T6G 2G2 , Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac , University of Saskatchewan , Saskatoon S7N 5E3 , Canada.,Microbiology and Immunology , University of Saskatchewan , Saskatoon S7N 5E5 , Canada
| |
Collapse
|
5
|
The epidemiology and severity of respiratory viral infections in a tropical country: Ecuador, 2009-2016. J Infect Public Health 2018; 12:357-363. [PMID: 30573330 PMCID: PMC7102740 DOI: 10.1016/j.jiph.2018.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Respiratory viral infections (RVI) are a leading cause of mortality worldwide. We compared the epidemiology and severity of RVI in Ecuador during 2009-2016. METHODS Respiratory specimens collected within the national surveillance system were tested for influenza viruses, respiratory syncytial virus (RSV), adenovirus, parainfluenza virus, and human metapneumovirus. Overall and virus-specific positive detection rate (PDR) were calculated and compared the timing of epidemics caused by the different viruses. Logistic regression models were used to compare the age distribution and risk of death across respiratory viruses. RESULTS A total of 41,172 specimens were analyzed: influenza (PDR=14.3%) and respiratory syncytial virus (RSV) (PDR=9.5%) were the most frequently detected viruses. Influenza epidemics typically peaked in December-January and RSV epidemics in March; seasonality was less evident for the other viruses. Compared to adults, children were more frequently infected with RSV, adenovirus, parainfluenza, and influenza B, while the elderly were less frequently infected with influenza A(H1N1)p. The age-adjusted risk of death was highest for A(H1N1)p (odds ratio [OR] 1.73, 95% confidence intervals [CI] 1.38-2.17), and lowest for RSV (OR 0.75, 95%CI 0.57-0.98). CONCLUSIONS Whilst influenza and RSV were the most frequently detected pathogens, the risk of death differed by RVI, being highest for pandemic influenza and lowest for RSV.
Collapse
|
6
|
Taleb SA, Al Thani AA, Al Ansari K, Yassine HM. Human respiratory syncytial virus: pathogenesis, immune responses, and current vaccine approaches. Eur J Clin Microbiol Infect Dis 2018; 37:1817-1827. [PMID: 29876771 DOI: 10.1007/s10096-018-3289-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 10/14/2022]
Abstract
Respiratory syncytial virus continues to pose a serious threat to the pediatric populations worldwide. With a genomic makeup of 15,200 nucleotides, the virus encodes for 11 proteins serving as envelope spikes, inner envelope proteins, and non-structural and ribonucleocapsid complexes. The fusion (F) and attachment (G) surface glycoproteins are the key targets for neutralizing antibodies. The highly variable G with altered glycosylations and the conformational alternations of F create challenges for vaccine development. The metastable F protein is responsible for RSV-host cell fusion and thus infectivity. Novel antigenic sites were identified on this form following its stabilization and solving its crystal structure. Importantly, site ø displays neutralizing activity exceeding those of post-F-specific and shared antigenic sites, such as site II which is the target for Palivizumab therapeutic antibody. Induction of high neutralizing antibody responses by pre-F immunization in animal models promoted it as a major vaccine candidate. Since RSV infection is more serious at age extremities and in individuals with undermining health conditions, vaccines are being developed to target these populations. Infants below three months of age have a suppressive immune system, making vaccines' immunogenicity weak. Therefore, a suggested strategy to protect newborns from RSV infection would be through passive immunity of maternal antibodies. Hence, pregnant women at their third trimester have been selected as an ideal target for vaccination with RSV pre-F vaccine. This review summarizes the different modes of RSV pathogenesis and host's immune response to the infection, and illustrates on the latest updates of vaccine development and vaccination approaches.
Collapse
Affiliation(s)
- Sara A Taleb
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- College of Health Sciences, Qatar University, 2713, Doha, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- College of Health Sciences, Qatar University, 2713, Doha, Qatar
| | - Khalid Al Ansari
- Pediatric Emergency Center, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
- College of Health Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
7
|
Moyes J, Walaza S, Pretorius M, Groome M, von Gottberg A, Wolter N, Haffejee S, Variava E, Cohen AL, Tempia S, Kahn K, Dawood H, Venter M, Cohen C, Madhi SA. Respiratory syncytial virus in adults with severe acute respiratory illness in a high HIV prevalence setting. J Infect 2017; 75:346-355. [PMID: 28676408 PMCID: PMC5712433 DOI: 10.1016/j.jinf.2017.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND There are limited data on the epidemiology of respiratory syncytial virus (RSV) illness in HIV-infected adults or the elderly in Africa. We studied the epidemiology of RSV-associated severe acute respiratory illness (SARI) hospitalizations in adults in South Africa from 2009 through 2013. METHODS Individuals admitted to sentinel surveillance hospitals were investigated by respiratory tract swabs for RSV, using a multiplex real-time polymerase chain reaction assay. The incidence of RSV-associated SARI was calculated for the one site with population denominators. RESULTS Of 7796 participants investigated, 329 (4%) tested positive for RSV. On multivariable analysis, HIV-infected individuals with RSV-associated SARI had greater odds of being in the age groups 18-44 and 45-64 years (odd ratios (OR) 26.3; 95% confidence interval (CI) 6.2-112.1 and OR 11.4; 95% CI 2.6-50.0) compared with those ≥65 years and being female (OR 2.7; 95% CI 1.4-5.4). The relative risk of hospitalization with RSV-associated SARI was 12-18 times higher in HIV infected individual compared to that of HIV-uninfected. CONCLUSION The incidence of RSV-associated SARI was higher in HIV-infected individuals and those aged 65 years and older. Further studies are warranted to describe the disease association of RSV detected in adults with SARI.
Collapse
Affiliation(s)
- Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; School of Public Health, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa.
| | - Sibongile Walaza
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; School of Public Health, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Marthi Pretorius
- Department of Medical Virology, University of Pretoria, South Africa
| | - Michelle Groome
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | | | - Ebrahim Variava
- Klerksdorp-Tshepong Hospital Complex, South Africa; The University of the Witwatersrand, South Africa
| | - Adam L Cohen
- Strategic Information Group, Expanded Programme on Immunization, Department of Immunization, Vaccines and Biologicals, World Health Organization, Switzerland
| | - Stefano Tempia
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Influenza Program, Centers for Disease Control and Prevention, Pretoria, South Africa; Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kathleen Kahn
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Centre for Global Health Research and Umeå University, Umeå, Sweden; INDEPTH Network Accra, Ghana
| | - Halima Dawood
- Pietermaritzburg Hospital Complex and University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Marietjie Venter
- Department of Medical Virology, University of Pretoria, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; School of Public Health, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit and Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Oh DS, Oh JE, Jung HE, Lee HK. Transient Depletion of CD169 + Cells Contributes to Impaired Early Protection and Effector CD8 + T Cell Recruitment against Mucosal Respiratory Syncytial Virus Infection. Front Immunol 2017; 8:819. [PMID: 28751894 PMCID: PMC5507946 DOI: 10.3389/fimmu.2017.00819] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of respiratory viral infections in infants and children. Alveolar macrophages (AMs) play a crucial role in combatting airborne pathogens, strongly express CD169, and are localized in the lung alveoli. Therefore, we used CD169-diphtheria toxin receptor (DTR) transgenic mice to explore the roles of CD169+ cells in immune responses to mucosal RSV infection. The administration of diphtheria toxin to CD169-DTR mice induced specific AM depletion and reduced the recruitment of Ly6Chi monocytes. Notably, CD169+ cell depletion reduced levels of innate cytokines, such as interferon-β, IL-6, and TNF-α, in bronchoalveolar lavage fluid during RSV infection without affecting the production of proinflammatory chemokines. Moreover, the depletion of CD169+ cells increased the recruitment of inflammatory cells to the lung during the early stage of RSV infection, although not during the later stages of RSV infection. Furthermore, the depletion of CD169+ cells reduced the recruitment of effector CD8+ T cells to the lungs after RSV mucosal infection. Our findings suggest that modulating the number of CD169+ cells to enhance immune responses to RSV infection may be useful as a new therapeutic strategy.
Collapse
Affiliation(s)
- Dong Sun Oh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Ji Eun Oh
- Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.,Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea.,KAIST Institute for Health Science and Technology, KAIST, Daejeon, South Korea
| |
Collapse
|
9
|
Schmidt ME, Varga SM. Modulation of the host immune response by respiratory syncytial virus proteins. J Microbiol 2017; 55:161-171. [PMID: 28243940 DOI: 10.1007/s12275-017-7045-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/17/2017] [Indexed: 11/27/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe respiratory disease in both the very young and the elderly. Nearly all individuals become infected in early childhood, and reinfections with the virus are common throughout life. Despite its clinical impact, there remains no licensed RSV vaccine. RSV infection in the respiratory tract induces an inflammatory response by the host to facilitate efficient clearance of the virus. However, the host immune response also contributes to the respiratory disease observed following an RSV infection. RSV has evolved several mechanisms to evade the host immune response and promote virus replication through interactions between RSV proteins and immune components. In contrast, some RSV proteins also play critical roles in activating, rather than suppressing, host immunity. In this review, we discuss the interactions between individual RSV proteins and host factors that modulate the immune response and the implications of these interactions for the course of an RSV infection.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pathology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Xia YC, Radwan A, Keenan CR, Langenbach SY, Li M, Radojicic D, Londrigan SL, Gualano RC, Stewart AG. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog 2017; 13:e1006138. [PMID: 28046097 PMCID: PMC5234851 DOI: 10.1371/journal.ppat.1006138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β. In this study, we investigate how respiratory viral infection interferes with the anti-inflammatory actions of glucocorticoid (GC) drugs, which are a highly effective group of anti-inflammatory agents widely used in the treatment of chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Exacerbations of both asthma (“asthma attacks”) and COPD are often caused by viral infection, which does not respond well to GC therapy. Patients are often hospitalized placing a large burden on healthcare systems around the world, with the young, elderly, and those with a poor immune system particularly at risk. We show that viral infection of airway epithelial cells causes increased expression and activity of transforming growth factor-beta (TGF-β), which interferes with GC drug action. Importantly, we have shown for the first time that inhibiting TGF-β activity in the airways could serve as a new strategy to prevent and/or treat viral exacerbations of chronic airway diseases.
Collapse
Affiliation(s)
- Yuxiu C. Xia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Asmaa Radwan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine R. Keenan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Y. Langenbach
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Meina Li
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Danica Radojicic
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rosa C. Gualano
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
11
|
High M, Cho HY, Marzec J, Wiltshire T, Verhein KC, Caballero MT, Acosta PL, Ciencewicki J, McCaw ZR, Kobzik L, Miller-DeGraff L, Gladwell W, Peden DB, Serra ME, Shi M, Weinberg C, Suzuki O, Wang X, Bell DA, Polack FP, Kleeberger SR. Determinants of host susceptibility to murine respiratory syncytial virus (RSV) disease identify a role for the innate immunity scavenger receptor MARCO gene in human infants. EBioMedicine 2016; 11:73-84. [PMID: 27554839 PMCID: PMC5049919 DOI: 10.1016/j.ebiom.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/29/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is the global leading cause of lower respiratory tract infection in infants. Nearly 30% of all infected infants develop severe disease including bronchiolitis, but susceptibility mechanisms remain unclear. Methods We infected a panel of 30 inbred strains of mice with RSV and measured changes in lung disease parameters 1 and 5 days post-infection and they were used in genome-wide association (GWA) studies to identify quantitative trait loci (QTL) and susceptibility gene candidates. Findings GWA identified QTLs for RSV disease phenotypes, and the innate immunity scavenger receptor Marco was a candidate susceptibility gene; targeted deletion of Marco worsened murine RSV disease. We characterized a human MARCO promoter SNP that caused loss of gene expression, increased in vitro cellular response to RSV infection, and associated with increased risk of disease severity in two independent populations of children infected with RSV. Interpretation Translational integration of a genetic animal model and in vitro human studies identified a role for MARCO in human RSV disease severity. Because no RSV vaccines are approved for clinical use, genetic studies have implications for diagnosing individuals who are at risk for severe RSV disease, and disease prevention strategies (e.g. RSV antibodies). In a panel of inbred strains of mice, RSV disease phenotypes were characterized that resemble those in human disease. We identified Marco as a susceptibility gene, and a human MARCO mutation increased risk of disease severity in children. These studies have implications for diagnosing individuals who are at risk for severe RSV disease and prevent disease.
RSV disease is the primary global cause for hospitalization one year after birth but the causes of differential RSV disease severity are not understood. We show that RSV disease phenotypes vary significantly between inbred strains of mice, and resemble those in human disease. We used genetic approaches to identify and validate the innate immunity gene Marco as a host susceptibility determinant for murine RSV disease. We then characterized a loss of function polymorphism in human MARCO that increases risk of severe RSV disease risk in infants. Results have important implications for identifying genetic risk factors for severe RSV disease.
Collapse
Affiliation(s)
- Monica High
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Hye-Youn Cho
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jacqui Marzec
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Kirsten C Verhein
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Patricio L Acosta
- Fundación INFANT, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires, Argentina
| | - Jonathan Ciencewicki
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Zackary R McCaw
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard University School of Public Health, Boston, MA, USA
| | - Laura Miller-DeGraff
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Wes Gladwell
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Min Shi
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Clarice Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Oscar Suzuki
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Xuting Wang
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Douglas A Bell
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Fernando P Polack
- Fundación INFANT, Buenos Aires, Argentina; Department of Pediatrics, Vanderbilt University, Nashville, TN, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation, and Diseases Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
12
|
French CE, McKenzie BC, Coope C, Rajanaidu S, Paranthaman K, Pebody R, Nguyen-Van-Tam JS, Higgins JPT, Beck CR. Risk of nosocomial respiratory syncytial virus infection and effectiveness of control measures to prevent transmission events: a systematic review. Influenza Other Respir Viruses 2016; 10:268-90. [PMID: 26901358 PMCID: PMC4910170 DOI: 10.1111/irv.12379] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 01/14/2023] Open
Abstract
Respiratory syncytial virus (RSV) causes a significant public health burden, and outbreaks among vulnerable patients in hospital settings are of particular concern. We reviewed published and unpublished literature from hospital settings to assess: (i) nosocomial RSV transmission risk (attack rate) during outbreaks, (ii) effectiveness of infection control measures. We searched the following databases: MEDLINE, EMBASE, CINAHL, Cochrane Library, together with key websites, journals and grey literature, to end of 2012. Risk of bias was assessed using the Cochrane risk of bias tool or Newcastle–Ottawa scale. A narrative synthesis was conducted. Forty studies were included (19 addressing research question one, 21 addressing question two). RSV transmission risk varied by hospital setting; 6–56% (median: 28·5%) in neonatal/paediatric settings (n = 14), 6–12% (median: 7%) in adult haematology and transplant units (n = 3), and 30–32% in other adult settings (n = 2). For question two, most studies (n = 13) employed multi‐component interventions (e.g. cohort nursing, personal protective equipment (PPE), isolation), and these were largely reported to be effective in reducing nosocomial transmission. Four studies examined staff PPE; eye protection appeared more effective than gowns and masks. One study reported on RSV prophylaxis for patients (RSV‐Ig/palivizumab); there was no statistical evidence of effectiveness although the sample size was small. Overall, risk of bias for included studies tended to be high. We conclude that RSV transmission risk varies widely during hospital outbreaks. Although multi‐component control strategies appear broadly successful, further research is required to disaggregate the effectiveness of individual components including the potential role of palivizumab prophylaxis.
Collapse
Affiliation(s)
- Clare E French
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | | | - Caroline Coope
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK.,Public Health England, London, UK
| | | | | | | | | | | | - Julian P T Higgins
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK
| | - Charles R Beck
- School of Social and Community Medicine, University of Bristol, Bristol, UK.,NIHR Health Protection Research Unit in Evaluation of Interventions at University of Bristol, Bristol, UK.,Public Health England, London, UK
| |
Collapse
|
13
|
Ruckwardt TJ, Morabito KM, Graham BS. Determinants of early life immune responses to RSV infection. Curr Opin Virol 2016; 16:151-157. [PMID: 26986236 DOI: 10.1016/j.coviro.2016.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Respiratory syncytial virus causes significant morbidity and mortality in both developed and developing countries, and a vaccine that adequately protects from severe disease remains an important unmet need. RSV disease has an inordinate impact on the very young, and the physical and immunological immaturity of early life complicates vaccine design. Defining and targeting the functional capacities of early life immune responses and controlling responses during primary antigen exposure with selected vaccine delivery approaches will be important for protecting infants by active immunization. Alternatively, vaccination of older children and pregnant mothers may ameliorate disease burden indirectly until infants reach about six months of age, when they can generate more effective anti-RSV immune responses.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Kaitlyn M Morabito
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Immunological, Viral, Environmental, and Individual Factors Modulating Lung Immune Response to Respiratory Syncytial Virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:875723. [PMID: 26064963 PMCID: PMC4438160 DOI: 10.1155/2015/875723] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus is a worldwide pathogen agent responsible for frequent respiratory tract infections that may become severe and potentially lethal in high risk infants and adults. Several studies have been performed to investigate the immune response that determines the clinical course of the infection. In the present paper, we review the literature on viral, environmental, and host factors influencing virus response; the mechanisms of the immune response; and the action of nonimmunological factors. These mechanisms have often been studied in animal models and in the present review we also summarize the main findings obtained from animal models as well as the limits of each of these models. Understanding the lung response involved in the pathogenesis of these respiratory infections could be useful in improving the preventive strategies against respiratory syncytial virus.
Collapse
|
15
|
McLellan JS. Neutralizing epitopes on the respiratory syncytial virus fusion glycoprotein. Curr Opin Virol 2015; 11:70-5. [PMID: 25819327 PMCID: PMC4456247 DOI: 10.1016/j.coviro.2015.03.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis, but despite decades of research a safe and effective vaccine has remained elusive. The viral fusion glycoprotein (RSV F) plays an obligatory role in the entry process and is the major target of neutralizing antibodies, making it an attractive target for vaccine development. This review will summarize the recently determined structures of RSV F in the prefusion and postfusion conformations and describe the location and properties of neutralizing epitopes on RSV F, including the newly identified prefusion-specific epitopes. The influence of these findings on vaccine development will also be discussed, with a focus on the rational design and optimization of vaccine antigens.
Collapse
Affiliation(s)
- Jason S McLellan
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, 7200 Vail, Hanover, NH, 03755 USA.
| |
Collapse
|
16
|
Gujar SA, Lee PWK. Oncolytic virus-mediated reversal of impaired tumor antigen presentation. Front Oncol 2014; 4:77. [PMID: 24782988 PMCID: PMC3989761 DOI: 10.3389/fonc.2014.00077] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/27/2014] [Indexed: 12/03/2022] Open
Abstract
Anti-tumor immunity can eliminate existing cancer cells and also maintain a constant surveillance against possible relapse. Such an antigen-specific adaptive response begins when tumor-specific T cells become activated. T-cell activation requires two signals on antigen presenting cells (APCs): antigen presentation through major histocombatibility complex (MHC) molecules and co-stimulation. In the absence of one or both these signals, T cells remain inactivated or can even become tolerized. Cancer cells and their associated microenvironment strategically hinder the processing and presentation of tumor antigens and consequently prevent the development of anti-tumor immunity. Many studies, however, demonstrate that interventions that over-turn tumor-associated immune evasion mechanisms can establish anti-tumor immune responses of therapeutic potential. One such intervention is oncolytic virus (OV)-based anti-cancer therapy. Here, we discuss how OV-induced immunological events override tumor-associated antigen presentation impairment and promote appropriate T cell–APC interaction. Detailed understanding of this phenomenon is pivotal for devising the strategies that will enhance the efficacy of OV-based anti-cancer therapy by complementing its inherent oncolytic activities with desired anti-tumor immune responses.
Collapse
Affiliation(s)
- Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Strategy and Organizational Performance, IWK Health Centre , Halifax, NS , Canada
| | - Patrick W K Lee
- Department of Microbiology and Immunology, Dalhousie University , Halifax, NS , Canada ; Department of Pathology, Dalhousie University , Halifax, NS , Canada
| |
Collapse
|